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A B S T R A C T

Autonomous vehicles (AVs) utilize sensors such as LiDAR and cameras to iteratively perform sensing, decision-
making, and actions. Multi-object tracking (MOT) systems are employed in the sensing stage of AVs, using these
sensors to detect and track objects like pedestrians and vehicles, thereby enhancing situational awareness.
These systems must handle regions of varying criticality and dynamically shifting locations, all within limited
computing resources. Previous DNN-based MOT approaches primarily focused on tracking accuracy, but timing
guarantees are becoming increasingly vital for autonomous driving. Although recent studies have introduced
MOT scheduling frameworks with timing guarantees, they are either restricted to single-camera systems or
fail to prioritize safety-critical regions in the input images. We propose CA-MOT, a Criticality-Aware MOT
execution and scheduling framework for multiple cameras. CA-MOT provides a control knob that balances
tracking accuracy in safety-critical regions and timing guarantees. By effectively utilizing this control knob,
CA-MOT achieves both high accuracy and timing guarantees. We evaluated CA-MOT’s performance using a
GPU-enabled embedded board commonly employed in AVs, with data from real-world autonomous driving
scenarios.
1. Introduction

Autonomous vehicles (AVs) are systems that iteratively perform
sensing, decision-making, and actions using various sensors such as
LiDAR, radar, inertial measurement units (IMU), and cameras [1].
Multi-object tracking (MOT) systems, used in the perception stage
of AVs, track objects like pedestrians and cars, enhancing situational
awareness. Since MOT information is periodically transferred to control
tasks, timely execution must be guaranteed to ensure safety and prevent
severe accidents [2–4]. Low accuracy, despite timely execution, may
result in missed objects, thus compromising AVs’ safety [2,4,5]. There-
fore, AV MOT systems should ensure timing guarantees with maximized
accuracy.

Tracking-by-detection [6,7] is widely used due to its high accuracy
and ability to leverage state-of-the-art DNN-based detection models
(e.g., YOLO series [8], Faster R-CNN [9]). For each input image from
each camera, tracking-by-detection performs two tasks: detection and
association. Detection uses DNN-based models to sense the motion
information of objects, such as location and velocity, while association
matches objects between frames based on extracted feature informa-
tion (also called feature vectors or feature maps obtained through
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pooling and convolutional layers) using CNN (convolutional neural
network)-based models (e.g., OS-Net [10]). For unmatched objects,
location-based methods like intersection over union (IoU) are applied.

MOT input images exhibit two key characteristics: (i) regions with
varying levels of criticality and (ii) dynamically shifting locations. With
limited computing resources in AVs, it is crucial to deliver different
levels of service quality based on criticality. Safety-critical regions,
where objects with a short time-to-collision (e.g., under 2 s) cluster,
must be prioritized. If multiple clusters exist, the broader area en-
compassing them is considered the safety-critical region, as defined in
DNN-SAM [5]. Established methods compute time-to-collision using Li-
DAR and IMU data; we follow the approach from DNN-SAM. This leads
to two requirements for criticality-aware MOT systems: (R1) accuracy
maximization for safety-critical regions and (R2) timing guarantees.

Most existing DNN-based MOT approaches focus on accuracy [7,
11,12], but timing guarantees are increasingly critical in autonomous
driving. Recent research has proposed MOT resource scheduling frame-
works that guarantee timing for every MOT execution [2,4]. How-
ever, [2] overlooks safety-criticality, while [4] focuses on a single task.
We address safety-criticality across multiple tasks, raising the following
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 data mining, AI training, and similar technologies. 
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challenges:

C1. How to balance R1 and R2 to efficiently use limited computing
resources.

C2. How to achieve both R1 and R2 by effectively using the control
knob developed from C1.

In this paper, we propose CA-MOT, a Criticality-Aware MOT exe-
ution and scheduling framework for multiple MOT tasks. To address

C1, CA-MOT offers three execution options (low, middle, and high
workloads) to balance R1 and R2 for both detection and association.
To address C2, CA-MOT introduces the notion of aging for detection
nd association sub-tasks, estimating the reliability of motion and
eature information over time. Balancing the aging of these tasks is
ssential to achieve R1 and R2 with limited resources (to be discussed
n Section 3.4). Based on this, CA-MOT develops two scheduling algo-

rithms: EDF-BE and EDF-Slack. EDF-BE increases the workload of tasks
waiting in the ready queue for execution (referred to as active tasks)
without compromising the R2 bound when no other tasks are pending.
In contrast, EDF-Slack is designed to handle scenarios with multiple
active tasks.

To validate CA-MOT’s performance in meeting R1 and R2, we
conducted extensive experiments on an NVIDIA Jetson Xavier using
the KITTI Dataset [13]. Additionally, we applied three detectors in our
xperiments: YOLOv5 [14], YOLOX [8], and Faster-RCNN [9].

The contributions of this paper are as follows:

• We motivate the importance of balancing between aging of de-
tection and association to achieve R1 and R2 (Section 2).

• We propose a new system design, CA-MOT that addresses R1 and
R2 considering varying levels of criticality in different regions for
multiple MOT tasks (Section 3).

• We develop new scheduling algorithms to effectively achieve R1
and R2 by balancing between aging of detection and association
for each MOT task (Section 4).

• We demonstrate the effectiveness of CA-MOT in achieving R1 and
R2 using a real-world self-driving dataset (Section 5).

2. Motivation

This section presents target systems and motivates the system de-
sign of CA-MOT to address C1 and C2 based on measurement-based
observations.

2.1. Target system

CA-MOT targets 2D MOT systems on AVs equipped with multiple
camera sensors. Each MOT task performs MOT execution on consecu-
tive input frames received from the corresponding camera sensor at a
predetermined period. As this recurring task is required to complete
a job within a specified deadline, each MOT task is considered a
real-time task with a period and deadline. CA-MOT employs tracking-
by-detection comprising two steps of MOT execution: detection and
ssociation. The front-end detector performs detection by exploiting
he existing stand-alone DNN-based detector to identify the position
nd class of objects in the input image. Using the locations of detected
bjects, the feature extractor (e.g., the deployed CNN model such as

OSNet) extracts features (i.e., feature vectors or feature maps) for each
object. These features capture the visual characteristics of each object.
The back-end tracker compares the feature similarities between objects
in the current frame and the previous frame, matching objects with
high similarity. For any remaining unmatched objects, a location-based
matching method such as IoU is applied. The tracker then stores the
motion information (position and velocity) and the features of each
object in preparation for the next frame.

We assume a system in which each camera independently tracks
bjects moving within its field of view. While it is possible to consider
2 
Fig. 1. Tracking accuracy and execution time on different execution options of
detection and association.

a system that tracks specific objects moving between the fields of view
of multiple cameras (called hand-over), this is beyond the scope of
our work. This paper focuses on dividing the multi-object tracking task
into two subtasks (i.e., detection and association) and using DNN-based
MOT-specific properties (i.e., reuse of motion and feature information)
to achieve R1 and R2 under limited resources.

2.2. Trade-off between accuracy and execution time

To address C1, we consider two factors: (i) the input image size
and detection within the safety-critical region, and (ii) the number of
objects used for feature extraction during association across all detected
objects in each frame.

Fig. 1(a) compares the multi-object tracking accuracy (MOTA) [15]
for the overall and safety-critical regions (referred to as overall and
critical accuracy) and the execution time for a single MOT task using
three input image sizes (256 × 256, 416 × 416, 672 × 672). Overall
ccuracy considers all objects, while critical accuracy focuses on the
afety-critical region. YOLOv5 [14] is used for detection, and features

are extracted for all detected objects. The KITTI dataset [13] is used.
For image sizes 256 × 256 and 416 × 416, detection is performed
on a cropped region of interest (RoI) that includes the safety-critical
region. If the RoI is smaller, it is resized to include the critical region;
therwise, the critical region is cropped accordingly. The safety-critical
egion will be defined in Section 3. For the 672 × 672 size (i.e., the

original input size), detection occurs without cropping.
As shown in Fig. 1(a), reducing image size leads to a notable

decrease in overall accuracy, while critical accuracy decreases less
significantly due to prioritization of the safety-critical region in the RoI.

dditionally, execution time decreases as the image size is reduced,
emonstrating a trade-off between R1 and R2 when focusing on the
ritical region.

