
IEEE EMBEDDED SYSTEMS LETTERS, VOL. 16, NO. 4, DECEMBER 2024 457

A Graph Attention Network Approach to
Partitioned Scheduling in Real-Time Systems

Seunghoon Lee and Jinkyu Lee , Senior Member, IEEE

Abstract—Machine learning methods have been used to solve
real-time scheduling problems but none has yet made an archi-
tecture that utilizes influences between real-time tasks as input
features. This letter proposes a novel approach to partitioned
scheduling in real-time systems using graph machine learning.
We present a graph representation of real-time task sets that
enable graph machine-learning schemes to capture the influence
between real-time tasks. By using a graph attention network
(GAT) with this method, our model successfully partitioned-
schedule task sets that were previously deemed unschedulable by
state-of-the-art partitioned scheduling algorithms. The GAT is
used to establish relationships between nodes in the graph, which
represent real-time tasks, and to learn how these relationships
affect the schedulability of the system.

Index Terms—Graph machine learning, real-time scheduling.

I. INTRODUCTION

EFFICIENT usage of computing resources has been and
is a crucial issue for embedded systems. Performing its

functions and tasks well without wasting or exceeding its
available resources is becoming more important as embed-
ded systems, such as autonomous vehicles, and industrial
robots use machine learning with GPGPUs. In many cases,
these systems are time-sensitive and safety-critical; hence
real-time task scheduling must be applied. Real-time tasks,
which are tasks specific for real-time systems, have strict
timing constraints and must complete their execution by a
fixed deadline. We specifically address periodic tasks which
are real-time tasks that are executed in a fixed and regular
interval. Partitioned scheduling is one of the two representative
methods to schedule tasks on real-time systems with multiple
processors [1], [2]. The advantages of partitioned scheduling
are the simplicity in terms of scheduling/implementation and
the ease of developing tight schedulability analysis, both
of which are well-known in the real-time systems area. In
partitioned scheduling, tasks are grouped into the number of
processors by using heuristics, such as first-fit, best-fit, and
worst-fit. Then, the group of tasks is each scheduled into
their assigned processors to secure safety-critical execution.
However, the traditional heuristics are not optimal and there

Manuscript received 10 January 2024; revised 8 February 2024; accepted
10 March 2024. Date of publication 13 March 2024; date of current
version 26 November 2024. This work was supported by the Samsung
Electronics Company Ltd. under Grant IO201211-08084-01. This manuscript
was recommended for publication by T. Azumi. (Corresponding author:
Jinkyu Lee.)

The authors are with the Department of Computer Science and Engineering,
Sungkyunkwan University, Suwon 16419, Republic of Korea (e-mail:
seunghoon.l@skku.edu; jinkyu.lee@skku.edu).

Digital Object Identifier 10.1109/LES.2024.3376801

exist many feasible task sets (i.e., schedulable in certain
methods of grouping tasks) but not schedulable by the task
grouping method applied by existing heuristics [3].

In this letter, we develop a graph machine learning-based
strategy that efficiently uses computing resources in task
allocation. We present a novel graph representation scheme
for real-time task sets that can be widely implemented on
many graph-based machine-learning methods. We design the
graph to be a portrayal of a single task set with multiple tasks.
Each node of the graph represents the tasks and the directed
edges connected to each node depict the influences that one
task gives the other while being scheduled. This representation
allows necessary features for real-time scheduling to be fully
captured and utilized while training graph machine learning.

To verify our proposed method’s effectiveness, we target
partitioned scheduling heuristics and aim to schedule task
sets previously considered unschedulable by inappropriate
partitioning of existing studies. Using task sets, each deemed
schedulable by the state-of-the-art method FBBFFD [4] (which
utilizes the first-fit approach), best-fit, and worst-fit, we label
tasks within the task set with the indexes of the processors
assigned by the heuristics. These grouped and labeled task
sets serve as training data for our neural network, enabling
the neural network to learn its way of partitioning task sets
more efficiently. During testing, when given any task set, the
neural network produces its index as output, representing its
partitioning decision. Our model successfully partitions and
schedules task sets previously deemed unschedulable by well-
known partitioned scheduling methods best-fit, worst-fit, and
the state-of-the-art FBBFFD.

This letter makes the following contributions.
1) Designing a graph representation for real-time task sets.
2) Applying the design to graph machine learning, specifi-

cally for partitioned scheduling where each task affects
the other during scheduling and demonstrating its
effectiveness.

