
Future Generation Computer Systems 160 (2024) 406–419

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

IMC-PnG: Maximizing runtime performance and timing guarantee for
imprecise mixed-criticality real-time scheduling
Jaewoo Lee a, Jinkyu Lee b,∗

a Department of Industrial Security, Chung-Ang University, Republic of Korea
b Department of Computer Science and Engineering, Sungkyunkwan University (SKKU), Republic of Korea

A R T I C L E I N F O

Keywords:
Mixed-Criticality Systems
Real-time Systems
Imprecise computing
Scheduling algorithm
Schedulability analysis

A B S T R A C T

Mixed-Criticality (MC) systems have successfully overcome the limitation of traditional real-time systems
based on pessimistic Worst-Case Execution Times (WCETs), by using different WCETs depending on different
criticalities. One of the important yet unsolved problems of current MC systems is to achieve two goals (G1 and
G2) for low-criticality tasks without compromising timing guarantees for high-criticality tasks: (G1) providing
a certain (degraded) level of timing guarantees for all low-criticality tasks; (G2) while maximizing the fully-
serviced (non-degraded) execution of low-criticality tasks. To address the problem, we propose IMC-PnG,
an MC scheduling framework, which employs two salient features: a task-level virtual-deadline assignment
under the imprecise computing model with efficient resource utilization (supporting G1), and an online
scheduling algorithm that dynamically changes criticality levels of individual tasks at runtime (supporting G2).
In simulation results with random workloads, we showed that IMC-PnG has up to 12.10% higher schedulability
and up to 42.10% higher runtime performance (measured by the fully-serviced ratio of low-criticality tasks)
than the existing approaches.
1. Introduction

Real-time systems aim at achieving (i) timing guarantees of tasks
subject to timing constraints and (ii) efficient utilization of computing
resources. Since classical real-time scheduling research that mainly
focuses on (i) has relied on a pessimistically-calculated Worst-Case
Execution Time (WCET) for each task, the concept of Mixed-Criticality
(MC) has been introduced [1–3] in order to address (ii) without com-
promising (i). By employing multiple WCETs (optimistic/pessimistic
ones) for each task, MC is capable of providing multiple levels of timing
guarantees in different situations. That is, if no task executes for up to
its optimistic WCET (i.e., in the normal mode), the system can support
the timely execution of all tasks. Otherwise (i.e., there exists a task that
executes for more than its optimistic WCET), the system turns to the
critical mode and supports the timely execution of high-critical tasks
only (that execute for up to their pessimistic WCETs) without taking
care of timing guarantees of low-critical tasks.

Although the concept of MC operates as an interface to achieve (i)
and (ii) at the same time, the early stage of MC studies cannot fully ad-
dress both especially for low-criticality tasks after the mode change (i.e., in
the critical mode), so-called graceful degradation of low-critical tasks,
including (a) how to provide a certain (i.e., degraded) level of timing
guarantees for all low-critical tasks, and (b) how to maximize (rather

∗ Corresponding author.
E-mail addresses: jaewoolee@cau.ac.kr (J. Lee), jinkyu.lee@skku.edu (J. Lee).

than guarantee) the fully-serviced (i.e., non-degraded) execution of low-
critical tasks. As graceful degradation of low-critical tasks is desirable
for system performance and safety [4], later MC studies for (a) support
degraded service to low-critical tasks in the critical mode by stretching
their periods [4–6] or skipping their jobs [7]. Recently, the imprecise
computing model [8] is applied to the concept of MC, where a low-
critical task consists of a mandatory execution part and an optional
execution part, called IMC (Imprecise Mixed-Criticality) systems; a
group of IMC studies guarantees the timely execution of the mandatory
part of low-critical tasks after the mode change [4,9,10]. On the other
hand, some studies address (b) to further achieve graceful degradation
in the critical mode. For example, a group of studies [11–13] introduces
a fine-grained mode change protocol and maximizes the execution of
low-critical tasks by online scheduling decisions. However, no studies
address both (a) and (b) through the interaction between multi-level
timing guarantee and sophisticated runtime scheduling decision, which
is a key to achieving both at the same time.

In this paper, our goals are (G1) to provide a weak level of timing
guarantees for low-criticality tasks (by assuring timely execution of
every mandatory part according to the IMC model, corresponding to
(a)) without compromising timing guarantees for high-criticality tasks
and (G2) to maximize runtime performance (by maximizing the number
vailable online 10 June 2024
167-739X/© 2024 Elsevier B.V. All rights are reserved, including those for text and

https://doi.org/10.1016/j.future.2024.06.015
Received 5 January 2024; Received in revised form 1 May 2024; Accepted 9 June
data mining, AI training, and similar technologies.

2024

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
mailto:jaewoolee@cau.ac.kr
mailto:jinkyu.lee@skku.edu
https://doi.org/10.1016/j.future.2024.06.015
https://doi.org/10.1016/j.future.2024.06.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2024.06.015&domain=pdf

Future Generation Computer Systems 160 (2024) 406–419J. Lee and J. Lee

f

m
t
t
f
h
l

l
b
S
r

2

m
M
w
c

v
o
r

d
h
s
d
v
V
i
e
L
F
n
o
t
t

c
L
b
t
A
t
e
m
r
t
w
r
m
n
t
o
I

c
d
t
a
i
c
l
r
r
f
t
d
c

a
t

of optional parts performed in time, corresponding to (b)). Achieving
both G1 and G2 are necessary for safety-critical cyber–physical systems.
As an application that necessitates G1, automotive systems consist of
high-critical hard-real-time components (such as engine, brake and
steering systems), and low-critical soft-real-time components (such as
navigation systems, GPS systems and signal lamps). In addition to
timing guarantee in high-criticality components, some levels of tim-
ing guarantee in low-criticality components is necessary for the safe
driving.

Although G1 is achieved, the system designer pursues G2, which
means that they would like to maximize runtime performance of the
system, increasing the utility (e.g., optional safety, fault tolerance, func-
tionality) of the entire systems. For example, to achieve autonomous
driving associated in automotive systems, an important task is per-
ception, which is object detection (OD) for camera video stream. In
particular, there are trade-off between accuracy and execution time in
OD algorithms such as YOLO [14]. Utilizing the trade-off, some studies
allocate different accuracy objectives on different tasks depending on
their criticality [15,16]. When the system enters the critical mode
(e.g., extreme weather), the system allocates more resources to high-
critical OD tasks such as the front camera (increasing accuracy), and
fewer resources to low-critical OD tasks such as the side/rear cameras
under the IMC model. Even after the mode change, the system should
provide a minimum-level of timing guarantees for low-criticality tasks
such as OD associated with the rear camera (by executing every manda-
tory part in time), while maximizing the accuracy of low-criticality
tasks (by running optional parts as much as possible).

To achieve the goal necessary for safety-critical cyber–physical
systems, we propose the IMC scheduling framework maximizing the
runtime Performance and the timing Guarantee, called IMC-PnG. Our
ramework has the following key features.

F1. We propose IMC-PnG scheduling algorithm, applying classical
EDF policy with Virtual Deadlines (VDs), EDF-VD [3], under IMC
model. In IMC-PnG, we propose a runtime mode-change algorithm
to minimize the number of degraded executions of low-criticality
tasks by considering runtime criticality levels of individual tasks.
This approach is the first work to adjust the number of degraded
executions at runtime under IMC model (Section 5.1).

F2. We develop the online schedulability analysis for IMC-PnG to
determine whether the current system behavior by the decision
of the IMC scheduling algorithm does not miss any deadlines;
we also develop the offline schedulability analysis by analyz-
ing the worst case of online scheduling scenarios of IMC-PnG
(Section 5.2).

F3. By identifying the duration of the peak resource demand of
high-criticality tasks, we develop an advanced version of F1 and
F2, resulting in an improved online schedulability analysis with-
out compromising offline schedulability performance, which im-
proves the runtime performance (Section 5.3).

F4. In IMC-PnG, we assign the VD of each task individually. We pro-
pose a resource-efficient algorithm to decide the virtual deadline
of individual tasks to maximize schedulability and the runtime
performance of the task set (Section 5.4).

Using randomly generated workloads, we evaluated the perfor-
ance of IMC-PnG compared to the existing approaches. In experimen-

al results, IMC-PnG has up to 12.10% higher offline schedulability than
he existing approaches. We also conducted to evaluate the runtime per-
ormance simulating various scheduling scenarios. As a result, IMC-PnG
as up to 42.10% higher PFJ (percentage of fully-serviced jobs) of
ow-criticality tasks than the existing approaches.

The rest of this paper is structured as follows. Section 2 discusses re-
ated work. Sections 3 and 4 respectively explain the system model and
ackground. Section 5 proposes the IMC-PnG scheduling framework and
ection 6 evaluates the effectiveness of IMC-PnG. Section 7 discusses the
emaining issues and Section 8 concludes the paper.
407
. Related work

Since Vestal’s seminal work [1] on MC systems, there have been
any studies on MC domain (see a survey [17] for details). In classical
C systems, Baruah et al. [2] introduced the concept of mode-switch:
hen a HC task executes more than its low-criticality (or normal-

onfidence) WCET, the system enters in HI mode1 where all LC tasks are
dropped to ensure the execution of HC tasks.2 EDF-VD [3] introduced
irtual deadlines to adjust the priorities of HC tasks in LO mode. Based
n the basic model of MC system, there has been a wide range of
esearch direction on MC systems.

One direction is to improve schedulability. In multiprocessor MC
omain, global or partitioned scheduling algorithm based on EDF-VD
as low performance. Considering parallel execution in multiproces-
ors, MC-Fluid [18] improved schedulability by using per-task virtual-
eadline assignment. Recently, Yang et al. [19] calculated per-task
irtual-deadline from the analysis result of MC-Fluid and applied EDF-
D scheduling policy. In safety-critical cyber–physical systems, which

s our target domain, some LC tasks need a minimum level of execution
ven after mode-switch, as well as maximizing runtime performance of
C tasks; however, this has not been considered in classical MC systems.
or example, vision tasks in side/rear cameras of autonomous vehicles
eed to operate at a minimum level, even in extreme situations, and
perate at a higher level as much as possible. Our work is the first work
hat extends classical MC systems with low-level timing guarantee of LC
asks and runtime performance optimization of LC tasks.

Another direction is graceful degradation after mode-switch, fo-
using the runtime performance of LC tasks. Instead of dropping all
C tasks at mode switch, various degraded service of LC tasks has
een introduced, such as stretching task periods [4–6,20], reducing
ask execution times [21], and allowing not to execute some jobs [7].
lthough system-level mode-switch approaches [2,3] cannot control

he criticality mode of individual tasks, recent approaches [11–13]
mployed task-level mode-switch mechanism: when a HC task executes
ore than its normal-confidence WCET, the system only changes its

untime criticality mode. Chen et al. [12] introduced the 𝑘th HI mode
o identify the number of HC tasks which are in HI mode. Our previous
ork [11,13] introduced task-level runtime criticality mode to further

educe the number of dropping LC tasks for different runtime criticality
ode. Lee and Lee [13] introduced task-level mode recovery mecha-
ism to re-execute the dropped LC tasks as soon as possible. Along with
he task-level mode-switch paradigm, our work introduced the concept
f stable-HI-mode tasks to maximize the runtime performance under
MC systems further.

The other direction is toward IMC systems which apply imprecise
omputing model [8] on MC systems. Although classical MC schemes
rop LC tasks at mode-switch, Burns et al. [4] proposed to degrade LC
asks (similar to executing mandatory parts in imprecise computing)
fter the mode-switch. Liu et al. [22] formalized this mechanism with
mprecise mixed-criticality systems, which was later extended to the
onstrained-deadline task model [23]. Guo et al. [9] improved schedu-
ability under uniprocessor EDF scheduling algorithm by using theo-
etical MC-Fluid [18]. Pathan [10] considered both schedulability and
untime performance (in terms of the percentage of fully-executed jobs)
rom static offline schedulability analysis. To further maximize run-
ime performance, our work analyzes online schedulability considering
ynamic runtime scenarios, assuming arbitrary switch of task-level
riticality mode at any time.

MC systems have been studied considering power and energy. Guo
nd Baruah [24] proposed to schedule MC jobs on varying-speed mul-
iprocessors. Huang et al. [25] proposed to schedule MC tasks by the

1 Most of MC studies consider dual criticalities: HI (high) or LO (low).
2 HC and LC stand for High-Criticality and Low-Criticality, respectively.

Future Generation Computer Systems 160 (2024) 406–419J. Lee and J. Lee

m
c
p
m

s
s
a
i
D
t
t
o

3

s
t

D
C
𝜒
e
w
a

j

t
w
t
L
o

[
c

w

Fig. 1. Task behavioral model for IMC tasks.

inimum processor speedup. She et al. [26] does not sacrifice low-
ritical tasks of IMC workloads after mode-switch, by boosting the
rocessor speed. Zhang and Chen [27] proposed partition heuristics on
ulticore IMC platform considering energy consumption.

Besides theoretical MC studies, practical implementation of MC
ystems is also important. Huang et al. [28] implemented a user-
pace MC scheduler on Linux and measured the preemption overheads
nd the cost of priority adjustment. Liu et al. [23] discussed how to
mplement the IMC scheduling algorithm on LITMUS-RT platform [29].
avid et al. [30] observed that the cost of context switching between

asks of different criticality is higher than the switching cost between
asks of same criticality. Sundar and Easwaran [31] observed the effect
f task degradation scheme on automotive test-beds.