Fig. 1(b) shows the impact of varying the number of objects used
for feature extraction on accuracy and execution time, with the image
size fixed at 672 × 672. The number of objects ranges from zero, three,
and more than three. OS-Net [10] is used for feature extraction. As
shown in Fig. 1(b), as the number of objects with feature extraction
increases, both overall and critical accuracy improve, but this also leads
to increased execution time. This highlights a trade-off between R1 and
R2 based on the number of objects considered for feature extraction.

Section 3.3 details the MOT execution pipeline of CA-MOT, which
leverages these observations to effectively address C1.
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Fig. 2. System design of CA-MOT: the key features are (a) an aging-aware scheduler that provides timing guarantees and a criticality-aware flexible MOT execution pipeline
including (b) a detection module that accommodates varying input sizes and (c) an association module that handles a varying number of objects for feature extraction.
2.3. Different combination of detection and association

To address C2, Fig. 1(c) reveals an intriguing observation that differ-
ent combinations of image sizes and the number of feature extractions
yield distinct effects on accuracy and execution time. The experiment
was conducted over 100 consecutive frames.

In Fig. 1(c), the execution of detection or association is denoted by
𝑃 or 𝐹 . 𝑃 represents partial computation, where detection is performed
only on the region of interest (RoI) at a size of 256 × 256, including
a safety-critical region, and association is limited to location-based
association without feature extraction. 𝐹 represents full computation,
where detection is performed on the entire image at a size of 672 × 672,
and association includes feature extraction for all objects. The number
in the upper right of the notation indicates how many times the combi-
nation of detection and association has been performed. For example,
the notation 𝐹 𝐹 50𝑃 𝑃 50 indicates that we use 𝐹 for both the detection
and association steps in the first 50 frames and 𝑃 for both phases in the
remaining 50 frames. To mitigate the issue of objects outside the critical
region not being detected due to cropping, which can decrease the
accuracy of the non-critical region, we utilize the position information
of objects from the previous frame as predicted position information for
the current frame using a prediction model such as Kalman filter [16]
during the execution of 𝑃 in the detection step. Except for 𝑃 𝑃 100 and
𝐹 𝐹 100, all combinations have the same proportion of 𝐹 and 𝑃 for the
entire frames.

As shown in Fig. 1(c), although 𝐹 𝐹 50𝑃 𝑃 50 and 𝑃 𝐹 100 have similar
execution times with (𝑃 𝐹 +𝐹 𝑃 )100 and (𝐹 𝐹 +𝑃 𝑃 )100, they show lower
tracking accuracy. This indicates that different combinations of 𝐹 and
𝑃 can have a varying impact on accuracy. The observation in Fig. 1(c)
necessitates a new scheduler that is capable of obtaining high tracking
accuracy by capturing an MOT-specific property referred to as aging,
which will be detailed in Section 3.4.

3. System design of CA-MOT

This section presents the goal and design of CA-MOT to address C1
and C2.

3.1. System overview

CA-MOT utilizes a tracking-by-detection approach, consisting of
two steps: detection and association, where the front-end detector em-
ploys a pre-existing DNN-based detector to detect and classify objects
in the input image, and the unmatched objects are matched using a
location-based method like IoU. CA-MOT aims at providing prioritized
tracking accuracy for the safety-critical region with a timing guarantee
for every MOT execution on limited computing resources by addressing
C1 and C2 discussed in Section 1, which has the following design goals.

• It provides different execution options not only for detection but
also association considering different criticality of regions in input
images.
3 
• It provides a timing guarantee while providing prioritized track-
ing accuracy for the safety-critical regions by exploiting an MOT-
specific property.

To address the first goal, CA-MOT implements a criticality-aware
flexible MOT execution pipeline in which detection and association
are performed with different execution option by leveraging the ob-
servations discussed in Section 2.2. To address the second goal, CA-
MOT develops an aging-aware task-level scheduler to provide accuracy
maximization while providing a timing guarantee by exploiting the
observations discussed in Section 2.3 building upon the MOT execution
pipeline. The MOT execution pipeline and the scheduler are imple-
mented as separate threads, and they are communicated with shared
memory.

CA-MOT does not require modifications to existing DNN models
(e.g., detectors and feature extractors), which allows for reusing most
(if not all) stand-alone detectors and feature extractors. Notably, state-
of-the-art detectors like YOLOv5 are inherently designed to handle
varying input image sizes, and all CNN models can perform batch exe-
cution on multiple images (each corresponding to a different object). As
shown in Fig. 2, the key features of CA-MOT are: (a) a scheduling policy
that selects one input per camera, provides timing guarantees, and
adjusts the workload for detection and association; (b) a module that
processes detection with inputs of varying sizes; and (c) a module that
extracts features from a pre-determined number of detected objects.

3.2. Workflow

Fig. 2 presents the workflow of CA-MOT. During system operation,
the task scheduler maintains a queue to store images periodically
received from each camera sensor ( 1⃝). Then, the task scheduler deter-
mines the following for tasks in the queue: (a) the task to be scheduled,
(b) the execution option for the detector, and (c) the execution option
for the association ( 2⃝). After an image moves to the MOT execution
pipeline, the critical region identification module identifies a safety-
critical region from the image and crops (or not) a RoI including the
safety-critical region according to the execution option for the detector
( 3⃝). Depending on the execution option, the cropped RoI or entire
image is processed for detection ( 4⃝). Furthermore, depending on the
number of objects for which features are extracted, CA-MOT selectively
extracts features for detected objects ( 5⃝). All detected objects are then
matched with the tracked objects from the previous frame. If both the
detected and tracked objects have feature vectors, they are associated
through feature-based matching. Otherwise, they are associated solely
based on their locations ( 6⃝).

3.3. Criticality-aware flexible MOT execution pipeline

The MOT execution pipeline conducts detection and association
sequentially. CA-MOT can employ any existing stand-alone DNN-based
detectors as long as it can accommodate different sizes of input images
(e.g., YOLO series) and offer a clear trade-off between accuracy and
execution time. For each input image with a size of 672 × 672, the
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detector performs the detection to identify the location and class of
multiple objects in the image. Once the scheduler determines the task
(associated with an input image) to be scheduled and the execution
option for the tasks, the detection is performed for the task according
to the execution option. CA-MOT provides three execution options
(i.e., low, middle, and high workloads, respectively) providing a trade-
off between execution time and accuracy. For low and middle workload
detections, CA-MOT first identifies the RoI with sizes of 256 × 256 and
416 × 416, respectively, and then detection is performed on cropped
RoI, which includes the safety-critical region. The area outside the
RoI is not subject to detection, and the motion information (e.g., size,
position, velocity, direction) of objects detected in the previous frame
is used in the prediction models such as the Kalman filter to obtain
the estimated information of objects in the current frame. On the other
hand, high-workload detection is performed on the original image with
a size of 672 × 672.

We define the area that encompasses all safety-critical objects,
which are objects with a time-to-collision of less than two seconds, as
the safety-critical area. If the safety-critical area exceeds the input size
for the detector, as determined by the detection process (e.g., 256 × 256
or 416 × 416), the safety-critical area is cropped and resized to the
corresponding dimensions before being fed into the detector model.
The locations of safety-critical objects are determined based on their
most recently computed positions, without projecting future safety-
critical regions from them. There are numerous existing approaches
that calculate time-to-collision based on the relative positions of objects
and the ego vehicle given LiDAR and IMU data, and we assume the use
of one such method. It is also important to note that the KITTI dataset
provides both LiDAR and IMU data. For example, areas where objects
with a time-to-collision of less than 2 s congregate can be defined as
safety-critical regions, and if multiple such areas exist, the encompassing
area that includes all of them would be considered the safety-critical
region. Please note that we adhere to the definition of the safety-critical
region as defined in the existing paper DNN-SAM in [5]. It is assumed
that the critical region is pre-calculated by external sensors such as
LiDAR and IMU and provided to CA-MOT. If an input image does not
have a critical region, the entire frame is considered a critical region.
As seen in Fig. 2, GPU is used only for the inference of DNN models,
uch as the detector (e.g., YOLOv5) and feature extractor (e.g., OSNet),
hile all other execution is performed on the CPU.

For the association, the MOT system uses the two-step approach [7].
Initially, a CNN-based model (e.g., OS-Net [10]) is employed by the
tracker to extract features from the detected objects. The tracker then
compares these features between the current and previous frames to
identify object pairs with the highest feature similarity. For the re-
maining objects that are not matched based on feature comparison, a
location-based matching method such as IoU (intersection over union)
is used. CA-MOT also provides three execution options (i.e., low,
middle, and high workloads, respectively) for the association. When
it comes to the middle and high workload associations, the tracker
extracts features from some (e.g., three) of the detected objects or
all of the detected objects, and then performs consecutive feature-
based and location-based matchings. On the other hand, low-workload
ssociation performs location-based matching only. Depending on the
xecution option, CA-MOT may extract features from only a subset or
ll of the detected objects, which means that the feature information
f objects may not be updated every time. Therefore, during feature-
ased matching, the algorithm compares the features extracted from
he objects in the current frame with the closest previously extracted
eatures of the tracked objects and matches the two objects with the
ighest feature similarity.

