
Vol.:(0123456789)

Real-Time Systems (2024) 60:291–327
https://doi.org/10.1007/s11241-024-09421-9

1 3

Real‑time scheduling for parallel tasks with resource
reclamation

Qingqiang He1  · Yongzheng Sun1 · Xu Jiang2 · Mingsong Lv1,2 · Jinkyu Lee3 ·
Nan Guan4

Accepted: 6 May 2024 / Published online: 6 June 2024
© The Author(s) 2024

Abstract
This paper considers the real-time scheduling of a parallel task with reclaiming com-
puting resources, which can be utilized for soft real-time tasks or switching to low-
energy mode to save energy. Existing works allocate a rectangular piece of com-
puting resources based on the worst-case characterizations of the task to guarantee
the deadline, which inherently incurs severe resource wasting due to coarse-grained
resource allocation. To address this resource-wasting problem, this paper proposes
the ladder-like resource allocation (i.e., a series of rectangular pieces of comput-
ing resources). To characterize the ladder-like resource allocation, we present two
concepts called resource distribution and allocation vector, which serve as the inter-
faces between hard and soft real-time tasks. For the former, we derive schedulability
tests under the given two interfaces; for the latter, we discuss the methods of deter-
mining the two interfaces to reclaim computing resources. This paper is the first
work to fully explore the concept of ladder-like resource allocation and its potential
consequences on computing resources, soft real-time tasks, and energy. Experiments
demonstrate that the proposed approach can effectively reclaim more computing
resources than existing approaches while maintaining hard real-time guarantees.

Keywords  Real-time scheduling · Parallel task · Resource reclamation · Response
time analysis

1  Introduction

Real-time scheduling theory focuses on the analysis of tasks to meet hard real-time
guarantees for time-critical embedded systems. In time-critical embedded systems,
such as autonomous driving (Sun et al. 2023), robotics (Li et al. 2022) and satellite
communication (Lv et al. 2022), the correctness of tasks does not only depend on
the logical results, but also the time when the results are produced. For tasks in these
systems, a single deadline miss may cause catastrophic consequences. Therefore,

Extended author information available on the last page of the article

http://orcid.org/0000-0001-5067-8571
http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-024-09421-9&domain=pdf

292	 Real-Time Systems (2024) 60:291–327

1 3

before the deployment of time-critical embedded systems, real-time analysis is
required to formally verify that all timing constraints are guaranteed under any cir-
cumstance. As multi-core platforms are increasingly used in real-time systems for
performance and energy efficiency, most applications are parallelized to take advan-
tage of the power of multi-cores. Real-time analysis of parallel tasks has gained
much attention in recent years (Li et al. 2013; Baruah 2015a; Ueter et al. 2018; Chen
et al. 2019; Jiang et al. 2021; He et al. 2022).

Among the real-time scheduling approaches for parallel tasks, federated schedul-
ing (Li et al. 2014) is a promising approach with guaranteed real-time performance.
In federated scheduling,1 each parallel task is allocated a rectangular piece of com-
puting resources where a fixed number of cores are available in a time interval of
length equal to the deadline (see Fig. 7). This rectangular resource allocation suffers
from the resource-wasting problem (Jiang et al. 2021) due to the pessimism within
its analysis techniques and the overly conservative characterizations of a parallel
real-time task. For example, a typical characterization of a parallel real-time task is
the worst-case execution time. Federated scheduling allocates computing resources
based on this worst-case execution time. However, the worst-case execution time is
very conservative and pessimistic. During executions, the actual execution time may
be far less than the worst-case execution time of tasks, resulting in that many com-
puting resources are wasted. To address the resource-wasting problem, this paper
proposes the ladder-like resource allocation, which consists of a series of rectangu-
lar pieces of computing resources (see Fig. 3). First, the ladder-like resource allo-
cation is able to roughly capture the “shape” of executions of the task (i.e., how
many cores are used in different time intervals during executions) through offline
profiling, thus reclaiming the unused computing resources. Second, the ladder-like
resource allocation can support the dynamic adjustment of cores allocated to the
parallel task through online monitoring the execution, thus further reclaiming com-
puting resources. To characterize the ladder-like resource allocation, we present two
concepts called resource distribution and allocation vector. Intuitively, the resource
distribution describes how computing resources are assigned between the time at
which the task starts execution and the deadline. The allocation vector describes at
which time the number of cores should be adjusted based on the online monitored
information. The resource distribution and allocation vector serve as the interfaces
between hard and soft real-time tasks. For hard real-time tasks, schedulability tests
under the given two interfaces are derived; for soft real-time tasks, the methods of
determining the two interfaces to reclaim computing resources are presented. To our
best knowledge, this paper is the first work to fully explore the concept of ladder-like
resource allocation and its potential consequences on computing resources, soft real-
time tasks, and energy saving.

Being able to guarantee the deadline for the hard real-time task, our approach
can reclaim computing resources for soft real-time tasks or switch the reclaimed

1  In federated scheduling, there are light tasks and heavy tasks. Since light tasks are treated as sequential
tasks and heavy tasks are executed in isolation, this paper focuses on the scheduling of a single heavy
task.

293

1 3

Real-Time Systems (2024) 60:291–327	

computing resources to low-energy mode for saving energy. Note that this paper
does not provide the analysis or techniques for soft-real time tasks or energy. Since
both soft real-time tasks and energy are related to the amount of reclaimed comput-
ing resources from hard real-time tasks, in the paper, we take the target of reclaiming
computing resources for soft real-time tasks as a use case to present our methods.
The proposed approach only relies on the volume (i.e., the total workload) and the
length (i.e., the length of the longest path) of the parallel real-time task, not requir-
ing the detailed structure of the task. Experiments through simulating randomly gen-
erated parallel tasks demonstrate that the proposed approach outperforms existing
approaches by 48.3% at the maximum and by 37.8% on average regarding reclaimed
computing resources when maintaining hard real-time guarantees at the same time.

Organization. Section 2 reviews related works. Section 3 defines the task
model and the scheduling algorithm. Section 4 discusses the pessimism in existing
approaches which motivates this work. Sections 5 and 6 propose two techniques for
reclaiming computing resources. Section 7 presents the proposed approach using
these two resource-reclaiming techniques. Evaluation results are reported in Sect. 8,
and Sect. 9 concludes the paper.

2 � Related work

For real-time scheduling of parallel tasks, there are lots of works where parallel real-
time tasks are represented as the gang task model (Dong and Liu 2019; Lee et al.
2022), the fork-join task model (Lakshmanan et al. 2010), or the DAG-based task
model (Li et al. 2013; Melani et al. 2015; Sun et al. 2017; Liang et al. 2023). The
gang task model describes the simple parallel execution behaviors and requires that
different parallel subtasks must execute on several cores simultaneously (Dong and
Liu 2019; Lee et al. 2022). The fork-join task model describes structures with inter-
leaving sequential and parallel subtasks. This type of structure is common in paral-
lel applications such as OpenMP (Lakshmanan et al. 2010). The DAG-based task
model represents the parallel subtasks as a directed acyclic graph (Li et al. 2013)
and an example of DAG tasks is illustrated in Fig. 1. See (Tang et al. 2022) for a
comprehensive introduction of the task models for parallel real-time tasks.

The scheduling methods for parallel real-time tasks can be categorized into four
major paradigms: decomposed scheduling (Qamhieh et al. 2013; Jiang et al. 2016),
partitioned scheduling (Fonseca et al. 2016; Casini et al. 2018), global scheduling
(Li et al. 2013; He et al. 2021, 2023b), and federated scheduling (Li et al. 2014).

Fig. 1   An illustrative example

294	 Real-Time Systems (2024) 60:291–327

1 3

Among the four scheduling paradigms, federated paradigm provides the best per-
formance regarding schedulability and is simple to implement. In federated para-
digms, each parallel real-time task is scheduled independently on a set of dedi-
cated cores. Federated scheduling in (Li et al. 2014) was generalized to constrained
deadline tasks (Baruah 2015a), arbitrary deadline tasks (Baruah 2015b), and tasks
with conditional branches (Baruah 2015c). A series of federated-based scheduling
approaches (Jiang et al. 2017; Ueter et al. 2018; Jiang et al. 2020, 2021; He et al.
2022, 2023a) were proposed to address the resource-wasting problem in the origi-
nal federated scheduling. Although the above methods improve the offline analysis
to mitigate the resource-wasting, all of these methods are based on the worst-case
execution time of parallel tasks, which means that the computing resources have to
be reserved under worst-case assumptions. However, as observed in (Baruah 2018),
it may be the case that most executions of the task will have resource demand far
below the worst-case assumptions, which means severe resource-wasting. This type
of resource-wasting cannot be addressed by the above-mentioned methods.

This paper follows a different line of research to tackle the resource-wasting prob-
lem, which combines offline analysis and online monitoring to adjust the allocated
computing resources dynamically, thus reclaiming resources for soft real-time tasks
or for saving energy. There exist two closely related works (Agrawal and Baruah
2018; Baruah 2018). Agrawal and Baruah (2018) originally proposed an approach
of dynamically changing the number of cores allocated to a parallel real-time task
to achieve resource-efficient executions. In the study, a task model was proposed to
represent parallel real-time tasks using two pairs of volume and length with different
levels of assurance. This task model enables the scheduling algorithm to dynami-
cally adjust the number of cores assigned to an individual task during runtime.
Baruah (2018) extended the method in (Agrawal and Baruah 2018) by combining
the worst-case characterizations (i.e., the volume and length) and offline profiling
the execution behavior of parallel real-time tasks. The study was motivated using
conditional parallel tasks. The existence of conditional structures makes the execu-
tion behavior of parallel real-time tasks more complex and the worst-case character-
izations more pessimistic, which exacerbates the resource-wasting problem. While
the former (Agrawal and Baruah 2018) provides the analysis method to ensure that
the hard real-time task meets its deadline if the allocated number of cores is dynami-
cally adjusted, the latter (Baruah 2018) provides a concrete method of adjusting the
allocated number of cores dynamically.

Again, we want to highlight that our work is fundamentally different from the
federated-based scheduling approaches (Li et al. 2014; Jiang et al. 2017; Ueter
et al. 2018; Jiang et al. 2020, 2021; He et al. 2022, 2023a), particularly the semi-
federated scheduling (Jiang et al. 2017) and the virtually-federated scheduling (Jiang
et al. 2021). All of these works decide the computing resource allocation in offline
analysis based on the worst-case execution time of tasks. However, the worst-case
execution time can be rather pessimistic and the actual execution time can be far
less than the worst-case execution time, which leads to significant resource-wasting.
In contrast, our work combines offline analysis and online monitoring to reclaim
computing resources for soft real-time tasks or for saving energy. A simple example
can be used to illustrate this. There are two cores and two tasks. For both tasks, the

295

1 3

Real-Time Systems (2024) 60:291–327	

period and deadline are the same and are 10. The worst-case execution times of both
tasks are also 10. In this simplified example, for the federated scheduling (Li et al.
2014), the semi-federated scheduling (Jiang et al. 2017) and the virtually-federated
scheduling (Jiang et al. 2021), the resource allocations are the same: the first task is
scheduled on the first core; the second task is scheduled on the second core. During
offline analysis, no computing resources are wasted, since each task requires 100%
computing resources of their allocated core to ensure the hard real-time guarantees.
However, during online execution, suppose the actual execution times of the two
tasks are both 1. In this case, 90% of computing resources are wasted during execu-
tion; no offline analysis methods based on the worst-case execution time can reclaim
this 90% computing resources. In contrast, methods with online monitoring, such as
(Agrawal and Baruah 2018; Baruah 2018) and our method, can potentially reclaim
this 90% computing resources depending on the respective techniques and design
choices.