. System model

Task Model. For simplicity, we focus on a dual-criticality system
with two distinct criticality levels, HI (high) and LO (low). We con-
ider a set of implicit-deadline sporadic tasks (denoted by 𝜏) of 𝑛 MC
asks [3], each characterized by 𝜏𝑖 = (𝑇𝑖, 𝐶𝐿

𝑖 , 𝐶
𝐻
𝑖 , 𝜒𝑖), where

• 𝑇𝑖 ∈ R is the minimum inter-job separation time (or period),
• 𝐶𝐿

𝑖 ∈ R is a LO-criticality WCET (Worst-Case Execution Time),
denoted by L-WCET,

• 𝐶𝐻
𝑖 ∈ R is a HI-criticality WCET, denoted by H-WCET, and

• 𝜒𝑖 ∈ {𝖧𝖨,𝖫𝖮} is a task criticality level.

epending on the task criticality level 𝜒𝑖, a task is either a High-
riticality (HC) task or a Low-Criticality (LC) task. For a HC task with
𝑖 = 𝖧𝖨, it has 𝐶𝐿

𝑖 ≤ 𝐶𝐻
𝑖 , which means that the task requires more

xecution budget in the extreme case. On the contrary, for a LC task
ith 𝜒𝑖 = 𝖫𝖮, it has 𝐶𝐿

𝑖 = 𝐶𝐻
𝑖 , which means that the system will not

ssign more execution budget for the task even in the extreme situation.
Each MC task 𝜏𝑖 generates an infinite sequence of jobs {𝐽 1

𝑖 , 𝐽
2
𝑖 ,…},

each released with at least 𝑇𝑖 inter-job separation time units. Once a
ob of 𝜏𝑖 is released at 𝑡, it executes for at most 𝐶𝐿

𝑖 or 𝐶𝐻
𝑖 (depending

on the task/system mode) and should finish its execution no later than
𝑡 + 𝑇𝑖. We consider a uniprocessor system where only one job can be
executed at any time.

We consider an Imprecise Mixed-Criticality (IMC) task model, where
reduced execution budgets for low-criticality tasks are applied in the
overloaded system situation, which is a subset of MC task model
derived from [4,22]. In the IMC task model, LC task consists of two
sub-tasks: a mandatory sub-task (whose execution budget is denoted
by 𝐶𝑀

𝑖) and an optional sub-task (whose execution budget is denoted
by 𝐶𝑂

𝑖), satisfying 𝐶𝐻
𝑖 = 𝐶𝐿

𝑖 = 𝐶𝑀
𝑖 +𝐶𝑂

𝑖 . In addition, the system allows
o skip the optional sub-task of LC tasks when the system is overloaded,
hile the mandatory sub-task should be executed in any case. When HC

asks need more execution budgets, classical MC task model can drop
C tasks while this IMC model does not allow to drop LC tasks but skip
ptional sub-tasks of LC tasks.
Task Behavior. We consider task-level criticality mode (task mode)

11,13] as opposed to the system-level criticality mode (widely used in
408

lassic MC studies (e.g., [2,3])). For each HC task 𝜏𝑖, we define 𝑀𝑖 as i
the task mode of 𝜏𝑖 indicating its task behavior shown in Fig. 1(a). A
task 𝜏𝑖 is said to be in LO mode (𝑀𝑖 = 𝖫𝖮) if no job of the task has
executed for more than its L-WCET, and to be in HI mode (𝑀𝑖 = 𝖧𝖨)
otherwise. In addition to HC tasks, we consider two execution modes
of a LC task shown in Fig. 1(b); each LC task is in either an active mode
(𝑀𝑖 = 𝐴) or a degraded mode (𝑀𝑖 = 𝐷). A LC task executes up to its
active WCET (𝐶𝐴

𝑖 = 𝐶𝑀
𝑖 +𝐶𝑂

𝑖) in its active mode, while the task executes
up to its degraded WCET (𝐶𝐷

𝑖 = 𝐶𝑀
𝑖) in its degraded mode.

Scheduling semantics of the IMC model is different from the classi-
cal MC model in the overloaded system situation (i.e., some HC tasks
execute more than their L-WCET). That is, in the overloaded system
situation, while the classical MC model drops the entire execution of
LC tasks, the IMC model skips optional execution of LC tasks without
dropping the mandatory execution of any LC task. The system scenario
for the IMC model are summarized as follows:

• Initially, all the HC tasks are in LO-mode and all the LC tasks are
in active mode.

• When a HC task 𝜏𝑖 executes more than its L-WCET (𝐶𝐿
𝑖), the

scheduler can change its task mode3 (𝑀𝑖) from LO mode to HI
mode (called mode-switch), i.e., 𝑀𝑖 ∶= 𝖧𝖨.

• When the scheduler needs more resources (due to mode-switch of
at least one HC task), one or more active LC tasks are selected to
be degraded (by disallowing the execution on the optional part
of the selected LC tasks) in order to support HC tasks with their
additional resource requests.

When the scheduler decides a LC task to change its state into the
degraded state, the current job of the task is immediately suspended
if the amount of job execution already performed is more than its
mandatory execution budget (𝐶𝑀

𝑖). The scheduling algorithm to be
applied determines which LC task is degraded.

System Goal. We consider the IMC schedulability, similar to the
existing IMC studies [4,22], which consists of the following three
conditions:

• IMC-A: HC tasks are always schedulable.
• IMC-B: LC tasks are schedulable with their L-WCETs if all HC

tasks are in LO mode.
• IMC-C: LC tasks are schedulable with their mandatory execution

budgets if any HC task is not in LO mode.

Besides the IMC schedulability, we also consider the runtime perfor-
mance of LC tasks, which entails the following goal.

• IMC-R: The ratio of fully serviced jobs (with both mandatory and
optional execution) for LC tasks should be maximized.

In summary, the system goal is to achieve IMC-R while satisfying the
constraints of IMC-A, IMC-B, and IMC-C.

Notations. For notational convenience, let 𝜏𝖧 and 𝜏𝖫 denote a set of
HC tasks and LC tasks, respectively, i.e., 𝜏𝖧

𝖽𝖾𝖿
= {𝜏𝑖 ∈ 𝜏 ∣ 𝜒𝑖 = 𝖧𝖨} and

𝜏𝖫
𝖽𝖾𝖿
= {𝜏𝑖 ∈ 𝜏 ∣ 𝜒𝑖 = 𝖫𝖮}. The utilization of a task 𝜏𝑖 is defined as

𝑢𝐿𝑖
𝖽𝖾𝖿
= 𝐶𝐿

𝑖 ∕𝑇𝑖 and 𝑢𝐻𝑖
𝖽𝖾𝖿
= 𝐶𝐻

𝑖 ∕𝑇𝑖 for HC tasks, and 𝑢𝐴𝑖
𝖽𝖾𝖿
= 𝐶𝐴

𝑖 ∕𝑇𝑖 and
𝑢𝐷𝑖

𝖽𝖾𝖿
= 𝐶𝐷

𝑖 ∕𝑇𝑖 for LC tasks.
We define the collective utilization of a task set as follows:

𝑈𝐻
𝖧

𝖽𝖾𝖿
=

∑

𝜏𝑖∈𝜏𝖧

𝑢𝐻𝑖 , 𝑈𝐿
𝖧

𝖽𝖾𝖿
=

∑

𝜏𝑖∈𝜏𝖧

𝑢𝐿𝑖 ,

𝑈𝐴
𝖫

𝖽𝖾𝖿
=

∑

𝜏𝑖∈𝜏𝖫

𝑢𝐴𝑖 , 𝑈𝐷
𝖫

𝖽𝖾𝖿
=

∑

𝜏𝑖∈𝜏𝖫

𝑢𝐷𝑖 .

3 The system-level mode-switch approach changes the task mode of all tasks
hile the task-level mode-switch approach changes the task mode of each task

ndividually.

Future Generation Computer Systems 160 (2024) 406–419J. Lee and J. Lee

𝑥

T

p
i
s
e
s
H
e

a
V
p
a
s

L

𝑈

𝑥

m
c
E

d

v

r
(
s
t
d
w

l
t
s
i
S

4. Background

Before presenting a new IMC scheduling framework, we recapitulate
its base scheduling algorithm EDF-VD [3] under classic MC systems and
review the IMC scheduling approaches.

EDF-VD scheduling algorithm. Different from the vanilla EDF,
EDF-VD employs the concept of virtual deadline (VD), which is the
modified scheduling priority from the original deadline. That is, EDF-
VD assigns different absolute deadlines4 to jobs of each HC task in
different modes (i.e., the VD in LO mode and the real deadline in HI
mode).

EDF-VD assigns the virtual relative deadline of the task by 𝑉𝑖 ∶= 𝑥𝑇𝑖,
where 0 < 𝑥 ≤ 1 is the VD coefficient. The role of VD is a priority
boost for HC tasks. The job of a HC task with LO execution budget
(𝐶𝐿

𝑖) may not complete its job execution until its VD,5 which invokes
a mode-switch. Then, the job may execute the additional execution
budget (𝐶𝐻

𝑖 −𝐶𝐿
𝑖) during the remaining time duration (𝑇𝑖−𝑉𝑖) between

its VD and real relative deadline. Under the system-level mode-switch
mechanism deployed by EDF-VD, when a single HC task switches to HI
mode, all the other HC tasks switch to HI mode simultaneously.

We present the offline schedulability condition of EDF-VD [3]: a task
set 𝜏 is schedulable by EDF-VD if

𝑈𝐴
𝖫 +

𝑈𝐿
𝖧

𝑥
≤ 1, (1)

𝑈𝐴
𝖫 + 𝑈𝐻

𝖧 ≤ 1. (2)

hen, the VD coefficient can be derived from Eq. (1): 𝑥 = 𝑈𝐿
𝖧 ∕(1−𝑈𝐴

𝖫).
Imprecise Mixed-Criticality Scheduling. Burns and Baruah [4]

roposed an MC system where LC tasks reduce their execution budgets
n HI mode, instead of skipping their execution. Since the system is
imilar to the notion of the imprecise computation model [32], Liu
t al. [22] referred to the system as Imprecise Mixed-Criticality (IMC)
ystem. IMC systems allow the reduced execution only for LC tasks in
I mode, whereas general imprecise systems always allow the reduced
xecution for all imprecise tasks.

AMC-IMC [4] proposed a fixed-priority IMC scheduling algorithm
nd its schedulability analysis. Later, Liu et al. [22] proposed EDF-
D-IMC extending EDF-VD [3] under IMC systems. Instead of drop-
ing LC tasks at mode-switch, EDF-VD-IMC executes all LC tasks with
degraded execution budget in HI mode. The next lemma records

chedulability analysis for EDF-VD-IMC:

emma 1 (from [22]). A task set 𝜏 is schedulable by EDF-VD-IMC if

𝐴
𝖫 +

𝑈𝐿
𝖧

𝑥
≤ 1, (3)

𝑈𝐴
𝖫 + (1 − 𝑥)𝑈𝐷

𝖫 + 𝑈𝐻
𝖧 ≤ 1. (4)

Eqs. (3) and (4) represent the schedulability condition in LO and HI
ode, respectively. While the former is identical to the schedulability

ondition for EDF-VD (i.e., Eq. (1)), the latter is different from that for
DF-VD (i.e., Eq. (2)). That is, the term (1−𝑥)𝑈𝐷

𝖫 is added from Eq. (2)
to Eq. (4), by considering that LC tasks still execute in degraded quality
even after the mode-switch.

5. IMC-PnG scheduling framework

Different from MC studies, IMC studies have not matured yet as
they have not fully addressed the system goal in terms of runtime
performance (i.e., IMC-R) and offline schedulability (i.e., IMC-A, B, and

4 When no ambiguity arises, we use the term ‘‘deadline’’ for ‘‘absolute
eadline’’.

5 From now on, VD (when mentioned alone, not VD in EDF-VD) means the
irtual relative deadline.
409

i

C), as follows. First, early IMC studies [4,22] have considered schedu-
lability only without addressing the runtime performance. One recent
study [10] has calculated the allowable additional demand derived
from the offline schedulability analysis and utilized it to support a given
ratio of fully-serviced jobs of LC tasks in HI mode. However, since the
study cannot utilize runtime information such as the difference between
WCET and the actual execution time, its runtime performance is limited
to the underlying offline schedulability analysis. Second, existing IMC
studies have derived pessimistic schedulability. While the seminal work
on IMC [4] results in limited schedulability as it is based on the fixed
priority scheduling algorithm, Liu et al. [22] improved schedulability
based on the EDF-VD [3] scheduling algorithm specialized for MC sys-
tems. However, it is still pessimistic due to applying the global priority
adjustment using the system-wide VD coefficient. When it comes to
theoretical fluid-based scheduling, Baruah et al. [9] (for uniproces-
sor) and Pathan [10] (for multiprocessor) proposed task-level priority
adjustment (via execution rate assignment) based on MC-Fluid [18].
However, fluid-based IMC work is not practically implementable on
most of embedded systems due to severe context-switching overheads.

To address the issues, we develop the IMC-PnG scheduling algo-
rithm, based on EDF-VD-IMC [22] that considers schedulability only.
We have three major approaches to consider both schedulability and
the runtime performance of LC tasks.

1. We apply task-level mode-switch mechanism to minimize the
number of degraded execution of LC jobs. In EDF-VD-IMC, all LC
tasks are degraded immediately after system-level mode-switch.
In classical MC approaches [11–13], task-level mode-switch helps
runtime performance of LC tasks. Instead of degrading all LC
tasks at system-level mode-switch, we can degrade the minimal
numbers of LC tasks on a series of task-level mode-switch events,
which improves the runtime performance of LC tasks.

2. To improve schedulability, we apply a per-task VD assignment
scheme considering the task characteristic, instead of the VD
assignment by the global VD coefficient (𝑥) in EDF-VD-IMC.
Inspired by MC-Fluid [18] in the classic MC domain, we propose
an individual VD coefficient (𝑥𝑖) for each HC task 𝜏𝑖 and optimize
all VD coefficients to improve schedulability. Improved schedula-
bility also helps the runtime performance of LC tasks by reducing
the number of degraded execution of LC jobs at the mode-switch.

3. To improve runtime performance further, we carefully examine
the demand of HC tasks entering in HI mode. For a HC task, we
found that the demand of the mode-switching job (released in
LO-mode and switched to HI-mode during its execution) may be
different from that of subsequent jobs released in HI-mode (no
mode switch during its execution). With a fine-grained segmen-
tation of HC tasks on runtime, we can tightly bound the demand
of HC tasks, which helps the runtime performance of LC tasks.

Fig. 2 illustrates the overall process of the IMC-PnG. In the design
time, for a given task set, we first assign per-task VD for each HC task
(Section 5.4). Then, we check the offline schedulability test for the task
set with the assigned VDs (Section 5.2). If the task set cannot pass
the test, we declare that the task set is unschedulable by IMC-PnG. At
untime, we schedule the task set according to the scheduling algorithm
Section 5.1). When a mode-switch happens, we invoke the mode-
witch algorithm. In the algorithm, we check the online schedulability
est. When the test is not satisfied, we pick an active LC task and
egrade the task. Then, we check the test again. If the test is satisfied,
e proceed to execute the scheduling algorithm.