3.4. Aging-aware task scheduler

The CA-MOT implements a thread-level task scheduler to determine
he task to be scheduled and execution options for detection and
 m

4 
association for each task at every scheduling decision. The scheduler
manages MOT tasks using a single queue and is triggered when a task
completes its execution or a new task is released. As three execution
options (e.g., low, middle, and high workloads) are provided for each
detection and association under CA-MOT, the scheduler decides the
image size (e.g., 256 × 256, 416 × 416, and 672 × 672) for detection
and feature size (e.g., zero, three, and more than three) for association
according to the scheduling algorithms (to be presented in Section 4).

As discussed in Section 2.3, various combinations of image sizes
and the quantity of feature extractions result in different impacts on
tracking accuracy. This is due to an important property of the MOT
system, which involves supplementing non-updated motion or feature
information during detection and association in the current frame by
utilizing information from the previous frame. For example, in scenar-
ios with low and middle workload detection, the detection process does
not cover the area outside the RoI. Instead, the motion information
f objects detected in the previous frame, such as their size, position,
elocity, and direction, is leveraged to estimate the corresponding
nformation for objects in the current frame. Moreover, during the as-
ociation step, if the feature extracted from the immediately preceding
rame is unavailable due to low- and middle-workload associations,
he feature-based matching algorithm compares the features extracted
rom objects in the current frame with the features extracted from the
earest past frames. Therefore, the tracking accuracy is determined
y the reliability of the reused motion and feature information of the
bjects. To capture the reliability of the motion and feature information
f objects, we propose a new notion of aging that specifies the number
f middle- or high-workload executions of detection and association
onducted from the beginning of the MOT task, respectively. In order
o update the motion and feature information as frequently as possi-
le using limited computing resources, it is necessary to balance the
ging of detection and association for each task. Note that increasing
he aging of detection and association for all tasks simultaneously in
very MOT execution is generally not feasible due to limited com-
uting resources. Therefore, a mechanism is required to balance the
ging of detection and association for all tasks while providing timing
uarantees under constrained resources. To this end, we propose new
cheduling algorithms that will be detailed in the next section.

4. Scheduling algorithm

This section presents a task model and proposes new scheduling
algorithms building upon CA-MOT.

4.1. Task model

Targeting MOT systems in AVs that involve 𝑛 camera sensors, we
consider a set 𝜏 consisting of 𝑛 MOT tasks denoted as 𝜏𝑖 ∈ 𝜏. Each
MOT task 𝜏𝑖 is responsible for conducting MOT execution using input
images provided periodically by each camera sensor. As we employ
he methodology of tracking-by-detection, an MOT task consists of

detection and association sub-tasks. Thus, the specification of each
MOT task 𝜏𝑖 is given as 𝜏𝑖 = (𝑇𝑖, 𝐶𝑖(𝑠𝑖, 𝑓𝑖), 𝐷𝑖), where 𝑇𝑖 represents the
eriod (or the minimum inter-arrival time), 𝐶𝑖(𝑠𝑖, 𝑓𝑖) denotes the worst-
ase execution time (WCET) based on the execution options (i.e., low,
iddle, and high-workload execution) for detection and association

ub-tasks, respectively, and 𝐷𝑖 indicates the relative deadline. The
xecution time of the detection sub-task depends on the image size
𝑖 ∈ 𝑆𝑖 = {𝐿, 𝑀 , 𝐻}, where 𝐿, 𝑀 , 𝐻 are 256 × 256, 416 × 416, and
72 × 672, respectively. Note that CA-MOT supports arbitrary non-
ecreasing sizes for 𝑆𝑖 = {𝐿, 𝑀 , 𝐻}. On the other hand, the execution
ime of the association sub-task depends on the feature size 𝑓𝑖 ∈
𝑖 = {𝐿, 𝑀 , 𝐻}, where 𝐿, 𝑀 , 𝐻 are zero, from one to three, and more
han three, respectively. Note that the tracking-by-detection methodol-
gy performs the association phase sequentially through feature-based
atching followed by location-based matching using IoU. If 𝑓 is equal
𝑖



D. Kang et al.

o
c

e
I
b

r
r
i

t
o
m

t
t

m

e

h
i
s
t
c
(
i
M
t

d

S
n
p
i
j
i
𝜏
w
c

a
t
(

o

a

Journal of Systems Architecture 160 (2025) 103349 
Table 1
Notations used in the scheduling algorithms.

Symbol Description

𝜏𝑖 Task 𝑖 in the system
𝑇𝑖 Period of task 𝜏𝑖 (minimum inter-arrival time)
𝐷𝑖 Relative deadline of task 𝜏𝑖
𝐶𝑖(𝑋 , 𝑌 ) Worst-case execution time (WCET) of task 𝑖.

𝑋: image size for detection (𝐿, 𝑀 , 𝐻)
𝑌 : feature size for association (𝐿, 𝑀 , 𝐻)

𝑠𝑖 Image size for the detection sub-task of task 𝑖
𝑓𝑖 Feature size for the association sub-task of task 𝑖
𝑆𝑖 Set of image size options for task 𝑖 (𝑆𝑖 = {𝐿, 𝑀 , 𝐻})
𝐹𝑖 Set of feature size options for task 𝑖 (𝐹𝑖 = {𝐿, 𝑀 , 𝐻})
𝐿 Low workload execution
𝑀 Middle workload execution
𝐻 High workload execution

𝐶𝐷
𝑖 (𝑠𝑖) WCET of the detection sub-task of task 𝑖, based on image

size 𝑠𝑖
𝐶𝐴
𝑖 (𝑓𝑖) WCET of the association sub-task of task 𝑖, based on

feature size 𝑓𝑖
𝑅𝐶𝑖(𝐿, 𝐿) Remaining execution time for the minimum execution of

task 𝑖

𝑎𝑔 𝑒𝐷𝑖 Aging value of the detection sub-task of task 𝑖
𝑎𝑔 𝑒𝐴𝑖 Aging value of the association sub-task of task 𝑖
𝑠𝑙 𝑎𝑐 𝑘𝑖𝑡𝑐 𝑢𝑟 Slack time available for task 𝑖 at the current time 𝑡𝑐 𝑢𝑟
𝑞𝑖 Minimum execution time of task 𝑖 in the interval

[𝑡𝑐 𝑢𝑟 , 𝑑1(𝑡𝑐 𝑢𝑟)]
𝑝 Sum of the minimum execution times for all tasks

𝑑1(𝑡𝑐 𝑢𝑟) Earliest deadline or future release time at time instant 𝑡𝑐 𝑢𝑟
𝑠𝑙 𝑎𝑐 𝑘𝐷−

𝑖 Remaining slack after executing high-workload detection
for task 𝑖

𝑠𝑙 𝑎𝑐 𝑘𝐴−𝑖 Remaining slack after executing high-workload
association for task 𝑖

to 𝐿, this indicates that no feature extraction has been performed for
the frame, and thus, feature-based matching is skipped, proceeding
directly to location-based matching. In the case of 𝐻 , we employ the
maximum number of objects as defined by the environment (for the
dataset considered, this is based on values measured across all videos),
for example, 10. Then, the worst-case execution time 𝐶𝑖(𝑠𝑖, 𝑓𝑖) of each
MOT task 𝜏𝑖 is derived as follows.

𝐶𝑖(𝑠𝑖, 𝑓𝑖) = 𝐶𝐷
𝑖 (𝑠𝑖) + 𝐶𝐴

𝑖 (𝑓𝑖), (1)

where 𝐶𝐷
𝑖 (𝑠𝑖) and 𝐶𝐴

𝑖 (𝑓𝑖) are the worst-case execution times of detection
and association sub-tasks according to 𝑠𝑖 and 𝑓𝑖, respectively. As shown
in Fig. 2, both the detection and the association sub-tasks involve GPU
perations, with their respective WCETs including the communication
osts between the CPU and GPU. Note that the detection sub-task,

denoted as 𝜏𝐷𝑖 , and the association sub-task, denoted as 𝜏𝐴𝑖 , are executed
consecutively without any preemption while sharing the same period
and relative deadline. Similarly, when an active task is running, it
xecutes without any interruptions, while other tasks wait in the queue.
n addition, each task runs on an environment where non-preemption
etween the GPU and CPU is guaranteed. To ensure this, while the

CPU is running, the GPU waits for input from the CPU. Once the GPU
eceives the input and is activated, the CPU waits until it receives the
esults from the GPU, as illustrated in Fig. 2. As seen Fig. 2, GPU
s used only for the inference of DNN models, such as the detector

(e.g., YOLOv5) and feature extractor (e.g., OSNet), while all other
execution is performed on the CPU. Also, CA-MOT does not allow
parallel execution for multiple MOT executions (see Table 1).