3 � System model

This section presents the system model. Section 3.1 defines the DAG task model,
which is used in the analysis for deriving the proposed approach. Section 3.2
describes the runtime behavior of the DAG task model defined in Sect. 3.1. Sec-
tion 3.3 clarifies the task model that is needed for implementing the proposed
approach. Some information that is needed for derivation is not required for
implementation.

3.1 � Task model for the analysis

The sporadic hard real-time task is specified as a tuple (G, D, T), where G is the
DAG task model, D is the relative deadline and T is the period. We consider con-
strained deadlines, i.e., D ≤ T  . The DAG task model is a directed acyclic graph
G = (V ,E) , where V is the set of vertices and E ⊆ V × V is the set of edges. A vertex
v ∈ V represents a piece of sequentially executed code with a worst-case execution
time (WCET) c(v). An edge (vi, vj) ∈ E means that vj can only start its execution
after vi completes its execution. A vertex with no incoming edges is called a source
vertex and a vertex with no outgoing edges is called a sink vertex. Without loss of
generality, we assume that G has exactly one source (denoted as vsrc ) and one sink
(denoted as vsnk ). If G has multiple source or sink vertices, we add a source or sink
vertex with zero WCET to comply with the assumption.

A path � is a set of vertices (�0,⋯ ,�k) such that ∀i ∈ [0, k − 1] : (�i,�i+1) ∈ E .
The length of a path � is defined as len(�)∶=

∑
�i∈�

c(�i) . A complete path is a path
(�0,⋯ ,�k) such that �0 = vsrc and �k = vsnk . In other words, a complete path is a
path starting from the source vertex and ending at the sink vertex. The longest path
is a complete path with the largest length among all paths in the task. If there is an
edge (u, v) ∈ E , u is a predecessor of v. We use pred(v) to denote the set of prede-
cessors of v.

296	 Real-Time Systems (2024) 60:291–327

1 3

Example 1  Fig. 1a shows a parallel real-time task G where the number inside ver-
tices represents the WCET. The relative deadline and the period D = T = 7 . v0
and v5 are the source vertex and the sink vertex, respectively. The longest path is
� = (v0, v1, v4, v5) , so len(�) = 6 . For vertex v5 , pred(v5) = {v3, v4}.

3.2 � Runtime behavior

The hard real-time task G executes on a multi-core platform with m identical cores.
A vertex is said to be eligible if all of its predecessors have finished their executions.
In other words, an eligible vertex can be immediately executed if there are available
cores. In work-conserving scheduling, an eligible vertex must be executed if there
are available cores. The parallel task G is scheduled by a work-conserving scheduler.

At runtime, vertices of G execute at certain time points on certain cores under the
decision of the scheduling algorithm. An execution sequence � of G describes which
vertex executes on which core at every time point. For a vertex v, the start time s(v)
and finish time f(v) are the time point when v first starts its execution and finishes
its execution, respectively. Note that s(v) and f(v) are related to a certain execution
sequence � . Here we do not include � in the notations for simplicity. Without loss of
generality, we assume the task G starts execution at time 0, so the response time R
of G in an execution sequence equals the finish time of the sink vertex, i.e., f (vsnk).

Example 2  For the DAG G in Fig. 1a, suppose the number of cores m = 2 . Figure 1b
and c show two possible execution sequences under work-conserving scheduling. In
Fig. 1b, every vertex in G executes for its WCET. In Fig. 1c, v1 and v3 execute for
less than their WCETs. In Fig. 1c, the start time and finish time of v3 are s(v3) = 1
and f (v3) = 3 , respectively. The response times of G for execution sequences in
Fig. 1b and c are 7 and 6, respectively. For the execution in Fig. 1b, v2 and v3 execute
in parallel; part of v1 and v3 execute in parallel. For the execution in Fig. 1c, v1 and v3
execute in parallel.

3.3 � Task model for the proposed approach

The proposed approach only uses two characterizations (i.e., volume and length) of
the hard real-time task, not requiring the internal graph structure of the task. The
DAG task model only serves as an auxiliary tool for deriving the schedulability test,
not used in the schedulability test itself. The volume of a parallel task G (denoted as
vol(G)) is the total workload in this task. The length of a parallel task G (denoted as
len(G)) is the length of the longest path in this task. The volume can be measured
by executing the task in a platform with one core, and the length can be measured
by executing the task on a platform with a sufficiently large number (bounded by the
number of vertices in this task) of cores (Agrawal and Baruah 2018).

For the DAG task model introduced in Sect. 3.1, the volume vol(G) =
∑

v∈V c(v) . As
an example, for the DAG in Fig. 1a, the volume vol(G) = 10 and the length len(G) = 6 .
Besides the DAG task model, the proposed approach is also applicable to other graph

297

1 3

Real-Time Systems (2024) 60:291–327	

task models, such as the conditional DAG task model (Baruah et al. 2015; Melani et al.
2015; He et al. 2023c), the task model with non-well-nested conditional structures (Sun
et al. 2020), and the task model with loop structures (Sun et al. 2021).

For graph task models, an execution flow F is a subgraph that contains all the verti-
ces and related edges during an execution (Sun et al. 2020). In other words, an execu-
tion flow is a runtime instance of a task graph. A graph task model can be applied in
the proposed approach, if it satisfies all of the following conditions.

1.	 The execution flows of the graph task model are DAG tasks defined in Sect. 3.1.
2.	 The runtime behavior of the execution flows conforms to Sect. 3.2.
3.	 The volume and length of the graph task model can be computed or measured.

Note that graph task models that take into account resource contention (Bi et al. 2022),
communication cost between vertices (Chen et al. 2020), and heterogenous computing
platforms (Han et al. 2019; Voudouris et al. 2022), violate Conditions 1 and 2, thus not
applicable to the proposed approach.

4 � Motivation

This section discusses the scheduling algorithms for a parallel real-time task in fed-
erated scheduling (Li et al. 2014; Baruah 2015d), which motivates this work. Both
DAG tasks and conditional DAG tasks are discussed concerning the resource-wasting
problem.

4.1 � Discussion on DAG tasks

We first discuss scheduling algorithms for the parallel application modeled as a DAG
task in Sect. 3.1. In (Graham 1969), Graham proposed a well-known response time
bound using the volume and the length of a DAG task as follows. The response time
R of DAG task G scheduled by work-conserving scheduling on m cores is bounded by
Eq. (1).

Therefore, in federated scheduling, the number of cores m allocated to DAG task G
can be computed by Eq. (2).

Equation (2) computes the minimum number of cores m such that the response time
bound in Eq. (1) is no larger than the deadline D.

(1)R ≤ len(G) +
vol(G) − len(G)

m

(2)m =

⌈
vol(G) − len(G)

D − len(G)

⌉

298	 Real-Time Systems (2024) 60:291–327

1 3

For a DAG task, the computing resources allocated according to Eqs. (1) and (2)
exhibit several types of pessimism and cause a large amount of resources being wasted,
as summarized in the following.

•	 Analysis Pessimism (Type-1). The bound in Eq. (1) is derived by constructing an
artificial scenario where vertices not in the longest path do not execute in parallel
with the execution of the longest path (He et al. 2022). However, in real execution,
many vertices not in the longest path actually can execute in parallel with the long-
est path. As observed in (Jiang et al. 2021), this type of pessimism may cause the
portion of wasted computing resources to be arbitrarily close to 100%.

•	 Execution Pessimism (Type-2). Parameters used in Eq. (2), such as vol(G) and
len(G), are based on the worst-case execution time. To comply with the hard
real-time requirements, these worst-case execution times can be overly pessimis-
tic (Edgar and Burns 2001; Bernat et al. 2002), and the actual execution time can
be far less than the WCET, leading to severe resource-wasting during execution.

4.2 � Discussion on conditional DAG tasks

For parallel tasks modeled as conditional DAG tasks (He et al. 2023c), new types
of pessimism appear and the resource-wasting problem is exacerbated. To illustrate
this, we first discuss the analysis and scheduling of conditional DAG tasks in feder-
ated scheduling (Baruah 2015d).

An execution flow of conditional DAG tasks is a DAG, so notations for DAG
tasks in Sect. 3 can also be applied to execution flows. For a conditional DAG task
G, we also use G to denote the set of execution flows that this conditional DAG task
may generate during executions. A conditional DAG task may generate an exponen-
tial number of execution flows. An execution flow, which is a DAG task, may cor-
respond to many execution sequences (see Example 2).

According to Eq. (1), it can be easily seen that the response time R of conditional
DAG task G scheduled by work-conserving scheduling on m cores is bounded by
Eq. (3).

For a conditional DAG task G, the volume is

And the length is

The volume and length can be computed in polynomial time in the representation
of the conditional DAG task (Baruah et al. 2015; Melani et al. 2015). Same as DAG
tasks, the volume and length of conditional DAG tasks can also be measured with-
out knowing the detailed graph structure of the task.

(3)R ≤ max
F∈G

{
len(F) +

vol(F) − len(F)

m

}

(4)vol(G) = max
F∈G

{vol(F)}

(5)len(G) = max
F∈G

{len(F)}

299

1 3

Real-Time Systems (2024) 60:291–327	

It is shown in (Baruah 2015d) that the response time R of conditional DAG task
G scheduled by work-conserving scheduling on m cores is bounded by Eq. (6).

The bound in Eq. (6) is an approximation of Eq. (3) and always equal to or larger
than the bound in Eq. (3). Same as Eq. (2), in federated scheduling, the number of
cores m allocated to a conditional DAG task G can be computed by Eq. (7).

Since a DAG task is a special case of a conditional DAG task, the two types of pes-
simism for DAG tasks also exist in the scheduling of conditional DAG tasks. For a
conditional DAG task, there are two additional types of pessimism in the computing
resources allocated according to Eqs. (6) and (7), as summarized in the following.

•	 Analysis Pessimism (Type-3). In Eq. (6), the volume and length may corre-
spond to different branches of a conditional construct. Different branches of a
conditional construct are mutually exclusive which means that in one execution
flow, two branches of a conditional construct cannot both exist (Baruah 2015d).
Therefore, the bound in Eq. (6) includes scenarios that cannot actually happen
during execution, which leads to the over-provisioning of computing resources.