This section presents the proposed approaches according to the fol-
owing structure. First, targeting the basic model, Section 5.1 proposes
he IMC-PnG scheduling framework, and Section 5.2 derives the online
chedulability analysis as well as the offline one. Second, Section 5.3
mproves the basic model and its online schedulability analysis. Finally,
ection 5.4 proposes a resource-efficient algorithm to assign the VD of

ndividual tasks.

Future Generation Computer Systems 160 (2024) 406–419J. Lee and J. Lee

V

f
t
c
t
s

s

s
d
e
o
d
F
m

D

i
a

h
i
𝑈
a

𝑈

w
a

i
t
i

m
s
c
b
r
a
m
f

Fig. 2. The overall process of the IMC-PnG scheduling framework.

5.1. Scheduling algorithm

Based on EDF-VD-IMC [22], we develop the IMC-PnG scheduling
algorithm as follows. First, IMC-PnG assigns virtual deadlines to jobs
of a HC task when the task is in HI-mode, as EDF-VD-IMC does. That
is, whenever a job of a HC task 𝜏𝑖 is released at 𝑡𝑎 in LO and HI
mode, its virtual deadline (𝑡𝑎 + 𝑉𝑖) and real deadline (𝑡𝑎 + 𝑇𝑖) are used
for prioritization, respectively. Second, the virtual deadline assignment
for IMC-PnG is different from that for EDF-VD-IMC. While all the
HC tasks under EDF-VD-IMC share the global virtual-deadline (VD)
coefficient (i.e., 𝑥 for all tasks), those under IMC-PnG employ task-
level VD coefficients (i.e., 𝑥𝑖 for each 𝜏𝑖), meaning that the relative

D of each HC task (𝑉𝑖) is assigned by 𝑉𝑖 = 𝑥𝑖 ⋅ 𝑇𝑖. Note that Sec-
tion 5.4 will develop how to assign task-level VD coefficients. Third,
the mode-switch mechanism for IMC-PnG is also different from that
or EDF-VD-IMC, as it operates in a task-level manner. Whenever a HC
ask in LO mode executes for more than its L-WCET, the HC task itself
hanges its task mode from LO to HI while other HC tasks keep their
ask mode unchanged (i.e., task-level mode-switch occurs), which is
imilar to existing task-level criticality-mode approaches [11,12].

We first present the runtime scheduling policy of the MC-RUN
cheduling algorithm.
Runtime Scheduling Policy. As a first step to present runtime

cheduling policy, we introduce a notion of stage that captures the
ynamic system behavior at mode-switch, including the task mode for
ach HC task and the execution mode for each LC task shown in Fig. 1
f Section 3. Initially, all the HC tasks start in LO mode. At runtime,
ifferent HC task mode-switches at different time instants. As shown in
ig. 3, the 𝑘th stage is described for the system behavior after the 𝑘th
ode-switch.

efinition 1 (Stage). Let 𝑡′𝑘 and 𝑡′𝑘+1 respectively denote the time
instants at which the 𝑘th and (𝑘 + 1)-th mode-switch occur. Stage 𝑆𝑘
represents the system behavior in the time interval [𝑡′𝑘, 𝑡

′
𝑘+1) and is

defined as a tuple of four task sets as follows.

• 𝜏𝖧|𝖫(𝑘): a set of HC tasks whose task mode is LO in [𝑡′𝑘, 𝑡
′
𝑘+1),

• 𝜏𝖧|𝖧(𝑘): a set of HC tasks whose task mode is HI in [𝑡′𝑘, 𝑡
′
𝑘+1),

• 𝜏𝖫|𝖠(𝑘): a set of LC tasks whose execution state is ‘‘active’’ in
[𝑡′𝑘, 𝑡

′
𝑘+1), and

• 𝜏𝖫|𝖣(𝑘): a set of LC tasks whose execution state is ‘‘degraded’’ under
in [𝑡′𝑘, 𝑡

′
𝑘+1).

Note that 𝑡′𝑘+1 is ∞ if the total number of mode-switches is 𝑘.

By definition, 𝜏𝖧|𝖫(𝑘) and 𝜏𝖧|𝖧(𝑘) are disjoint, and 𝜏𝖧 = 𝜏𝖧|𝖫(𝑘) ∪ 𝜏𝖧|𝖧(𝑘)
410

holds. Likewise, 𝜏𝖫|𝖠(𝑘) and 𝜏𝖫|𝖣(𝑘) are disjoint, and 𝜏𝖫 = 𝜏𝖫|𝖠(𝑘) ∪ 𝜏𝖫|𝖣(𝑘) f
Fig. 3. Illustration of stage 𝑆𝑘, which describes the mode of tasks at runtime after 𝑡′𝑘,
.e., the 𝑘th mode-switch time instant (in this example, 𝜏2 belonged to 𝜏𝖧|𝖫(𝑘−1), but
fter the 𝑘th mode switch, 𝜏2 belongs to 𝜏𝖧|𝖧(𝑘)).

olds. Note that the initial stage 𝑆0 is represented by (𝜏𝖧, ∅, 𝜏𝖫, ∅), which
s identical to system-level LO mode in EDF-VD-IMC [22]. Similarly to
𝐻
𝖧 , 𝑈𝐿

𝖧 , 𝑈𝐴
𝖫 and 𝑈𝐷

𝖫 , we define collective utilization of each of the
bove disjoint task sets:

𝑦
𝑧(𝑘)

𝖽𝖾𝖿
=

∑

𝜏𝑖∈𝜏𝑧(𝑘)

𝑢𝑦𝑖 , (5)

here 𝑧(𝑘) ∈ {𝖧|𝖫(𝑘),𝖧|𝖧(𝑘)} and 𝑦 ∈ {𝐿,𝐻}, or 𝑧(𝑘) ∈ {𝖫|𝖠(𝑘),𝖫|𝖣(𝑘)}
nd 𝑦 ∈ {𝐴,𝐷}.

Based on the concept of stage, we present the runtime schedul-
ng policy for IMC-PnG. We schedule the job of the earliest effec-
ive deadline, which is the same as EDF-VD-IMC with the following
nstructions:

P1. Initially, every LC task is set to active (∀𝜏𝑖 ∈ 𝜏𝖫,𝑀𝑖 = 𝐴), and
every HC task is set to LO mode (∀𝜏𝑖 ∈ 𝜏𝖧,𝑀𝑖 = 𝖫𝖮).

P2. When a job of HC task 𝜏𝑖 arrives at time 𝑡𝑎, it has 𝐶𝐿
𝑖 execution

budget and is scheduled with its virtual deadline (𝑡𝑎 + 𝑉𝑖) in LO
mode. If the arriving job is in HI mode, it has 𝐶𝐻

𝑖 execution
budget and is scheduled with its real deadline (𝑡𝑎 + 𝑇𝑖).

P3. When a job of LC task 𝜏𝑖 arrives at time 𝑡𝑎, it is scheduled with
its real deadline (𝑡𝑎 + 𝑇𝑖). Its execution budget is set to 𝐶𝐴

𝑖 if the
job is in active mode, and 𝐶𝐷

𝑖 otherwise.
P4. When a job of HC task 𝜏𝑖 in LO mode executes for more than

its 𝐶𝐿
𝑖 (i.e., a mode-switch for 𝜏𝑖 occurs), run the mode-switch

algorithm (i.e., Algorithm 1).
P5. When no job of any task waits in the ready queue (when the

system is idle), the system changes its state to the initial state,
i.e., all LC tasks are set to active (𝑀𝑖 ∶= 𝐴), and all HC tasks are
set to LO mode (𝑀𝑖 ∶= 𝖫𝖮).

Algorithm 1 describes the detailed system behavior at the runtime
ode-switch. In Lines 4–8, we update the parameters of the mode-

witching job and the task to which it belongs. In Lines 11–15, we
heck the online schedulability and determine which LC task needs to
e degraded. Considering that individual tasks contribute to different
esource demand (i.e., execution requirement for a unit of period)
ccording to its affiliated set (i.e., 𝜏𝖧|𝖫(𝑘), 𝜏𝖧|𝖧(𝑘), 𝜏𝖫|𝖠(𝑘) and 𝜏𝖫|𝖣(𝑘)), we
ay express a IMC-schedulability condition at a time instant using the

ollowing inequality:

(𝜏𝖧|𝖫(𝑘), 𝜏𝖧|𝖧(𝑘), 𝜏𝖫|𝖠(𝑘), 𝜏𝖫|𝖣(𝑘)) ≤ 1. (6)

We will derive the function (⋅) in Section 5.2. The time-complexity

or Algorithm 1 is 𝑂(𝑛) because Lines 11-15 (the ‘while’ part) repeat

Future Generation Computer Systems 160 (2024) 406–419J. Lee and J. Lee

(

p
a
a
t
u

𝖫

i
p

5

m
I
l
a
m

L
a

w
c

Algorithm 1: Runtime mode-switch algorithm for IMC-PnG
degrading LC tasks according to the online schedulability test)
Data: the previous stage 𝑆𝑘−1, the job that incurs the 𝑘-th

mode-switch 𝐽 ∗, its arrival time 𝑡𝑎(𝐽 ∗), its absolute deadline
𝑡𝑑 (𝐽 ∗), and its execution budget 𝑒(𝐽 ∗)

Result: 𝑆𝑘
1 (𝜏𝖧|𝖫(𝑘), 𝜏H|H(𝑘), 𝜏L|A(𝑘), 𝜏L|D(𝑘)) ← 𝑆𝑘−1;
2 foreach HC task 𝜏𝑖 ∈ 𝜏𝖧|𝖫 do
3 if 𝐽 ∗ is the instance of 𝜏𝑖 then
4 𝑡𝑑 (𝐽 ∗) ← 𝑡𝑎(𝐽 ∗) + 𝑇𝑖 ;
5 𝑒(𝐽 ∗) ← 𝐶𝐻

𝑖 ;
6 𝑀𝑖 ← HI ;
7 𝜏𝖧|𝖫(𝑘) ← 𝜏𝖧|𝖫(𝑘) ⧵ {𝜏𝑖} ;
8 𝜏H|H(𝑘) ← 𝜏H|H(𝑘) ∪ {𝜏𝑖};
9 end
10 end
11 while ¬ Eq. (6) do
12 Pick a LC task 𝜏𝑗 ∈ 𝜏L|A(𝑘) with the highest Like(𝜏𝑗) ;
13 𝑀𝑗 ← 𝐷 ; /* Degrade 𝜏𝑗 */
14 𝜏L|A(𝑘) ← 𝜏L|A(𝑘) ⧵ {𝜏𝑗}, 𝜏L|D(𝑘) ← 𝜏L|D(𝑘) ∪ {𝜏𝑗} ;
15 end
16 𝑆𝑘 ← (𝜏𝖧|𝖫(𝑘), 𝜏H|H(𝑘), 𝜏L|A(𝑘), 𝜏L|D(𝑘)) ;

as many times as the number of tasks in the worst case; for any
schedulable task set, Eq. (6) holds if all LC tasks are degraded.

Even if IMC-schedulability is guaranteed on the system start, the
IMC-schedulability condition (Eq. (6)) after subsequent mode-switches
is not necessarily satisfied due to the increase of resource demand of
HC tasks. Then, we inevitably have to decrease the resource demand
of LC task by degrading some LC tasks, in order to satisfy the IMC-
schedulability again. The problem is how to choose a good candidate
to degrade among active LC tasks. To solve the problem, we present
a heuristic solution, which is the Like() function indicating the ben-
efit/penalty when the specific LC task is degraded. To minimize the
total number of degraded jobs (related to IMC-R), the benefit/penalty is
related to two factors: (a) how much resource (as a form of utilization)
is reclaimed from degrading the task, and (b) how many jobs (for a
given interval) are degraded additionally when the task is degraded.
For (a), a LC task with the larger reclaimed utilization (𝑢𝐴𝑖 − 𝑢𝐷𝑖) is
referred, which reduces the number of the degraded LC tasks. For (b),
LC task with the larger period (𝑇𝑖) is preferred, which reduces the

dditional number of degraded jobs for a given time interval when the
ask is degraded. Therefore, the function is calculated by the reclaimed
tilization (𝑢𝐴𝑖 − 𝑢𝐷𝑖) multiplying task period:

𝗂𝗄𝖾(𝜏𝑖) = (𝑢𝐴𝑖 − 𝑢𝐷𝑖) ⋅ 𝑇𝑖 = 𝐶𝐴
𝑖 − 𝐶𝐷

𝑖 .

Simulation results from [13] demonstrated that the approach sim-
lar to the Like() function that considers both (a) and (b) has better
erformance than the corresponding approach that considers (a) only.

.2. Schedulability analysis

In this subsection, we first analyze online schedulability at a specific
ode-switch, which means whether a given task set is schedulable by

MC-PnG in a given mode-switch situation. Finding the worst-case on-
ine behavior, we analyze offline schedulability, which means whether

given task set is schedulable by IMC-PnG with any sequence of
ode-switches.

In this subsection, we assume that VD coefficients (𝑥𝑖) are given.
ater in Section 5.4, we will find good VD coefficients for schedulability
nd runtime performance, based on this schedulability analysis.
Online Schedulability Analysis. To analyze online schedulability,

e utilize mathematical induction: (i) analyzing the schedulability
ondition in the initial stage 𝑆 , and (ii) for all 𝑘 ≥ 1, analyzing the
411

0

Fig. 4. Illustration of the resource demand of task 𝜏𝑖 ∈ 𝜏𝖧 over time 𝑡 when there is
no mode-switch.

schedulability condition under 𝑆𝑘 (including the transitive stage from
𝑆𝑘−1 to 𝑆𝑘) when the schedulability under 𝑆𝑘−1 is satisfied.

First, we consider schedulability before any mode-switch, which is
schedulability under 𝑆0: (𝜏𝖧, ∅, 𝜏𝖫, ∅). This schedulability can be derived
offline without any runtime information.