The worst-case execution time 𝐶𝐷
𝑖 (𝑠𝑖) of the detection sub-task is

determined by the sum of various components, including preprocessing
time (such as cropping and resizing the input image), image transfer
ime from CPU memory to GPU memory, model inference time to
btain candidate objects, and postprocessing time (e.g., applying non-
aximum suppression) to extract the final objects from the candidates.
 u

5 
On the other hand, the worst-case execution time 𝐶𝐴
𝑖 (𝑓𝑖) of the associa-

ion task depends on the feature size 𝑓𝑖. It is calculated by considering
he time required for extracting features from detected objects and

performing matching methods such as feature-based and IoU-based
atching. An MOT task 𝜏𝑖 is considered schedulable if every job 𝐽𝑖

(invoked by 𝜏𝑖) completes its execution within the relative deadline 𝐷𝑖.
The overall schedulability of the system is determined by ensuring that
very task 𝜏𝑖 ∈ 𝜏 is schedulable.

4.2. EDF best-effort

Building upon the system design of CA-MOT presented in Section 3,
we develop two scheduling algorithms that aim to provide not only
igh tracking accuracy for the safety-critical regions but also a tim-
ng guarantee for every MOT execution. To this end, the proposed
cheduling algorithms have the following two features: (F1) an offline
iming guarantee for the minimum execution (i.e., low-workload exe-
ution for both detection and association) of every MOT execution and
F2) an online policy to maximize tracking accuracy by systematically
ncreasing workload (i.e., middle- or high-workload execution) of an
OT execution using notions of slack and aging without compromising

iming guarantee.
The proposed scheduling algorithms are based on the non-preem-

ptive earliest deadline first (EDF) scheduling algorithm, which assigns
higher priority to jobs with earlier deadlines without allowing any
preemption. To provide the first feature F1, CA-MOT employs the
existing schedulability analysis developed for non-preemptive EDF as
follows.

Lemma 1. For a set 𝜏 of MOT tasks scheduled by non-preemptive EDF,
minimum execution 𝐶𝑖(𝐿, 𝐿) of every task 𝜏𝑖 ∈ 𝜏 can be executed without
eadline miss as long as the following holds for every task 𝜏𝑖 ∈ 𝜏.
max𝜏𝑖 𝐶𝑖(𝐿, 𝐿)

min𝜏𝑖 𝑇𝑖
+

∑

𝜏𝑖∈𝜏

𝐶𝑖(𝐿, 𝐿)
𝑇𝑖

≤ 1.0 (2)

Proof. The lemma presents a schedulability condition for non-preem-
ptive EDF, and its proof is outlined as follows. Let us target 𝜏𝑘 ∈ 𝜏;
also, consider a virtual task 𝜏𝑥 ∉ 𝜏, whose 𝑇𝑥 and 𝐶𝑥(𝐿, 𝐿) are set
to min𝜏𝑖∈𝜏 𝑇𝑖 and max𝜏𝑖∈𝜏 𝐶𝑖(𝐿, 𝐿), respectively. Now, we compare the
finishing time of a job of 𝜏𝑘 when (Case 1) 𝜏 is scheduled by non-
preemptive EDF, and (Case 2) 𝜏 ∪ {𝜏𝑥} is scheduled by preemptive EDF.
ince at most one lower-priority job can block a high-priority job under
on-preemptive scheduling, 𝜏𝑘 can be blocked by at most one lower-
riority job under Case 1; obviously, the WCET of the lower-priority job
s upper-bounded by max𝜏𝑖∈𝜏 𝐶𝑖(𝐿, 𝐿). Also, to block all the following
obs of 𝜏𝑘, the blocking frequency should be no smaller than 𝑇𝑘, which
s lower-bounded by min𝜏𝑖∈𝜏 𝑇𝑖. Therefore, the finishing time of a job of
𝑖 under Case 1 is no later than that under Case 2. Once we apply the
ell-known schedulability condition for preemptive EDF to Case 2, the

ondition is the same as Eq. (2), which proves the lemma. □

Note that the proof is self-contained, but a different proof for
Lemma 1 can be found in [5,17].

To provide the second feature F2, the proposed scheduling al-
gorithms (i) dynamically increase the workload of each MOT task
(e.g., from low workload to middle or high workload) without compro-
mising the timing guarantee while (ii) balance the aging of detection
nd association of every task. We propose two scheduling algorithms
hat simultaneously provide (i) and (ii) in different ways: EDF-BE
EDF Best-Effort) and EDF-Slack (EDF with Slack reclamation), adapted

from [5]. EDF-BE and EDF-Slack utilize slacks defined differently, but
use the same mechanism (in Algorithm 2) to decide on the execution
ption that employs a notion of aging.

Let 𝑑1(𝑡𝑐 𝑢𝑟) be the earliest deadline or future release time among
ll tasks at a time instant 𝑡𝑐 𝑢𝑟. The slack 𝑠𝑙 𝑎𝑐 𝑘𝑡𝑐 𝑢𝑟𝑖 of task 𝜏𝑖 at 𝑡𝑐 𝑢𝑟
nder the EDF-BE is defined as the expected remaining time up to
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Fig. 3. Execution timeline of multiple MOT tasks under (a) baseline (non-preemptive
EDF), (b) EDF-BE, and (c) EDF-Slack scheduling policies.

𝑑1(𝑡𝑐 𝑢𝑟) after the execution of 𝐶𝑖(𝐿, 𝐿) is completed, which is calculated
by 𝑑1(𝑡𝑐 𝑢𝑟) − 𝑡𝑐 𝑢𝑟 − 𝐶𝑖(𝐿, 𝐿). This slack value is only valid when there
are no more than two tasks in the waiting queue at time 𝑡𝑐 𝑢𝑟 and no
future releases within the interval [𝑡𝑐 𝑢𝑟, 𝑑1(𝑡𝑐 𝑢𝑟)). Using the slack value
conditionally provided at a scheduling decision, EDF-BE can perform
middle- or high-workload execution for detection and/or association.

Example. Figs. 3(a) and (b) present a scheduling scenario of the
baseline algorithm (i.e., non-preemptive EDF) and EDF-BE with an
example task set. We consider an example task set 𝜏 = {𝜏1, 𝜏2} of
which 𝐶𝑖 = 𝐶𝐷

𝑖 (𝐻) + 𝐶𝐴
𝑖 (𝐻) = 25, 𝑇𝑖 = 25, 𝐶𝐷

𝑖 (𝑠𝑖) = {5, 9, 12}, and
𝐶𝐴
𝑖 (𝑓𝑖) = {3, 8, 13} hold for 𝜏𝑖 ∈ 𝜏. As shown in Figs. 3(a) and (b), each

first job of 𝜏1 and 𝜏2 are released at 𝑡 = 0 and 𝑡 = 13, respectively. In
the baseline algorithm, the first job of 𝜏1 executes for 25 time units,
and then the first job of 𝜏2 starts its execution at 𝑡 = 25 resulting in
a deadline miss at 𝑡 = 38. Let 𝑎𝑔 𝑒𝐷𝑖 and 𝑎𝑔 𝑒𝐴𝑖 be the aging value of
detection and association of 𝜏𝑖. The aging value is an integer satisfying
𝑎𝑔 𝑒𝐷𝑖 , 𝑎𝑔 𝑒𝐴𝑖 ≥ 0, and 𝑎𝑔 𝑒𝐷𝑖 and 𝑎𝑔 𝑒𝐴𝑖 for all task 𝜏𝑖 ∈ 𝜏 are set to zero
at the beginning of the system. The, 𝑎𝑔 𝑒𝐷𝑖 (and 𝑎𝑔 𝑒𝐴𝑖 ) increases by one
at each time when a detection (and association) is run with middle- or
high-workload. In other words, the aging value refers to the number of
executions excluding those with low workloads. By adjusting the aging
value, a balance is maintained so that neither detection nor association
becomes disproportionately large.