System Model: This letter deals with a set of periodic real-
time tasks denoted as τ , each having two natural number
characteristics: 1) Ti (the interval) and 2) Ci (the maximum
time required to complete the task) [1]. We represent the
parameters of a task τi ∈ τ as τi(Ti, Ci). We target a real-time
system; each task τi is released periodically every Ti, and its
single job, starting at time t, must complete its work (which
can take up to Ci) before its absolute deadline at t + Ti. If
a single job of τi misses its deadline, the task τi is consid-
ered unschedulable. Our target system comprises m identical
partitioned processors, and tasks are assigned and processed

1943-0671 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on December 07,2024 at 11:17:23 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2332-1996

458 IEEE EMBEDDED SYSTEMS LETTERS, VOL. 16, NO. 4, DECEMBER 2024

within each processor using fixed-priority scheduling (FPS).
That is, each task has a preassigned task-level priority, and
at any instant, FPS selects the job with the highest task
priority for execution within the processor. Tasks with higher
priorities than τk (noted as HIk) cannot be interfered with
during execution by tasks with lower priorities. Additionally,
tasks with higher priority can interrupt and interfere with
lower-priority tasks even while they are being executed on the
processor. Since rate monotonic (RM), which assigns higher
priorities to tasks with shorter Ti, is proven optimal among
FPS [1], we assign task priorities according to RM in each
partition.

II. PARTITIONED SCHEDULING WITH

GRAPH MACHINE LEARNING

In this section, we will discuss the background of partitioned
scheduling. We then will illustrate our partitioned scheduling
method using graph representation and implementing state-of-
the-art graph machine learning methods.

A. Partitioned Scheduling and Related Work

The primary goal of numerous prior studies on partitioned
scheduling is to efficiently allocate a set of n tasks to m
processors without any deadline miss of the n tasks.

In traditional partitioning algorithms, real-time tasks’ uti-
lization (ui) is a key factor for applying bin-packing
algorithms. The utilization of a single task is defined as
ui = (Ci/Ti), where Ci is the worst-case execution time
and Ti is the period of the task. For instance, in the best-
fit allocation algorithm concerning FPS, tasks τ within the
task set are ordered by priority. The highest priority task is
allocated to the first processor, and its utilization becomes an
indicator of how much of the processor’s capacity is occupied.
However, optimizing utilization does not always lead to the
most efficient computing resource usage. For periodic real-
time tasks, response time analysis is necessary to determine
task feasibility for scheduling on processors.

The schedulability of τk is decided by the following lemma
where tasks with higher priority than τk within the processor
are noted as τi ∈ HIk.

Lemma 1 [5]: A task set τ is schedulable by FPS on a
single processor, if every τk ∈ τ has Rk (≤ Tk) that satisfies

Ck +
∑

τi∈HIk

⌈
Rk

Ti

⌉
· Ci ≤ Rk. (1)

If τk has to finish at time Rk, tasks with higher priority must
finish their execution by Rk. Thus, the number of times tasks
with higher priorities than τk can be run during [0,Rk] are
calculated,1 and their execution time is multiplied. By adding
�Rk/Ti� · Ci of all tasks with higher priority than τk, we can
assure that τk can be run while not missing its deadline.

The state-of-the-art partitioned scheduling heuristic for real-
time scheduling is FBBFFD [4]. The algorithm, which is
based on the first-fit method, uses a sufficient condition for
determining whether to assign a task to a processor to obtain
polynomial-time complexity.

1This holds under the condition that the synchronous release of higher-
priority tasks yields the critical instant, which was proven in [6].

When it comes to implementing machine learning to
partitioned scheduling, there have been no prior studies specif-
ically targeting the subject. Although there have been many
studies on using machine learning to solve the bin-packing
problem [7], [8], [9], due to Lemma 1, naively applying these
methods results in inaccurate training and poor testing results.

B. Graph Representation of Real-Time Tasks

To achieve accurate results using machine learning effec-
tively, it is crucial to provide precise information about the
environment to the neural network. In partitioned scheduling,
using only task parameters Ti and Ci (execution time and
period) along with the utilization ui = Ci/Ti does not provide
sufficient information for the neural network to learn. This
limited input would make the network reliant solely on task
information and the scheduling outcomes from allocation
heuristics. To address this limitation and enable meaningful
connections between tasks based on their attributes, we need
to consider task associations. Tasks with higher priority can
influence tasks with lower priorities during scheduling. We
introduce the concept of interference to quantify the impact
of a higher priority task τi on a lower priority task τk. This
notion is akin to schedulability analysis for multiprocessor
scheduling, as seen in works like [10]. By incorporating this
interference term, we can better capture task associations and
improve the neural network’s learning capabilities.