Theorem 1. Under the initial stage 𝑆0, task set 𝜏 is schedulable by
IMC-PnG if

𝑈𝐴
𝖫 +

∑

𝜏𝑖∈𝜏𝖧

𝑢𝐿𝑖
𝑥𝑖

≤ 1. (7)

To prove Theorem 1, we need to bound the resource demand
(i.e., execution requirement) on the system. Since the collective re-
source demand can be derived from the resource demand of each task,
we define the demand of a task as follows:

Definition 2 (Task Demand). 𝖣𝖤𝖬𝑖(𝑡) is defined as the resource demand
for task 𝜏𝑖 in a consecutive time interval of length 𝑡, which is the amount
of necessary execution of jobs of 𝜏𝑖 within a consecutive time interval of
length 𝑡 in order to avoid any job deadline miss of 𝜏𝑖 under the IMC-PnG
scheduling algorithm.

Until the first mode-switch, 𝖣𝖤𝖬𝑖(𝑡) is similar to the demand of 𝜏𝑖 for
an interval of length 𝑡 under the classical real-time (single-criticality)
systems [33]. That is, if 𝜏𝑖 ∈ 𝜏𝖧 invokes its jobs in a strictly periodic
manner from 0 with the system scenario which has no mode-switch,
𝖣𝖤𝖬𝑖(𝑡) is calculated by

⌊ 𝑡+𝑇𝑖−𝑉𝑖
𝑇𝑖

⌋

⋅ 𝐶𝐿
𝑖 [13], as shown in Fig. 4. Note

that it is challenging to develop how to calculate 𝖣𝖤𝖬𝑖(𝑡) after some
mode-switches, which will be addressed in this subsection.

By the definition of 𝖣𝖤𝖬𝑖(𝑡), we only need to check the following
condition for schedulability.

∀𝑡,
∑

𝜏𝑖∈𝜏
𝖣𝖤𝖬𝑖(𝑡) ≤ 𝑡. (8)

To calculate Eq. (8), we need to know the demand of each task
(i.e., 𝖣𝖤𝖬𝑖(𝑡)) depending on task criticality and task mode. In the next
lemma, we can compute the demand of each HC task in LO mode and
that of each LC task in active mode.

Lemma 2. For LC task 𝜏𝑖 that is in active mode, the following conditions
hold:

𝖣𝖤𝖬𝑖(𝑡) ≤ 𝑢𝐴𝑖 ⋅ 𝑡

Proof. Since each job of 𝜏𝑖 executes for its L-WCET (i.e., 𝐶𝐿
𝑖) until its

real deadline (i.e., 𝑇𝑖), we have 𝖣𝖤𝖬𝑖(𝑡) ≤ 𝐶𝐿
𝑖 ∕𝑇𝑖 ⋅ 𝑡 = 𝑢𝐿𝑖 ⋅ 𝑡. □

Lemma 3. For HC task 𝜏𝑖 that is in LO mode, the following conditions
hold:

𝐿
𝖣𝖤𝖬𝑖(𝑡) ≤ 𝑢𝑖 ∕𝑥𝑖 ⋅ 𝑡

Future Generation Computer Systems 160 (2024) 406–419J. Lee and J. Lee

w

f

𝑈

o
(
a
f

r

L
𝖫

𝖣

a
t

d
c
c

l
t

(
i

d
j
f
d

𝖣

o
p
t
l
r

L
i

P

L
L

f

𝖣

Proof. Since each job of 𝜏𝑖 executes for its L-WCET (i.e., 𝐶𝐿
𝑖) until

its virtual deadline (i.e., 𝑥𝑖 ⋅ 𝑇𝑖), we have 𝖣𝖤𝖬𝑖(𝑡) ≤ 𝐶𝐿
𝑖 ∕(𝑥𝑖 ⋅ 𝑇𝑖) ⋅ 𝑡 =

𝑢𝐿𝑖 ∕𝑥𝑖 ⋅ 𝑡. □

Based on Lemmas 2 and 3, we prove Theorem 1 by considering the
collective demand.

Proof of Theorem 1. In the initial stage 𝑆0, every HC task is in LO
mode, and every LC task is in active mode. Then, we need to show that
Eq. (8) holds:

𝖣𝖤𝖬(𝑡) =
∑

𝜏𝑖∈𝜏𝖫

𝖣𝖤𝖬𝑖(𝑡) +
∑

𝜏𝑖∈𝜏𝖧

𝖣𝖤𝖬𝑖(𝑡)

=
∑

𝜏𝑖∈𝜏𝖫

𝑢𝐴𝑖 ⋅ 𝑡 +
∑

𝜏𝑖∈𝜏𝖧

𝑢𝐿𝑖 ∕𝑥𝑖 ⋅ 𝑡 (by Lemmas 2 and 3)

≤
(

𝑈𝐴
𝖫 +

∑

𝜏𝑖∈𝜏𝖧

𝑢𝐿𝑖 ∕𝑥𝑖
)

⋅ 𝑡,

hich is less than or equal to 𝑡 since Eq. (7) holds. □

Next, we derive the schedulability condition under 𝑆𝑘 (including
the transitive stage from 𝑆𝑘−1 to 𝑆𝑘), assuming the system is schedu-
lable under stage 𝑆𝑘−1. From now on, we prove the following online
schedulability condition, which needs runtime information in each
stage.

Theorem 2. Suppose a task set 𝜏 is schedulable by IMC-PnG under 𝑆𝑘−1.
When the stage is changed to 𝑆𝑘, 𝜏 is schedulable by IMC-PnG if the
ollowing inequality holds.

𝐴
𝖫|𝖠(𝑘) + 𝑈𝐷

𝖫|𝖣(𝑘) +
∑

𝜏𝑖∈𝜏𝖧|𝖫(𝑘)

𝑢𝐿𝑖
𝑥𝑖

+
∑

𝜏𝑖∈𝜏𝖧|𝖧(𝑘)

𝑢𝐻𝑖 − 𝑢𝐿𝑖
1 − 𝑥𝑖

≤ 1. (9)

In Section 5.1, we express IMC-schedulability as (⋅). Now, we can
set (⋅) in Eq. (6) to the left-hand-side of Eq. (9):

 (⋅) = 𝑈𝐴
𝖫|𝖠(𝑘) + 𝑈𝐷

𝖫|𝖣(𝑘) +
∑

𝜏𝑖∈𝜏𝖧|𝖫(𝑘)

𝑢𝐿𝑖
𝑥𝑖

+
∑

𝜏𝑖∈𝜏𝖧|𝖧(𝑘)

𝑢𝐻𝑖 − 𝑢𝐿𝑖
1 − 𝑥𝑖

.

As Theorem 1 does, proving Theorem 2 necessitates the calculation
f resource demand. The amount of the resource demand of a task
shown in Definition 2) is changed by each mode-switch. That is, when
mode-switch happens for a HC task, the demand of the task is changed

rom L-WCET (𝐶𝐿
𝑖) to H-WCET (𝐶𝐻

𝑖). When the scheduler decides to
degrade a LC task, the demand of the task is changed from the active
WCET (𝐶𝐴

𝑖) to the degraded WCET (𝐶𝐷
𝑖).

The following lemma calculates the demand of a HC task after a
mode-switch. In the lemma, we derive the demand of the HC task from
the two facts: (1) the mode-switching job (denoted by 𝐽 ∗) of the HC
task, whose demand until its VD at 𝑡∗ is 𝐶𝐿

𝑖 , additionally requires an
amount of 𝐶𝐻

𝑖 − 𝐶𝐿
𝑖 (due to the mode-switch) until its real deadline;

and (2) all the subsequent jobs after 𝐽 ∗ require their 𝐶𝐻
𝑖 until their

eal deadlines, which are depicted in Fig. 5.

emma 4. Suppose that a job of HC task 𝜏𝑖, called 𝐽 ∗, mode-switches from
𝖮 to 𝖧𝖨. Then, the following condition holds for time 𝑡 ≥ 𝑡∗:

𝖤𝖬𝑖(𝑡) ≤ 𝖣𝖤𝖬𝑖(𝑡∗) + max
(

𝑢𝐻𝑖 ,
𝑢𝐻𝑖 − 𝑢𝐿𝑖
1 − 𝑥𝑖

)

⋅ (𝑡 − 𝑡∗), (10)

where 𝑡∗ is the VD of 𝐽 ∗.

Proof. Let 𝑟∗ be the release time of 𝐽 ∗. Then, we can compute the VD
and the deadline of 𝐽 ∗ by 𝑡∗ = 𝑟∗ + 𝑥𝑖 ⋅ 𝑇𝑖 (equivalently 𝑡∗ = 𝑟∗ + 𝑉𝑖)
nd 𝑑∗ = 𝑟∗ + 𝑇𝑖, respectively. Even if 𝐽 ∗ mode-switches at [𝑟∗, 𝑡∗),
he demand until 𝑡∗ (including that invoked by the current job 𝐽 ∗),
𝖣𝖤𝖬𝑖(𝑡∗), does not change from LO mode because additional demand
ue to the mode-switch of 𝐽 ∗ occurs at 𝑑∗ (meaning that the demand
hanges at 2 ⋅ 𝑇𝑖, not 𝑇𝑖 + 𝑉𝑖 as shown in Fig. 5). Then, 𝖣𝖤𝖬𝑖(𝑡) until 𝑡∗
412

an be upper-bounded by Lemma 3.
Fig. 5. The change of the resource demand for task 𝜏𝑖 over time 𝑡 when a job of 𝜏𝑖
mode-switches within [𝑇𝑖 , 𝑇𝑖 + 𝑉𝑖), which is [𝑟∗ , 𝑡∗) for mode-switching job 𝐽 ∗; the blue
ine indicates the demand before mode-switch, identical to the demand in Fig. 4, and
he red line indicates the demand after mode-switch.

Consider 𝑡∗ ≤ 𝑡 < 𝑑∗. Since there is no additional demand before 𝑑∗

while additional demand occurs at 𝑑∗), the demand of 𝜏𝑖 until time 𝑡
s no more than 𝖣𝖤𝖬𝑖(𝑡∗), implying Eq. (10) holds.

Consider 𝑡 ≥ 𝑑∗. Due to the mode-switch of 𝐽 ∗, the additional
emand from 𝑡∗ to 𝑑∗ is 𝐶𝐻

𝑖 −𝐶𝐿
𝑖 , as shown in Fig. 5. For the subsequent

obs of 𝜏𝑖 (released in HI mode) after the mode-switch, each job executes
or its H-WCET(𝐶𝐻

𝑖) until its real relative deadline 𝑇𝑖, which is also
epicted in Fig. 5. Then,

𝖤𝖬𝑖(𝑡) ≤ 𝖣𝖤𝖬𝑖(𝑡∗) + (𝐶𝐻
𝑖 − 𝐶𝐿

𝑖) + 𝐶𝐻
𝑖 ⋅

𝑡 − 𝑑∗

𝑇𝑖

= 𝖣𝖤𝖬𝑖(𝑡∗) +
𝐶𝐻
𝑖 − 𝐶𝐿

𝑖
𝑇𝑖 − 𝑥𝑖 ⋅ 𝑇𝑖

⋅ (𝑑∗ − 𝑡∗) + 𝑢𝐻𝑖 ⋅ (𝑡 − 𝑑∗)

(∵𝑇𝑖 − 𝑥𝑖 ⋅ 𝑇𝑖 = 𝑑∗ − 𝑡∗)

≤ 𝖣𝖤𝖬𝑖(𝑡∗) + max
(

𝑢𝐻𝑖 ,
𝑢𝐻𝑖 − 𝑢𝐿𝑖
1 − 𝑥𝑖

)

⋅ (𝑡 − 𝑡∗).
(

∵𝑎 ⋅ (𝑡 − 𝑑∗) + 𝑏 ⋅ (𝑑∗ − 𝑡∗) ≤ max(𝑎, 𝑏) ⋅ (𝑡 − 𝑡∗)

where 𝑎 > 0, 𝑏 > 0
)

□

To derive a tighter schedulability condition, we present a constraint
n the VD coefficient in Constraint 1 (to be presented), which makes it
ossible to narrow down its range6 to 𝑢𝐿𝑖 ∕𝑢

𝐻
𝑖 ≤ 𝑥𝑖 ≤ 1. That is, the range

hat deviates from 𝑢𝐿𝑖 ∕𝑢
𝐻
𝑖 ≤ 𝑥𝑖 ≤ 1, which is the range of 𝑥𝑖 < 𝑢𝐿𝑖 ∕𝑢

𝐻
𝑖 ,

eads to unnecessary resource demand in LO mode without reducing
esource demand in HI mode, to be proved in Lemma 5.

emma 5. Consider a HC task 𝜏𝑖 and its VD coefficient 𝑥∗𝑖 = 𝑢𝐿𝑖 ∕𝑢
𝐻
𝑖 . There

s no coefficient 𝑥′𝑖 < 𝑢𝐿𝑖 ∕𝑢
𝐻
𝑖 that incurs less resource demand than 𝑥∗𝑖 . In

other words, the following inequality holds.

∀𝑡,𝖣𝖤𝖬∗
𝑖 (𝑡) ≤ 𝖣𝖤𝖬′

𝑖(𝑡) holds,

where 𝖣𝖤𝖬∗
𝑖 (𝑡) and 𝖣𝖤𝖬′

𝑖(𝑡) are the demand of 𝜏𝑖 with 𝑥∗𝑖 = 𝑢𝐿𝑖 ∕𝑢
𝐻
𝑖 and

𝑥′𝑖 < 𝑢𝐿𝑖 ∕𝑢
𝐻
𝑖 , respectively.

roof. Divide cases depending on whether 𝜏𝑖 mode-switches.
(a) 𝜏𝑖 does not mode-switch: the task executes in LO-mode, applying

emma 3. Since 𝑥∗𝑖 > 𝑥′𝑖 , we have 𝖣𝖤𝖬∗
𝑖 (𝑡) ≤ 𝖣𝖤𝖬′

𝑖(𝑡) for any 𝑡 by
emma 3.

(b) A job of 𝜏𝑖, called 𝐽 ∗, mode-switches: the task switches its mode
rom LO-mode to HI-mode, applying Eq. (10) in Lemma 4.