Compared to EDF-Slack, EDF-BE is a simpler algorithm that utilizes
as many resources as possible, executing a job for greater than 𝐶𝑖(𝐿, 𝐿)
up to its closest future release only when there is exactly one job in the
waiting queue. EDF-BE naturally guarantees no deadline misses in any
job execution. This is because, as stated in Lemma 1, the execution of
𝐶𝑖(𝐿, 𝐿) without deadline misses for all jobs is guaranteed under EDF.
Furthermore, when a job executes for more than 𝐶𝑖(𝐿, 𝐿) under EDF-
BE, there is only one active job in the waiting queue at that time. In
the case of EDF-BE, when the first job of task 𝜏1 starts its execution
at 𝑡 = 0, it executes the minimum execution 𝐶1(𝐿, 𝐿) = 8 until the
earliest deadline or future release at 𝑡 = 13, resulting in a slack of five.
Utilizing this slack, the task 𝜏1 then executes 𝐶1(𝑀 , 𝐿), and the aging
factor 𝑎𝑔 𝑒𝐷𝑖 increases by one. For the first job of task 𝜏2, released at
𝑡 = 13, there is a slack of 4 until the earliest deadline or future release
at 𝑡 = 25. Thus, 𝐶2(𝑀 , 𝐿) is executed, and 𝑎𝑔 𝑒𝐷𝑖 increases by one. The
second job of task 𝜏1, released at 𝑡 = 13, has a slack of 5 until the earliest
deadline or future release at 𝑡 = 38. To balance 𝑎𝑔 𝑒𝐷𝑖 and 𝑎𝑔 𝑒𝐴𝑖 , 𝐶1(𝐿, 𝑀)
is executed, and 𝑎𝑔 𝑒𝐴𝑖 increases by one. The details of the online policy
that effectively balances the aging of detection and association for each
task will be provided at the end of this section. As can be observed
from the figure, at each scheduling decision, an execution is performed
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Algorithm 1 Slack calculation for 𝜏𝑘 at 𝑡𝑐 𝑢𝑟 under EDF-Slack
Input: 𝜏, 𝑡𝑐 𝑢𝑟
Output: 𝑠𝑙 𝑎𝑐 𝑘𝑡𝑐 𝑢𝑟𝑘
1: 𝑝 = 0, 𝑈 = the left-hand-side of Equation (2)
2: for 𝑖 = 𝑛 to 1, 𝜏𝑖 ∈ {𝜏1, ..., 𝜏𝑛|𝑑1(𝑡𝑐 𝑢𝑟) ≤ ⋯ ≤ 𝑑𝑛(𝑡𝑐 𝑢𝑟)} do

3: 𝑈 = 𝑈 −
𝐶𝑖(𝐿, 𝐿)

𝑇𝑖
4: 𝑞𝑖 = max(0, 𝑅𝐶𝑖(𝐿, 𝐿) − (1 − 𝑈 ) ⋅ (𝑑𝑖(𝑡𝑐 𝑢𝑟) − 𝑑1(𝑡𝑐 𝑢𝑟)))
5: 𝑈 = min

(

1.0, 𝑈 +
𝑅𝐶𝑖(𝐿, 𝐿) − 𝑞𝑖
𝑑𝑖(𝑡𝑐 𝑢𝑟) − 𝑑1(𝑡𝑐 𝑢𝑟)

)

6: 𝑝 = 𝑝 + 𝑞𝑖
7: end for
8: return 𝑠𝑙 𝑎𝑐 𝑘𝑡𝑐 𝑢𝑟𝑘 = 𝑑1(𝑡𝑐 𝑢𝑟) − 𝑡𝑐 𝑢𝑟 − 𝑝

that does not exceed the earliest deadline or future release, ensuring
execution without deadline misses. The following lemma present the
timing guarantee of EDF-BE.

Theorem 1. A task set 𝜏 that satisfies the condition in Eq. (2) is
schedulable by EDF-BE .

Proof. According to Lemma 1, for a task set 𝜏 that satisfies Eq. (2),
the minimum execution time 𝐶𝑖(𝐿, 𝐿) of all tasks 𝜏𝑖 ∈ 𝜏 guarantees
execution without deadline misses. At each scheduling decision at 𝑡
under the online policy of EDF-BE, the execution of a job exploiting
any slack value does not impose additional inference on any other job.
This guarantees that all tasks 𝜏𝑖 receive no more interference than what
they would receive under non-preemptive EDF scheduling. Thus, this
theorem holds. □

4.3. EDF with slack reclamation

In the case of EDF-BE, more workload than the minimum execution
can only be processed when there is a single job in the waiting queue at
a given time 𝑡𝑐 𝑢𝑟 and no additional releases occur until 𝑑1(𝑡𝑐 𝑢𝑟). This cre-
ates a limited opportunity for MOT tasks in CA-MOT to perform more
workload than the minimum execution, thus restricting the potential
to improve tracking accuracy. To address this limitation, we integrate
the approach presented in [5] into EDF-Slack, allowing it to compute
slack in a different way than EDF-BE.

Let 𝑑𝑖(𝑡𝑐 𝑢𝑟) denote the 𝑖th earliest deadline or release time at 𝑡𝑐 𝑢𝑟, and
𝑅𝐶𝑖(𝐿, 𝐿) represent the remaining execution time required to complete
the minimum execution 𝐶𝑖(𝐿, 𝐿). Algorithm 1 outlines the calculation
of the slack value 𝑠𝑙 𝑎𝑐 𝑘𝑡𝑐 𝑢𝑟𝑘 for task 𝜏𝑘 at 𝑡𝑐 𝑢𝑟 within the EDF-Slack
algorithm, triggered at each scheduling decision. Since EDF is a job-
level fixed-priority scheduling policy, wherein the priority of a job
remains constant throughout its execution, scheduling decisions under
EDF occur either at the commencement of a job’s execution or upon its
completion. In the interval [𝑡𝑐 𝑢𝑟, 𝑑1(𝑡𝑐 𝑢𝑟)], EDF-Slack processes tasks in
reverse EDF order, starting from the task with the latest deadline. Job
𝐽𝑘 of 𝜏𝑘 has the highest priority at 𝑡𝑐 𝑢𝑟, with 𝑑1(𝑡𝑐 𝑢𝑟) being its deadline,
as EDF-Slack follows the EDF policy. The goal of the slack calculation
in Algorithm 1 is to delay the execution of all other tasks 𝜏𝑖 ∈ 𝜏 ⧵ 𝜏𝑘
beyond 𝑑1(𝑡𝑐 𝑢𝑟) while ensuring that future deadlines are met. This is
repeated for all tasks in the waiting queue. To ensure 𝜏𝑖 completes
𝐶𝑖(𝐿, 𝐿) before 𝑑𝑖(𝑡𝑐 𝑢𝑟), EDF-Slack calculates the maximum execution
time in the interval 𝑑1(𝑡𝑐 𝑢𝑟), 𝑑𝑖(𝑡𝑐 𝑢𝑟), which is (1 −𝑈 ) ⋅ (𝑑𝑖(𝑡𝑐 𝑢𝑟) − 𝑑1(𝑡𝑐 𝑢𝑟)),
where 𝑈 denote the left-hand-side of Eq. (2).

The key steps in the slack calculation are as follows:

• 𝑞𝑖 is computed as the minimum execution of 𝜏𝑖 in the interval
𝑡𝑐 𝑢𝑟, 𝑑1(𝑡𝑐 𝑢𝑟) (Lines 3–4).

• 𝑅𝐶𝑖(𝐿, 𝐿) is either zero or 𝐶𝑖(𝐿, 𝐿), since scheduling decisions
are only made upon job completion or release in non-preemptive
scheduling (Line 4).
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• The execution rate of 𝜏𝑖 in the interval 𝑑1(𝑡𝑐 𝑢𝑟), 𝑑𝑖(𝑡𝑐 𝑢𝑟) is calculated
and recorded (Line 5).

• 𝑝 is set as the sum of the minimum execution times of all tasks
𝜏𝑖 ∈ 𝜏 (Line 6).

• The slack is then determined as the remaining time slots, exclud-
ing 𝑝 (i.e., the sum of 𝑞𝑖), within the interval 𝑡𝑐 𝑢𝑟, 𝑑1(𝑡𝑐 𝑢𝑟) (Line
7).

