
RT-Blockchain:
Achieving Time-Predictable Transactions

Seunghoon Lee, Sukmin Kang, Seungyeon Cho, Hyunwoo Koo, Sungjae Hwang, Jinkyu Lee∗

Sungkyunkwan University (SKKU), Republic of Korea

{seunghoon.l, sukmin.kang, seungyeoncho, koowoo3, sungjaeh, jinkyu.lee}@skku.edu

Abstract—Although blockchain technology is being increas-
ingly utilized across various fields, the challenge of providing
timing guarantees for transactions remains unmet, which is an
obstacle in implementing blockchain solutions for time-sensitive
applications such as high-frequency trading and real-time pay-
ments. In this paper, we propose the first solution to achieve
a timing guarantee on blockchain. To this end, we raise and
address two issues for timely transactions on a blockchain: (a)
architectural support, and (b) real-time scheduling principles spe-
cialized for blockchain. For (a), we modify an existing blockchain
network, offering an interface to preferentially select the transac-
tions with the earliest deadlines. We then extend the blockchain
network to provide the flexibility of the number of generated
blocks at a single block time. Under such architectural supports,
we achieve (b) with three steps. First, to resolve a discrepancy
between a periodic request of a transaction-generating node
and the corresponding arrival on a block-generating node, we
translate the former into the latter, which eases the modeling of
the transaction load imposed on the blockchain network. Second,
we derive a schedulability condition of the modeled transaction
load, which guarantees no missed deadline for all transactions
under a work-conserving deadline-based scheduling policy. Last,
we develop a lazy scheduling policy and its condition, which
reduces the number of generated blocks without compromising
the degree of timing guarantees for the work-conserving policy.
By implementing RT-blockchain on top of an existing open-
source blockchain project, we demonstrate the effectiveness of
the proposed scheduling principles with architectural supports
in not only ensuring timely transactions but also reducing the
number of generating blocks.

I. INTRODUCTION

Blockchain technology, which started as cryptocurrencies
is being widely used in various digital transactions starting
from Non-fungible tokens (NFTs) that save digital content
to smart contracts which are self-executing contracts wherein
the contractual terms between a buyer and seller are encoded
directly into lines of code [1]. However, blockchain is not
being used in systems that need timing guarantees such as
periodic status-report transactions (mobility as a service) [2],
and time-sensitive economic transactions (payouts based on
asset ownership or actions such as coupons) [3].

Time-predictability (in terms of timing guarantees) in
blockchain systems has not been achieved since (a) the struc-
ture of blockchain does not innately offer a timing guar-
antee and (b) scheduling methodologies specialized for the
blockchain architecture have never been proposed. Blockchain

*Jinkyu Lee is the corresponding author.

assures transactions by joining the block holding the trans-
action to the main chain. Transactions have to be selected
and stored by the node making the block, and the selection
mechanism, in most cases, runs on either first-come-first-serve
or incentive-based algorithms. Thus, transactions can never
be guaranteed to be distributed throughout the network at a
particular time and have to wait until it is selected. Block
time, the interval of blocks being generated, has been reduced,
and block size has been increased from the original Bitcoin
in many blockchain networks to enhance the transaction per
second. Nevertheless, it is important to note that increase in
transaction processing speed does not ensure precise trans-
action timing. Moreover, although there have been ongoing
studies regarding the latency of transactions [4] [5] [6], there
has been a lack of research on scheduling and ensuring the
timely execution of deadline-oriented transactions within the
blockchain system.

To implement a timing guarantee on blockchain, we address
the challenges of (a) and (b), as follows.

A1. We create a blockchain network with an interface sup-
porting transaction timing constraints and flexible block
generation for accommodating more transactions within
a single block time.

A2. We develop novel scheduling principles specialized for
the blockchain network so as to guarantee the timely ex-
ecution of periodic/sporadic transactions without wasting
the blockchain network resources.

Regarding A1, our target network is constructed based on
a well-known blockchain consensus mechanism called Proof
of Stake (PoS). In PoS, users have the option to write high
tipping fees to expedite their transactions; however, bidding
fees can increase indefinitely, leaving users uncertain about
the expected deployment time of their transactions. There are
two main challenges to address (a) under the target network:
first, there is no interface to express and utilize the deadline of
each transaction, and second, increasing the rate of generating
blocks itself cannot guarantee timely execution and incurs
space inefficiency. Increasing block size or reducing block
time can enhance transaction speed, but it comes at the cost
of space efficiency. When fewer transactions are submitted to
the blockchain than anticipated, idle blocks can accumulate,
imposing a burden of storing the entire blockchain (including
the idle blocks) on nodes that participate in the blockchain

92

2023 IEEE Real-Time Systems Symposium (RTSS)

2576-3172/23/$31.00 ©2023 IEEE
DOI 10.1109/RTSS59052.2023.00018

network.
To address the first challenge for (a), we modify the target

network. We allow nodes that send each transaction to put
as input the expected deadline of the transaction. Then, it is
feasible for the transactions with the earliest deadlines to be
preferentially selected from the pool of transactions held by
the block-generating node, while it depends on A2 how to
utilize the feasibility for timing guarantees. For the second
challenge for (a), we extend the target network to provide the
flexibility of making zero to multiple blocks at a single block
time. This method can prevent the generation of empty blocks
and generate blocks as much as possible during block time
depending on the number and size of transactions that are
waiting in the transaction pool.

Meanwhile, addressing (b) via A2 is difficult due to two
challenges. First, the timeline of the transaction request of a
transaction-generating node is different from that of a block-
generating node. Each transaction-generating node’s inter-
request time is not necessarily the same as one block time
(or multiple thereof); even if it is the same, it cannot be
synchronized with arrival on the block-generating node due
to network delay. Second, each transaction cannot be split to
be included in more than one block, which yields an arbitrarily
small utilization of each block for priority-based approaches
and therefore makes it difficult to schedule transactions with-
out violating their timing constraints.

To address the two challenges for (b), we first translate
a periodic/sporadic request of a transaction-generating node,
into a periodic/sporadic arrival on a block-generating node,
which eases the modeling of transaction load imposed on the
blockchain network. We then derive a condition of the modeled
transaction load; we guarantee no missed deadline for all
transactions scheduled by a deadline-based scheduling policy,
as long as the condition is satisfied. Finally, we develop a lazy
deadline-based scheduling policy and its condition, which help
reduce the number of generated blocks by efficiently skipping
the block generation without incurring any missed deadline
for all transactions.

We implemented RT-blockchain to an open-source
blockchain, ran experiments accommodating various user-
level periodic transaction task workloads, and proved that
RT-blockchain meets timing constraints and reduces block
generation by up to 40%, compared to work-conserving
scheduling.

This paper makes the following contributions.
• We raise and address two issues to achieve timing guaran-

tees for blockchain transactions, which is the first attempt.
• We modify the existing blockchain network enabling

deadline-based transaction selection (in Section III) and
extend it to provide the flexibility of the number of
generated blocks at a single block time (in Section V).

• We develop novel scheduling principles that can guaran-
tee the timely execution of periodic/sporadic transactions,
which is the first achievement (in Section IV).

• We develop advanced scheduling methodologies that re-
duce the number of generated blocks without compromis-

ing timing guarantees of transactions (in Section VI).
• We implement the proposed network architecture and

scheduling principles in a real blockchain, and evaluate
their performance (in Section VII).

II. UNDERSTANDING BLOCKCHAIN FOR REAL-TIME

A. Blockchain Networks

Bitcoin [7], the pioneering blockchain technology, operates
as a decentralized peer-to-peer network. Participating nodes
competitively generate blocks to store transactions, receiving
BTC (Bitcoin Cryptocurrency) as incentives. A consensus
mechanism called Proof-of-Work (PoW) [8] is employed to
maintain blockchain integrity. Nodes solve complex puzzles
to propose new blocks, with the first successful node earning
the right to create and append the next block. This resource-
intensive process ensures network security and prevents trans-
action manipulation. BTC rewards incentivize participants,
contributing to network maintenance and stability. However,
the PoW consensus mechanism presents certain drawbacks. Its
computational demands lead to substantial energy consump-
tion, raising concerns about environmental impact. Addition-
ally, as the network scales, transaction validation and consen-
sus times increase, resulting in slower transaction processing.