According to Lemma 1, τk is schedulable if there exists Rk

(≤ Tk) that satisfies (1). Since Rk depends on a set of tasks
whose priority is higher than τk, it is depending on which
tasks are partitioned in a processor. To make it independent of
partitioning, we consider an upper bound of Rk, which is Tk.
Applying Tk to Rk, (1) can be written as follows:

Ck +
∑

τi∈HIk

⌈
Tk

Ti

⌉
· Ci ≤ Tk

⇐⇒
∑

τi∈HIk

⌈
Tk

Ti

⌉
· Ci ≤ Tk − Ck

⇐⇒
∑

τi∈HIk

⌈Tk
Ti

⌉ · Ci

Tk − Ck
≤ 1. (2)

Considering that interference in (2) has to be used as an
implicit parameter depicting the influence of τi to τk, we
reduce volatility which occurs according to changes in the
value of Tk and Ti. Thus, for linearization, we remove the
ceiling function and upper-bound the LHS of (2) as follows:

The LHS of Eq. (2) =
∑

τi∈HIk

⌈Tk
Ti

⌉ · Ci

Tk − Ck

≤
∑

τi∈HIk

(Tk
Ti
+ 1

) · Ci

Tk − Ck

=
∑

τi∈HIk
Ci
Ti
· Tk +∑

τi∈HIk Ci

Tk − Ck

= Tk ·∑τi∈HIk
Ci
Ti
+∑

τi∈HIk Ci

Tk − Ck

= Tk

Tk − Ck
·

∑

τi∈HIk

Ci

Ti
+ 1

Tk − Ck
·

∑

τi∈HIk

Ci. (3)

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on December 07,2024 at 11:17:23 UTC from IEEE Xplore. Restrictions apply.

LEE AND LEE: GRAPH ATTENTION NETWORK APPROACH TO PARTITIONED SCHEDULING IN REAL-TIME SYSTEMS 459

Fig. 1. Graph illustration of a sample task set with eight tasks for real-time
scheduling.

Therefore, the directed edge τk ← τi, which is the
interference of τi to τk, is given as follows:

Tk

Tk − Ck
· Ci

Ti
+ 1

Tk − Ck
· Ci. (4)

The nodes connected by directed edges of interference hold
information on tasks in a task set. A single node in the graph
depicts a single task τi, and all nodes contain four attributes
that are commonly used as characteristics of a real-time task:
1) Ti; 2) Ci; 3) the utilization of a task (ui = Ti/Ci); and 4) the
slack (Ti−Ci). Note that our framework can also be expanded
to cover the TCD model (in which the relative deadline Di is
not necessarily the same as the period Ti) as well by adding
more parameters in each node.

C. Training and Testing Sample Regulation

To measure the performance of our graph representation, we
must first structure and generate samples to be used to train
the graph machine learning framework.

Training samples are composed of numerous task sets in
which n number of tasks are partitioned and scheduled upon
m number of processors by FBBFFD. The tasks each hold
an index (0 <= index < m) that shows which processor
the task has been allocated to by FBBFFD. Each node (task)
holds four attributes as suggested in Section II-B; also, as
we have calculated in Section II-B, the interference from a
higher-priority task to a lower-priority task is illustrated as a
directed edge. Overall, our training input design can be drawn
as Fig. 1.

Testing samples are strictly screened to match the following
conditions: 1) all task sets for testing are schedulable with
FBBFFD when there is m number of processors and 2) all task
sets are unschedulable by FBBFFD when there is m−1 number
of processors. Much like the training samples, testing samples
also hold information that structures as a graph: nodes, node
attributes, edges, and edge weights. As the goal of this letter
is to find new combinations of partitioning tasks to reduce
computation power, the trained graph neural network targets
partition schedule task sets with only m− 1 processors.

III. EVALUATION

In this section, we evaluate the efficiency of our graph
representation in partitioned scheduling.