•	 Execution Pessimism (Type-4). During execution, the entry vertices of a con-
ditional construct can be evaluated to different values, thus leading to different
branches and generating different execution flows. These execution flows can
have quite diversified characterizations, such as volume, length and the degree of
parallelism (He et al. 2023a), thus requiring quite different computing resources.
However, the computing resources must be allocated according to the worst-
case scenario as shown in Eq. (3) to ensure that the deadline is satisfied (Baruah
2018).

Among these four types of pessimism for parallel real-time tasks, the analysis
pessimism (i.e., Type-1 and Type-3) can be partially addressed through improved
offline analysis. For example, Type-1 pessimism can be partially addressed by the
technique of intra-task priority assignment (He et al. 2019; Zhao et al. 2020; He
et al. 2021) or the technique of long paths (He et al. 2022, 2023a). Type-3 pessi-
mism can be eliminated by directly computing the bound in Eq. (3) and utilizing
an iterative procedure to find the minimum number of cores such that the bound in
Eq. (3) is no larger than the deadline with the sacrifice of time complexity (Melani
et al. 2016). However, the execution pessimism (i.e., Type-2 and Type-4) cannot be
mitigated through offline analysis, since the required information (such as the actual
execution time of vertices, or which branch of a conditional structure is taken) is
only available during runtime.

(6)R ≤ len(G) +
vol(G) − len(G)

m

(7)m =

⌈
vol(G) − len(G)

D − len(G)

⌉

300	 Real-Time Systems (2024) 60:291–327

1 3

4.3 � Overview of the proposed approach

In this paper, we propose an approach for a parallel real-time task to address all
four types of pessimism with the target of both satisfying hard real-time deadlines
and reclaiming computing resources for soft real-time tasks. The proposed approach
utilizes two resource-reclaiming techniques. The execution of the task is divided
into several slots. These slots are ladder-like resource allocations rather than a single
rectangular allocation. Section 5 presents the first technique by offline profiling the
execution of the hard real-time task to reclaim computing resources in the beginning
slots. Section 6 presents the second technique by online monitoring the execution
of the hard real-time task to reclaim computing resources in the last slot. The pro-
posed approach is presented in Sect. 7, which jointly employs these two techniques
to reclaim computing resources.

5 � Reclaiming resources in the beginning

This section introduces the technique to reclaim computing resources in the begin-
ning part of executions by offline profiling the workload during various executions
of the parallel real-time task. The computing resources are allocated according to
the profiled information.

5.1 � Intuition of the technique

Due to the complex structure of parallel tasks, different parts of a parallel task may
have different numbers of vertices that can execute in parallel. Therefore, during an
execution, the used number of cores can vary from time to time. If the allocated
number of cores is constant and thus the allocated computing resources are a rec-
tangle as in federated scheduling, a large amount of computing resources can be
wasted. In this section, instead of the rectangular resource allocation, we use the
ladder-like resource allocation, where different numbers of cores are allocated in dif-
ferent time intervals (see Fig. 3).

Aside from reclaiming computing resources for soft real-time tasks, the ladder-
like resource allocation is also capable of reducing the computing resources for hard
real-time tasks. In federated scheduling, by Eqs. (2) and (7), if the required number
of cores before applying the ceiling function is m + � ( 0 < 𝜖 < 1 ), then the allocated
number of cores has to be m + 1 , which leads to resource-wasting. This issue is
observed and addressed in (Jiang et al. 2017) through relatively complicated analy-
sis. However, we observe that this problem can be easily solved by using the ladder-
like resource allocation as illustrated in Example 3.

Example 3  A parallel real-time task G has volume vol(G) = 26 , length len(G) = 5 ,
and deadline D = 15 . Since vol(G)−len(G)

D−len(G)
= 2.1 , by Eq. (2), the allocated number of

cores is m = 3 , and the allocated computing resources are m × D = 45 as shown in

301

1 3

Real-Time Systems (2024) 60:291–327	

Fig. 2a. Under the ladder-like resource allocation, the allocated computing resources
can be 2 cores in time interval [0, 9], and 3 cores in time interval [9, 15] as shown in
Fig. 2b (the reason why this resource allocation can guarantee the deadline will be
explained in Sect. 5.3). And the allocated computing resources are
2 × 9 + 3 × 6 = 36.

Deciding the resource distribution lies in the center of the proposed technique in
this section. As stated before, the purposes of this paper are to, first guarantee the
deadline for hard real-time tasks, and second reclaim computing resources for soft
real-time tasks. In the following, Sect. 5.2 formally defines the resource distribution.
Section 5.3 derives the conditions that the resource distribution should satisfy to
guarantee the deadlines for hard real-time tasks. Section 5.4 discusses the heuristics
for designing the resource distribution such that the reclaimed computing resources
for soft real-time tasks can be as many as possible. The final resource distribution
for this technique should, first satisfy the conditions derived in Sect. 5.3, and second
comply with the heuristics discussed in Sect. 5.4. Section 5.5 provides an example
to explain the proposed technique.

5.2 � The scheduling algorithm

This subsection describes the computing resources allocated for the proposed tech-
nique and the scheduling on the computing resources. The allocated computing
resources are characterized by a concept called resource distribution.

Fig. 2   An example explaining the difference between rectangular and ladder-like resource allocations

Fig. 3   Illustration of the sched-
uling for the technique in Sect. 5

302	 Real-Time Systems (2024) 60:291–327

1 3

Definition 1  (Resource Distribution) The resource distribution Θ is defined as
{(m0, d0),⋯ , (mk, dk)} ( k ≥ 0 ) where (mi, di) means that the available number of
cores during a time interval with length di is mi . Θ satisfies all of the following
conditions.

1.	 ∀i ∈ [0, k] : mi ≥ 1 and di > 0.
2.	 ∀i, j ∈ [0, k] and i < j : (mi, di) is allocated before (mj, dj).

In Definition 1, each (mi, di) is called a resource block. Condition 2 of Defini-
tion 1 specifies that resource blocks in a resource distribution are ordered by the
time when a resource block is provided (see Fig. 3 for an illustration). The resource
distribution describes how many cores are allocated to the task in different times
during the execution. In one resource block, the allocated number of cores remains
the same. In different resource blocks, the allocated number of cores may be differ-
ent. The resource distribution is to model the execution behavior that there may be
different numbers of parallel vertices to execute in different times during the exe-
cution. After the computing resources are specified by a resource distribution, the
parallel real-time task is scheduled by a work-conserving scheduler on the resource
distribution.

5.3 � Schedulability test for hard real‑time tasks

Definition 2  (Critical Path (He et al. 2019)) The critical path �∗ = (�0,⋯ ,�k) of an
execution sequence is a complete path satisfying the following property.

The critical path is specific to an execution sequence of the parallel task G. A criti-
cal path of G in an execution sequence is not necessarily the longest path of G.

Example 4  For the execution sequence in Fig. 1b, a critical path of G is (v0, v1, v4, v5) .
In Fig. 1c, a critical path of G is ( v0, v2, v4, v5 ), which is not the longest path of G.

Lemma 1  In an execution sequence under work-conserving scheduling, when the
critical path is not executing, all cores are busy.

Proof  Suppose that the critical path of this execution sequence is �∗ = (�0,⋯ ,�k) .
∀i ∈ (0, k] : by Definition 2, �i−1 is with the maximum finish time among all the pre-
decessors of �i . This means that when �i−1 completes its execution, all predecessors
of �i have completed execution. Therefore, �i is eligible at f (�i−1) . If some core is
idle in [f (�i−1), s(�i)] , it contradicts the fact that the scheduling is work-conserving. 	
� ◻

Given a parallel real-time task (G, D, T), and a resource distribution
Θ = {(m0, d0),⋯ , (mk, dk)} satisfying len(G) <

∑
i∈[0,k] di ≤ D , next we derive a

(8)∀�i ∈ �∗ ⧵ {�0} ∶ f (�i−1) = max
u∈pred(�i)

{f (u)}

303

1 3

Real-Time Systems (2024) 60:291–327	

sufficient schedulability test such that task G is schedulable on resource distribu-
tion Θ.

We reorder the resource blocks in Θ according to their mi . Specifically,
Θ = {(mb0

, db0),⋯ , (mbk
, dbk)} satisfies

Using Eq. (10), an index s can be determined. Specifically, we can check every value
in [0, k] to find the s satisfying Eq. (10).

If len(G) < db0 , let s = −1 . We define Q∶={bi ∣ i ∈ [0, s]} , q∶=bs+1 ,
r∶=len(G) −

∑
i∈[0,s] dbi . In particular, if s = −1 , then Q = ∅ , q = b0 , r = len(G).

Theorem 1  If Eq. (11) holds, then the parallel real-time task (G, D, T) is schedu-
lable on resource distribution Θ = {(m0, d0),⋯ , (mk, dk)} under work-conserving
scheduling.

Proof  We prove it by contradiction and assume that task G is not schedulable on
resource distribution Θ . Let � be an execution sequence of G and assume that � does
not complete its execution. We denote the volume of the workload of � executed on
Θ as W0 . Since � does not complete its execution, we have

Let �∗ be the critical path of � . We denote the length of �∗ located in (mi, di) as li , and
denote the volume of workload executed in (mi, di) when �∗ is not executing as Ii (see
Fig. 4 for an illustration). With these notations, we have

Therefore, the volume of the workload of � executed on Θ is at least W1.