In response to these challenges, alternative consensus mech-
anisms have emerged, including Proof-of-Stake (PoS) [9],
which Ethereum [10] has transitioned to. PoS relies on valida-
tors who put a certain amount of cryptocurrency as collateral to
create new blocks, eliminating the need for resource-intensive
computations. This approach offers improved energy efficiency
and the potential for faster transaction validation.

B. Applications that Need Timing Guarantees

Safety-critical systems, such as Mobility as a Service
(MaaS) [2] platforms and time-sensitive trade applications,
rely on timing guarantees. Periodic transactions play a vital
role in advancing these applications. In MaaS, fulfilling tim-
ing guarantees ensures efficient transportation coordination,
minimizing waiting times and enhancing platform reliability.
Time-sensitive trade applications, like high-frequency trading
[3], benefit from precise timing guarantees, enabling optimal
strategies and improved profitability. Similarly, domains such
as the monitoring of critical infrastructures [11] necessitate
stringent timing guarantees to underpin real-time decision-
making processes, thereby amplifying safety measures and
mitigating operational disruptions. In parallel, collaborative
coordination applications, like supply chain management [12]
also benefit from timing guarantees, enabling synchronized
activities and optimized resource utilization. Meeting timing
guarantees of periodic transactions in safety-critical systems
and time-sensitive trade applications unlock their maximum
potential, enabling heightened efficiency, reliability, respon-
siveness, and collaborative capabilities to provide users with
superior services and benefits.

93

III. RT-BLOCKCHAIN SYSTEM

In this section, we first explain the difficulties in achieving
timing guarantees on our target blockchain architecture. Based
on the architecture, we design RT-blockchain that offers an
interface to preferentially select transactions by their deadlines.
Also, we explain a timeline for processing transactions on a
RT-blockchain.

A. Timing Guarantee Issue in Blockchain Architecture

Our design is based on a PoS consensus mechanism, known
for energy efficiency and strong security. As a leading platform
for smart contracts, Ethereum, while also using PoS, enables
diverse decentralized applications and services. Users can in-
clude code in their transactions, fostering the adoption of smart
contracts. These self-executing agreements, written as code on
the blockchain, find applications in various fields like DeFi,
supply chain management, voting systems, insurance claims,
and intellectual property rights. Some adhere to predefined
standards like ERC-20 for fungible tokens and ERC-721 for
NFTs on the Ethereum network to ensure interoperability and
interaction with other contracts and systems.

In Ethereum, users have the option to include a tip along
with their transaction submission. This tip is provided to
the block-generating node that includes the transaction in
a block. Consequently, higher tipping prices result in faster
confirmation and execution of the transaction. However, when
multiple users seek to have their transactions executed within
a single block time, the competitive increase in tipping prices
leads to a backlog of transactions in the transaction pool.

In contrast, most private blockchains prioritize transactions
based on a first-in-first-out (FIFO) order within their blocks.
Private chains offer more control over transaction management
since they operate within a single server and do not face
synchronization issues among nodes. However, it is important
to note that ensuring robust timing guarantees in safety-critical
blockchain systems has yet to be thoroughly explored and
implemented.

One of the challenges related to timing guarantees in
blockchain systems is the competitive nature of transaction
prioritization, as seen in public blockchains like Ethereum.
This can result in delays and congestion when users vie for
faster execution by offering higher tipping prices. In contrast,
private blockchains may lack a robust mechanism for ensuring
predictable timing guarantees due to their reliance on a single
server and limited node synchronization.

As blockchain technology continues to evolve, it becomes
crucial to address the challenges of timing guarantees in both
public and private blockchains. This involves exploring new
mechanisms or enhancements to existing protocols to opti-
mize transaction prioritization, reduce congestion, and provide
more reliable timing guarantees, particularly in safety-critical
blockchain applications.

B. RT-Blockchain: Offering Interface for Timely Transactions

We design RT-blockchain, based on the Proof of Stake (PoS)
consensus mechanism, which incorporates a modified interface

Block1 added to the main chain

Block time =

ℎ
ℎ

Block generation time =

Block validation time =

ℎ
Block-generating node

Block-validating node

ℎ
Transaction pool

Earliest deadline first order

Transaction schedule time()
Hash calculation time(ℎ)

Traffic time()

Block

Insert transactions to block

()()

slot

Fig. 1. RT-blockchain architecture with a timeline for processing transactions

that enables the prioritization of transactions with the earliest
deadlines. Figure 1 presents RT-blockchain architecture with
a timeline of processing transactions. In the RT-blockchain
system, a single block is generated and connected to the main
blockchain at regular intervals (called slots), each of whose
duration is the same and called block time (denoted by BT).
The block time is predetermined and can vary depending on
the specific blockchain protocol or cryptocurrency used. All
transactions entering the system are stored in the transaction
pool, and they are ordered based on their respective deadlines,
with the earliest deadline transactions given priority.

Before the start of each slot, a designated node is selected to
create the upcoming block. Once the slot begins, the selected
block-generating node stops accepting additional transactions
into its pool and starts selecting transactions to be included and
then including them in the block. The block header, which
contains information such as the previous block’s hash, a
timestamp, and transaction data, is used to calculate the block
hash. A cryptographic hash function is applied to the block
header data to calculate the block hash. The hash function
employs complex mathematical operations on the input data
to produce a fixed-size output, typically represented as a
hexadecimal string of characters. The generated block hash
ensures the integrity and sequential order of the blocks in the
blockchain. It serves as a unique identifier for the block and
is a crucial component for validation. We call this time that
the block is made, block generation time.

Once the block generation process is completed, the block
is distributed across the network. The verification process
conducted by the validators is crucial for maintaining the
reliability and security of the blockchain. By independently
validating the transactions and verifying the block hash, the
validators ensure that the transactions within the block are le-
gitimate and that the block fits seamlessly into the blockchain’s
sequential order. By following this process for each block time,
the RT-blockchain system creates a robust and trustworthy
ledger of transactions. The interconnection of blocks through
their hash values establishes a tamper-resistant chain, where
any modification or tampering attempts can be easily identified
and rejected. This process, starting from when the block is
distributed to when it is added to the main chain, is defined
as block validation time.

94

So far, we explained generating a block from the block-
generating node’s point of view; we now explain processing
a transaction from the user’s point of view using Figure 1.1

When a user sends a transaction, it is transmitted to the
blockchain network and reaches the transaction pool of the
node responsible for generating blocks. The duration from the
sender to the pool, representing the transaction’s time within
the network, is referred to as traffic time (whose upper bound is
denoted by tft). The transaction then waits in the transaction
pool until the next slot starts. Let SLj denote the jth slot, and
ts(SLj) denote the time instant at which SLj starts. Once block
generation begins at ts(SLj), the node executes the transaction
scheduling algorithm (to be explained in Section IV) and
copies the transactions that have been scheduled into the block.
The time required for a block to be filled with scheduled
transactions is defined as the transaction schedule time (whose
upper bound is denoted by tst). Once the block is filled and
the transactions are finalized, the block generator computes the
hash value of the block by utilizing the previous block’s hash
value and the hash value of the transactions. The time needed
for this calculation is called hash calculation time (whose
upper bound is denoted by hct). Then, an upper bound of
block generation time by a block generating node, denoted by
Cgen, is the sum of tst (time for scheduling transactions) and
hct (time for computing the hash value) as shown in Figure 1.

The generated block is distributed throughout the network
and reaches the local machines of each validator. We also
calculate this distribution process to consume a time duration
upper-bounded by tft. The validating nodes run hash calcula-
tions on the given block to check the validity for at most hct.
Likewise, an upper bound of block validation time by a block
validating node, denoted by Cval, is the sum of tft (network
delay) and hct (time for computing the hash value) as shown
in Figure 1. Therefore, a user’s transaction request arriving in
(ts(SLj−1), t

s(SLj)] (i.e., arriving later than the beginning of
the (j−1)th slot but no later than the beginning of the jth

slot) on a block-generating node can finish its execution no
later than ts(SLj)+Cgen+Cval, if the transaction is included
in the block at the jth slot.