Example. Fig. 3(c) illustrates a scheduling scenario of EDF-Slack using
the same example tasks as shown in Figs. 3(a) and (b). The initial jobs
f 𝜏1 and 𝜏2 are released at 𝑡 = 0 and 𝑡 = 13, respectively. Applying
lgorithm 1, the calculated slack value for 𝜏1 at 𝑡𝑐 𝑢𝑟 = 0 is 17, allowing

he first job of 𝜏1 to execute for 𝐶1(𝐻 , 𝐻) until 𝑡 = 25. Furthermore,
𝑎𝑔 𝑒𝐷1 and 𝑎𝑔 𝑒𝐴1 increment by one. Subsequently, the first job of 𝜏2 begins
its execution at 𝑡 = 25, executing for 𝐶2(𝑀 , 𝐿) while increasing 𝑎𝑔 𝑒𝐷2
by one. Finally, the second job of 𝜏2 starts its execution at 𝑡 = 37.
Comparing Fig. 3(b) that represents EDF-BE with Fig. 3(c) depicting
EDF-Slack, we observe that the aging of 𝜏1 and 𝜏2 increases in the same
mount in both cases. However, the key difference lies in the execution
f the first job of 𝜏1. Under EDF-Slack, this job is able to execute with a
igh-workload execution, while under EDF-BE, it can only execute with
 middle-workload execution, which allows for higher expectations of
racking accuracy in EDF-Slack.

The following proves the timing guarantee of EDF-Slack.

Theorem 2. A task set 𝜏 that satisfies Eq. (2) is schedulable under
DF-Slack .

Proof. We prove this by contradiction. Assume, for the sake of con-
tradiction, that the task set 𝜏 satisfies Eq. (2), but is not schedulable
under EDF-Slack. This implies that at some time 𝑡, the total utilization
xceeds 1.0, and hence a deadline miss occurs for some job 𝐽𝑖 in 𝜏.
et 𝑡𝑚𝑖𝑠𝑠 denote the earliest such time at which a deadline miss occurs,

i.e., 𝑡𝑚𝑖𝑠𝑠 = 𝑑𝑖, where 𝑑𝑖 is the deadline of 𝐽𝑖. By the definition of EDF-
Slack, at each time 𝑡, the slack time for each task is computed based
on the highest-priority job 𝐽1(𝑡𝑐 𝑢𝑟), where 𝑡𝑐 𝑢𝑟 denotes the current time.
Since no tasks are released in the interval [𝑡𝑐 𝑢𝑟, 𝑑1(𝑡𝑐 𝑢𝑟)], the slack time
ensures that lower-priority tasks cannot block the execution of 𝐽1. As a
result, the blocking term in Eq. (2) remains valid during this interval.

Now, since EDF-Slack is based on EDF scheduling, the total utiliza-
ion 𝑈 (𝑡) at any time 𝑡 can be expressed as:

𝑈 (𝑡) =
∑

𝐽𝑖∈𝜏(𝑡)

𝐶𝑖
𝑑𝑖 − 𝑡𝑐 𝑢𝑟

+ 𝐵(𝑡),

where 𝐶𝑖 is the remaining execution time of task 𝐽𝑖, and 𝐵(𝑡) is the
blocking term. According to Eq. (2), 𝑈 (𝑡) ≤ 1.0 for all 𝑡. Since 𝑡𝑚𝑖𝑠𝑠 is
he earliest time a deadline miss occurs, we must have 𝑈 (𝑡𝑚𝑖𝑠𝑠) > 1.0.
owever, by Eq. (2), we know that 𝑈 (𝑡) ≤ 1.0 for all 𝑡 ≥ 𝑡𝑐 𝑢𝑟, including

𝑚𝑖𝑠𝑠. This leads to a contradiction, as the assumption that 𝑈 (𝑡𝑚𝑖𝑠𝑠) >
.0 contradicts the fact that 𝑈 (𝑡) ≤ 1.0 holds at all times. Therefore,

no deadline miss can occur, and the task set 𝜏 is schedulable under
DF-Slack. □

Note that the proof is self-contained, but a different proof can be
ound in [5].

Determination of execution options. EDF-BE and EDF-Slack use
different slack concepts to ensure timely execution of tasks while im-
proving tracking accuracy by executing beyond the minimum
(i.e., 𝐶𝑖(𝐿, 𝐿)). As shown in Figs. 3(b) and (c), both EDF-BE and
DF-Slack enhance the aging of detection and association through
redefined mechanisms. The goal of these mechanisms is to balance the

aging of detection and association, minimizing continuous omissions in
updating motion and feature information, thereby maximizing tracking
accuracy.

Algorithm 2 outlines the process for determining the execution
options for the detection and association steps of task 𝜏𝑘 at time 𝑡𝑐 𝑢𝑟
ased on the slack 𝑠𝑙 𝑎𝑐 𝑘𝑡𝑐 𝑢𝑟𝑘 calculated in Algorithm 1.
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Algorithm 2 Determination of execution options

Input: 𝜏, 𝑡𝑐 𝑢𝑟, 𝑠𝑙 𝑎𝑐 𝑘𝑡𝑐 𝑢𝑟𝑘
utput: (𝑠𝑘, 𝑓𝑘)

1: if 𝑠𝑙 𝑎𝑐 𝑘𝑡𝑐 𝑢𝑟𝑘 ≤ 0 then
2: return (𝐿, 𝐿)
3: else
4: if 𝑎𝑔 𝑒𝐷𝑘 ≤ 𝑎𝑔 𝑒𝐴𝑘 then
5: 𝑠𝑙 𝑎𝑐 𝑘𝐷−

𝑘 = 𝑠𝑙 𝑎𝑐 𝑘𝑡𝑐 𝑢𝑟𝑘 − (𝐶𝐷
𝑘 (𝐻) − 𝐶𝐷

𝑘 (𝐿))
6: if 𝑠𝑙 𝑎𝑐 𝑘𝐷−

𝑘 ≥ 0 then
7: return (𝐻 , 𝑓𝑘(𝑠𝑙 𝑎𝑐 𝑘𝐷−

𝑘 + 𝐶𝐴
𝑘 (𝐿)))

8: else
9: return (𝑠𝑘(𝑠𝑙 𝑎𝑐 𝑘𝑡𝑐 𝑢𝑟𝑘 + 𝐶𝐷

𝑘 (𝐿)), 𝐿)
0: end if
1: else
2: 𝑠𝑙 𝑎𝑐 𝑘𝐴−𝑘 = 𝑠𝑙 𝑎𝑐 𝑘𝑡𝑐 𝑢𝑟𝑘 − (𝐶𝐴

𝑘 (𝐻) − 𝐶𝐴
𝑘 (𝐿))

3: if 𝑠𝑙 𝑎𝑐 𝑘𝐴−𝑘 ≥ 0 then
4: return (𝑠𝑘(𝑠𝑙 𝑎𝑐 𝑘𝐴−𝑘 + 𝐶𝐷

𝑘 (𝐿)), 𝐻)
5: else
6: return (𝐿, 𝑓𝑘(𝑠𝑙 𝑎𝑐 𝑘𝑡𝑐 𝑢𝑟𝑘 + 𝐶𝐴

𝑘 (𝐿)))
7: end if
8: end if
9: end if

• If the slack is less than or equal to zero, the algorithm returns 𝐿
and 𝐿 (Lines 1–2).

• Otherwise, the algorithm compares the ages of the detection step
(𝑎𝑔 𝑒𝐷𝑘 ) and the association step (𝑎𝑔 𝑒𝐴𝑘 ) (Lines 3–4).

– If 𝑎𝑔 𝑒𝐷𝑘 is smaller than 𝑎𝑔 𝑒𝐴𝑘 , indicating the detection step
requires more resources, the algorithm calculates 𝑠𝑙 𝑎𝑐 𝑘𝐷−

𝑘 ,
representing the remaining slack after executing
high-workload detection (Line 5).

– If 𝑠𝑙 𝑎𝑐 𝑘𝐷−
𝑘 is greater than or equal to zero, the high-workload

detection is followed by middle- or high-workload associa-
tion depending on 𝑠𝑙 𝑎𝑐 𝑘𝐷−

𝑘 (Lines 6–7). In this case, 𝑓𝑘(𝑥) is
set as follows:

∗ 𝐿 for 𝑥 < 𝐶𝐴
𝑘 (𝑀),

∗ 𝑀 for 𝐶𝐴
𝑘 (𝑀) ≤ 𝑥 < 𝐶𝐴

𝑘 (𝐻),
∗ 𝐻 for 𝑥 ≥ 𝐶𝐴

𝑘 (𝐻).