(9)∀i, j ∈ [0, k] ∧ i < j ∶ mbi
≥ mbj

(10)
∑

i∈[0,s]

dbi ≤ len(G) <
∑

i∈[0,s+1]

dbi

(11)vol(G) − len(G) +
∑

i∈Q

midi + mqr ≤
∑

i∈[0,k]

midi

(12)W0 < vol(G)

(13)len(�∗) =
∑

i∈[0,k]

li

Fig. 4   The notations used in the
proof of Theorem 1. Green area
represents the critical path. Red
area represents the workload
executed when the critical path
is not executing. Gray area rep-
resents other possible workload
executed in this resource block

304	 Real-Time Systems (2024) 60:291–327

1 3

Since W1 is the minimum volume of the workload of � executed on Θ , we have

By Lemma 1, when �∗ is not executing, all cores are busy. We have ∀i ∈ [0, k] :
Ii = mi(di − li) . Therefore,

Similar to Eq. (10), an index s∗ can be determined by

We also define Q∗∶={bi ∣ i ∈ [0, s∗]} , q∗∶=bs∗+1 , r∗∶=len(�∗) −
∑

i∈[0,s∗] dbi.
By Eqs. (9) and (13), we have

Since len(�∗) ≤ len(G) , we have

Together with Eqs. (15) and (16), we have

Combining with Eqs. (12) and (14), we have

By Eq. (10), we have

Therefore,

This contradicts Eq. (11), which completes the proof. 	� ◻

W1∶=
∑

i∈[0,k]

(Ii + li)

(14)W1 ≤ W0

(15)W1 =
∑

i∈[0,k]

(mi(di − li) + li) =
∑

i∈[0,k]

midi −
∑

i∈[0,k]

(mi − 1)li

∑

i∈[0,s∗]

dbi ≤ len(𝜆∗) <
∑

i∈[0,s∗+1]

dbi

(16)
∑

i∈[0,k]

(mi − 1)li ≤
∑

i∈Q∗

(mi − 1)di + (mq∗ − 1)r∗

∑

i∈Q∗

(mi − 1)di + (mq∗ − 1)r∗ ≤
∑

i∈Q

(mi − 1)di + (mq − 1)r

W1 ≥
∑

i∈[0,k]

midi −
∑

i∈Q

(mi − 1)di − (mq − 1)r

∑

i∈[0,k]

midi −
∑

i∈Q

(mi − 1)di − (mq − 1)r < vol(G)

∑

i∈[0,k]

midi −
∑

i∈Q

midi − mqr + len(G) < vol(G)

vol(G) − len(G) +
∑

i∈Q

midi + mqr >
∑

i∈[0,k]

midi

305

1 3

Real-Time Systems (2024) 60:291–327	

Theorem 1 has straightforward meanings: the RHS (right-hand side) of Eq. (11)
is the capacity that the resource distribution can provide; the LHS (left-hand side)
of Eq. (11) is the resource requirement such that the parallel real-time task can be
schedulable. Theorem 1 can gracefully degrade to the schedulability test in (Baruah
2015d) when there is only one resource block in the resource distribution as shown
in Corollary 1.

Corollary 1  If Eq. (17) holds, then the parallel real-time task (G, D, T) is schedula-
ble on a computing platform with m cores under work-conserving scheduling.

Proof  Let the resource distribution Θ in Theorem 1 be {(m0 = m, d0 = D)} . We
have that the s in Eq. (10) is −1 , and Q = ∅ , q = b0 = 0 , r = len(G) . Therefore, ∑

i∈Q midi = 0 and mq = m0 = m . Equation (11) degrades to

which is equivalent to Eq. (17). 	� ◻

5.4 � Design method for soft real‑time tasks

Under the conditions derived in Sect. 5.3 which ensure that the resource distribu-
tion can guarantee the deadlines for hard real-time tasks, this subsection discusses
the design method of the resource distribution such that the reclaimed computing
resources for soft real-time tasks can be as many as possible.

As stated before, federated scheduling allocates a rectangular piece of comput-
ing resources based on the worst-case characterizations of the parallel real-time
task. However, during executions, the actually used computing resources may
only be a small portion of the allocated computing resources. In this method, we
profile the “shape” of executions of the hard real-time task for allocating comput-
ing resources to avoid resource-wasting in the typical case (the gray area in Fig. 5)
and employ Theorem 1 for allocating an extra piece of computing resources (the
green area in Fig. 5) to ensure that the deadline is satisfied in the worst case. In

(17)len(G) +
vol(G) − len(G)

m
≤ D

vol(G) − len(G) + mlen(G) ≤ mD

Fig. 5   Illustration of the profil-
ing method in Sect. 5.4

306	 Real-Time Systems (2024) 60:291–327

1 3

the following, given a hard real-time task (G, D, T), we present the procedure to
determine the resource distribution.

Step 1: decide profiling setting. Let m denote the number of cores on which
the task is executed during the profiling. m is computed by Eq. (2). Assume that
the task starts execution at time 0. The time interval [0,D − len(G)] is divided into
n resource blocks uniformly. For each resource block (mi, di),

Step 2: profile the task. The task is executed on m cores during time interval
[0,D − len(G)] for many times under a work-conserving scheduler. Note that we exe-
cute the task until time point D − len(G) and we do not require the task to complete
its execution during the profiling. During the profiling, the following information is
recorded.

•	 The actually used numbers of cores during executions.
•	 The probability pi that the task can finish its execution before or within

resource block (mi, di).

Suppose that the task is executed for � times. During � times, there are � times
that the task finishes its execution before or within resource block (mi, di) . Then
the probability pi = �∕� . During one execution, in resource block (mi, di) , sup-
pose that the actually used numbers of cores are {(y0, x0),⋯ , (yj, xj),⋯ , (yk, xk)} ,
where (yj, xj) means that in a time interval of length xj , the actually used number
of cores is yj . For this execution and resource block (mi, di) , the average number
of cores is computed as

During all the executions, we compute the average mi among all executions, and
round it to the nearest integer as the final mi for resource block (mi, di).

Step 3: compute resource distribution. After Step 2, in time interval
[0,D − len(G)] , we have the profiled resource blocks {(m0, d0),⋯ , (mn−1, dn−1)} .
Then, Algorithm 1 is employed to compute the final resource distribution, which
is Θ = {(m0, d0),⋯ , (mi∗ , di∗), (mi∗+1 = m(i∗), di∗+1 = d(i∗))} . See explanations of
the algorithm in the proof of Theorem 2. In Line 3, m is computed in Step 1
using Eq. (2). Line 5 utilizes the probability pi in Step 2 to compute the aver-
age computing resources A(i), which is used as criteria for selecting the resource
distributions computed during all the iterations of Algorithm 1. The selec-
tion heuristic A(i) is from (Baruah 2018). Note that in Line 1, the loop is for
i ∈ [0, n − 2] , not including n − 1 . This is because the total length of all resource
blocks is D − len(G) , i.e.,

∑
j∈[0,n−1] dj = D − len(G) . In the loop of Line 1, if we

let i = n − 1 , then in Line 2, the denominator of the formula will be 0. So in the
loop of Line 1, we enforce i ≠ n − 1.

di =
D − len(G)

n

mi =

∑
j∈[0,k] yjxj∑
j∈[0,k] xj

=

∑
j∈[0,k] yjxj

di

307

1 3

Real-Time Systems (2024) 60:291–327	

Algorithm 1   Compute resource distribution

Theorem 2  The resource distribution Θ = {(m0, d0),⋯ , (mi∗ , di∗), (m(i
∗), d(i∗))}

computed in Step 3 is correct in the sense that the hard real-time task (G, D, T) can
always meet its deadline under work-conserving scheduling on Θ.

Proof  In Algorithm 1, after each iteration, there is a resource distribution
{(m0, d0),⋯ , (mi, di), (mi+1 = m(i), di+1 = d(i))} . The resource distribution Θ in Step
3 is one of them. Therefore, to prove Theorem 2, it is sufficient to show that the
resource distribution in each iteration of Algorithm 1 is correct. We prove this using
Theorem 1.

Since in Step 1, the task is profiled on m cores (m is computed by Eq. (2)), we
have ∀j ∈ [0, i] ∶ mj ≤ m . By Line 3 of Algorithm 1, we have m(i) ≥ m . Therefore,

By Step 1, the task is profiled in time interval [0,D − len(G)] . Therefore, in Line 4
of Algorithm 1,

∑
j∈[0,i] dj < D − len(G) , and we have

By Eqs. (18) and (19), we have that for Theorem 1, in Eq. (10), the s = −1 . So,
Q = ∅ , q = i + 1 , r = len(G) . In this case, by Eq. (11), we have

which is Line 2 of Algorithm 1. The theorem is proved. 	� ◻

Note that during each iteration of Algorithm 1, a resource distribution is com-
puted and each resource distribution is with an A(i). So, after Algorithm 1, a list
of resource distributions are computed. It should be emphasized that each of these
computed resource distributions can guarantee the hard real-time requirement. This
is because the equation in Line 2 of Algorithm 1 is derived according to Theorem 1
(see the rigorous reasoning in Theorem 2). The A(i), which is computed in Line
5, only serves as a heuristic to select a “better” resource distribution among the
resource distributions computed during all the iterations of Algorithm 1. So we do
not need A(i) in the proof of Theorem 2, which is about hard real-time guarantees.

(18)∀j ∈ [0, i] ∶ m(i) ≥ mj

(19)d(i) > len(G)

vol(G) − len(G) + m(i)len(G) ≤ m(i)d(i) +
∑

j∈[0,i]

mjdj

308	 Real-Time Systems (2024) 60:291–327

1 3

For the profiling procedure, in Step 2, the task is profiled in time interval
[0,D − len(G)] , not in [0, D]. The reasons for this choice are as follows. On one
hand, the profiling is to capture the typical execution of the task so that we can
reclaim computing resources. Since the execution times of vertices may be far
less than the worst-case execution time, it is likely that the typical execution will
be in the beginning part of executions. In time interval [D − len(G),D] , chances are
that during the profiling, the actually used number of cores is always zero. On the
other hand, the profiling should not jeopardize the hard real-time guarantees. With
resource blocks in [D − len(G),D] , a valid m(i) in Line 2 of Algorithm 1 cannot be
computed (the denominator of the equation in Line 2 will be negative). And recall
that the equation in Line 2 is critical for hard real-time guarantees.

In Step 1, the time interval [0,D − len(G)] is equally divided into n resource
blocks. For a larger n, the profiled “shape” of executions will be more accurate,
which means potentially more reclaimed computing resources. However, since the
execution time of vertices may change, the shapes of different executions may be
different. Therefore, a larger n also means more migration overhead. What’s more,
to capture the typical execution of the task, equally dividing the time interval
[0,D − len(G)] does not sound to be a wise choice. Exploring the effects of different
n and other possible profiling methods is left to future work. In the evaluation, we
simply let n = 3, 4, 5 to showcase the effectiveness of the proposed method.

5.5 � An example

This subsection uses the example in Fig. 6 to explain the concept of resource distri-
bution and the proposed technique in Sect. 5. Figure 6a shows a parallel real-time
task G, and let the deadline D = 5 . In G, the source vertex v0 spawns eight parallel
vertices v1 , ⋯ , v8 . So the length len(G) = 2 , and the volume vol(G) = 9.

In federated scheduling, by Eq. (2), the allocated number of cores
m = ⌈(9 − 2)∕(5 − 2)⌉ = 3 . Figure 6b shows a possible execution sequence of G
under federated scheduling. For simplicity, we suppose that each vertex executes
for its WCET. The allocated computing resources to guarantee its deadline are
m × D = 3 × 5 = 15 (the area covered by red lines). Suppose that after the task com-
pletes its execution, the remaining computing resources can be used for soft real-
time tasks or the hardware can be placed in low-energy mode to save energy. So the

Fig. 6   Comparison of the computing resources between federated scheduling and the method in Sect. 5

309

1 3

Real-Time Systems (2024) 60:291–327	

actual computing resources during the execution are 3 × 4 = 12 (the area covered by
blue lines).