Note that a transaction cannot be split and stored due to the
fundamental design of traditional blockchains. The integrity
of the blockchain depends on the cohesive nature of each
block, where transactions are stored as complete entities, and
the block’s hash is calculated based on the contents of those
transactions. Splitting a transaction would compromise the
integrity of the blockchain, as it would disrupt the interdepen-
dencies among transactions and their cohesive representation
within blocks. Furthermore, the complexity and manageability
of validating transactions would significantly increase if they
were split and stored separately. The fragmented transactions
would need to be linked across different blocks, introducing
complexities in verifying their validity and maintaining con-
sistency within the blockchain.

1In this paper, we will use the term of a transaction-generating node and
that of a user interchangeably.

IV. TIMELY TRANSACTIONS ON RT-BLOCKCHAIN

In this section, we achieve timing guarantees of a set of
periodic/sporadic user-level (i.e., transaction-generating-node-
level) blockchain transaction tasks on a RT-blockchain. To this
end, we first establish the goal and raise challenges for timing
guarantees of a user-level task set. We then define a notion
of a slot-level (i.e., block-generating-node-level) blockchain
transaction task, and translate a user-level task to the corre-
sponding slot-level one without compromising the user-level
timing constraint. Finally, we achieve timing guarantees for
a translated slot-level task set by developing a schedulability
condition under a deadline-based prioritization policy, which
is the first achievement for a blockchain.

A. Blockchain Transactions in Time: Goal and Challenges

According to the timing requirements of transactions pre-
sented in Section II-B, we define a user-level blockchain
transaction task subject to a timing constraint as follows.

Definition 1: We define a periodic/sporadic user-level (i.e.,
transaction-generating-node-level) blockchain transaction task
ηi ∈ η, specified by (Ti, Di, Si), where Ti is the inter-arrival
time (or called period), Di is the relative deadline, and Si is the
maximum transaction size. A user-level blockchain transaction
task ηi(Ti, Di, Si) generates a series of transaction jobs, the
xth of which is denoted by ηi,x. The release times of ηi’s two
consecutive jobs ηi,x and ηi,x+1 are separated by at least Ti.
Once a job ηi,x is released at t, its transaction whose size is at
most Si should be completed no later than t+Di; otherwise,
we express ηi,x misses its deadline.

Note that the relative deadline Di could be smaller than,
equal to, or larger than Ti, depending on the corresponding
user’s requirement.

Recall that a blockchain transaction is regarded as com-
pleted when each block-validating node finishes the vali-
dation process as presented in Section III-B. Therefore, a
user’s transaction request arriving in (ts(SLj−1), t

s(SLj)] on
a block-generating node can finish its execution no later than
ts(SLj) + Cgen + Cval shown in Figure 1, if the transaction
is included in the block at the jth slot.

We define the schedulability of a periodic/sporadic user-
level blockchain transaction task set η as follows.

Definition 2: A periodic/sporadic user-level blockchain
transaction task set η is said to be schedulable, if there is no
single job deadline miss for every legal job series generated
by η.

Using the definitions, we state our goal as follows.

Problem Statement: We develop a deadline-based schedul-
ing algorithm and a schedulability condition for η, which is
scheduled by the scheduling algorithm on a RT-blockchain
system, such that

G1. η is schedulable if η satisfies the schedulability condition
(achieving timing guarantees).

95

Although the parameters for ηi ∈ η look similar to those
of the traditional real-time periodic/sporadic task τi ∈ τ
(specified by Ti, Di and the worst-case execution time),
achieving G1 in the problem statement is totally different from
the case for the traditional real-time periodic/sporadic task
set τ executed on a computing platform due to the following
challenges.
C1. The timeline of each user’s (i.e., transaction-generating

node’s) transaction request is different from that of block
generation. Each user’s inter-request time (the time period
between ηi’s two consecutive job requests) is not neces-
sarily the same as one block time (or multiple thereof);
even if it is the same, the transaction request inter-arrival
time (the time period between ηi’s two consecutive job
arriving in a block-generating node) cannot be synchro-
nized with each user’s inter-request time due to network
delay.

C2. Each transaction cannot be split to be included in more
than one block, which may yield an arbitrarily small
utilization of each block under priority-based approaches.
For example, due to a higher-priority transaction job
whose size is 10% of the block size, a lower-priority one
whose size is 95% of the block size cannot be included
in the same block, yielding 10% utilization of the block
in spite of the total workload of 105%.

To address C1 first, we need to interpret the release time
and the absolute deadline of each user’s transaction job, from
the block-generating node’s point of view.

B. User-level to Slot-level Translation

From the block-generating node’s point of view, we define
a set of sporadic slot-level blockchain transaction task subject
to a timing constraint as follows.

Definition 3: We define a sporadic slot-level blockchain
transaction task ηS

i ∈ ηS, specified by (TS
i , D

S
i , S

S
i , N

S
i),

where TS
i is the inter-arrival slots, DS

i is the slot-unit relative
deadline, SS

i is the maximum transaction size, and NS
i is

the number of transactions of each job of ηS
i . A slot-level

blockchain transaction task ηS
i (T

S
i , D

S
i , S

S
i) generates a series

of transaction jobs, the xth of which is denoted by ηS
i,x. The

ready-to-be-scheduled time instant for ηS
i,x is ts(SLj), (i.e.,

the beginning of the jth slot), if ηS
i,x that arrives in a block-

generating node within the interval later than ts(SLj−1) but no
later than ts(SLj) i.e., the interval of (ts(SLj−1), t

s(SLj)]. The
ready-to-be-scheduled time instants of two consecutive jobs
ηS
i,x and ηS

i,x+1 are separated by at least TS
i slot units. Once

a job ηS
i,x is ready-to-be-scheduled at ts(SLj), there are NS

i

transactions whose size is at most SS
i . Each of them should

be included in any block of SLj , SLj+1, ..., or SLj+DS
i−1,2

without being split to be included in more than one block;
otherwise, we express ηS

i,x misses its deadline.
Note that the slot-unit relative deadline DS

i could be smaller
than, equal to, or larger than TS

i .

2In this case, SL
j+DS

i−1
is the slot-unit absolute deadline.

− <
transaction
(= 4, = 25,)

= 2, = 1, = 1

10 20

Deadline of ,
(= 1, = 2, = , = 3)(1 2 3)
Translation according to ℎ 1

BT = 10

User-level

Slot-level

,
release

, , ,

, release , release
Deadline of ,

,
T

+
300 1st slot 2nd slot 3rd slot

, ,

,

,

Fig. 2. User-level to slot-level translation

For example, when a user sends a transaction (Ti = 4, Di =
25, Si), it arrives at the block-generating node at most after
tft. As illustrated in Figure 2, where the block time BS is 10,
in most cases the release of transactions on the user-level will
not be synchronous with the release of block generation. Thus
we need to translate (Ti, Di, Si) to (TS

i , D
S
i , S

S
i , N

S
i) for the

ease of scheduling multiple transactions to blocks. For this
translation, we first need to consider the factors that influence
the absolute deadline of transaction ηi. Consider the time when
the user releases a transaction at t = 0, the actual time the
block-generating node will receive this transaction on their
pool will be no later than t = tft. Thus, ηi,1 in Figure 2,
although expected for release at the user-level at t = 0, due to
the traffic time (tft), will be assumed to ready-to-be-scheduled
in the beginning of next slot t = ts(SL2) = 10; this is because
it does not arrive at the first slot until the beginning of the
slot t = ts(SL1) = 0. More evidently, transactions ηi,2 and
ηi,3 which were expected to release after t = 0 but before
t = 10 − tft must be released before t = 10. Therefore, we
can translate the transactions ηi,1, ηi,2, and ηi,3 as ηS

i,1 in the
slot-level expression and increase the number of transactions
by NS

i,1 = 3. The earliest-deadline transaction ηi,1 among the
three transactions ηi,1, ηi,2, and ηi,3 should be included in the
block of the second or third slot; since its deadline is between
[20 +Cgen +Cval, 30 +Cgen +Cval), it misses its deadline
if it is included in the block of the fourth or later slot. Since
ηi,1 needs to be included in the block of one of the two slots
(i.e., the second or third slot), its corresponding DS

i,1 = 2.
We then define the schedulability of a set of peri-

odic/sporadic slot-level blockchain transaction tasks ηS, simi-
lar to that of η as follows.