We compare 𝖣𝖤𝖬∗
𝑖 (𝑡) and 𝖣𝖤𝖬′(𝑡). Let 𝑡∗ be the VD of 𝐽 ∗. We have

𝖤𝖬∗
𝑖 (𝑡) = 𝖣𝖤𝖬∗

𝑖 (𝑡
∗)+𝑢𝐻𝑖 ⋅(𝑡−𝑡∗) because 𝑢𝐻𝑖 −𝑢𝐿𝑖

1−𝑥∗𝑖
=

𝑢𝐻𝑖 −𝑢𝐿𝑖
1−𝑢𝐿𝑖 ∕𝑢

𝐻
𝑖

= 𝑢𝐻𝑖 holds by

Lemma 4. Next, we consider 𝖣𝖤𝖬′(𝑡). If 𝑢𝐿𝑖 ∕𝑥
′
𝑖 > 𝑢𝐻𝑖 , we have 𝑢𝐻𝑖 −𝑢𝐿𝑖

1−𝑥′𝑖
<

6 The original range of VD coefficient is 0 ≤ 𝑥 ≤ 1 for task 𝜏 .
𝑖 𝑖

Future Generation Computer Systems 160 (2024) 406–419J. Lee and J. Lee

b

(

r

C
c

l

L
m

𝖣

w
t

L
c

𝖣

w

P
n
m
d
i

m

P
S
r
h

w

s
t
t

𝑢𝐻𝑖 , which is 𝑢𝐻𝑖 −𝑢𝐿𝑖 < 𝑢𝐻𝑖 −𝑢𝐻𝑖 ⋅𝑥𝑖. Then, 𝖣𝖤𝖬′(𝑡) = 𝖣𝖤𝖬′
𝑖(𝑡

∗)+𝑢𝐻𝑖 ⋅(𝑡−𝑡∗),
y Lemma 4. Then, we have 𝖣𝖤𝖬∗

𝑖 (𝑡) = 𝖣𝖤𝖬′(𝑡) in Case (b).
Therefore, we have 𝖣𝖤𝖬∗

𝑖 (𝑡) ≤ 𝖣𝖤𝖬′
𝑖(𝑡) for any 𝑡 for Cases (a) and

b). □

Lemma 5 enables to narrow down the range of the VD coefficient,
ecorded as follows.

onstraint 1. For any HC task 𝜏𝑖, the range of the VD coefficient is
onstrained to 𝑢𝐿𝑖 ∕𝑢

𝐻
𝑖 ≤ 𝑥𝑖 ≤ 1.

Considering Constraint 1, we can simplify Lemma 4 into the next
emma.

emma 6. With Constraint 1, suppose that a job of HC task 𝜏𝑖, called 𝐽 ∗,
ode-switches from 𝖫𝖮 to 𝖧𝖨. Then, the following condition holds for 𝑡 ≥ 𝑡∗:

𝖤𝖬𝑖(𝑡) ≤ 𝖣𝖤𝖬𝑖(𝑡∗) +
𝑢𝐻𝑖 − 𝑢𝐿𝑖
1 − 𝑥𝑖

⋅ (𝑡 − 𝑡∗), (11)

where 𝑡∗ is the VD of 𝐽 ∗.

Proof. From Lemma 4, we have Eq. (10). From Constraint 1, we have
𝑢𝐻𝑖 −𝑢𝐿𝑖
1−𝑥𝑖

≥ 𝑢𝐻𝑖 , which is equivalent to 𝑢𝐻𝑖 −𝑢𝐿𝑖 ≥ 𝑢𝐻𝑖 −𝑢𝐻𝑖 ⋅𝑥𝑖. Then, Eq. (10)
can be rewritten as Eq. (11). □

The next lemma computes the demand of a LC task which is de-
graded at the mode-switching job (𝐽 ∗) of some HC task. In the lemma,

e drive the demand using the fact that the jobs with deadlines no later
han 𝑡∗ (i.e., the VD of 𝐽 ∗) execute for 𝐶𝐴

𝑖 in the worst case.

emma 7. Suppose that LC task 𝜏𝑖 is degraded by the mode-switching job,
alled 𝐽 ∗. Then, the following conditions hold for 𝑡 ≥ 𝑡∗:

𝖤𝖬𝑖(𝑡) ≤ 𝖣𝖤𝖬𝑖(𝑡∗) + 𝑢𝐷𝑖 ⋅ (𝑡 − 𝑡∗), (12)

here 𝑡∗ is the VD of 𝐽 ∗.

roof. Although 𝜏𝑖 is degraded by 𝐽 ∗, the jobs of 𝜏𝑖 with deadlines
o later than the VD of 𝐽 ∗ (i.e., 𝑡∗) are already executed in active
ode. Then, 𝖣𝖤𝖬𝑖(𝑡∗) can be computed by Lemma 2. Jobs of 𝜏𝑖 with
eadlines later than 𝑡∗ will be executed in the degraded state, which
mplies 𝖣𝖤𝖬𝑖(𝑡) ≤ 𝖣𝖤𝖬𝑖(𝑡∗) + 𝑢𝐷𝑖 (𝑡 − 𝑡∗), which is Eq. (12). □

Based on the demand calculation of different tasks with different
odes (Lemmas 2, 3, 6, and 7), we prove Theorem 2.

roof of Theorem 2. Let 𝑡∗ be the VD of the last mode-switching job.
ince 𝜏 is schedulable under 𝑆𝑘−1 before the last mode-switch and the
esource demand does not change before 𝑡∗ (by Lemmas 6 and 7), we
ave ∑

𝜏𝑖∈𝜏 𝖣𝖤𝖬𝑖(𝑡) ≤ 𝑡 for any 𝑡 ≤ 𝑡∗.
We need to prove that the task set is schedulable when 𝑡 > 𝑡∗. Now,

e show that ∑𝜏𝑖∈𝜏 𝖣𝖤𝖬𝑖(𝑡) ≤ 𝑡 for any 𝑡 > 𝑡∗:
∑

𝜏𝑖∈𝜏
𝖣𝖤𝖬𝑖(𝑡)

≤
∑

𝜏𝑖∈𝜏
𝖣𝖤𝖬𝑖(𝑡∗)+

(

𝑈𝐴
𝖫|𝖠(𝑘) +

∑

𝜏𝖧|𝖫(𝑘)

𝑢𝐿𝑖
𝑥𝑖

+
∑

𝜏𝖧|𝖧(𝑘)

𝑢𝐻𝑖 − 𝑢𝐿𝑖
1 − 𝑥𝑖

+ 𝑈𝐷
𝖫|𝖣(𝑘)

)

⋅ (𝑡 − 𝑡∗)

(𝑏𝑦 𝐿𝑒𝑚𝑚𝑎𝑠 2, 3, 6, 𝑎𝑛𝑑 7)
≤

∑

𝜏𝑖∈𝜏
𝖣𝖤𝖬𝑖(𝑡∗) + (𝑡 − 𝑡∗) (∵ Eq. (9) ℎ𝑜𝑙𝑑𝑠)

≤ 𝑡∗ + (𝑡 − 𝑡∗), (𝑏𝑦 𝑡ℎ𝑒 𝑠𝑢𝑝𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 Theorem 2)
413

= 𝑡. □
By Theorem 2, 𝜏 is schedulable by IMC-PnG if IMC-PnG employs the
task degrading algorithm associated with Eq. (9).

Offline Schedulability Analysis. Although we derived online
chedulability analysis at each specific mode-switch situation, we need
o develop offline schedulability analysis, which indicates whether a
ask set is IMC-schedulable (defined in Section 3) by IMC-PnG under any

sequences of mode-switches. To this end, we need to find the worst-case
conditions of all possible mode-switch sequences when the scheduler
degrades LC tasks by the online schedulability test (i.e., Eq. (9)),
recorded in the following theorem.

Theorem 3. A task set 𝜏 is IMC-schedulable by IMC-PnG that employs
the task degrading algorithm associated with Eq. (9), if the following two
conditions hold:

𝑈𝐴
𝖫 +

∑

𝜏𝖧

𝑢𝐿𝑖
𝑥𝑖

≤ 1, (13)

𝑈𝐷
𝖫 +

∑

𝜏𝖧

𝑢𝐻𝑖 − 𝑢𝐿𝑖
1 − 𝑥𝑖

≤ 1. (14)

Proof. For IMC schedulability, we need to show that conditions IMC-A,
IMC-B, and IMC-C in Section 3 are satisfied. Divide cases depending on
whether all HC tasks are in LO mode or not.

(a) All HC tasks are in LO mode: we need to satisfy conditions IMC-A
and IMC-B. From Eq. (13), 𝜏 is schedulable on 𝑆0 by Theorem 1, which
corresponds conditions IMC-A and IMC-B.

(b) At least one HC task is in HI mode: we need to satisfy condi-
tions IMC-A and IMC-C. We now show that Eq. (9) holds for 𝜏𝖧|𝖧(𝑘) ≠ ∅.
The situation where all HC tasks are in HI mode yields the largest
value for HC tasks to contribute to the left-hand-side of Eq. (9). From
condition IMC-C, the smallest value for LC tasks to contribute to the
left-hand-side of Eq. (9) occurs when all LC tasks’ execution mode
is ‘‘degraded’’. Considering that the degrading algorithm can adjust
the execution mode of LC tasks based on the task mode of HC tasks,
conditions IMC-A and IMC-C are satisfied if Eq. (14) holds. □

For scalability, we need to know the time-complexity of the offline
schedulability test (i.e., Theorem 3) for IMC-PnG. For a given task set,
Theorem 3 takes 𝑂(𝑛) because Eqs. (13) and (14) iterate all tasks,
i.e., 𝑂(𝑛) + 𝑂(𝑛) = 𝑂(𝑛).

5.3. Advanced scheduling algorithm and its schedulability analysis with
stable-HI-mode

Although we successfully derived the online/offline schedulability
analysis in the previous subsection, there exists pessimism in the on-
line schedulability analysis; that is, we may derive a tighter online
schedulability analysis, if we address a decrease in resource demand
of a HI-mode HC task after completing the mode-switch process. To
this end, we divide the set of HI-mode HC tasks (i.e., 𝜏𝖧|𝖧(𝑘)) and handle
them differently, in order to maximize the number of fully serviced jobs
for LC tasks.

We now revise the scheduling algorithm and its schedulability
analysis. Depending the existence of mode-switching jobs, we divide
HI-mode HC tasks into two groups, which are the group with mode-
switching jobs and the group whose jobs are all released in HI-mode.
We revise the stage (Definition 1 in Section 5.1) considering stable-HI-
mode tasks, shown in Fig. 6; note that LC tasks 𝜏4 and 𝜏5 in Fig. 3 are
omitted because they are identical to Fig. 3.

Definition 3 (The Revised Stage with Stable-HI-mode Tasks). We cate-
gorize HI-mode HC tasks (𝜏𝖧|𝖧(𝑘)) into two disjoint sets: transient-HI-
mode tasks (𝜏𝖧|𝖧𝖳(𝑘)) and stable-HI-mode tasks (𝜏𝖧|𝖧𝖲(𝑘)). To distinguish
𝜏𝖧|𝖧𝖳(𝑘) and 𝜏𝖧|𝖧𝖲(𝑘), we define the stable-HI-mode flag, denoted by 𝖲𝖧𝑖
for each HC task 𝜏𝑖: initially, set 𝖲𝖧𝑖 ∶= 𝚏𝚊𝚕𝚜𝚎. If the current job is
released in HI, which means that the task is now in stable-HI-mode, 𝖲𝖧
𝑖

Future Generation Computer Systems 160 (2024) 406–419J. Lee and J. Lee

s

d

a

L

𝖧

f

w

P
s
t
s

e

𝖣

i

t
L
o
E

T
W
f

𝑈

P
d
r
𝑡
∑

≤

≤

w
T

s
t

5

t
h
r
c
w
d
c
i
w

a
i

𝑧

C
𝑥

Fig. 6. Illustration of stable-HI-mode tasks and the revised stage; in this example, the
mode-switching job belongs to 𝜏𝖧|𝖧𝖳(𝑘) and all the subsequent jobs belong to 𝜏𝖧|𝖧𝖲(𝑘+1)
after 𝑡′𝑘+1, i.e., the (𝑘 + 1)-th mode-switch time instant.

is set to 𝚝𝚛𝚞𝚎. When there are no active jobs in the ready queue (the idle
state), the stable-HI-mode flag of the task is initialized (𝖲𝖧𝑖 ∶= 𝚏𝚊𝚕𝚜𝚎).

Let 𝑡′𝑘 denote the time instant at which the 𝑘th event (the mode-
witch or the change of 𝖲𝖧𝑖 for any HC task 𝜏𝑖) occurs. The revised

stage 𝑆′
𝑘 is defined as a tuple of five task sets in time interval [𝑡′𝑘, 𝑡

′
𝑘+1),

enoted by (𝜏𝖧|𝖫(𝑘), 𝜏𝖧|𝖧𝖳(𝑘), 𝜏𝖧|𝖧𝖲(𝑘), 𝜏𝖫|𝖠(𝑘), 𝜏𝖫|𝖣(𝑘)) as follows.

• 𝜏𝖧|𝖧𝖳(𝑘) (transient-HI-mode tasks): a set of HC tasks whose task
mode is HI and 𝖲𝖧𝑖 is false in [𝑡′𝑘, 𝑡

′
𝑘+1), which means that the

task is not yet in stable-HI-mode.
• 𝜏𝖧|𝖧𝖲(𝑘) (stable-HI-mode tasks): a set of HC tasks whose task mode

is HI and 𝖲𝖧𝑖 is true in [𝑡′𝑘, 𝑡
′
𝑘+1).

Considering stable-HI-mode tasks, we revise three items (P1, P4 and
P5) in the runtime scheduling policy of IMC-PnG as follows:

P1’. Initially, every LC task is set to active and every HC task is set to
LO mode. For every HC task 𝜏𝑖, set 𝖲𝖧𝑖 to false.

P4’. When a job of HC task 𝜏𝑖 in LO mode executes for more than
its 𝐶𝐿

𝑖 (i.e., a mode-switch for 𝜏𝑖 occurs), run the mode-switch
algorithm (i.e., Algorithm 1). When a mode-switching job of HC
task 𝜏𝑖 completes its execution, set 𝖲𝖧𝑖 to true.