In the proposed technique shown in Fig. 6c, we first profile the task
using the procedure in Sect. 5.4. In Step 1, the task will be profiled on
m = 3 cores during time interval [0, 3]. And we divide this time inter-
val into n = 3 blocks. In Step 2, suppose that the profiled resource blocks
are {(m0 = 1, d0 = 1), (m1 = 3, d1 = 1), (m2 = 3, d2 = 1)} . In this simple
example, we ignore the probability pi , and in Algorithm 1 of Step 3, sup-
pose i∗ = 1 . In Line 2 of Algorithm 1, m(i∗) = ⌈(9 − 2 − 4)∕(5 − 2 − 2)⌉ = 3 .
In Line 4, d(i∗) = 5 − 2 = 3 . Therefore, the final resource distribution is
{(m0 = 1, d0 = 1), (m1 = 3, d1 = 1), (m2 = m(i∗) = 3, d2 = d(i∗) = 3)} . In
our method, the allocated computing resources to guarantee its deadline are
1 × 1 + 3 × 1 + 3 × 3 = 13 (the area covered by red lines in Fig. 6c). The actual
computing resources during the execution are 1 × 1 + 3 × 1 + 3 × 2 = 10 (the area
covered by blue lines).

In this example, it can be seen that compared to federated scheduling, the pro-
posed technique reduces both the allocated computing resources (i.e., the comput-
ing resources determined before execution to guarantee the deadline) and the actual
computing resources (i.e., the computing resources determined using the runtime
information).

6 � Reclaiming resources in the ending

In this technique, during the execution of the parallel real-time task, we collect
information regarding the execution of the hard real-time task and gradually reduce
the allocated number of cores to reclaim computing resources in the ending part of
executions. The time points to reduce the number of cores during executions are
characterized by a concept called allocation vector.

6.1 � Intuition of the technique

As stated in Sect. 4, federated scheduling uses the bound in Eq. (1) to allocate the
number of cores. It enforces the bound in Eq. (1) to be less than or equal to the dead-
line D to compute the number of cores m. This computation of the number of cores
is achieved by assuming two types of execution: (1) only the longest path is execut-
ing (the gray solid area in Fig. 7); (2) other workload is executing and occupies all
of the cores (the dashed area in Fig. 7). However, during real executions, the longest

Fig. 7   The computation of the
number of cores in federated
scheduling

310	 Real-Time Systems (2024) 60:291–327

1 3

path and other workload may execute in parallel, which means that there is another
type of execution, i.e., more than one core are busy but not all cores are busy. It is
possible to monitor this type of execution during runtime and utilize the monitored
information to reduce the allocated number of cores dynamically (see Fig. 8), thus
reclaiming computing resources for soft real-time tasks or saving energy by placing
the hardware in low-energy mode.

What is more, in this ladder-like resource allocation, the number of cores is
reduced before the task completes its execution. This means that the computing
resources are reclaimed earlier than the finish time of the task. The earlier reclaimed
computing resources can make more soft real-time tasks finish before their soft
deadlines.

Deciding the allocation vector lies in the center of the proposed technique in
this section. As stated before, the purposes of this paper are to, first guarantee the
deadline for hard real-time tasks, and second reclaim computing resources for soft
real-time tasks. In the following, Sect. 6.2 formally defines the allocation vector.
Section 6.3 derives the conditions that the adjusted number of cores should satisfy
during the allocation vector to guarantee the deadlines for hard real-time tasks. Sec-
tion 6.4 discusses the heuristics for designing the allocation vector such that the
reclaimed computing resources for soft real-time tasks can be as many as possible.
Section 6.5 provides an example to explain the proposed technique.

6.2 � The scheduling algorithm

Definition 3  (Allocation Vector) For a parallel real-time task (G, D, T), the alloca-
tion vector Φ is a set of time points {t0,⋯ , tk} ( k ≥ 0 ) satisfying all of the following
conditions.

1.	 ∀i ∈ [0, k] : 0 ≤ ti < D.
2.	 ∀i, j ∈ [0, k] and i < j : ti < tj.

In an allocation vector, each ti is called an allocation point. The allocation vec-
tor is a list of time points. At each time point, the scheduler may adjust the allo-
cated number of cores based on the monitored execution information to release
cores earlier. Given a parallel real-time task (G, D, T) and the allocation vector

Fig. 8   Illustration of the sched-
uling for the technique in Sect. 6

311

1 3

Real-Time Systems (2024) 60:291–327	

Φ = {t0,⋯ , tk} , the scheduling starts at time 0 with the number of cores m com-
puted by Eq. (2). During the scheduling, two types of information are monitored.

1.	 w(t): the volume of the workload executed from time point 0 to time point t.
2.	 l(t): the cumulative length of time intervals during which at least one core is idle

from time point 0 to time point t.

At each allocation point ti , if G does not complete its execution, we adjust the allo-
cated number of cores to mi based on the information monitored above. The method
for computing mi will be detailed in Sect. 6.3. The parallel real-time task is sched-
uled by a work-conserving scheduler as illustrated in Fig. 8.

6.3 � Schedulability test for hard real‑time tasks

Lemma 2  In an execution sequence under work-conserving scheduling, when at
least one core is idle, the critical path is executing.

Proof  Lemma 2 is the contrapositive of Lemma 1. 	� ◻

Theorem 3  At each allocation point ti ( i ∈ [0, k] ), if the allocated number of cores mi
is computed by Eqs. (20) and (21), then the parallel real-time task G is schedulable
under work-conserving scheduling with the allocation vector Φ = {t0,⋯ , tk}.

if vol(G) − w(ti) ≤ len(G) − l(ti) , then

else

Proof  Let � be the execution sequence under analysis of G. At allocation point ti , we
focus on the remaining graph Gi of G (i.e, the part of G that has not been executed
until ti ). We denote the critical path of � as �∗ . Since li is the cumulative length of
time intervals before ti where at least one core is idle, by Lemma 2, �∗ is executing in
these time intervals. Therefore, the length of �∗ in Gi (i.e., the length of �∗ executing
after ti ) is at least len(�∗) − l(ti) , which is bounded by

And the volume of Gi is bounded by

By Eq. (1), the response time of Gi is bounded by

(20)mi = 1

(21)mi =

⌈
vol(G) − w(ti) − len(G) + l(ti)

D − ti − len(G) + l(ti)

⌉

len(G) − l(ti)

vol(G) − w(ti)

312	 Real-Time Systems (2024) 60:291–327

1 3

The new deadline of Gi is D − ti . Let

which means Eq. (21). 	� ◻

Note that the volume vol(G) and length len(G) in Theorem 3 are determined
offline. We do not need to monitor these two parameters online.

Corollary 2  The schedulability test in Theorem 3 dominates the test in (Li et al.
2014) (shown in Eqs. (1) and (2)) in the sense that the computing resource allocated
by Theorem 3 is no larger than that of (Li et al. 2014).

Proof  It is sufficient to show that ∀i ∈ [0, k] : the mi in Eq. (21) is no larger than the
m in Eq. (2), i.e.,

Suppose t0 = 0 , we have w(0) = 0 , l(0) = 0 , so Eq. (22) holds trivially. Therefore, to
prove Eq. (22), it suffices to show that ∀i ∈ [0, k) : mi+1 ≤ mi , i.e.,

We define

Equation (23) can be rewritten as Eq. (24).

Be aware of the following statement: for 0 < x1 < x2 , 0 < y1 < y2,

Therefore, to prove Eq. (24), it suffices to show that

len(G) − l(ti) +
vol(G) − w(ti) − len(G) + l(ti)

mi

len(G) − l(ti) +
vol(G) − w(ti) − len(G) + l(ti)

mi

≤ D − ti

(22)
⌈
vol(G) − w(ti) − len(G) + l(ti)

D − ti − len(G) + l(ti)

⌉
≤

⌈
vol(G) − len(G)

D − len(G)

⌉

(23)
vol(G) − w(ti+1) − len(G) + l(ti+1)

D − ti+1 − len(G) + l(ti+1)
≤

vol(G) − w(ti) − len(G) + l(ti)

D − ti − len(G) + l(ti)

Δ(t)∶=ti+1 − ti

Δ(w)∶=w(ti+1) − w(ti)

Δ(l)∶=l(ti+1) − l(ti)

(24)

vol(G) − w(ti) − len(G) + l(ti) − (Δ(w) − Δ(l))

D − ti − len(G) + l(ti) − (Δ(t) − Δ(l))
≤

vol(G) − w(ti) − len(G) + l(ti)

D − ti − len(G) + l(ti)

x1

y1
≥

x2

y2
⇒

x2 − x1

y2 − y1
≤

x2

y2

313

1 3

Real-Time Systems (2024) 60:291–327	

The length of time interval [ti, ti+1] is Δ(t) . During time interval [ti, ti+1] , the allocated
number of cores is mi . The volume of the workload executed in [ti, ti+1] is Δ(w) . By
the definitions of l(t) and Δ(l) , Δ(l) is the cumulative length of time intervals during
which at least one core is idle in [ti, ti+1] . Therefore, we have

which means

Therefore, Eq. (25) holds, which means that Eq. (22) holds. 	� ◻

6.4 � Design method for soft real‑time tasks

When encountering an allocation point in the allocation vector, Sect. 6.3 pre-
sents how to adjust the allocated number of cores such that hard real-time guar-
antees are met. This subsection discusses how to design the allocation vector to
effectively reclaim computing resources for soft real-time tasks. So the objec-
tive is that given a hard real-time task, at each allocation point ti+1 , we want
to reduce the number of cores mi+1 compared to mi . By Corollary 2, we know
that this reduction of the number of cores lies in Eq. (26). Also, as explained in
Sect. 6.1, the type of execution that federated scheduling does not assume is crit-
ical for reducing the number of cores. Therefore, during the execution, the type
of execution satisfying both of the following conditions can help decide whether
an allocation point should be placed or not.

1.	 During the execution, more than one core is busy.
2.	 During the execution, at least one core is idle.

The more executions belonging to this type, the more the number of cores can
be reduced. With this guideline, the allocation vector can be statically deter-
mined offline or dynamically determined during runtime. A carefully chosen
allocation vector may reduce the number of cores more effectively and incur less
vertex migration overhead. In this paper, for the simplicity of the monitoring
procedure and the scheduler, we do not monitor the above type of execution and
simply check whether the number of cores can be reduced whenever a vertex of
the parallel real-time task completes its execution.

(25)
Δ(w) − Δ(l)

Δ(t) − Δ(l)
≥

vol(G) − w(ti) − len(G) + l(ti)

D − ti − len(G) + l(ti)

(26)Δ(w) ≥ mi(Δ(t) − Δ(l)) + Δ(l)

Δ(w) − Δ(l)

Δ(t) − Δ(l)
≥ mi

314	 Real-Time Systems (2024) 60:291–327

1 3

6.5 � An example

This subsection provides an example to illustrate the usefulness of the allocation
vector interface and the effectiveness of the proposed technique in Sect. 6. For
the parallel real-time task G in Fig. 1a, suppose that the deadline D = 7 . The vol-
ume vol(G) = 10 and the length len(G) = 6 . Figure 9 shows the possible execution
sequences and the computing resources under federated scheduling and the proposed
technique in this section.