Definition 4: A periodic/sporadic slot-level blockchain
transaction task set ηS is said to be schedulable, if there is no
single job deadline miss for every legal job series generated
by ηS.

Then, we can translate η to ηS, without compromising
timing constraints of every ηi ∈ η. We consider two cases to
derive TS

i and NS
i . If (Ti−tft) ≥ BT holds, we can guarantee

that the period between ηi’s two consecutive jobs’ arrivals in

96

a block-generating node is not larger than (Ti − tft) as long
as the network delay is upper-bounded by tft. Therefore, the
interval-arrival slot units of ηi is upper-bounded by Eq. (3),
and there is at most one job of ηi arriving in a single
slot. Conversely, if (Ti − tft) < BT holds, the number of
transaction jobs of ηi arriving in a block-generating node in a
single slot is upper-bounded by Eq. (4). Using this reasoning,
the following theorem translates η to ηS without compromising
the schedulability of η.

Theorem 1: The schedulability of a periodic/sporadic user-
level blockchain transaction task set η is schedulable on a
RT-blockchain system, if its corresponding periodic/sporadic
slot-level blockchain transaction task set ηS is schedulable,
where parameters of each ηS

i ∈ ηS is set as follows.

DS
i =

⌊Di − tft−Cgen − Cval

BT

⌋
, (1)

SS
i = Si, (2)

If Ti − tft ≥ BT , T S
i =

⌊Ti − tft

BT

⌋
, and NS

i = 1, (3)

If Ti − tft < BT , T S
i = 1, and NS

i =
⌈BT + tft

Ti

⌉
. (4)

Note that if DS
i ≤ 0 holds for any ηi ∈ η, ηS is not

schedulable under any scheduling.
Proof: In any case, the transaction size does not change;

therefore, SS
i = Si holds. To derive DS

i , suppose a job of ηi
experiences the maximum network delay (upper-bounded by
tft) and arrives in a block-generating node right after ts(SLj)
(the beginning of the jth slot), which is the worst-case scenario
as it is ready-to-be-scheduled at ts(SLj+1). In this scenario, if
its absolute deadline is no earlier than ts(SLj+1)+Cgen+Cval

(which is equivalent to Di −BT − tft− Cgen − Cval ≥ 0),
it does not miss its deadline in case that the transaction is
included in the block of the (j + 1)th slot. Therefore, DS

i

is not smaller than
⌊
Di−BT−tft−Cgen−Cval

BT

⌋
+ 1, which is

equivalent to Eq. (1).
To derive TS

i and NS
i , we consider two cases. First, consider

the case of (Ti − tft) ≥ BT . The scenario, where the
inter-arrival time is minimized, occurs when ηi,x experiences
the largest network delay and ηi,x+1 experiences no network
delay, and the inter-arrival time in the scenario is (Ti−tft) by
considering the network delay is no larger than tft. Therefore,
Eq. (3) holds.

Second, consider the case of (Ti−tft) < BT . The scenario,
where the number of jobs of ηi to arrive in a single slot is
maximized, occurs when the first and last jobs of ηi that arrive
in a single slot experience the largest and no network delay,
respectively, which yields Eq. (4), by considering the network
delay is no larger than tft.

Since we derive the smallest possible TS
i and DS

i and the
largest possible NS

i , the theorem holds.

C. Timing Guarantees for RT-Blockchain

Thanks to Theorem 1, it is sufficient to develop a scheduling
algorithm and schedulability analysis for the corresponding ηS

(instead of η) to achieve G1 for η in Section IV-A as follows.

Problem Statement: We develop a deadline-based schedul-
ing algorithm and a schedulability condition for ηS scheduled
by the scheduling algorithm on a RT-blockchain system, such
that G1S is satisfied.
G1S. ηS is schedulable if ηS satisfies the schedulability con-

dition (achieving timing guarantees).

As to the scheduling algorithm for ηS, we apply EDFWC

(Work-Conserving Earliest Deadline First) for a RT-blockchain
system as follows.

Algorithm of EDFWC for ηS with a single block: At every
beginning of each slot (e.g., ts(SLj) for the jth slot), sort all
transactions in the waiting queue by their absolute slot-unit
deadlines. Then, assign each sorted transaction to the block
one by one, until the highest-priority unassigned transaction
in the waiting queue cannot be assigned due to the remaining
portion of the block is smaller than the size of the highest-
priority unassigned transaction.

To develop a schedulability test for ηS under EDFWC, we
define a demand bound function and load for ηS

i , modified by
those for the traditional real-time periodic/sporadic task [13].

Definition 5: Let DBF(ηS
i , q) denote the demand bound

function for a slot-level blockchain transaction task ηS
i ∈ ηS

during q consecutive slots (where q = 1, 2, 3, ...), defined by

DBF(ηS
i , q) = max

(
0,

(⌊
q −DS

i

T S
i

⌋
+ 1

)
· S

S
i ·NS

i

BS

)
. (5)

Definition 6: Let LOAD(ηS) denote the maximum of the
sum of all DBF(ηS

i , q) for ηS
i ∈ ηi divided by the number of

consecutive slots q, which is defined by

LOAD(ηS) = max
q=1,2,3,...

∑
ηS
i∈ηS DBF(η

S
i , q)

q
. (6)

Assuming the system starts the first slot among the con-
secutive q slots, the meaning of DBF(ηS

i , q) is the total size
of transaction jobs of ηS

i normalized by the block size that
should be handled during q slots, and that of LOAD(ηS) is the
maximum of the total size of transaction jobs of every ηS

i ∈ ηi
normalized by the number of consecutive slots q.

If we consider the analogy between DBF(ηS
i , q) and that

for the traditional real-time periodic/sporadic task, one may
think that LOAD(ηS) ≤ 1.0 could be a schedulability condi-
tion for ηS; however, this is wrong due to C2 presented in
Section IV-A. By addressing C2, we develop a schedulability
condition for ηS, as follows.

Theorem 2: A set of periodic/sporadic slot-level blockchain
transaction tasks ηS is schedulable by EDFWC on a RT-
blockchain system, if the following condition holds.

LOAD(ηS) ≤ 1.0− max
ηi∈ηS

SS
i

BS
(7)

97

Proof: First, we prove that in any slot, if the sum of
the size of transactions in the waiting queue is larger than
BS · (1.0 − maxηi∈ηS

SS
i

BS

)
, the block can include a set of

transactions whose size summation is at least BS · (1.0 −
maxηi∈ηS

SS
i

BS

)
. Suppose that the statement is wrong. Then,

there exists a job that cannot be included in the block. Since
the block has at least BS · maxηi∈ηS

SS
i

BS amount remaining
space, this violates the policy of EDFWC.

Second, using the property, the remaining proof is similar
to demand-bound-function-based EDF schedulability analysis
for the traditional real-time periodic/sporadic tasks [13] as
follows. Suppose that there exists a deadline miss of a trans-
action of ηi,x at the nth slot. Let n0 (≤ n) denote the largest
index of the slot, such that (i) BS · (1.0 − maxηi∈ηS

SS
i

BS

)

is strictly larger than the sum of the size of transactions
whose slot-unit absolute deadline is no later than that of the
transaction of ηi,x in the block of (n0 − 1)th slot while (ii)
BS · (1.0−maxηi∈ηS

SS
i

BS

)
is no larger than that in the block

of nth
0 slot. The first property we proved implies that there

is no job whose release slot index is n0 − 1 or smaller, but
is not included in any block until the beginning of the nth

0

slot. Therefore, BS · ∑ηS
i∈ηS DBF(ηS

i , n − n0 + 1) is the
largest possible sum of the size of transactions whose slot-
unit absolute deadline is no later than that of ηi,x. Also, by the
definition of n0 and n, (n−n0+1)·BS ·(1.0−maxηi∈ηS

SS
i

BS

)

is a lower-bound of the sum of the size of transactions whose
slot-unit absolute deadline is no later than that of ηi,x included
in the block of either nth

0 , (n0 + 1)th, ..., or nth slot. This
contradicts Eq. (7).