A. Graph Attention Network Generation

We use the graph attention network (GAT) [11] as our
target neural network for partitioned scheduling with our graph
representation design. GAT employs an attention mechanism
to represent nodes in graph-structured data, allowing each
node to weigh its neighbors differently based on edge rele-
vance. It works with various graph types, including weighted,
unweighted, directed, and undirected graphs. GAT has shown
exceptional performance in node classification tasks in diverse
domains, such as social networks, neural science, and recom-
mendation systems. The GAT in our framework consists of
three layers, with each layer involving: 1) linear projection
and regularization of nodes and edges; 2) calculation of edge
attention; 3) neighborhood aggregation; and 4) residual and
skip connections.2

B. Training and Testing Sample Generation

In our partitioned scheduling framework, we train GAT
with two different sets for evaluation. One is a set consisting
of 300 000 random task sets that are scheduled by FBBFFD
where the index, which is given by FBBFFD, is used as a node
classifying indicator in GAT. Another is a set much alike but
scheduled and indexed by not only FBBFFD but also best-fit
and worst-fit 100 000 sets each. Thus, in terms of how the
neural network learns partitioned learning is classifying task
sets by the number of processors according to the parameters
given. Training sets are generated on these conditions: 1) m =
8 processors; 2) n ≥ m + 1 tasks per task set; 3) max(Ti) =
999; and 4) min(Ci) = 1. Other than m, all other parameters
are randomly generated within their boundaries. Then we form
a graph for every randomly generated task set and train each
graph attention network according to m.

For the testing sample, to test the GAT trained with
FBBFFD indexed cases, we generate 100 000 task sets that
hold these conditions: 1) deemed schedulable by FBBFFD
with m = 8 processors; 2) deemed unschedulable by FBBFFD
with m = 7 processors; 3) n ≥ m + 1 tasks per task set;
4) max(Ti) = 999; and 5) min(Ci) = 1. Each testing set, which
was deemed schedulable by FBBFFD with m processors, is
put as input in the pretrained GAT according to m. GAT is
made to classify these tasks into m−1 node classes, attempting
to reduce the number of processors that are needed for the
task set to be run based on FBBFFD. Then, the resulting
m− 1 partitioned output is run on real-time analysis to check
its schedulability and performance of graph representation
embodied with GAT.

Furthermore, to comprehensively evaluate GAT’s
performance, we generate another testing sample trained with
three heuristics: 1) FBBFFD; 2) best-fit; and 3) worst-fit.
Similar to the previous scenario, we generate 100 000 task
sets meeting specific conditions: 1) deemed schedulable by
either FBBFFD, best-fit, or worst-fit with m = 8 processors;
2) deemed unschedulable by FBBFFD, best-fit and worst-
fit with m = 7 processors; 3) n ≥ m + 1 tasks per task
set; 4) max(Ti) = 999; and 5) min(Ci) = 1. Thus, if GAT
successfully schedules any task set in this testing sample with

2Code is available at https://github.com/SeungHoon00/Partitioned-
Scheduling-with-GAT.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on December 07,2024 at 11:17:23 UTC from IEEE Xplore. Restrictions apply.

460 IEEE EMBEDDED SYSTEMS LETTERS, VOL. 16, NO. 4, DECEMBER 2024

Fig. 2. Partitioned scheduling framework using graph representation and
graph attention network.

m = 7 processors, it is a unique partitioned scheduling method
generated only with GAT using our graph representation
model.

C. Evaluation Results

The training and testing process is depicted in Fig. 2. The
training input example in Fig. 2 contains ten tasks, partitioned
and scheduled on eight processors using FBBFFD. To train
the GAT, we use 300 000 random training samples of task sets
partitioned and scheduled by eight processors with FBBFFD.
Once GAT is trained, its weights are applied to partition the
testing sets, such as in the case shown in Fig. 2, where sets
are partitioned into seven processors. GAT generates an output
by assigning each task in the task set an index of processors.
Subsequently, the partitioned scheduling by the trained GAT is
evaluated using RTA to check for schedulability. It is important
to note that our framework relies on simple supervised learning
with GAT and does not explicitly consider RTA during the
partitioned scheduling process.

We conducted experiments training the graph attention
network (GAT) on datasets labeled by FBBFFD. Notably, GAT
effectively scheduled 132 tasks on m = 7 processors, a task set
previously considered unsolvable by the FBBFFD heuristic.
In further testing across different heuristic-labeled datasets,
including FBBFFD, best-fit, and worst-fit, GAT identified
23 unique scheduling solutions, showcasing its ability to
discover diverse solutions compared to traditional heuristics.
Although these experimental results may seem modest—132
out of 100 000 and 23 out of 100 000—keep in mind that all
100 000 samples were deemed unschedulable by their respec-
tive trained heuristics. We must emphasize the cases where
our GAT model achieved partitioned scheduling with fewer
computing resources, reducing from 8 to 7 processors—a
significant 12.5% reduction—which no other heuristic accom-
plished.

D. Case Study

In this section, we present how our model partitions and
schedules task sets that were deemed unschedulable by other
heuristics.