P5’. When no job of any task waits in the ready queue (when the
system is idle), the system changes its state to the initial state,
i.e., all LC tasks are set to active (𝑀𝑖 ∶= 𝐴), all HC tasks are
initialized (𝑀𝑖 ∶= 𝖫𝖮 and 𝖲𝖧𝑖 ∶=false).

For stable-HI-mode tasks, we can tightly bound its resource demand.
Since both 𝜏𝖧|𝖧𝖳(𝑘) and 𝜏𝖧|𝖧𝖲(𝑘) are subsets of 𝜏𝖧|𝖧(𝑘), we can compute
the demand of 𝜏𝖧|𝖧𝖳(𝑘) and 𝜏𝖧|𝖧𝖲(𝑘) by Lemma 6 in Section 5.2. By using
the characteristics of stable-HI-mode tasks, the next lemma presents the
tight bound for the demand of 𝜏𝖧|𝖧𝖲(𝑘). Although the job in transient-HI-
mode tasks requires the remaining execution time (𝐶𝐻

𝑖 − 𝐶𝐿
𝑖) until its

remaining deadline after the mode-switch (𝑇𝑖−𝑉𝑖), the job in stable-HI-
mode tasks only needs to execute 𝐶𝐻

𝑖 until its real deadline (𝑇𝑖), which
llows tight resource demand calculation.

emma 8. Consider HC task 𝜏𝑖. Suppose that a job of HC task 𝜏𝑖, called
𝐽 ∗, mode-switches from LO to HI and its subsequent jobs are released in
𝖨 mode (after 𝑡 ≥ 𝑑∗, the task belongs to stable-HI-mode tasks). Then, the
ollowing condition holds for time 𝑡 ≥ 𝑑∗:

𝖣𝖤𝖬𝑖(𝑡) ≤ 𝖣𝖤𝖬𝑖(𝑑∗) + 𝑢𝐻𝑖 ⋅ (𝑡 − 𝑑∗), (15)

here 𝑑∗ is the deadline of 𝐽 ∗.

roof. We can compute the demand until 𝑑∗ (including the mode-
witching job, 𝐽 ∗), i.e., 𝖣𝖤𝖬𝑖(𝑑∗) by Lemma 6. We can tightly compute
he task demand of jobs subsequent to 𝐽 ∗. The first job after the mode-
witching job is released after 𝑑∗ (the deadline of 𝐽 ∗) and each job
414

p

xecutes for its H-WCET (𝐶𝐻
𝑖) until its real deadline 𝑇𝑖. Then,

𝖤𝖬𝑖(𝑡) ≤ 𝖣𝖤𝖬𝑖(𝑑∗) + 𝐶𝐻
𝑖 ⋅

𝑡 − 𝑑∗

𝑇𝑖
= 𝖣𝖤𝖬𝑖(𝑑∗) + 𝑢𝐻𝑖 (𝑡 − 𝑑∗),

mplying Eq. (15) holds. □

By using the tight demand of stable-HI-mode tasks, we can improve
he online schedulability, which leads to better runtime performance of
C tasks. The left term of Eq. (16) is always smaller than the left term
f Eq. (9) in Theorem 2 because HC tasks entering stable-HI-mode in
q. (16) demand less resources than those in Eq. (9).

heorem 4. Suppose a task set 𝜏 is schedulable by IMC-PnG under 𝑆′
𝑘−1.

hen the stage is changed to 𝑆′
𝑘, 𝜏 is schedulable by IMC-PnG if the

ollowing inequality holds.

𝐴
𝖫|𝖠(𝑘) + 𝑈𝐷

𝖫|𝖣(𝑘) +
∑

𝜏𝑖∈𝜏𝖧|𝖫(𝑘)

𝑢𝐿𝑖
𝑥𝑖

+
∑

𝜏𝑖∈𝜏𝖧|𝖧𝖳(𝑘)

𝑢𝐻𝑖 − 𝑢𝐿𝑖
1 − 𝑥𝑖

+ 𝑈𝐻
𝖧|𝖧𝖲(𝑘) ≤ 1. (16)

roof. Let 𝑡∗ be either the VD of the last mode-switching job or its
eadline. Since 𝜏 is schedulable before the last mode-switch and the
esource demand does not change before 𝑡∗, we have ∑

𝜏𝑖∈𝜏 𝖣𝖤𝖬𝑖(𝑡∗) ≤
∗. To prove IMC-schedulability when 𝑡 > 𝑡∗, we need to show that
𝜏𝑖∈𝜏 𝖣𝖤𝖬𝑖(𝑡) ≤ 𝑡 for 𝑡 > 𝑡∗:

∑

𝜏𝑖∈𝜏
𝖣𝖤𝖬𝑖(𝑡)

∑

𝜏𝑖∈𝜏
𝖣𝖤𝖬𝑖(𝑡∗) + (𝑡 − 𝑡∗)⋅

(

𝑈𝐴
𝖫|𝖠(𝑘) +

∑

𝜏𝖧|𝖫(𝑘)

𝑢𝐿𝑖
𝑥𝑖

+
∑

𝜏𝖧|𝖧𝖳(𝑘)

𝑢𝐻𝑖 − 𝑢𝐿𝑖
1 − 𝑥𝑖

+ 𝑈𝐷
𝖫|𝖣(𝑘) + 𝑈𝐻

𝖧|𝖧𝖲(𝗄)

)

(𝑏𝑦 𝐿𝑒𝑚𝑚𝑎𝑠 2, 3, 6, 7, 𝑎𝑛𝑑8)
∑

𝜏𝑖∈𝜏
𝖣𝖤𝖬𝑖(𝑡∗) + (𝑡 − 𝑡∗), (∵ Eq. (16) ℎ𝑜𝑙𝑑𝑠)

hich is less than or equal to 𝑡 with a similar step in the proof of
heorem 4. □

This advanced version of IMC-PnG does not change the worst-case
cheduling pattern at runtime. Therefore, Theorem 3 is still applicable
o determine the offline schedulability of IMC-PnG.

.4. The assignment of virtual deadlines

In the previous subsection, we analyzed schedulability assuming
hat VD coefficients are given. Now, based on the analysis, we discuss
ow to assign VD coefficients for higher schedulability and better
untime performance. In the existing EDF-VD-IMC [22], a global VD
oefficient 𝑥 is applied to compute VD for all HC tasks: 𝑉𝑖 = 𝑥𝑖 ⋅ 𝑇𝑖
here 𝑥𝑖 = 𝑥. For higher schedulability than EDF-VD-IMC, we use
ifferent VD coefficients for different HC tasks, considering the task
haracteristics. Then, we transform the assignment of VD coefficients
nto an optimization problem. To construct the optimization problem,
e will utilize Theorem 3.

Our goal is to find an optimal set of 𝑥𝑖 to satisfy both Eqs. (13)
nd (14) in Theorem 3. To make a simple optimization problem, we
ntroduce a variable 𝑧𝑖:

𝑖
𝖽𝖾𝖿
= 𝑢𝐿𝑖 ∕𝑥𝑖.

onsidering Constraint 1, the range of 𝑧𝑖 is 𝑢𝐿𝑖 ≤ 𝑧𝑖 ≤ 𝑢𝐻𝑖 . Replacing
𝑖 with 𝑧𝑖 in Eqs. (13), and (14), we construct the below optimization
roblem:

Future Generation Computer Systems 160 (2024) 406–419J. Lee and J. Lee

s

t
t
t
o
n
c
i
(

p
a
s
b
o
f
o

(

p

6

t
S
t
w

6

w
i
c
w

N
t
a
u

I
u
H
2

6

w
a
1
i

(

Definition 4 (Assignment Problem of VD Coefficients). Given a task set
𝜏, we define a non-negative real number 𝑧𝑖 for each task 𝜏𝑖 ∈ 𝜏𝖧. 𝑧∗𝑖 is
an optimal point of 𝑧𝑖 on the following optimization problem:

minimize 𝑊 ∶=
∑

𝜏𝖧

𝑧𝑖 ⋅ (𝑢𝐻𝑖 − 𝑢𝐿𝑖)

𝑧𝑖 − 𝑢𝐿𝑖
, (17)

ubject to 𝑈𝐴
𝖫 +

∑

𝜏𝖧

𝑧𝑖 ≤ 1, and (18)

∀𝜏𝑖 , 𝑢𝐿𝑖 ≤ 𝑧𝑖 ≤ 𝑢𝐻𝑖 . (19)

We explain why solving the problem in Definition 4 is equivalent
o finding the optimal VD coefficients. Eq. (17) is transformed from
he second term of left-hand-side of Eq. (14) with 𝑧𝑖. Eq. (18) is
ransformed from Eq. (13) with 𝑧𝑖. For a feasible task set, the solution
f the optimization problem (Definition 4) presents the value of 𝑊
o larger than (1 − 𝑈𝐷

𝖫), which satisfies Eq. (14). In the solution, we
an find the set of 𝑧∗𝑖 , which can be transformed into the set of 𝑥∗𝑖 ,
.e., the optimal set of 𝑥𝑖 satisfying Eqs. (13) and (14) in Theorem 3
IMC-schedulability).

By linear programming, a heuristic solution for the optimization
roblem could be found. Pathan [10] has used linear programming. For
similar optimization problem that assigns execution rates in a fluid

cheduling model, Lee et al. [18,34] have found the optimal solution
y using Lagrange Multiplier Method, which will be utilized for solving
ur optimization problem in Definition 4. The overview of our strategy
or the optimal solution of the problem is to utilize the partial derivative
f 𝑊 for each 𝑧𝑖:

𝜕𝑊
𝜕𝑧𝑖

=
(1 − 𝑧𝑖) ⋅ (𝑢𝐻𝑖 − 𝑢𝐿𝑖)

(𝑧𝑖 − 𝑢𝐿𝑖)2
.

Then, we increase 𝑧𝑖 of the smallest 𝜕𝑊 ∕𝜕𝑧𝑖 from the initial condition
(∀𝜏𝑖 ∈ 𝜏𝖧, 𝑧𝑖 = 𝑢𝐿𝑖) until Eq. (18) holds.

We explain the detailed solution steps for our strategy. First, we
set 𝑧𝑖 = 𝑢𝐿𝑖 for each HC task. Then, the utilization slack for Eq. (18) is
1−𝑈𝐴

𝖫 +𝑈𝐿
𝖧) since the left-hand-side of Eq. (18) is (𝑈𝐴

𝖫 +𝑈𝐿
𝖧). Second, we

select 𝜏𝑖 with the smallest 𝜕𝑊 ∕𝜕𝑧𝑖 and increment 𝑧𝑖 because 𝜕𝑊 ∕𝜕𝑧𝑖 is
inversely proportional to 𝑧𝑖. Third, we repeat the previous step until the
utilization slack is exhausted (i.e., Eq. (18) barely holds), which is the
optimal point of 𝑧𝑖 for the problem. More precise steps and the formal
roof for our assignment algorithm can be founded in Lee et al. [34].

. Evaluation

In this section, we evaluate performance of IMC-PnG compared to
he existing approaches. We explain how to setup our simulations in
ection 6.1, and present simulation results on IMC systems in Sec-
ion 6.2. Finally, we present simulation results on classical MC systems
here LC tasks can be dropped at mode-switch in Section 6.3.

.1. Simulation setup

To evaluate IMC-PnG, we prepare randomly-generated synthetic
orkloads and utilize them for two ways. First, via offline schedulabil-

ty test, we will evaluate IMC-PnG in terms of the offline schedulability,
ompared to existing approaches. Second, via runtime simulation, we
ill evaluate IMC-PnG in terms of the percentage of fully-serviced jobs

for LC tasks.
RandomWorkload Generation.We generate random workload ac-

cording to the workload-generation algorithm [3,11,12,35]. We define
the upper bound of both collective utilization in LO mode and HI mode:
𝑈 𝑏 = max(𝑈𝐿

𝖫 + 𝑈𝐿
𝖧 , 𝑈

𝐻
𝖧). An individual task 𝜏𝑖 is generated as follows:

• Task period, 𝑇𝑖, is an integer chosen in the range [20, 150].
• The ratio of HI-WCET over LO-WCET, 𝑅𝑖, is a real number drawn
415

from the range [1, 4]. (
Fig. 7. Acceptance ratio of different scheduling algorithms varying utilization bound.

Fig. 8. Acceptance ratio of different scheduling algorithms varying 𝑃𝐻𝐶 .

• Task utilization, 𝑢𝑖, is a real number drawn from the range
[0.02, 0.2].

• The probability of being a HC task, 𝑃𝐻𝐶 , is set to 0.5 unless
specified. We uniformly generate a real number in [0.0, 1.0]. If
the number is not larger than 𝑃𝐻𝐶 , the task is a HC task; we set
𝜒𝑖 ∶= 𝖧𝖨, 𝐶𝐻

𝑖 ∶= ⌊𝑢𝑖⋅𝑇𝑖⌋, and 𝐶𝐿
𝑖 ∶= ⌊𝑢𝑖⋅𝑇𝑖∕𝑅𝑖⌋. Otherwise (i.e., the

number is larger than 𝑃𝐻𝐶), the task is a LC task; we set 𝜒𝑖 ∶= 𝖫𝖮,
𝐶𝐴
𝑖 ∶= ⌊𝑢𝑖 ⋅ 𝑇𝑖⌋, and 𝐶𝐷

𝑖 ∶= ⌊𝑢𝑖 ⋅ 𝑇𝑖∕𝑅𝑖⌋.

ote that all task parameters are randomly drawn in uniform distribu-
ion. Until max(𝑈𝐿

𝐿𝐶 +𝑈𝐿
𝐻𝐶 , 𝑈

𝐻
𝐻𝐶) > 𝑈 𝑏 holds, repeat to generate a task

nd discard the lastly-added task. The number of workloads for each
tilization bound is 5000.
Runtime Simulation. To evaluate runtime performance of different

MC approaches, we simulate the behavior of tasks for 32,000 time
nits.7 In the simulation, the probability of mode-switch (𝑃𝑀𝑆) for each
C tasks’s job is set to 0.1, and the duration of HI-mode (𝐿) is set to
00 unless specified.