V. MULTI-BLOCK RT-BLOCKCHAIN SYSTEM DESIGN

Based on raising scalability issues in Blockchain, this sec-
tion designs multi-block RT-blockchain that offers the flexibil-
ity of the number of generated blocks at a single block time.
The flexibility offers the opportunity to accommodate more
transactions subject to timing constraints without wasting the
blockchain network resources, to be addressed in Section VI.

A. Scalability Issue in Blockchain

In most blockchain systems, such as Ethereum, a single
fixed-sized block is generated at regular intervals, regardless of
the number of transactions waiting in the transaction pool. This
approach can lead to the creation of empty blocks when no
transactions are submitted during a block time. Empty blocks
are problematic as they consume computational resources and
storage space without contributing to transaction processing. A
notable example illustrating the impact of transaction conges-
tion is the case of Cryptokitties, an NFT [14] application on
the Ethereum network. The surge in Cryptokitties transactions
resulted in significantly lower transaction speeds and a sub-
stantial number of pending transactions in the pool, reaching
up to 20,000 to 25,000. This highlighted the blockchain com-
munity’s emphasis on enhancing transaction speed, measured
in transactions per second, to eliminate delays.

To address scalability concerns and enhance transaction
throughput, blockchain systems employ various solutions [15].
Increasing the block size allows more transactions to be
included in each block, accommodating a higher volume of
transactions. Similarly, reducing the block time enables more
frequent block creation within a given time period. These
approaches aim to improve transaction speed and alleviate con-
gestion. However, they also face trade-offs when the expected
transaction volume is not met, leading to the generation of
empty blocks. To further enhance scalability, alternative ideas
such as sharding [16] and off-chain transactions are being stud-
ied. Sharding involves dividing the blockchain network into
smaller partitions called shards, enabling parallel processing
of transactions and increasing overall throughput and capacity.
Off-chain transactions, facilitated by techniques like payment
channels (e.g., the Lightning Network [17]) and state channels,
move certain transactions off the main blockchain, reducing
on-chain load and congestion. Layer 2 solutions [18] provide
additional layers on top of the main blockchain, enabling off-
chain transaction processing while leveraging the security of
the underlying blockchain. Sidechains [19], Plasma [20], and
Rollups [21] are examples of layer 2 protocols that can handle
a significant number of transactions off-chain, periodically
settling them on the main chain to improve scalability while
maintaining security. However, it is important to note that these
methods do not directly address the resource-wasting problem
by empty block caused by the lack of anticipated transaction
volume. Further research and development are needed to
tackle this specific issue and optimize blockchain systems for
efficient resource utilization and transaction processing.

B. Design of Multi-Block RT-Blockchain

On top of RT-Blockchain explained in Section III-B, we
design an architecture that generates multiple blocks per block
time to enhance the scalability of the blockchain system while
preventing the generation of empty blocks. To distinguish, we
call this a multi-block RT-blockchain, while the previous one
is called a single-block RT-blockchain. Figure 3 presents archi-
tecture and timeline of multi-block RT-blockchain. Every slot,
when the block-generating node checks the transaction pool,
it decides how many blocks it should generate on that single
slot within a predefined threshold of the maximum number of
generating blocks in each slot (denoted by m). When a block
is made, it is deployed directly to the network for validation.
Due to the flexibility of a number of generated blocks, no
empty blocks are made, and the trade-off between transaction
speed and waste of computational space is alleviated. Our
architecture addresses scalability challenges in the blockchain
system by generating multiple blocks per block time. Unlike
traditional blockchain systems, our architecture allows the
block-generating node to determine the number of blocks to
generate during each block time based on the transactions in
the pool. This approach ensures that there are no empty blocks
generated, eliminating the inefficiency associated with wasted
computational resources and storage space.

98

′
ℎ

ℎ
Block generation time = ×

′ ℎ
Block-generating node

Block-validating node

ℎ

Transaction pool

Earliest deadline first order

Transaction schedule time()
Hash calculation time(ℎ)

Traffic time()
Blocks

Calculate the number of
blocks to be generated

&
Schedules tasks into blocks

ℎ ℎ Traffic tim
Block time =

Block1 added to the main chain

ℎ ℎ
Block validation time = ×

slot

() ()

Fig. 3. Architecture and timeline of multi-block RT-blockchain

In the multi-block RT-blockchain architecture, when each
block is created at t (e.g., ts(SLj)+ tst′+hct in Figure 3 for
the first block of the jth slot), it immediately starts propagating
to the block-validating node without waiting for creating the
next blocks in the same slot. Thereby, the validation of the
first block generated in the jth slot is finished no later than
ts(SLj)+tst′+hct+tft+hct) shown in Figure 3 as “Block1
added to the main chain”. This mechanism ensures a seamless
and efficient transaction processing flow. By dynamically
adjusting the number of blocks generated per block time,
we strike a balance between transaction speed and resource
utilization, optimizing the system for enhanced scalability.
By preventing the generation of empty blocks, our architec-
ture maximizes the usage of each block, effectively utilizing
computational resources and storage space. This approach
significantly improves the efficiency of the blockchain system
and minimizes any potential waste in the blockchain system
that occurs due to idle blocks.

The node generating the block first calculates how many
blocks will be needed to fit the transaction in the pool.
Then the node stores transactions sequentially in each block
while keeping the bound that will be explained in Section
6. Considering the transaction schedule time for m blocks
(whose upper-bound is denoted by tst′) can be larger than that
for a single-block RT-blockchain for one block (whose upper-
bounded is denoted by tst), we assume that tst′ ≤ m · tst,
implying block generation time for a m-block RT-blockchain
is upper-bounded by tst′ + m · hct ≤ m · (tst + hct) =
m · Cgen. Also, block validation time is upper-bounded by
m ·Cval = m ·(tft+hct). Therefore, any transaction included
in one of the m blocks at the jth slot is finished no later than
ts(SLj) +m · Cgen +m · Cval.

VI. ACHIEVING TIMING GUARANTEES AND RESOURCE
EFFICIENCY ON MULTI-BLOCK RT-BLOCKCHAIN

Extending the results of timing guarantees on a single-
block RT-blockchain in Section IV, we first achieve timing
guarantees on a multi-block RT-blockchain. Then, we address

the issue of resource efficiency (i.e., reducing the number of
generated blocks) without compromising timing guarantees.
To this end, we develop a lazy scheduling algorithm that safely
delays transactions to some later blocks, exploit it to fully
utilize the blocks inevitably generated to avoid a deadline
miss, and develop a schedulability condition under the lazy
algorithm, which is also the first attempt that address both
timing guarantees and resource efficiency for a blockchain.

A. Timing Guarantees for Multi-Block RT-Blockchain
To provide timing guarantees for a user-level blockchain

transaction task set η executed on a multi-block blockchain
system, we also translate η into ηS by applying a similar
approach to Theorem 1 as follows; the only difference is DS

i .

Theorem 3: The schedulability of a periodic/sporadic user-
level block-chain transaction task set ηS is schedulable on
a m-block blockchain system, if its corresponding peri-
odic/sporadic slot-level block-chain transaction task set ηS is
schedulable, where DS

i of each ηS
i is set to Eq. (8) and other

parameters are set to Eqs. (2), (3) and (4) in Theorem 1.

DS
i =

⌊Di − tft−m · Cgen −m · Cval)

BT

⌋
(8)

Note that if DS
i ≤ 0 holds for any ηi ∈ η, ηS is not

schedulable under any scheduling.
Proof: The proof is the same as that of Theorem 1, except

considering a transaction job included in the mth block in the
jth slot is completed no later than ts(SLj)+m·Cgen+m·Cval

instead of ts(SLj) + Cgen + Cval, which changes DS
i .