– If 𝑠𝑙 𝑎𝑐 𝑘𝐷−
𝑘 is less than zero, the algorithm determines if

middle- or high-workload detection can be performed based
on 𝑠𝑙 𝑎𝑐 𝑘𝑡𝑐 𝑢𝑟𝑘 , followed by low-workload association (Lines
8–10). In this case, 𝑠𝑘(𝑥) is set as follows:

∗ 𝐿 for 𝑥 < 𝐶𝐷
𝑘 (𝑀),

∗ 𝑀 for 𝐶𝐷
𝑘 (𝑀) ≤ 𝑥 < 𝐶𝐷

𝑘 (𝐻),
∗ 𝐻 for 𝑥 ≥ 𝐶𝐷

𝑘 (𝐻).

• Lines 11–18 follow a similar procedure for determining the ex-
ecution options, giving preference to the association step. Here,
𝑠𝑙 𝑎𝑐 𝑘𝐷−

𝑘 represents the remaining slack after executing the high-
workload association.

According to the definition of aging, 𝑎𝑔 𝑒𝐷𝑘 (and 𝑎𝑔 𝑒𝐴𝑘 ) increase
by one when middle- or high-workload detection (and association) is
performed.

DNN-SAM proposed in [10] introduces two scheduling algorithms:
EDF-MandFirst and EDF-Slack. Unlike CA-MOT, both DNN-SAM al-
orithms target multi-object detection (MOD) tasks. The primary dis-

tinction between MOT and MOD lies in the presence or absence of
dependencies between consecutive frames. In MOD, the detection oper-
ation for a given frame does not utilize any information from previous

frames. Therefore, techniques that rely on previous frame information,
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such as aging-aware methods, cannot be employed in the DNN-SAM al-
orithms. Another key difference is that DNN-SAM is responsible solely

for detection execution and does not handle the association task. Both
NN-SAM and CA-MOT algorithms are based on EDF and prioritize
xecuting jobs with the earliest deadlines among the released tasks.
owever, in contrast to CA-MOT, DNN-SAM splits each job at release

nto a mandatory job, responsible for execution in the safety-critical
rea, and an optional job, responsible for execution in non-critical
reas. When any mandatory job is present in the waiting queue, it
s always executed first using the EDF algorithm. The distinction be-
ween MandFirst and EDF-Slack arises from whether the execution
f an optional job may interfere with the execution of a mandatory
ob. Specifically, the scheduling behavior of DNN-SAM and EDF-Slack
perates as follows:

• EDF-MandFirst in [10]: Any mandatory job in the waiting queue
has a higher priority than optional jobs and is scheduled using
EDF. If no mandatory jobs are in the queue, optional jobs are
executed using EDF, ensuring that they do not interfere with the
execution of future release jobs of mandatory tasks.

• EDF-Slack in [10]: Any mandatory job in the waiting queue has
a higher priority than optional jobs and is scheduled using EDF.
If no mandatory jobs are in the queue, optional jobs are executed
using EDF, potentially interfering with the execution of future-
release mandatory jobs, within the slack calculated from the job’s
runtime.

• EDF-BE of CA-MOT: A job is not split and has three execu-
tion options for both detection and association. It is executed
with the maximum workload option to avoid interfering with
the execution of future release jobs, but only when exactly one
job is present in the waiting queue. The aging of detection and
association tasks is considered for accuracy maximization.

• EDF-Slack of CA-MOT: A job is not split and has three execution
options for both detection and association. Regardless of the
number of jobs in the waiting queue, the job is executed with
the maximum workload option, potentially interfering with the
execution of future release jobs based on the slack calculated
from its runtime. The aging of detection and association tasks is
considered for accuracy maximization.

5. Evaluation

This section evaluates the effectiveness of CA-MOT in achieving R1
nd R2 for multiple MOT tasks.

5.1. Experiment setting

• Software: CA-MOT employs the tracking-by-detection of which
the detector is one of the most popular detectors, YOLOv5 [14]
model, and tracker is StrongSORT [7]. We confirmed that other
detectors (i.e. YOLOX, Faster-RCNN) exhibit a similar trend to
YOLOv5 in terms of MOTA and execution time, as shown in Fig. 7.
For feature extraction conducted as a part of association, we used
OS-Net [10]. The YOLOv5 model was pretrained on the COCO
Dataset [18], while OS-Net was pretrained on the MSMT Dataset
[19]. The experimental environment is with Ubuntu 18.04.6 LTS,
CUDA 11.4, and PyTorch 1.12.

• Hardware: We consider the NVIDIA Jetson Xavier as a GPU-
enabled embedded board [20]. The NVIDIA Jetson Xavier features
a 64-bit 8-core CPU, 32 GB Memory, and 512-core Volta GPU. We
utilized the MAXN mode provided by the NVIDIA Jetson Xavier.

• Dataset and performance metric: We used the KITTI Dataset
[13], which contains data collected from autonomous vehicle
driving. To evaluate the accuracy of each region, we measured
the MOTA [15] as the most well-known performance metric for
tracking accuracy for critical and entire regions. MOTA compares
8 
Table 2
Execution time measurement (average and maximum) in terms of image size, feature
ize, and scheduling overhead.
Time (ms) 𝐶𝐷

𝑖 𝐶𝐴
𝑖 𝐶𝑠𝑐 ℎ𝑒

𝑖

L M H L M H

Average 28.0 30.6 36.7 8.3 63.4 74.4 0.3
Maximum 43.6 53.5 67.6 11.3 74.0 125.2 0.6

Fig. 4. Comparison for two tasks with the periods (equal to the relative deadlines) of
180 ms and 270 ms.

the ground truth of objects in all frames with the tracking results
obtained from the given techniques to measure accuracy. The
KITTI dataset consists solely of data captured from forward-facing
cameras and does not utilize different cameras, meaning there
is no overlap in the areas they cover. Additionally, as it does
not assume simultaneous capture by each camera, there are no
synchronization issues. CA-MOT aims to maximize the average
accuracy for the MOT tasks corresponding to all given cameras
without missing any deadlines. This assumes that CA-MOT oper-
ates independently of camera interdependencies, with all cameras
receiving the same forward-facing camera feed.

• Execution time measurement: To obtain the WCET of different
execution options for detection and association, we measured the
execution time by iterating 1000 times for each sub-tasks with
three different execution options of an MOT task and then took
the largest value. We also measured the worst-case time required
for slack calculation and scheduling decisions such as Algorithms
1 and 2. Table 2 shows the measurement results.

5.2. Experiment result

We consider task sets in which schedulability is not guaranteed with
he high-workload execution for detection and association
i.e., 𝐶𝑖(𝐻 , 𝐻)) for all tasks but is guaranteed with the minimum
xecution (𝐶𝑖(𝐿, 𝐿)) according to Eq. (2). Note that the schedulability

with 𝐶𝑖(𝑥, 𝑦) for 𝑥, 𝑦 ∈ {𝐿, 𝑀 , 𝐻} can be judged with Eq. (2) by
substituting 𝐶𝑖(𝐿, 𝐿) to 𝐶𝑖(𝑥, 𝑦). To evaluate the effectiveness of CA-
MOT we consider the following including a baseline and our two
proposed approaches.

• Detection first (DF): non-preemptive EDF in which the execution
option of all tasks 𝜏𝑖 ∈ 𝜏 is equally fixed to the rightmost
one among {𝐶𝑖(𝐿, 𝐿), 𝐶𝑖(𝑀 , 𝐿), 𝐶𝑖(𝐻 , 𝐿), 𝐶𝑖(𝐻 , 𝑀), 𝐶𝑖(𝐻 , 𝐻)} that
satisfies the schedulability condition in Eq. (2).

• EDF-BE: EDF-BE of which task set passes the schedulability con-
dition in Eq. (2), which is proposed in Section 4.2.

• EDF-Slack: EDF-Slack of which task set passes the schedulability
condition in Eq. (2), which is proposed in Section 4.3.

Fig. 4 represents the tracking accuracy and the proportion of three
execution options (i.e., 𝐿, 𝑀 , and 𝐻) selected during detection and
ssociation for two tasks with different periods: 180 and 270 ms
milliseconds). As shown in Fig. 4(a), for overall accuracy, EDF-BE and

EDF-Slack achieve 20.2% and 26.6%, respectively, while DF achieves



D. Kang et al. Journal of Systems Architecture 160 (2025) 103349 
Fig. 5. Comparison for four tasks with the same period (equal to the relative deadline)
of 400 ms.