.2. Simulation results on IMC systems

In this subsection, we evaluate IMC-PnG on IMC systems. In Fig. 7,
e evaluate the performance of different algorithms in terms of the
cceptance ratio for the randomly generated workloads. In Figs. 10 and
1, we also evaluate the runtime performance of different algorithms
n terms of the Percentage of Fully-serviced Jobs (PFJ).
Acceptance Ratio. We compare IMC-PnG with EDF-VD-IMC [22]

the base algorithm of IMC-PnG), AMC-IMC [4] (the fixed priority

7 The reason for this simulation duration is presented in the last experiment
associated with Fig. 12) in Section 6.2.

Future Generation Computer Systems 160 (2024) 406–419J. Lee and J. Lee

r
g
5
a
(
b
i
h
I
O
a
i

t
a
a
o
w
c
a
s
(
w
L
c
a
w
r
I
E

f

W
w

i
a

c
d
a
I
a
i
m
m
7
r
I
t
m

0
T
I
a
0
I
t
𝑃
e

8
w
c
o
t

6

N
I
b
p
p
p
f

t
F
0
F
l
e
t
b
l
a
a
V
(
s
i

7

O
p
e

Fig. 9. Acceptance ratio of different scheduling algorithms varying the ratio of the
mandatory part in LC task.

algorithm for IMC systems), and the vanilla EDF approach (the dynamic
priority algorithm for non-MC real-time systems).

Fig. 7 shows the acceptance ratio (schedulable ratio) varying uti-
lization bound 𝑈 𝑏 from 0.60 to 1.0 in step of 0.04. The acceptance
atio indicates the ratio of schedulable workloads over total randomly-
enerated workloads. The number of total workloads for Fig. 7 is
5,000 (=5000 × 11). The figure shows that AMC-IMC has the lowest
cceptance ratio because it employs the fixed-priority approach. The
vanilla) EDF approach without considering IMC environment has a
etter acceptance ratio than AMC-IMC due to the superiority of EDF
n terms of schedulability. The existing EDF-VD-IMC approach has a
igher acceptance ratio than AMC-IMC and EDF because it schedules
MC tasks with their VDs and degrades all LC tasks at the mode-switch.
ur IMC-PnG has up to 12.10% higher schedulability than EDF-VD-IMC
pproaches because it schedules IMC tasks with their VDs which are
ndividually assigned to improve schedulability.

We also consider how the acceptance ratio is affected by various
ask parameters, such as the probability of being a HC task (i.e., 𝑃𝐻𝐶)
nd the ratio of the mandatory part in LC task. Fig. 8 shows the
cceptance ratio varying 𝑃𝐻𝐶 from 0.0 to 1.0 in step of 0.1. If 𝑃𝐻𝐶 is 0
r 1, the task set is non-MC workloads (only LC tasks or only HC tasks),
here IMC-PnG, EDF-VD-IMC behave identical to EDF. As 𝑃𝐻𝐶 is more

lose to 0.5, we observed that workloads are more difficult to schedule,
nd IMC-PnG have better schedulability than other algorithms. Fig. 9
hows the acceptance ratio varying the ratio of the mandatory part
in LC tasks) from 0.0 to 1.0 in step of 0.1. When the ratio is 0, the
orkloads are classic MC workloads without the mandatory part in
C tasks. The results are consistent with the experimental result in
lassic MC systems (See Fig. 13). When the ratio is 1, the workloads
re non-MC workloads (LC tasks are not degraded after mode-switch),
here IMC-PnG and EDF-VD-IMC behave identical to EDF. When the

atio is between 0 and 1, IMC-PnG outperforms other algorithms under
MC workloads, e.g., IMC-PnG has 12.46% higher schedulability than
DF-VD-IMC when the ratio is 0.6.
Percentage of Fully-serviced Jobs. To evaluate the runtime per-

ormance of IMC-PnG, we consider two different versions of IMC-PnG:

• IMC-PnG-B: the basic version of IMC-PnG (Section 5.1–5.2) with-
out considering stable-HI-mode tasks.

• IMC-PnG-E: the advanced version of IMC-PnG considering stable-
HI-mode tasks and the revised stage (applying Section 5.3 on
IMC-PnG).

e compare two versions of IMC-PnG with EDF-VD-IMC [22]. All the
orkloads are schedulable with EDF-VD-IMC and IMC-PnG.

Fig. 10 shows the PFJ varying utilization bound 𝑈 𝑏 (from 0.7 to 0.98
n the step of 0.4) for different 𝐿, the duration of HI-mode: 𝐿 = 0, 200
nd 400. The number of total workloads for Fig. 10 is 120,000, which
416
omes from 5000 × 8 (the number of different 𝑈 𝑏)×3 (the number of
ifferent L). When 𝐿 = 0, we observed that IMC-PnG family (IMC-PnG-B
nd IMC-PnG-E) has up to 11.40% higher PFJ compared to EDF-VD-
MC. When 𝐿 = 200 and 𝐿 = 400, IMC-PnG-E has up to 31.75%
nd 42.10% higher PFJ compared to EDF-VD-IMC, respectively. This
s because IMC-PnG family adopts task-level mode-switch and runtime
ode-switch algorithm to degrade only necessary LC tasks at each
ode-switch. We also observed that IMC-PnG-E shows up to 2.70% and
.59% higher PFJ than IMC-PnG-B in the case of 𝐿 = 200 and 𝐿 = 400,
espectively. This is because the revised runtime scheduling policy of
MC-PnG-E with the stable-HI-mode tasks effectively reduces degrading
he LC tasks at mode-switch, especially for a longer duration of HI
ode.

Fig. 11 shows the PFJ varying utilization bound 𝑈 𝑏 (from 0.7 to
.98 in the step of 0.4) for different 𝑃𝑀𝑆 : 𝑃𝑀𝑆 = 0.05, 0.10 and 0.15.
he number of total workloads for Fig. 11 is 120,000 (=5000 × 8 × 3).
n the result, we observed that IMC-PnG-E has up to 21.45%, 31.57%
nd 37.83% higher PFJ compared to EDF-VD-IMC for 𝑃𝑀𝑆 = 0.05,
.10 and 0.15, respectively. There is a larger performance gap between
MC-PnG-E and EDF-VD-IMC in higher 𝑃𝑀𝑆 . Also, IMC-PnG-E shows up
o 0.95%, 2.73% and 4.54% higher PFJ compared to IMC-PnG-B for
𝑀𝑆 = 0.05, 0.10 and 0.15, respectively. This is because the IMC-PnG-E
ffectively reduces degrading the LC tasks, especially for a higher 𝑃𝑀𝑆 .

Fig. 12 shows the PFJ under different simulation duration: 4000,
000, 16000, 32000, 64000, and 128000. This simulation is executed
ith 𝑈 𝑏 = 0.9. The result shows that the PFJs of algorithms are

onverged for larger simulation durations (≥ 8000), which is also
bserved in similar existing work [13]. Therefore, we choose 32,000
ime units as the default simulation duration.

.3. Simulation results on classical MC systems

In the previous subsection, we evaluate IMC-PnG on IMC systems.
ow, we evaluate IMC-PnG on classical MC systems. We compare

MC-PnG with existing classical MC approaches: MC-Fluid [18] (fluid-
ased scheduling approach), MC-ADAPT [11] (a dynamic-priority ap-
roach with task-level mode-switch),8 FMC [12] (another dynamic-
riority approach with task-level mode-switch), EDF-VD [3] (a dynamic-
riority approach with system-level mode-switch), and AMC [2] (a
ixed-priority approach).
Acceptance Ratio. We evaluate the performance of IMC-PnG in

erms of the acceptance ratio for the randomly generated workloads.
ig. 13 shows the acceptance ratio varying utilization bound 𝑈 𝑏 from
.60 to 1.0 in the step of 0.04. The number of total workloads for
ig. 13 is 55,000 (=5000 × 11). The figure shows that AMC has a
ow acceptance ratio in higher utilization (𝑈 𝑏 ≥ 0.84) because it
mploys the fixed-priority approach, not EDF. The FMC approach has
he lowest acceptance ratio among the dynamic-priority approaches
ecause it focuses on reducing the deadline miss ratio, not schedu-
ability. MC-ADAPT and IMC-PnG outperform EDF-VD because they
dopt different VDs for different tasks. Our IMC-PnG shows up to 3.50%
nd 8.26% higher acceptance ratio compared to MC-ADAPT and EDF-
D, respectively. This is because the optimal VD assignment strategy
Section 5.4) improves schedulability. Although MC-Fluid has the same
chedulability as IMC-PnG, fluid-based scheduling strategy in MC-Fluid
s not practical because it incurs a large context switching overheads.

. Discussion

Extension to Multi-criticality Systems and Multicore Systems.
ne direction to extend IMC-PnG is toward multi-criticality systems. As
reliminary work, we only consider dual-criticality systems. We will
xtend IMC-PnG in consideration of multi-criticality IMC tasks (e.g., HC,

8 MC-FLEX [13] has the same offline schedulability as MC-ADAPT.

Future Generation Computer Systems 160 (2024) 406–419J. Lee and J. Lee

M
(
s
m

p
t
m

Fig. 10. PFJ comparison varying the duration of HI-mode (𝐿).
Fig. 11. PFJ comparison varying 𝑃𝑀𝑆 .
r
i

p
m
i

Fig. 12. PFJ comparison varying simulation duration.

C (Middle-Criticality), and LC tasks) with multiple WCET estimate
e.g., L-WCET, M-WCET, and H-WCET). Then, we need to revise the
ystem goals and Theorems 3 and 4 according to the revised system
odel.

Another extension direction is toward multicore systems. One sim-
le extension is the partitioned scheduling approach by partitioning
asks into cores. We may migrate LC tasks into under-utilized cores to
aximize the PFJ of LC tasks.
Practical Issues. One practical issue of IMC-PnG is runtime over-

heads, which mainly consists of the EDF-VD scheduling algorithm and
the runtime mode-switch algorithm (i.e., Algorithm 1). According to
417

i

Fig. 13. Acceptance ratio of different scheduling algorithms under varying utilization
bound (classical MC systems).

Liu et al. [23], the EDF-VD scheduler can be implemented through
the small modification of the vanilla EDF scheduler, which exhibits
𝑂(1) time-complexity. At every mode switch, the mode-switch algo-
ithm takes 𝑂(𝑛), which is described in Section 5.1. In future, we will
nvestigate the implementation overheads of IMC-PnG.

Another issue is the switch-back protocol to maximize runtime PFJ
erformance of LC tasks. Currently, the system resets the execution
ode of all LC tasks at the system idle event, which is pessimistic

n terms of PFJ. We plan to apply the task-level switch-back protocol
nto IMC-PnG, which is introduced in MC-Flex [13]. This task-level

Future Generation Computer Systems 160 (2024) 406–419J. Lee and J. Lee
switch-back protocol can re-activate the optional execution parts of the
degraded LC task as early as possible.

8. Conclusion

We present the IMC-PnG scheduling framework to provide a certain
level of timing guarantee for low-critical tasks while maximizing the
execution of low-critical tasks under MC systems. To this end, we
propose IMC-PnG that employs individual VD assignment and online
mode-change algorithm on IMC systems. We also present online and
offline schedulability analysis under task-level runtime criticality mode.
Finally, we present an individual VD assignment algorithm to maximize
schedulability and runtime performance. Via simulation, we demon-
strated that our approach has up to 12.10% higher schedulability and
up to 42.10% higher PFJ than the existing approaches. To overcome
the limitation of this work (as a theoretical scheduling framework),
we need to investigate diverse aspects of IMC-PnG in terms of imple-
mentation on real platforms. In future work, we plan to conduct a
case-study with autonomous driving vehicles, by applying IMC-PnG to
autonomous driving platforms such as AUTOWARE [36] and find prac-
tical issues on IMC-PnG. Also, we plan to extend our work considering
energy consumption and more expressive system models such as the
constrained-deadline task model.

CRediT authorship contribution statement

Jaewoo Lee: Writing – review & editing, Writing – original draft,
Visualization, Validation, Software, Methodology, Conceptualization.
Jinkyu Lee: Writing – review & editing, Writing – original draft,
Validation, Supervision, Methodology, Conceptualization.

Declaration of competing interest

None.

Data availability

No new data were created or analysed in this study. Data sharing is
not applicable to this article.

Acknowledgments

This research was supported in part by Basic Science Program
through the National Research Foundation of Korea(NRF) funded by
the Ministry of Education(2022R1F1A1062660). This study was also
supported in part by the BK21 FOUR program(Education and Re-
search Center for Securing Cyber-Physical Space) through the National
Research Foundation of Korea(NRF) funded by the Ministry of Educa-
tion(5199990314137). This work was also supported by the National
Research Foundation of Korea(NRF), South Korea grant (2022R1A4A3
018824) funded by the Korea government (MSIT).

References

[1] S. Vestal, Preemptive scheduling of multi-criticality systems with varying degrees
of execution time assurance, in: Real Time System Symposium, RTSS, 2007, pp.
239–243.

[2] S. Baruah, A. Burns, R. Davis, Response-time analysis for mixed criticality
systems, in: Real Time System Symposium, RTSS, 2011, pp. 34–43.

[3] S. Baruah, V. Bonifaci, G. D’’Angelo, H. Li, A. Marchetti-Spaccamela, S. Van der
Ster, L. Stougie, The preemptive uniprocessor scheduling of mixed-criticality
implicit-deadline sporadic task systems, in: Euromicro Conference on Real-Time
Systems, ECRTS, 2012, pp. 145–154.

[4] A. Burns, S. Baruah, Towards a more practical model for mixed criticality
systems, in: Workshop of Mixed Criticality Systems, WMC, 2013, pp. 1–6.

[5] M. Jan, L. Zaourar, M. Pitel, Maximizing the execution rate of low-criticality
tasks in mixed criticality systems, in: Workshop of Mixed Criticality Systems,
WMC, 2013, pp. 1–6.
418
[6] H. Su, D. Zhu, An elastic mixed-criticality task model and its scheduling
algorithm, in: Design, Automation, and Test in Europe, DATE, 2013, pp.
147–152.