In Fig. 9a, by Eq. (2), the allocated number of cores m = ⌈(10 − 6)∕(7 − 6)⌉ = 4 .
So the allocated computing resources to ensure the deadline are m × D = 4 × 7 = 28
(the area covered by red lines). Same as Sect. 5.5, we also suppose that after the
task completes its execution, the remaining computing resources can be used for soft
real-time tasks or the hardware can be placed in low-energy mode to save energy.
The actual computing resources during the execution are 4 × 6 = 24 (the area cov-
ered by blue lines).

In Fig. 9b, suppose that the allocation vector is Φ = {t0 = 2, t1 = 3} . Here, we
statically determine the allocation vector before execution to better explain the
scheduling, not like Sect. 6.4, where the allocation vector is determined dynami-
cally during runtime. At time point 0, same as federated scheduling, the allocated
number of cores m = 4 . At allocation point t0 = 2 , the monitored information is
w(t0) = 4 , l(t0) = 2 . vol(G) − w(t0) = 6 , len(G) − l(t0) = 4 and D − t0 = 5 . By Eq.
(21), the number of cores is adjusted to m0 = ⌈(6 − 4)∕(5 − 4)⌉ = 2 . At allocation
point t1 = 3 , the monitored information is w(t1) = 6 , l(t1) = 2 . vol(G) − w(t1) = 4 ,
len(G) − l(t1) = 4 and D − t1 = 4 . Since vol(G) − w(t1) ≤ len(G) − l(t1) , by Eq.
(20), the number of cores is adjusted to m1 = 1 . Note that in this technique, the
allocated number of cores determined before execution is the same as federated
scheduling. The adjusted numbers of cores (i.e., m0 , m1 ) are computed based on
the information collected during runtime. So the allocated computing resources are
m × D = 4 × 7 = 28 (the area covered by red lines), which is the same as federated
scheduling. The actual computing resources are 4 × 2 + 2 × 1 + 1 × 4 = 14 (the
area covered by blue lines). In this example, compared to federated scheduling, the
technique in Sect. 6 reclaims (24 − 14)∕24 = 41.7% computing resources for soft
real-time tasks (or for placing the hardware in low-energy mode to save energy) and
guarantees that the hard real-time task meets its deadline.

Fig. 9   Comparison of the computing resources between federated scheduling and the method in Sect. 6

315

1 3

Real-Time Systems (2024) 60:291–327	

7 � The proposed approach

The proposed approach employs the two techniques introduced in Sects. 5 and 6 to
reclaim computing resources. Jointly employing these two techniques lies in how to
determine the two interfaces, i.e, the resource distribution and the allocation vector.
The proposed approach is detailed as follows; the scheduling algorithm is always
work-conserving.

1.	 Before the execution, utilize the procedure in Sect. 5.4 to determine the resource
distribution Θ = {(m0, d0),⋯ , (mi∗ , di∗), (mi∗+1 = m(i∗), di∗+1 = d(i∗))}.

2.	 During the execution, all allocation points in the allocation vector are in the last
resource block, i.e., resource block (mi∗+1, di∗+1) . For the execution in resource
blocks (m0, d0),⋯ , (mi∗ , di∗) , the information specified in Sect. 6.2 is monitored.
For the execution in resource block (mi∗+1, di∗+1) , there is an allocation point
whenever a vertex of the parallel real-time task completes its execution.

During the execution, at each allocation point tj+1 , the computations that should
be conducted are: 1) use Eq. (21) to compute the new number of cores mj+1 ; 2) if
mj+1 < mj , reduce the number of cores to mj+1 . We argue that the overhead of the
first part computation (i.e., compute a new mj+1 ) is negligible compared to the over-
head of scheduling decisions, since computing such an equation as Eq. (21) should
be quite fast. And the second part computation (i.e., reduce the number of cores to
mj+1 ) is conducted for no more than the number of cores, because every time the
second part computation is conducted, the number of cores is reduced by at least
one core.

Concerning the hard real-time guarantees, the correctness of the proposed
approach follows directly from Theorems 1 and 3.

The primary cause of the four types of pessimism summarized in Sect. 4 is that
existing approaches rely on static information of the parallel real-time task (i.e., the
graph structure or the worst-case execution time) to allocate computing resources.
So the offline analysis has to reserve overly-pessimistic computing resources for the
worst-case execution scenarios to ensure hard real-time guarantees. In contrast, our
approach combines offline analysis and online monitoring: first the offline analy-
sis reserves enough computing resources for the worst-case execution scenarios to
ensure hard real-time guarantees; second, the online monitoring reclaims comput-
ing resources based on the information from the actual execution scenarios. Take
Type-4 pessimism as an example. Different execution flows of a conditional DAG
task can have quite diversified characterizations, so the offline analysis must reserve
computing resources based on an approximation of the worst-case scenarios. How-
ever, during actual executions, only one execution flow will exist. The online moni-
toring procedure will know such information (for example, know that the task com-
pletes execution earlier in some resource block so that the following resource blocks
can be reclaimed or know the actual w(t), l(t) so that some cores can be released
earlier) and utilize it to reclaim computing resources for soft real-time tasks. In sum-
mary, by combining offline analysis and online monitoring, static information and

316	 Real-Time Systems (2024) 60:291–327

1 3

runtime information are jointly utilized in our approach to address the four types of
pessimism in Sect. 4.

7.1 � Overhead considerations

During runtime, there are two types of overheads in the proposed approach: migra-
tion overhead and monitoring overhead.

Both techniques in Sects. 5 and 6 can incur migration overhead. For the tech-
nique in Sect. 5, different resource blocks may have different numbers of cores.
When the number of cores in the next resource block is smaller than the number
of cores in the current resource block, vertex migration may happen. In the worst
case, the number of migrations is O(mn), where m is the number of cores and n is
the number of resource blocks. In our approach, we generally choose n ≤ 5 , which is
quite small. And in the end of each resource block, the number of migrations may be
far less than m; what’s more, migration can happen only when the number of cores
decreases. For the technique in Sect. 6, the number of migrations is upper bounded
by the number of cores in the last resource block. Note that in our approach, alloca-
tion points are the time points when a vertex completes its execution. Therefore, the
scheduler only tries to decrease the number of cores when a vertex finishes execu-
tion and releases the core that it occupied previously. So in each allocation point,
only when the scheduler tries to decrease two or more cores, migration can hap-
pen; when the scheduler decreases one core, no migration can happen. Based on the
above analysis, we believe that the actual number of migrations during execution is
very small. This part of overhead is evaluated in Sect. 8.

The monitoring overhead is related to the technique in Sect. 6. Our approach
assumes that w(t) and l(t) (see Sect. 6.2) are monitored so that such information can
be utilized for the scheduling decisions. To analyze this part of overhead, the critical
issue is how to monitor w(t) and l(t) or what is the time complexity of such monitor-
ing. Many operating systems provide functions to query the busy time of each core,
which would be sufficient to calculate w(t) and l(t). Nevertheless, it can be difficult
to know the time complexity of such functions in various operating systems. Here,
we outline a software approach to monitor w(t) and l(t), and analyze its complexity.
Since the scheduler puts a vertex to execute on a certain core and a vertex will notify
the scheduler when it finishes execution, the scheduler knows which vertex executes
on which cores at every time point. So the scheduler has sufficient information to
compute w(t) and l(t). During the scheduling, let CUR​ denote the time point when
the current scheduling decision is to be made. The scheduler maintains a variable
TIME and a list whose length is m (m is the number of cores). Variable TIME stores
the time point when the latest scheduling decision was made. Each entry of the list is
for a core and has one bit of information that stores whether the corresponding core
is busy or idle between TIME and CUR​. Note that the state of a core (i.e., busy or
idle) remains unchanged between TIME and CUR​. This is because the state of a core
can only be changed in time points when a scheduling decision happens and TIME
is the time point when the latest scheduling decision was made. At each CUR​, let
m′ denote the number of cores that are busy between TIME and CUR​. Using the list

317

1 3

Real-Time Systems (2024) 60:291–327	

maintained by the scheduler, m′ can be computed by traversing the list. Let m denote
the current total number of cores. We have

And if m′ < m,

else

Finally, after making scheduling decisions, the scheduler updates the list and let
TIME ← CUR . Therefore, with such data structures (i.e., TIME and the list), at each
CUR​, the scheduler can compute w(t) and l(t) incrementally with time complexity
of O(m). We believe that the monitoring with time complexity of O(m) and the cal-
culation of Eq. (21) are quite fast and their overhead is negligible compared to the
overhead of scheduling decisions and vertex migrations.

8 � Evaluation

This section evaluates the proposed approach. The parallel tasks are randomly gen-
erated and simulated to observe the reclaimed computing resources. The following
approaches are compared.

•	 OUR. The approach presented in Sect. 7.
•	 SAN. The approach proposed in (Baruah 2018; Agrawal and Baruah 2018).

As stated in Sect. 2, (Agrawal and Baruah 2018) provides the analysis method to
guarantee that the hard real-time task meets its deadline when dynamically adjusting
the number of cores. Given a parallel task, the worst-case characterizations (i.e., the
volume and length) can be computed. However, since (Agrawal and Baruah 2018)
does not specify how to compute the typical-case characterizations, the allocated
number of cores cannot be decided in the approach of (Agrawal and Baruah 2018).
Given a parallel task, the method of deciding the allocated number of cores is pro-
vided in (Baruah 2018) by offline profiling the response time of the task.

Task Generation. The DAG tasks are generated using the Erdös-Rényi method
(Cordeiro et al. 2010). First, the number of vertices is determined, which is gener-
ated randomly from [20, 100]. Second, a parameter pf called parallelism factor is
determined, which is generated randomly from [0.1, 0.9]. Third, the edges of the
graph are generated as follows: for each pair of vertices, we generate a random
value in [0, 1] and add an edge between this pair of vertices if the generated value
is less than pf  . A larger pf means that there are more edges generated in the graph.
So the larger pf  , the more sequential the graph is. Fourth, the volume of the task
is determined, which is generated randomly from [1000, 3000]. Once the volume

w(CUR) = w(TIME) + m�(CUR − TIME)

l(CUR) = l(TIME) + CUR − TIME

l(CUR) = l(TIME)

318	 Real-Time Systems (2024) 60:291–327

1 3

is determined, the UUnifast method (Bini and Buttazzo 2005) is used to distrib-
ute the volume to WCETs of vertices. Now the DAG is generated, so the length
of the longest path len(G) can be computed. Fifth, the number of cores is deter-
mined, which is generated randomly from [2, 8]. Sixth, by (2), the deadline D is
computed by len(G) + vol(G)−len(G)

m
 , where m is the number of cores. The default set-

tings are summarized as follows. The volume vol(G), the parallelism factor pf  , the
number of cores m, and the vertex number |V| are randomly and uniformly drawn in
[1000, 3000], [0.1, 0.9], [2, 8] and [20, 100], respectively.