13.4%, which demonstrate the effectiveness of slack utilization and
balancing aging of detection and association in increasing tracking
accuracy. We observe that the slack reclamation performed by Algo-
rithm 1 in EDF-Slack is significantly more effective in achieving high
tracking accuracy than in EDF-BE which has limitations in obtaining
a substantial amount of slack. For critical accuracy, EDF-BE and EDF-
Slack achieve much higher accuracies, which are 28.3% and 32.2%,
respectively, compared to 15.4% of DF. Based on this observation,
we can interpret that even though EDF-BE obtains a smaller amount
of slack compared to EDF-Slack, it efficiently performs tracking for
the critical region with limited computing resources. On the other
hand, EDF-Slack provides high tracking accuracy not only for the entire
region but also for the safety-critical region, thanks to its efficient slack
reclamation. As seen in Fig. 4, EDF-Slack exhibits a significantly higher
proportion of high-workload execution and middle-workload execution
for detection and association compared to other execution options. On
the other hand, EDF-BE shows a slight proportion of middle-workload
execution, while the majority of cases involve low-workload execution.

Fig. 5 depicts the results of another experiment involving three
different sets of tasks, with the number of tasks ranging from two
to four, all having the same periods (i.e., 400 ms with a guaranteed
minimum execution 𝐶𝑖(𝐿, 𝐿), but no guaranteed maximum execution
𝐶𝑖(𝐻 , 𝐻) for 𝜏𝑖 ∈ 𝜏). In Fig. 5(a), the tracking accuracy of the evaluated
approaches is shown as the number of tasks increases. For the case
of two tasks, EDF-Slack achieves an overall accuracy of 41.8% and a
critical accuracy of 41.4%, while EDF-BE achieves an overall accuracy
of 24.3% and a critical accuracy of 27.2%. In contrast, DF achieves
lower accuracy, with an overall accuracy of 18.0% and a critical
accuracy of 18.7%. As the number of tasks increases, both EDF-BE and
EDF-Slack experience a decrease in accuracy, but they still outperform
DF in terms of tracking accuracy. Even with only four tasks, EDF-
BE yields lower overall accuracy than DF, as it can only detect part
of the image when selecting the high workload option. Nevertheless,
by prioritizing computations in critical regions at low and medium
workloads, EDF-BE attains higher critical accuracy than DF. Fig. 5(b)
presents the distribution of execution options for EDF-BE and EDF-Slack
when there are three tasks. Similar to Fig. 4, it is evident that both
EDF-BE and EDF-Slack allocate the workload between the detection and
association steps in a balanced manner using the ages. Additionally,
EDF-Slack can reclaim more slack compared to EDF-BE.

Fig. 6 presents the tracking outcomes of a single task within a set
of three tasks, each with a period of 400 ms, comparing (a) the DF
algorithm and (b) EDF-Slack. In the visualization, each tracked object
is represented by a unique color and ID within a bounding box, with
the symbol ‘‘#’’ indicating the frame number. In the DF scenario, each
task executes 𝐶𝑖(𝐻 , 𝐿), leading to insufficient computational resources
for proper association. This inadequacy results in DF’s failure to track
two objects within the safety-critical region in the 167th frame and
causes an ID switch from 4 to 10 in the subsequent 168th frame,
as illustrated in Fig. 6. Conversely, EDF-Slack leverages aging and
slack techniques to allocate sufficient computational resources for both
detection and association tasks, enabling accurate tracking of all objects
in the safety-critical region.
9 
Fig. 6. Visualization on KITTI dataset for three tasks with the periods of 400 ms. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 7. MOTA and execution time on other detectors.

Additional experiments are conducted to ascertain if CA-MOT ex-
hibits comparable behavioral patterns across a range of detectors,
including YOLOv5, which was evaluated previously. Fig. 7 displays
the MOTA and execution time for various contemporary detectors,
analyzed according to their workload. Modern detectors are generally
classified into one-stage and two-stage categories based on their archi-
tecture and further into anchor-free and anchor-based types, contingent
on their use of predefined anchors for object detection. Our study
incorporated YOLOv5, a standard one-stage anchor-based detector. We
also investigate the performance of the two-stage anchor-based detector
Faster-RCNN [9] and the one-stage anchor-free detector YOLOX [21],
to verify the consistency of results. Faster-RCNN utilized ResNet-50
as its backbone network, while YOLOX was configured with a small
version model. Both models were trained using the COCO dataset.
Despite minor discrepancies in specific ratios, the results consistently
demonstrate that both MOTA and execution time escalate in conjunc-
tion with increasing workload, as shown in Figs. 7(a) and (b). The
runtime trend of YOLOX is particularly noteworthy, which closely
mirrors that of YOLOv5. This pattern indicates that similar outcomes
may be expected from other detectors akin to YOLOv5.

6. Related work

The tracking-by-detection model is a commonly used method in
the MOT field. It has shown significant progress and enhanced perfor-
mance recently, largely thanks to the evolution of deep neural networks
(DNNs). A well-recognized model in this field, SORT (simple online
and real-time tracking) [22], does its matching based mainly on where
objects are located, using detection tools to achieve this. To push this
model further, DeepSORT [6] builds on the SORT model by adding a
DNN-based re-identification model. This allows for the extraction of ob-
ject features. By adding this layer, DeepSORT utilizes both the object’s
location and its visual information, leading to a stronger performance.
Recent work in this area, such as Deep OC-SORT [23] and Strong-
SORT [7], is geared towards enhancing the accuracy of these models
even more, focusing especially on refining and improving the matching
algorithms used in these systems. However, it is critical to understand
that these approaches are mainly designed for situations where there
are plenty of computing resources. Therefore, they might struggle to
meet the timing needs in systems that are restricted in resources, like
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the embedded systems in self-driving vehicles where resources may be
carce.

Considering self-driving vehicles, which are fundamentally systems
where safety is critical, even the smallest delays or slight drops in
accuracy can lead to significant and potentially dangerous risks. Some
research such as DNN-SAM [5] has tried to tackle these problems by
uggesting frameworks that concentrate specifically on safety-critical

areas. These frameworks give priority to critical accuracy and use
uncertainty handling to ensure the highest safety standards. However,
these research studies and their related approaches are mostly designed
for multi-object detection systems and may not directly apply to or be
effective in multi-object tracking. Likewise, another study, RT-MOT [2],
aims to maximize the overall accuracy of multi-object tracking and
ensure on-time execution, but it overlooks the importance of individual
objects in its approach. To address these limitations, our suggested
ramework, known as CA-MOT, aims to confront these challenges
irectly. By leveraging the unique traits of multi-object tracking in
afety-critical systems, CA-MOT ensures on-time execution and boosts
racking accuracy for objects that could potentially be dangerous to the
ystem. It builds on previous work while addressing their weaknesses
o create a safer and more efficient tracking system.

7. Discussion

A limitation of CA-MOT is its exclusive reliance on a single CPU and
PU, which restricts scalability. A recent approach, Batch-MOT [3],

addresses this limitation by processing input images from multiple
cameras through a shared queue, distributing CPU operations across
multiple CPUs, and employing batch processing on a single GPU. How-
ever, this approach may introduce additional communication overhead
among CPUs, potentially determining its overall efficiency. The primary
contribution of Batch-MOT lies in its online schedulability analysis,
which dynamically determines the maximum number of images that
can be batch-processed without violating their deadlines. Nonethe-
ess, unlike CA-MOT, Batch-MOT lacks support for multiple execution
trategies during the association phase, resulting in suboptimal resource
tilization for individual MOT tasks. Enhancing CA-MOT by incor-

porating batch processing capabilities to address these shortcomings
presents a promising avenue for future research. Furthermore, as high-
lighted in previous studies, deploying CA-MOT on real-world platforms,
such as the F1/10 autonomous driving platform [5], offers significant
otential for further investigation and practical validation.

8. Conclusion

In this paper, we proposed, CA-MOT, a new criticality-aware MOT
xecution and scheduling framework. Aiming at achieving critical-

accuracy maximization and timing guarantee, CA-MOT first proposes
a new system design to offer a control knob between tracking accuracy
and timing guarantee to efficiently utilize limited computing resources.
Then, CA-MOT develops two scheduling algorithms to effectively uti-
lize the system design while using the notions of slack and aging of
detection and association. Using various task sets and real-world au-
tonomous driving data, we demonstrated that CA-MOT can obtain high
tracking accuracy of entire and safety-critical regions while ensuring
the timely execution of all MOT tasks.
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