Once η is translated to ηS by Theorem 3, our goal
is to develop a deadline-based scheduling algorithm and a
schedulability condition for ηS scheduled by the scheduling
algorithm on a multi-block blockchain system, such that G1S

in Section IV-C holds.
When it comes to the scheduling algorithm, we also apply

EDFWC, generalized for m blocks (instead of a single block)
to be supplied.

Algorithm of EDFWC for ηS with m blocks: At every begin-
ning of each slot (i.e., ts(SLj)), sort all transactions in the
waiting queue by their absolute slot-unit deadlines. Then,
assign each sorted transaction to one of the m blocks one
by one using the first-fit policy, until the highest-priority
unassigned transaction in the waiting queue cannot be assigned
to any of the m blocks due to the remaining portion of each
of the m blocks is smaller than the size of the highest-priority
unassigned transaction.

Then, the schedulability analysis for the single-block RT-
blockchain in Theorem 2 is generalized for the multi-block
RT-blockchain as follows.

Theorem 4: A set of periodic/sporadic slot-level blockchain
transaction tasks ηS is schedulable by EDFWC on a m-block
blockchain system, if the following condition holds.

LOAD(ηS) ≤ LOAD∗(ηS), (9)

99

where LOAD∗(ηS) = m ·
(
1.0− max

ηi∈ηS

SS
i

BS

)
. (10)

Proof: The proof holds by that of Theorem 2 by sub-
stituting

(
1.0−maxηi∈ηS

SS
i

BS

)
by m · (1.0−maxηi∈ηS

SS
i

BS

)
.

However, the load upper-bound for Theorem 4 is pessimistic
when

(
1.0 − maxηi∈ηS

SS
i

BS

)
is small. We can improve the

upper-bound as follows.

Theorem 5: A set of periodic/sporadic slot-level blockchain
transaction tasks ηS is schedulable by EDFWC on a m-block
blockchain system, if the following condition holds.

LOAD(ηS) ≤ LOAD∗∗(ηS), (11)

where LOAD∗∗(ηS) =max

(
1

2
, 1.0− max

ηi∈ηS

SS
i

BS

)
· (m− 1)

+

(
1.0− max

ηi∈ηS

SS
i

BS

)
. (12)

Proof: Since Theorem 5 is equivalent to Theorem 4 in
case of

(
1.0 − maxηi∈ηS

SS
i

BS

) ≥ 0.5, we prove the case for
(
1.0−maxηi∈ηS

SS
i

BS

)
< 0.5.

Applying the same proof technique as Theorem 2, it suf-
fices to prove the following: in any slot, if the sum of
the size of transactions in the waiting queue is larger than
BS · LOAD∗∗(ηS), the block can include a set of transactions
whose size summation is at least BS · LOAD∗∗(ηS) without
violating the priority of transactions (determined by their
deadlines).

Suppose that there are at least two blocks, each of which is
occupied no larger than 50% (i.e., less than 1

2 ·BS amount of
the total size of transactions included). Then, it immediately
contradicts the first-fit policy in EDFWC; in other words, all
the transactions in the two blocks should be included in one
of the blocks. Therefore, there is at most one block that is
occupied no larger than 50%. If there is no such block, the
sum of the size of transactions in the m blocks is no smaller
than BS ·m2 , which is larger than BS ·LOAD∗∗(ηS). Therefore,
the remaining proof is to consider the case of the existence
of only one block that is occupied no larger than 50%. If
the sum of the size of transactions in the block is small than(
1.0−maxηi∈ηS

SS
i

BS

)
, it violates the policy of EDFWC (by the

same proof as the first part of Theorem 2). Otherwise, the sum
of the size of transactions in the m blocks is no smaller than
BS · LOAD∗∗(ηS). This proves the theorem.

Since no scheduler can make ηS schedulable if LOAD(ηS) >
m, the resource augmentation bound for EDFWC on a multi-
block RT-blockchain is

m

1
2 ·m+ 1

2−max
ηi∈ηS

SS
i

BS

= 2 +
1−2·max

ηi∈ηS
SS
i

BS

1
2 ·m+ 1

2−max
ηi∈ηS

SS
i

BS

,

which converges to 2 with an arbitrary large m.

B. Achieving Resource Efficiency without Compromising Tim-
ing Guarantees for Multi-Block RT-Blockchain

Now, we also consider the resource efficiency for transac-
tions on a multi-block RT-Blockchain, as follows.

Problem Statement: We develop a deadline-based schedul-
ing algorithm and a schedulability condition for ηS scheduled
by the scheduling algorithm on a multi-block blockchain
system, such that G1S in Section IV-C and G2S are satisfied:
G2S. The number of generated blocks is minimized (achieving

resource efficiency).

While applying EDFWC associated with Theorems 4 and 5
can achieve G1S, but it is difficult to achieve G2S. Suppose
that the highest-priority unassigned transaction job in the
waiting queue is not included in one of the m blocks, even
though its transaction size is not larger than the unoccupied
portion of one of the m blocks (i.e., non-work-conserving
deviated from EDFWC); then, the theorems do not necessarily
guarantee schedulability. This necessitates a mechanism that
safely delays transaction jobs to some blocks in later slots,
without compromising the schedulability; then, the mechanism
helps achieve G2S whenever there exists a block whose
utilization is low under EDFWC.

To this end, we develop a lazy algorithm called EDFLazy(r)
as follows, where r is a positive rational number less than m.

Algorithm of EDFLazy(r) for ηS with m blocks: At every
beginning of each slot (i.e., ts(SLj)), sort all transactions in
the waiting queue by their absolute slot-unit deadlines. Then,
assign each sorted transaction to one of the m blocks one
by one using the first-fit policy, until the sum of SS

i

BS for
all assigned transactions is no smaller than r (note that the
transaction job which makes the sum no smaller than r is also
included in one of the m blocks). Let m′ denote the number
of blocks occupied by at least one transaction so far. We apply
EDFWC for the remaining unassigned transactions as if we have
only the m′ blocks instead of m.

Then, we derive the same schedulability condition for
EDFLazy(r) as that for EDFWC, as follows.

Theorem 6: A set of periodic/sporadic slot-level blockchain
transaction tasks ηS is schedulable by EDFLazy(LOAD(ηS))
on a m-block blockchain system, if Eq. (13) holds.

LOAD(ηS) ≤ LOAD∗∗(ηS), (13)

where LOAD∗∗(ηS) is defined in Eq. (12).
Proof: Applying the same proof technique as Theorem 2,

it suffices to prove the following: in any slot, if the sum of the
size of transactions in the waiting queue is larger than BS ·
LOAD(ηS), the block can include a set of transactions whose
size summation is at least BS · LOAD(ηS) without violating
the priority of transactions (determined by their deadlines).

Since the operation of EDFLazy(LOAD(ηS)) is exactly the
same as that of EDFWC until the m or smaller blocks include
a set of earliest-deadline transactions whose size summation

100

is barely no smaller than BS ·LOAD(ηS), the remaining proof
is similar to that of Theorem 5,

By its design and Theorem 6, EDFLazy(LOAD(ηS)) is ca-
pable of taking both timing guarantees and resource efficiency
into consideration. For the former, it provides offline timing
guarantees for every job invoked by ηS if LOAD(ηS) ≤
LOAD(ηS) holds, which is the same degree of timing guar-
antees as EDFWC. For the latter, it fully utilizes the blocks
that should be generated to manage the minimum workload of
transaction jobs relevant to timing guarantees. While achieving
the former is quantitatively demonstrated by Theorem 6,
achieving the latter will be demonstrated in Section VII using
real experiments.

VII. IMPLEMENTATION AND EVALUATION

Implementation. Our RT-Blockchain system implementa-
tion is built on Turtlecoin [22], a commercially available and
highly extensible blockchain platform. We integrated the PoS
consensus mechanism seamlessly into our system. Addition-
ally, we introduced user-defined periods and deadlines for
each transaction, allowing users to customize these parameters
according to their specific requirements. Nodes are organized
into a pool of validators, and the block-generating node is
randomly selected during each block time. To align with
Ethereum, we set the block time to BT = 12 seconds. The
size of a single block is set to BS = 100K bytes. Within the
p2p network, nodes continuously monitor each other at regular
intervals to stay updated on new blocks and transactions. If a
block-validator’s hash calculation does not match that of a new
block, the block is rejected from their chain. Final acceptance
of a block occurs when a majority (66%) of validators have
included the block in their main chain.