Evaluation Method. The compared approaches are based on profiling or moni-
toring the executions of parallel tasks. We simulate the execution of the generated
parallel tasks for profiling or monitoring. During the simulation, the execution time
of vertices is sampled based on its WCET under the Gumbel distribution (Edgar and
Burns 2001). The scheduling algorithm is work-conserving. If there are multiple eli-
gible vertices waiting to be executed, we randomly choose one vertex for execution.
So during different executions of a task, the scheduling decisions can be different.
For each parameter configuration (i.e., each data point in the figures), 1000 simula-
tions are done to compute the average performance for each compared approach. For
the profiling procedure in Sect. 5.4, in Step 1, we evaluate n = 3, 4, 5 ; in Step 2, a
task is profiled 100 times.

Evaluation Metric. The allocated computing resources and the actual computing
resources are used as the metrics to compare the approaches. The allocated com-
puting resources are the computing resources allocated to a parallel task before the
executions to ensure its deadline. This metric can be decided only using the static
information of the parallel task. The actual computing resources are the computing
resources occupied by a parallel task during an execution. The runtime information
of an execution is needed to decide this metric. See the examples in Sects. 5.5 and
6.5 for detailed explanations.

Evaluation Result. Figure 10 reports the allocated computing resources of the
two approaches. For the y-axis, the allocated computing resources are normalized
to the volume of the task with n = 4 . The results with changing the parallelism fac-
tor pf are in Fig. 10a. When pf increases, the task becomes more sequential, which
means that the length of the task increases. Recall that in Sect. 5.4, the task is pro-
filed in [0,D − len(G)] . Since the duration of the time interval for profiling decreases,
the profiling procedure gets less effective. This leads to more allocated computing
resources. Therefore, when pf increases, the allocated computing resources of our
method increase. In Fig. 10b, more computing resources are allocated as the number
of cores increases. This is typical for parallel computing: the more parallel the task
is, the more computing resources are wasted. How to properly utilize the comput-
ing power of multicores and achieve linear speedup is always a major challenge for
parallel computing. Since the offline analysis and online monitoring have nothing to
do with the number of vertices, the two approaches are unrelated to the number of
vertices in the task. Figure 10c also backs this observation. Figure 10 shows that our
approach allocates less computing resources than SAN. This demonstrates that our
profiling method in Sect. 5.4 is superior to the profiling method in (Baruah 2018).

319

1 3

Real-Time Systems (2024) 60:291–327	

Fig. 10   Evaluation with allocated computing resources (n = 4)

Fig. 11   Evaluation with actual computing resources (n = 4)

320	 Real-Time Systems (2024) 60:291–327

1 3

Figure 11 reports the actual computing resources of the two approaches with
n = 4 . For the y-axis, the actual computing resources are normalized to the work-
load of executions. Since during simulations, the execution time is less than the
WCET, the workload of an execution is less than the volume of the task. Reclaiming
computing resources during runtime is the main purpose of this paper. The less the
actual computing resources, the more the reclaimed computing resources. Figure 11
shows similar trends as the corresponding figures in Fig. 10. And the reasons of the
trends in Fig. 11 are the same as the reasons of the corresponding figures in Fig. 10.
In Fig. 11a, when pf becomes larger, our approach is still rather effective, reclaim-
ing significantly more resources than SAN. This is because the method in Sect. 6
can release the number of cores timely when these cores are no longer necessary to
guarantee the deadline. Compared to SAN, our approach can reduce the actual com-
puting resources by up to 48.3% with pf = 0.9 . In Fig. 11c, compared to SAN, our
approach reduces the actual computing resources by 37.8% on average.

Fig. 12   Evaluation with allocated and actual computing resources (n = 3)

321

1 3

Real-Time Systems (2024) 60:291–327	

How the different number of resource blocks in the profiling procedure affects
the performance is also evaluated and the results are reported in Figs. 12 and 13.
The experimental settings are the same as Fig. 10 and Fig. 11 except for the number
of resource blocks n. The evaluation shows that regarding the allocated computing
resources, compared to SAN, the performance improvement of our approach with
n = 3 is smaller than n = 4, 5 . This is because SAN always allocates two resource
blocks. So when n is smaller, our approach is closer to SAN regarding the allocated
computing resources. We observe that regarding the actual computing resources, the
performance improvement of our approach is almost unchanged for different n. This
is mainly because the technique in Sect. 6, which is unrelated to n, has a large influ-
ence on the actual computing resources.

Migration Overheads. Experiments are also done to see how the overhead of our
approach affects the performances. As mentioned in Sect. 7.1, compared to SAN,
the proposed approach has additional migration overhead and monitoring overhead.
Since the effects of overhead can only be measured during runtime, we compare the

Fig. 13   Evaluation with allocated and actual computing resources (n = 5)

322	 Real-Time Systems (2024) 60:291–327

1 3

actual computing resources to evaluate the effects of overhead. The experimental
settings are the same as Fig. 11. For migration overhead, whenever a vertex migra-
tion happens, we add 5% of the WCET of the vertex to the WCET of the vertex
for the simulation. As analyzed in Sect. 7.1, the monitoring overhead is with time
complexity O(m), where m is the number of cores. In our simulation, m ≤ 8 . So the
monitoring overhead should be negligible to the scheduling decisions. What’s more,
it is difficult to decide how such a small overhead can be compared to the WCET of
vertices so that such overhead can be accounted in the simulation as the migration
overhead does. Therefore, in the experiment, we only consider migration overhead.
The resulting figures are almost identical to Fig. 11 and thus not included in the
paper. We observed that the performance decrease of our approach is less than 1%.
Consistent with the analysis in Sect. 7.1, this is because the actual number of migra-
tions is very small during simulations, so the performance of our approach is almost
unaffected by the overhead.

In summary, by fully exploring the ladder-like resource allocation, with main-
taining hard real-time guarantees, our approach can reduce the actual computing
resources by 48.3% at the maximum and by 37.8% on average, significantly reclaim-
ing more computing resources than the approach in (Agrawal and Baruah 2018;
Baruah 2018).

9 � Conclusion

In this paper, to address the resource-wasting problem in federated scheduling, we
propose an approach by offline profiling and online monitoring the executions of
the hard parallel real-time task and dynamically adjusting the allocated number of
cores, thus reclaiming computing resources for soft real-time tasks or placing the
reclaimed computing resources to low-energy mode for saving energy. Experiments
demonstrate that the proposed approach can reclaim significantly more computing
resources than existing approaches while maintaining hard real-time guarantees.
This work only considers the scheduling of a single hard real-time task. In future,
making use of the ladder-like resource allocation, this work can function as a start-
ing point for other research directions, such as mixed-criticality scheduling (since
Sect. 6.1 suggests that the method can release computing resources earlier, thus
making more soft real-time tasks finish before their soft deadlines) or more competi-
tive hard real-time scheduling algorithms (since Sect. 5.1 suggests that two parallel
tasks may share cores to allow more hard real-time tasks schedulable).

Funding  Open access funding provided by The Hong Kong Polytechnic University.

Data availability  The data that support the findings of this study are available on request from the cor-
responding author.

Declarations 

Conflict of interest  The authors have no relevant financial or non-financial interests to disclose. The au-
thors have no conflict of interest to declare that are relevant to the content of this article.

323

1 3

Real-Time Systems (2024) 60:291–327	

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Agrawal K, Baruah S (2018) A measurement-based model for parallel real-time tasks. In: 30th Euromicro
conference on real-time systems (ECRTS 2018), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik

Baruah S (2015a) The federated scheduling of constrained-deadline sporadic DAG task systems. In: 2015
design, automation & test in Europe conference & exhibition (DATE), IEEE, pp 1323–1328

Baruah S (2015b) Federated scheduling of sporadic DAG task systems. In: 2015 IEEE international par-
allel and distributed processing symposium, IEEE, pp 179–186

Baruah S (2015c) The federated scheduling of systems of conditional sporadic DAG tasks. In: Proceed-
ings of the 12th international conference on embedded software, IEEE Press, pp 1–10

Baruah S (2015d) The federated scheduling of systems of conditional sporadic DAG tasks. In: 2015 inter-
national conference on embedded software (EMSOFT), IEEE, pp 1–10

Baruah S (2018) Resource-efficient execution of conditional parallel real-time tasks. In: European confer-
ence on parallel processing, Springer, pp 218–231

Baruah S, Bonifaci V, Marchetti-Spaccamela A (2015) The global EDF scheduling of systems of con-
ditional sporadic DAG tasks. In: 2015 27th Euromicro conference on real-time systems, IEEE, pp
222–231

Bernat G, Colin A, Petters SM (2002) WCET analysis of probabilistic hard real-time systems. In: 23rd
IEEE real-time systems symposium, 2002. RTSS 2002., IEEE, pp 279–288

Bi R, He Q, Sun J, et al (2022) Response time analysis for prioritized DAG task with mutually exclusive
vertices. In: 2022 IEEE real-time systems symposium (RTSS), IEEE, pp 460–473

Bini E, Buttazzo GC (2005) Measuring the performance of schedulability tests. Real-time Syst
30(1–2):129–154

Casini D, Biondi A, Nelissen G, et al (2018) Partitioned fixed-priority scheduling of parallel tasks with-
out preemptions. In: 2018 IEEE real-time systems symposium (RTSS), IEEE, pp 421–433

Chen P, Liu W, Jiang X et al (2019) Timing-anomaly free dynamic scheduling of conditional DAG tasks
on multi-core systems. ACM Trans Embedded Comput Syst (TECS) 18(5s):1–19

Chen P, Liu W, Chen H et al (2020) Reduced worst-case communication latency using single-cycle
multihop traversal network-on-chip. IEEE Trans Comput Aided Design Integr Circuits Syst
40(7):1381–1394

Cordeiro D, Mounié G, Perarnau S, et al (2010) Random graph generation for scheduling simulations.
In: 3rd international ICST conference on simulation tools and techniques (SIMUTools 2010), ICST,
p 10

Dong Z, Liu C (2019) Analysis techniques for supporting hard real-time sporadic gang task systems.
Real-Time Syst 55:641–666

Edgar S, Burns A (2001) Statistical analysis of WCET for scheduling. In: Proceedings 22nd IEEE real-
time systems symposium (RTSS 2001)(Cat. No. 01PR1420), IEEE, pp 215–224

Fonseca J, Nelissen G, Nelis V, et al (2016) Response time analysis of sporadic DAG tasks under parti-
tioned scheduling. In: 2016 11th IEEE symposium on industrial embedded systems (SIES), IEEE,
pp 1–10