A task set {τ1(111, 58), τ2(129, 104), τ3(141, 96), τ4(265, 4),
τ5(276, 210), τ6(490, 297), τ7(494, 75), τ8(829, 316), τ9(854,
445), τ10(899, 408)}, which is a task set consisted of ten
tasks, each task τ being represented by (T, C), is deemed

unschedulable onto seven processors by all of the partitioned
scheduling heuristics. GAT however schedules this task set onto
seven processors by partitioning tasks as the following: [τ1] [τ2,
τ4] [τ3, τ7] [τ5] [τ6] [τ8] [τ9, τ10], where each bracket depicts
a single processor. This partitioning method acts similarly to
the best-fit heuristic which however cannot schedule this task
set due to the utilization bound (n(21/n − 1.0)), i.e., 0.828 for
n = 2. Our GAT however schedules without being restricted
by the utilization bound where the tasks scheduled onto the
7th processor have a utilization sum of 0.974 (= 445/854 +
408/899) which is far beyond the bound, 0.828.

Another task set deemed schedulable by GAT, {τ1(17, 13),
τ2(286, 20), τ3(296, 265), τ4(298, 231), τ5(315, 64), τ6(325,
6)], τ7(570, 73), τ8(588, 173), τ9(658, 359), τ10(677, 369),
τ11(840, 261), τ12(961, 556)}, also shows similar traits when
partitioned scheduled. This task set is scheduled by GAT as
follows: [τ1] [τ2, τ3] [τ4] [τ5, τ6, τ7] [τ8, τ9] [τ10] [τ11, τ12].
The utilization sums of the 2nd, 5th, and 7th processors are
each 0.965, 0.840, and 0.9 which are also larger than the
utilization bound, letting the GAT partition schedule this task
set which was deemed unschedulable by existing heuristics.

IV. CONCLUSION

In this letter, we present a graph representation of real-
time task sets that enables graph machine-learning schemes to
capture the influence between tasks. We demonstrated that by
using a graph attention network with our graph representation
method for real-time systems, it successfully schedules task
sets that were deemed unschedulable by the state-of-the-art
partitioned scheduling algorithms. For future work, we aim
to expand this graph representation to solve other real-time
scheduling problems while enjoying the benefit of advances
in graph machine learning.

REFERENCES

[1] R. I. Davis and A. Burns, “A survey of hard real-time scheduling
for multiprocessor systems,” ACM Comput. Surveys, vol. 43, no. 4,
pp. 1–44, 2011.

[2] A. Burmyakov and B. Nikolić, “An exact comparison of global,
partitioned, and semi-partitioned fixed-priority real-time multiprocessor
schedulers,” J. Syst. Archit., vol. 121, pp. 1–13, Dec. 2021.

[3] G. Levin, S. Funk, C. Sadowski, I. Pye, and S. Brandt, “DP-FAIR: A
simple model for understanding optimal multiprocessor scheduling,” in
Proc. 22nd Euromicro Conf. Real-Time Syst., 2010, pp. 3–13.

[4] N. Fisher, S. Baruah, and T. P. Baker, “The partitioned scheduling of
sporadic tasks according to static-priorities,” in Proc. 18th Euromicro
Conf. Real-Time Syst. (ECRTS), 2006, pp. 1–10.

[5] N. Audsley, A. Burns, and A. Wellings, “Deadline monotonic scheduling
theory and application,” Control Eng. Pract., vol. 1, no. 1, pp. 71–78,
1993.

[6] C. Liu and J. Layland, “Scheduling algorithms for multi-programming
in a hard-real-time environment,” J. ACM, vol. 20, no. 1, pp. 46–61,
1973.

[7] H. Hu, X. Zhang, X. Yan, L. Wang, and Y. Xu, “Solving a new 3D
bin packing problem with deep reinforcement learning method,” 2017,
arXiv:1708.05930.

[8] F. Mao et al., “Small boxes big data: A deep learning approach to
optimize variable sized bin packing,” in Proc. IEEE 3rd Int. Conf. Big
Data Comput. Service Appl. (BigDataService), 2017, pp. 80–89.

[9] R. Verma et al., “A generalized reinforcement learning algorithm for
online 3D bin-packing,” 2020, arXiv:2007.00463.

[10] J. Lee, A. Easwaran, and I. Shin, “Maximizing contention-free execu-
tions in multiprocessor scheduling,” in Proc. IEEE Real-Time Technol.
Appl. Symp., 2011, pp. 235–244.

[11] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” 2017, arXiv:1710.10903.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on December 07,2024 at 11:17:23 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