The transaction pool was structured as a multi-container sys-
tem, organized by various indexes enabling sorting based on
deadline or time of arrival. At regular intervals corresponding
to the block time, the block-generating node selected transac-
tions from the transaction pool to construct blocks, following
predefined scheduling rules: FIFO that is the baseline used
in most blockchain systems, EDFWC in Section VI-A, and
EDFLazy in Section VI-B. The block’s hash was computed
using the secure SHA-256 (Secure Hash Algorithm 256-bit)
algorithm, stored, and then distributed to other nodes.

Case Study. To check the correctness of our multi-block RT-
blockchain and investigate its run-time behaviors, we set up the
following experimental environments. As the testing environ-
ment, we fix the maximum number of generated blocks per slot
to 8 and execute for 100 slot units. For each set of slot-level
transaction tasks ηS to be generated, TS

i is uniformly selected
in [1, 5] (integer), DS

i is uniformly selected in [1, 10] (integer),
and NS

i is uniformly selected in [1, 5] (integer) if TS
i = 1

(otherwise, NS
i = 1). To investigate how transaction size and

number of transactions affect the performance, we generate
two types of transaction sets, called Type-A and Type-B. For
Type-A, LOAD(ηS) for each ηS changes according to the
transaction size. Initially, SS

i for each ηS
i ∈ ηS is uniformly

(a) Type-A (b) Type-B

Fig. 4. The number of generated blocks by FIFO, subtracted by that by
EDFLazy (presented by grey bar), and the number of generated blocks by
EDFWC, subtracted by that by EDFLazy (presented by red bar)

distributed between 0 and 0.1·BS such that LOAD(ηS) for ηS

is close to 1.125. We increase SS
i by multiplying 2, 3, and 4

on SS
i to meet each option of

(
maxηi∈ηS SS

i

)
and generate

ten slot-level transaction sets for each options 0.2·BS, 0.3·BS
and 0.4·BS such that LOAD(ηS) is close to 2.25, 3.375 and
4.5, respectively. We then construct a user-level transaction
task set η from the generated transaction sets corresponding
to ηS by Theorem 3, such that each of Ti and Di for ηi ∈ η
is minimized and each of Ni for ηi ∈ η is maximized.

For Type-B, LOAD(ηS) for each ηS is altered by the
number of transactions, where the initial option is set to(
maxηi∈ηS SS

i

)
= 0.4·BS and LOAD(ηS) ≈ 1.125. The

number of transaction tasks in each ηS is n-fold increased
where n is 2, 3, and 4, such that LOAD(ηS) is close to 2.25,
3.375, and 4.5, respectively. Each user-level transaction task
set is constructed alike the corresponding ηS in Type-A.

We have two important observations from Type-A and
Type-B scheduled by FIFO, EDFWC and EDFLazy on RT-
Blockchain. First, we observe that there is no transaction
with a missed deadline under EDFWC and EDFLazy. This
is the expected result as all the task sets tested satisfy the
schedulability condition in Theorems 5 and 6.

Second, EDFLazy reduces the number of generated blocks
in most cases compared to FIFO, as depicted in Figure 4; later
in this section, we will explain why the decrease is in “most”
cases rather than “all” cases. As shown in Figure 4(a), for
transaction sets with similar LOAD(ηS) belonging to Type-A,
the average decrease in the number of generated blocks by
EDFLazy compared to FIFO is -1.9, -0.2, 11, and 10.7, respec-
tively each listed in the ascending order of LOAD(ηS) chosen.
When it comes to Type-B illustrated in Figure 4(b), the average
decrease is 4.2, 7.2, 11.6, and 7.8, respectively. As observed,
neither the increase in the size of transactions (according to
Type-A) nor the number of transactions (according to Type-B)
has a strong relationship with the performance of EDFLazy

in terms of reducing the number of generated blocks. Note
that since both FIFO and EDFWC are work-conserving, the
difference between the number of blocks generated by FIFO
and EDFWC solely comes from the bin packing order of
transactions; therefore, the difference (represented as the gap
between the grey and red bar for each LOAD in Figure 4) is not

101

(a) Type-A vs. Type-A-H (b) Type-B vs. Type-B-H

Fig. 5. The number of generated blocks by FIFO, subtracted by that by
EDFLazy

as significant as the difference between FIFO and EDFLazy.
We further examine which cases might affect the perfor-

mance of (i.e., the number of generated blocks reduced by)
EDFLazy the most. Since EDFLazy is made to handle issues
of the inefficiency of space that occurs when blocks are
generated to fit transactions in blocks at the moment, we
generate cases where the transaction periods are harmonic.
Specifically, we alter TS

i to 1, 3, and 9 so that a bottleneck
is more likely to occur in the blockchain system, generating
transaction sets Type-A-H and Type-B-H corresponding to
Type-A and Type-B, respectively (where H means Harmonic-
period). As illustrated in Figure 5, the sets of harmonic-
period transactions (i.e., Type-A-H and Type-B-H) do not
consistently lead to a reduction in the number of generated
blocks when compared to sets of random-period transactions
(i.e., Type-A and Type-B). Hence, asserting the superiority
of EDFLazy in scenarios involving harmonic transaction sets
becomes challenging. This underscores that the transaction
set’s period is not the sole variable influencing performance.

With this insight, we design transaction sets to an extent
where EDFLazy demonstrates exceptional performance (in
terms of reducing the number of generated blocks) increase.
In FIFO and EDFWC, since blocks must be generated to fit all
transactions that are released during every block time, it tends
to become inefficient when an extra block is made to fit in
a single transaction. In Figure 6, we formulate a transaction
set with LOAD = 0.9, consisting of six Transaction A (TS

i =
3, DS

i = 3, SS
i = 0.3 · BS,NS

i = 1) and one Transaction B
(TS

i = 1, DS
i = 1, SS

i = 0.3 · BS,NS
i = 1). When scheduled

with FIFO (as well as EDFWC), three blocks contain all seven
transactions during the first slot. Two blocks are filled with
three transactions with an idle space of 0.1·BS and one block
is made containing a single transaction, utilizing only 0.3·BS
of space. Additionally, a block utilizing only 0.3·BS of space
is made during the second and third slot units. On the other
hand, in the case of EDFLazy, transactions are pushed to the
next slots to fully use the empty space that could occur in
the next slot units, and hence only one block (because of
3 · 0.3 = LOAD = 0.9 ≤ 1.0) is made in every slot. In
this scenario according to the point where every transaction
is 0.3 · BS and LOAD ≤ 1.0, EDFLazy outperforms FIFO
(as well as EDFWC) by 40 percent in terms of the number of

Fig. 6. Block generation behaviors by FIFO, EDFWC and EDFLazy

generated blocks, i.e., 5 blocks generated by FIFO versus 3
blocks generated by EDFLazy, per every 3 slot units.

However, when the number of transactions for this specific
transaction set is tripled (i.e., 18 Transaction A and 3 Trans-
action B), such that 21, 3, and 3 blocks each of whose size
is 0.3·BS are released during the 0th, 1st, and 2nd slot, FIFO
and EDFLazy make an equal amount of blocks. FIFO (as well
as EDFWC) makes 7, 1, and 1 blocks which is a total of 9
blocks for three slot units, and EDFLazy generates 3 blocks
for every slot unit which in every three slot units is the same
as FIFO. Hence, the augmentation in performance for EDFLazy

is not solely contingent upon the quantity, dimension or period
of transactions, or the value attributed to LOAD. As EDFLazy

postpones transactions to an extent where it is stored in a block
at the latest slot-unit while keeping the deadline, there are
cases where this method negatively affects the performance
in terms of the number of generated blocks reduced. This
observation is further substantiated by the data illustrated in
Figures 4 and 5, e.g., the case for Type-A with LOAD = 1.125.