[7] O. Gettings, S. Quinton, R.I. Davis, Mixed criticality systems with weakly-hard
constraints, in: Real-Time Networks and Systems, RTNS, 2015, pp. 237–246.

[8] J. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, J.-Y. Chung, Imprecise computations,
Proc. IEEE 82 (1) (1994) 83–94, http://dx.doi.org/10.1109/5.259428.

[9] S. Baruah, A. Burns, Z. Guo, Scheduling mixed-criticality systems to guarantee
some service under all non-erroneous behaviors, in: 2016 28th Euromicro
Conference on Real-Time Systems, ECRTS, 2016, pp. 131–138, http://dx.doi.org/
10.1109/ECRTS.2016.12.

[10] R.M. Pathan, Improving the quality-of-service for scheduling mixed-criticality
systems on multiprocessors, in: M. Bertogna (Ed.), 29th Euromicro Conference
on Real-Time Systems, ECRTS 2017, in: Leibniz International Proceedings in
Informatics (LIPIcs), vol. 76, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 2017, pp. 19:1–19:22, http://dx.doi.org/10.4230/LIPIcs.
ECRTS.2017.19.

[11] J. Lee, H.S. Chwa, L.T.X. Phan, I. Shin, I. Lee, MC-ADAPT: Adaptive task dropping
in mixed-criticality scheduling, ACM Trans. Embed. Comput. Syst. 16 (5s) (2017)
163:1–163:21, http://dx.doi.org/10.1145/3126498.

[12] G. Chen, N. Guan, D. Liu, Q. He, K. Huang, T. Stefanov, W. Yi, Utilization-based
scheduling of flexible mixed-criticality real-time tasks, IEEE Trans. Comput. 67
(4) (2018) 543–558, http://dx.doi.org/10.1109/TC.2017.2763133.

[13] J. Lee, J. Lee, MC-FLEX: Flexible mixed-criticality real-time scheduling by task-
level mode switch, IEEE Trans. Comput. 71 (8) (2022) 1889–1902, http://dx.
doi.org/10.1109/TC.2021.3111743.

[14] J. Redmon, A. Farhadi, YOLOv3: An incremental improvement, 2018, pp. 1–6,
arXiv.org, arXiv:1804.02767v1, URL http://arxiv.org/abs/1804.02767v1.

[15] Y. Hu, S. Liu, T. Abdelzaher, M. Wigness, P. David, On exploring image
resizing for optimizing criticality-based machine perception, in: 2021 IEEE
27th International Conference on Embedded and Real-Time Computing Sys-
tems and Applications, RTCSA, 2021, pp. 169–178, http://dx.doi.org/10.1109/
RTCSA52859.2021.00027.

[16] W. Kang, S. Chung, J.Y. Kim, Y. Lee, K. Lee, J. Lee, K.G. Shin, H.S. Chwa, DNN-
SAM: Split-and-merge DNN execution for real-time object detection, in: 2022
IEEE 28th Real-Time and Embedded Technology and Applications Symposium,
RTAS, 2022, pp. 160–172, http://dx.doi.org/10.1109/RTAS54340.2022.00021.

[17] A. Burns, R.I. Davis, A survey of research into mixed criticality systems, ACM
Comput. Surv. 50 (6) (2017) http://dx.doi.org/10.1145/3131347.

[18] J. Lee, K.-M. Phan, X. Gu, J. Lee, A. Easwaran, I. Shin, I. Lee, MC-Fluid: Fluid
model-based mixed-criticality scheduling on multiprocessors, in: 2014 IEEE Real-
Time Systems Symposium, 2014, pp. 41–52, http://dx.doi.org/10.1109/RTSS.
2014.32.

[19] K. Yang, A. Bhuiyan, Z. Guo, F2VD: Fluid rates to virtual deadlines for precise
mixed-criticality scheduling on a varying-speed processor, in: 2020 IEEE/ACM
International Conference on Computer Aided Design, ICCAD, 2020, pp. 1–9.

[20] H. Su, N. Guan, D. Zhu, Service guarantee exploration for mixed-criticality
systems, in: 2014 IEEE 20th International Conference on Embedded and Real-
Time Computing Systems and Applications, 2014, pp. 1–10, http://dx.doi.org/
10.1109/RTCSA.2014.6910499.

[21] X. Gu, A. Easwaran, Dynamic budget management with service guarantees for
mixed-criticality systems, in: Real Time System Symposium, RTSS, 2016, pp.
47–56.

[22] D. Liu, J. Spasic, N. Guan, G. Chen, S. Liu, T. Stefanov, W. Yi, EDF-VD scheduling
of mixed-criticality systems with degraded quality guarantees, in: Real Time
System Symposium, RTSS, 2016, pp. 35–46.

[23] D. Liu, N. Guan, J. Spasic, G. Chen, S. Liu, T. Stefanov, W. Yi, Scheduling analysis
of imprecise mixed-criticality real-time tasks, IEEE Trans. Comput. 67 (7) (2018)
975–991, http://dx.doi.org/10.1109/TC.2018.2789879.

[24] Z. Guo, S. Baruah, Mixed-criticality scheduling upon varying-speed multiproces-
sors, in: 2014 IEEE 12th International Conference on Dependable, Autonomic and
Secure Computing, 2014, pp. 237–244, http://dx.doi.org/10.1109/DASC.2014.
50.

[25] P. Huang, P. Kumar, G. Giannopoulou, L. Thiele, Run and be safe: Mixed-
criticality scheduling with temporary processor speedup, in: 2015 Design,
Automation and Test in Europe Conference and Exhibition, DATE, 2015, pp.
1329–1334.

[26] T. She, S. Vaidhun, Q. Gu, S. Das, Z. Guo, K. Yang, Precise scheduling of
mixed-criticality tasks on varying-speed multiprocessors, in: Proceedings of the
29th International Conference on Real-Time Networks and Systems, RTNS ’21,
Association for Computing Machinery, New York, NY, USA, 2021, pp. 134–143,
http://dx.doi.org/10.1145/3453417.3453428.

[27] Y.-W. Zhang, R.-K. Chen, Energy-efficient scheduling of imprecise mixed-
criticality real-time tasks based on genetic algorithm, J. Syst. Archit. 143 (2023)
102980, http://dx.doi.org/10.1016/j.sysarc.2023.102980.

[28] H.-M. Huang, C. Gill, C. Lu, Implementation and evaluation of mixed-criticality
scheduling approaches for periodic tasks, in: 2012 IEEE 18th Real Time and
Embedded Technology and Applications Symposium, 2012, pp. 23–32, http:
//dx.doi.org/10.1109/RTAS.2012.16.

http://refhub.elsevier.com/S0167-739X(24)00316-9/sb1
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb1
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb1
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb1
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb1
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb2
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb2
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb2
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb3
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb3
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb3
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb3
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb3
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb3
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb3
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb4
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb4
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb4
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb5
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb5
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb5
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb5
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb5
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb6
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb6
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb6
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb6
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb6
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb7
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb7
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb7
http://dx.doi.org/10.1109/5.259428
http://dx.doi.org/10.1109/ECRTS.2016.12
http://dx.doi.org/10.1109/ECRTS.2016.12
http://dx.doi.org/10.1109/ECRTS.2016.12
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2017.19
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2017.19
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2017.19
http://dx.doi.org/10.1145/3126498
http://dx.doi.org/10.1109/TC.2017.2763133
http://dx.doi.org/10.1109/TC.2021.3111743
http://dx.doi.org/10.1109/TC.2021.3111743
http://dx.doi.org/10.1109/TC.2021.3111743
http://arxiv.org/abs/1804.02767v1
http://arxiv.org/abs/1804.02767v1
http://dx.doi.org/10.1109/RTCSA52859.2021.00027
http://dx.doi.org/10.1109/RTCSA52859.2021.00027
http://dx.doi.org/10.1109/RTCSA52859.2021.00027
http://dx.doi.org/10.1109/RTAS54340.2022.00021
http://dx.doi.org/10.1145/3131347
http://dx.doi.org/10.1109/RTSS.2014.32
http://dx.doi.org/10.1109/RTSS.2014.32
http://dx.doi.org/10.1109/RTSS.2014.32
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb19
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb19
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb19
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb19
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb19
http://dx.doi.org/10.1109/RTCSA.2014.6910499
http://dx.doi.org/10.1109/RTCSA.2014.6910499
http://dx.doi.org/10.1109/RTCSA.2014.6910499
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb21
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb21
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb21
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb21
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb21
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb22
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb22
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb22
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb22
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb22
http://dx.doi.org/10.1109/TC.2018.2789879
http://dx.doi.org/10.1109/DASC.2014.50
http://dx.doi.org/10.1109/DASC.2014.50
http://dx.doi.org/10.1109/DASC.2014.50
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb25
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb25
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb25
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb25
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb25
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb25
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb25
http://dx.doi.org/10.1145/3453417.3453428
http://dx.doi.org/10.1016/j.sysarc.2023.102980
http://dx.doi.org/10.1109/RTAS.2012.16
http://dx.doi.org/10.1109/RTAS.2012.16
http://dx.doi.org/10.1109/RTAS.2012.16

Future Generation Computer Systems 160 (2024) 406–419J. Lee and J. Lee
[29] J.M. Calandrino, H. Leontyev, A. Block, U.C. Devi, J.H. Anderson, Litmus-RT
: A testbed for empirically comparing real-time multiprocessor schedulers, in:
2006 27th IEEE International Real-Time Systems Symposium, RTSS’06, 2006,
pp. 111–126, http://dx.doi.org/10.1109/RTSS.2006.27.

[30] R.I. Davis, S. Altmeyer, A. Burns, Mixed criticality systems with varying context
switch costs, in: 2018 IEEE Real-Time and Embedded Technology and Applica-
tions Symposium, RTAS, 2018, pp. 140–151, http://dx.doi.org/10.1109/RTAS.
2018.00024.

[31] V.K. Sundar, A. Easwaran, A practical degradation model for mixed-criticality
systems, in: 2019 IEEE 22nd International Symposium on Real-Time Distributed
Computing, ISORC, 2019, pp. 171–180, http://dx.doi.org/10.1109/ISORC.2019.
00040.

[32] J. Liu, K.-J. Lin, W.-K. Shih, A.-s. Yu, J.-Y. Chung, W. Zhao, Algorithms for
scheduling imprecise computations, Computer 24 (5) (1991) 58–68, http://dx.
doi.org/10.1109/2.76287.

[33] S. Baruah, A. Mok, L. Rosier, Preemptively scheduling hard-real-time sporadic
tasks on one processor, in: Real-Time Systems Symposium, 1990. Proceedings.,
11th, 1990, pp. 182–190, http://dx.doi.org/10.1109/REAL.1990.128746.

[34] J. Lee, S. Ramanathan, K.-M. Phan, A. Easwaran, I. Shin, I. Lee, MC-Fluid: Multi-
core fluid-based mixed-criticality scheduling, IEEE Trans. Comput. 67 (4) (2018)
469–483, http://dx.doi.org/10.1109/TC.2017.2759765.

[35] X. Gu, A. Easwaran, K.-M. Phan, I. Shin, Resource efficient isolation mechanisms
in mixed-criticality scheduling, in: Euromicro Conference on Real-Time Systems,
ECRTS, 2015, pp. 13–24.

[36] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi, Y. Kitsukawa,
A. Monrroy, T. Ando, Y. Fujii, T. Azumi, Autoware on board: Enabling au-
tonomous vehicles with embedded systems, in: 2018 ACM/IEEE 9th International
Conference on Cyber-Physical Systems, ICCPS, 2018, pp. 287–296.
419
Jaewoo Lee (jaewoolee@cau.ac.kr) received his B.S. and
M.S. from Seoul National University in 2006 and 2008,
respectively. He received his Ph.D. from University of Penn-
sylvania in 2017. He is currently an associate professor in
the department of industrial security, Chung-Ang Univer-
sity. His research interests include cyber–physical systems,
real-time embedded systems, and security systems.

Jinkyu Lee (jinkyu.lee@skku.edu) is an associate profes-
sor in Department of Computer Science and Engineering,
Sungkyunkwan University (SKKU) Republic of Korea, where
he joined in 2014. He received the B.S., M.S., and Ph.D. de-
grees in computer science from the Korea Advanced Institute
of Science and Technology (KAIST), Republic of Korea, in
2004, 2006, and 2011, respectively. He has been a visiting
scholar/research fellow in the Department of Electrical
Engineering and Computer Science, University of Michigan,
U.S.A. in 2011–2014. His research interests include system
design and analysis with timing guarantees, QoS support,
and resource management in real-time embedded systems,
mobile systems, and cyber–physical systems. He won the
best student paper award from the 17th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS)
in 2011, and the Best Paper Award from the 33rd IEEE
Real-Time Systems Symposium (RTSS) in 2012.

http://dx.doi.org/10.1109/RTSS.2006.27
http://dx.doi.org/10.1109/RTAS.2018.00024
http://dx.doi.org/10.1109/RTAS.2018.00024
http://dx.doi.org/10.1109/RTAS.2018.00024
http://dx.doi.org/10.1109/ISORC.2019.00040
http://dx.doi.org/10.1109/ISORC.2019.00040
http://dx.doi.org/10.1109/ISORC.2019.00040
http://dx.doi.org/10.1109/2.76287
http://dx.doi.org/10.1109/2.76287
http://dx.doi.org/10.1109/2.76287
http://dx.doi.org/10.1109/REAL.1990.128746
http://dx.doi.org/10.1109/TC.2017.2759765
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb35
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb35
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb35
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb35
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb35
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb36
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb36
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb36
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb36
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb36
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb36
http://refhub.elsevier.com/S0167-739X(24)00316-9/sb36
mailto:jaewoolee@cau.ac.kr
mailto:jinkyu.lee@skku.edu

	IMC-PnG: Maximizing runtime performance and timing guarantee for imprecise mixed-criticality real-time scheduling
	Introduction
	Related Work
	System Model
	Background
	IMC-PnG Scheduling Framework
	Scheduling Algorithm
	Schedulability Analysis
	Advanced Scheduling Algorithm and Its Schedulability Analysis with Stable-HI-mode
	The Assignment of Virtual Deadlines

	Evaluation
	Simulation Setup
	Simulation Results on IMC systems
	Simulation Results on Classical MC systems

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