Graham RL (1969) Bounds on multiprocessing timing anomalies. SIAM J Appl Math 17(2):416–429
Han M, Guan N, Sun J et al (2019) Response time bounds for typed DAG parallel tasks on heterogeneous

multi-cores. IEEE Trans Parallel Distrib Syst 30(11):2567–2581
He Q, Jiang X, Guan N et al (2019) Intra-task priority assignment in real-time scheduling of DAG tasks

on multi-cores. IEEE Trans Parallel Distrib Syst 30(10):2283–2295

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

324	 Real-Time Systems (2024) 60:291–327

1 3

He Q, Lv M, Guan N (2021) Response time bounds for DAG tasks with arbitrary intra-task priority
assignment. In: 33rd Euromicro conference on real-time systems (ECRTS 2021), Schloss Dagstuhl-
Leibniz-Zentrum für Informatik

He Q, Guan N, Lv M, et al (2022) Bounding the response time of DAG tasks using long paths. In: 2022
IEEE real-time systems symposium (RTSS), IEEE, pp 474–486

He Q, Guan N, Lv M, et al (2023a) On the degree of parallelism in real-time scheduling of DAG tasks.
In: 2023 design, automation & Test in Europe conference & exhibition (DATE), IEEE, pp 1–6

He Q, Guan N, Lv M et al (2023b) The shape of a DAG: bounding the response time using long paths.
Real-Time Syst 2023:1–40

He Q, Sun J, Guan N et al (2023c) Real-time scheduling of conditional DAG tasks with intra-task priority
assignment. IEEE Trans Comput Aided Design Integr Circuits Syst 42(10):3196–3209. https://​doi.​
org/​10.​1109/​TCAD.​2023.​32412​21

Jiang X, Long X, Guan N, et al (2016) On the decomposition-based global EDF scheduling of parallel
real-time tasks. In: 2016 IEEE real-time systems symposium (RTSS), IEEE, pp 237–246

Jiang X, Guan N, Long X, et al (2017) Semi-federated scheduling of parallel real-time tasks on multipro-
cessors. In: 2017 IEEE real-time systems symposium (RTSS), IEEE, pp 80–91

Jiang X, Guan N, Long X et al (2020) Real-time scheduling of parallel tasks with tight deadlines. J Syst
Archit 108:101742

Jiang X, Guan N, Liang H, et al (2021) Virtually-federated scheduling of parallel real-time tasks. In: 2021
IEEE real-time systems symposium (RTSS), IEEE, pp 482–494

Lakshmanan K, Kato S, Rajkumar R (2010) Scheduling parallel real-time tasks on multi-core processors.
In: 2010 31st IEEE real-time systems symposium, IEEE, pp 259–268

Lee S, Lee S, Lee J (2022) Response time analysis for real-time global gang scheduling. In: 2022 IEEE
real-time systems symposium (RTSS), IEEE, pp 92–104

Li J, Agrawal K, Lu C, et al (2013) Analysis of global EDF for parallel tasks. In: 2013 25th Euromicro
conference on real-time systems, IEEE, pp 3–13

Li J, Chen JJ, Agrawal K, et al (2014) Analysis of federated and global scheduling for parallel real-time
tasks. In: 2014 26th Euromicro conference on real-time systems, IEEE, pp 85–96

Li R, Guan N, Jiang X, et al (2022) Worst-case time disparity analysis of message synchronization in ros.
In: 2022 IEEE real-time systems symposium (RTSS), IEEE, pp 40–52

Liang H, Jiang X, Guan N, et al (2023) Response time analysis and optimization of DAG tasks exploit-
ing mutually exclusive execution. In: 2023 60th ACM/IEEE design automation conference (DAC),
IEEE, pp 1–6

Lv M, Peng X, Xie W, et al (2022) Task allocation for real-time earth observation service with leo satel-
lites. In: 2022 IEEE real-time systems symposium (RTSS), IEEE, pp 14–26

Melani A, Bertogna M, Bonifaci V, et al (2015) Response-time analysis of conditional DAG tasks in mul-
tiprocessor systems. In: 2015 27th Euromicro conference on real-time systems, IEEE, pp 211–221

Melani A, Bertogna M, Bonifaci V et al (2016) Schedulability analysis of conditional parallel task graphs
in multicore systems. IEEE Trans Comput 66(2):339–353

Qamhieh M, Fauberteau F, George L, et al (2013) Global EDF scheduling of directed acyclic graphs on
multiprocessor systems. In: Proceedings of the 21st international conference on real-time networks
and systems, pp 287–296

Sun J, Guan N, Wang Y, et al (2017) Real-time scheduling and analysis of OpenMP task systems with
tied tasks. In: 2017 IEEE real-time systems symposium (RTSS), IEEE, pp 92–103

Sun J, Chi Y, Xu T, et al (2020) On the volume calculation for conditional DAG tasks: hardness and
algorithms. In: 2020 design, automation & test in Europe conference & exhibition (DATE), IEEE,
pp 204–209

Sun J, Guan N, Guo Z, et al (2021) Calculating worst-case response time bounds for OpenMP programs
with loop structures. In: 2021 IEEE real-time systems symposium, IEEE, pp 123–135

Sun J, Duan K, Li X, et al (2023) Real-time scheduling of autonomous driving system with guaranteed
timing correctness. In: 2023 IEEE 29th real-time and embedded technology and applications sym-
posium (RTAS), IEEE, pp 185–197

Tang Y, Guan N, Yi W (2022) Real-time task models. Handbook of real-time computing. Springer,
Cham, pp 469–487

Ueter N, Von Der Brüggen G, Chen JJ, et al (2018) Reservation-based federated scheduling for parallel
real-time tasks. In: 2018 IEEE real-time systems symposium (RTSS), IEEE, pp 482–494

Voudouris P, Stenström P, Pathan R (2022) Bounding the execution time of parallel applications on unre-
lated multiprocessors. Real-Time Syst 2022:1–44

https://doi.org/10.1109/TCAD.2023.3241221
https://doi.org/10.1109/TCAD.2023.3241221

325

1 3

Real-Time Systems (2024) 60:291–327	

Zhao S, Dai X, Bate I, et al (2020) DAG scheduling and analysis on multiprocessor systems: Exploita-
tion of parallelism and dependency. In: 2020 IEEE real-time systems symposium (RTSS), IEEE, pp
128–140

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Qingqiang He  is currently a postdoctoral fellow at The Hong Kong
Polytechnic University. He received his Ph.D. degree in computer
science from The Hong Kong Polytechnic University in 2023. His
research interests include real-time scheduling theory and embed-
ded real-time systems. He received the Outstanding Paper Award of
IEEE Real-Time Systems Symposium (RTSS) in 2022.

Yongzheng Sun  obtained his BE degree from Nanjing University of
Science and Technology in 2021 and MSc degree from the Chinese
University of Hong Kong in 2022. He is working as a research assis-
tant with the Hong Kong Polytechnic University. His research inter-
ests include real-time systems and embedded systems.

Xu Jiang  received the BS degree in computer science from North-
western Polytechnical University, China, in 2009, the MS degree in
computer architecture from the Graduate School of the Second
Research Institute of China Aerospace Science and Industry Corpo-
ration, China, in 2012, and the PhD degree from Beihang Univer-
sity, China, in 2018. Currently, he is working with Northeastern
University, China. His research interests include real-time systems,
parallel and distributed systems, and embedded systems.

326	 Real-Time Systems (2024) 60:291–327

1 3

Mingsong Lv  received his Ph.D. degree in computer science from
Northeastern University, China, in 2010. He is currently with the
Hong Kong Polytechnic University. His research interests include
timing analysis of real-time systems and intermittent computing.

Jinkyu Lee  received the BS, MS, and PhD degrees in computer sci-
ence from the Korea Advanced Institute of Science and Technology
(KAIST), Daejeon, South Korea, in 2004, 2006, and 2011, respec-
tively. He is currently an associate professor with the Department of
Computer Science and Engineering, Sungkyunkwan University
(SKKU), Republic of Korea, where he joined in 2014. He has been
a visiting scholar/research fellow with the Department of Electrical
Engineering and Computer Science, University of Michigan, USA
in 2011–2014. His research interests include system design and
analysis with timing guarantees, QoS support, and resource man-
agement in real-time embedded systems, mobile systems, and
cyber-physical systems. He won the Best Student Paper Award from
the 17th IEEE Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS) in 2011, and the Best Paper Award from
33rd IEEE Real-Time Systems Symposium (RTSS) in 2012.

Nan Guan  is currently an associate professor at the Department of
Computer Science, City University of Hong Kong. Dr. Guan
received his BE and MS from Northeastern University, China in
2003 and 2006, respectively, and a Ph.D. from Uppsala University,
Sweden in 2013. Before joining CityU, he worked in The Hong
Kong Polytechnic University and Northeastern University, China.
His research interests include real-time embedded systems and
cyber-physical systems. He received the EDAA Outstanding Disser-
tation Award in 2014, the Best Paper Award of IEEE Real-time Sys-
tems Symposium (RTSS) in 2009, the Best Paper Award of Confer-
ence on Design Automation and Test in Europe (DATE) in 2013.

327

1 3

Real-Time Systems (2024) 60:291–327	

Authors and Affiliations

Qingqiang He1  · Yongzheng Sun1 · Xu Jiang2 · Mingsong Lv1,2 · Jinkyu Lee3 ·
Nan Guan4

 *	 Qingqiang He
	 qiang.he@connect.polyu.hk

	 Yongzheng Sun
	 yongzsun@polyu.edu.hk

	 Xu Jiang
	 jiangxu617@163.com

	 Mingsong Lv
	 mingsong.lyu@polyu.edu.hk

	 Jinkyu Lee
	 jinkyu.lee@skku.edu

	 Nan Guan
	 nanguan@cityu.edu.hk

1	 The Hong Kong Polytechnic University (PolyU), PQ605, 11 Yuk Choi Rd, Hung Hom,
Hong Kong, China

2	 Northeastern University, Shenyang, China
3	 Sungkyunkwan University, Seoul, South Korea
4	 City University of Hong Kong, Kowloon Tong, China

http://orcid.org/0000-0001-5067-8571

	Real-time scheduling for parallel tasks with resource reclamation
	Abstract
	1 Introduction
	2 Related work
	3 System model
	3.1 Task model for the analysis
	3.2 Runtime behavior
	3.3 Task model for the proposed approach

	4 Motivation
	4.1 Discussion on DAG tasks
	4.2 Discussion on conditional DAG tasks
	4.3 Overview of the proposed approach

	5 Reclaiming resources in the beginning
	5.1 Intuition of the technique
	5.2 The scheduling algorithm
	5.3 Schedulability test for hard real-time tasks
	5.4 Design method for soft real-time tasks
	5.5 An example

	6 Reclaiming resources in the ending
	6.1 Intuition of the technique
	6.2 The scheduling algorithm
	6.3 Schedulability test for hard real-time tasks
	6.4 Design method for soft real-time tasks
	6.5 An example

	7 The proposed approach
	7.1 Overhead considerations

	8 Evaluation
	9 Conclusion
	References