Evaluation of Schedulability Tests. We evaluate the ef-
fectiveness of the proposed schedulability tests for peri-
odic/sporadic slot-level blockchain transaction tasks ηS: (i)
Theorem 4, denoted by LOAD*, and (ii) its improved version
Theorem 5 (or equivalently Theorem 6), denoted by LOAD**.
We target the same multi-block RT-blockchain as that for the
case study, in which the block time is BT = 12 seconds
and the number of maximum generating blocks in a slot
is m = 8. We consider the following three parameters of
slot-level transaction task sets: (P1) the number of slot-level
transaction tasks in each task set, determined as 4, 6, 8, 10,
or 12, (P2) the maximum transaction size within each task set(
maxηi∈ηS SS

i

)
, determined as 0.3·BS, 0.6·BS, or 0.9·BS,

and (P3) the range of LOAD(ηS), determined as [0.0m, 0.2m),
[0.2m, 0.4m), [0.4m, 0.6m) or [0.6m, 0.8m). For each combi-
nation of P1, P2 and P3, we randomly generate 200 slot-level
transaction task sets, yielding 200 ·5 ·3 ·4 = 12, 000 slot-level
transaction task sets in total.

Figure 7(a), (b), and (c) illustrates the ratio of task sets
schedulable by LOAD* and LOAD** according to P1, P2 and
P3, respectively. While the schedulable ratio decreases as
the number of tasks in each task increases shown in Fig-
ure 7(a), LOAD** guarantees 17.8–25.1% more schedulability
of transactions compared to LOAD*. In Figure 7(b), we observe
that the schedulable ratio decreases but the relative schedu-

102

0

20

40

60

80

100

4 6 8 10 12

(%)

(a) x: # of tasks

0

20

40

60

80

100

0.3 BS 0.6 BS 0.9 BS

LOAD* LOAD**(%)

(b) x: max. trans. size

0

20

40

60

80

100

~0.2m ~0.4m ~0.6m ~0.8m

(%)

(c) x: LOAD(ηS)

Fig. 7. The ratio of task sets schedulable by LOAD* and LOAD**

lability performance of LOAD** over LOAD* increases up to
225.8%, as the maximum transaction size within each task
set increases. As we expected, the schedulable ratio decreases
as LOAD(ηS) increases shown in Figure 7(c). However, the
relative performance of LOAD** over LOAD* is maximized
when LOAD(ηS) is in [0.2m, 0.4m) and [0.4m, 0.6m) (i.e.,
138.2% and 141.3%, respectively); this is because the timing
guarantees for the case of [0.0m, 0.2m) and [0.6m, 0.8m) are
respectively too easy and too difficult, making the schedula-
bility performance of LOAD** similar to that of LOAD*.

VIII. RELATED WORK

From the outset, the transaction rate and latency of
blockchain systems have been in the attention of many re-
searchers [4] [5] [6]. Thus, enhancing the transaction rate of
blockchain systems has been at the scope of many researchers.
[23] presents Conflux, a decentralized and smart-contract-
enabled blockchain system with high throughput and fast
confirmation, operating with a novel consensus protocol and
critical optimizations. [24] with their Bitcoin-NG increases
the transaction rate by enlarging the block size and avoids
numerous forking issues by addressing a new consensus. [25]
introduces a Permissioned Blockchain Framework (PBF) that
surpasses Bitcoin-derived blockchains in terms of throughput
and latency while upholding the same trust assumptions. Ef-
forts to minimize latency and increase transaction capacity in
blockchains have led to the development of scaling techniques
like sharding [26] [27] [28] and layer-2 solutions such as
rollups [29]. However, neither of these studies achieved nor
focused on guaranteeing deadlined tasks.

Recent research has focused on blockchain systems han-
dling transactions with deadlines. This is particularly impor-
tant for payment channel techniques addressing blockchain
transaction scalability [30] [31]. Notable contributions include
the novel transaction ordering method proposed by Shi et al.
in [32], which employs reinforcement learning to optimize
block parameters. Despite these advancements, none has yet
managed to process transactions to meet deadlines without
missing under strict real-time requirements.

IX. DISCUSSION

While the proposed RT-blockchain offers timing guarantees
for transactions, several considerations need to be addressed
when applying it to a public chain, which have not been
discussed in the previous sections.

Network. The presence of network latency can result in
validators perceiving different chain heads. To address this
issue, Ethereum has implemented the LMD-GHOST [33]
algorithm, which can also be adopted in the RT-blockchain
to mitigate such concerns.

Security. The RT-blockchain inherits security issues from
PoS, such as finality delay, double finality, and reorganization
attacks [34]. However, it has been proven that the success rate
of these attacks is low, and therefore, they are not considered
critical in the context of RT-blockchain. Nevertheless, as RT-
blockchain introduces a novel design element in the form
of a deadline-based prioritization policy, it may introduce
new security vulnerabilities that need to be considered. For
example, an attacker may be able to perform a DoS attack by
sending a large number of transactions with urgent deadlines to
prevent the processing of transactions from others. To mitigate
this attack, transaction fees can be implemented, requiring
higher transaction fees for transactions with shorter deadlines.
Moreover, malicious block-generating nodes may intentionally
delay block propagation and construct blocks with transactions
not in deadline order. To address this issue, the RT-blockchain
can establish slashing conditions to incentivize validators to
adhere to the protocol.

Scaling. It is worth noting that the scheduling principles
proposed in this paper are general enough to be applicable
to other consensus algorithms, beyond just PoS. Additionally,
it can be applied to private and hybrid chains [35] where
performance and timing guarantees for transactions are of
greater significance. In such chains, our approach could be
more easily adopted by limiting only authorized users to
send deadline-based transactions. Scaling can be considered
to enhance the performance of the RT-Blockchain. On-chain
and off-chain scaling methods, such as sharding and layer-
2 rollups, can present promising results. Nonetheless, given
the RT-Blockchain’s primary emphasis on ensuring precise
timing guarantees for each transaction, the straightforward
application of scaling techniques is not suitable. Instead, a
tailored approach for the implementation of each method is
necessary to align with the stipulated requirements presented
in this paper.

X. CONCLUSION

This paper introduces a blockchain system that takes into
account transaction deadlines, enabling timing guarantees of
periodic transactions. Our system architecture is specifically
designed to fully accommodate real-time scheduling by in-
corporating deadlines as a criterion for selecting transactions.
Additionally, it focuses on optimizing space efficiency by
dynamically generating an appropriate number of blocks per
block time. By implementing real-time scheduling principles,
the integration of periodic transactions into our blockchain
system becomes seamless. This novel approach introduces
exciting prospects for time-sensitive applications, significantly
enhancing the overall efficiency and usability of blockchain
technology in real-time scenarios.

103

ACKNOWLEDGEMENT

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (2022R1A4A3018824,
2022K2A9A1A01097764, 2022R1F1A1074495, RS-2023-
00248143), and Institute of Information & Communications
Technology Planning & Evaluation (IITP) (2022-0-00688, AI
Platform to Fully Adapt and Reflect Privacy-Policy Changes,
2022-0-01199). We thank Prof. Nan Guan at City University
of Hong Kong, for his advice. We also thank the shepherd
and reviewers for their valuable comments and suggestions.

REFERENCES

[1] B. K. Mohanta, S. S. Panda, and D. Jena, “An overview of smart contract
and use cases in blockchain technology,” in 2018 IEEE 9th international
conference on computing, communication and networking technologies
(ICCCNT), pp. 1–4.

[2] P. Jittrapirom, V. Caiati, A. M. Feneri, S. Ebrahimigharehbaghi, M. J.
Alonso-González, and J. Narayan, “Mobility as a service: A critical
review of definitions, assessments of schemes, and key challenges,”
Urban Planning, vol. 2, no. 2, pp. 13–25, 2017.

[3] M. Baron, J. Brogaard, B. Hagströmer, and A. Kirilenko, “Risk and
return in high-frequency trading,” Journal of Financial and Quantitative
Analysis, vol. 54, no. 3, pp. 993–1024, 2019.

[4] R. Yasaweerasinghelage, M. Staples, and I. Weber, “Predicting latency of
blockchain-based systems using architectural modelling and simulation,”
in 2017 IEEE International Conference on Software Architecture (ICSA),
pp. 253–256.

[5] M. Kuzlu, M. Pipattanasomporn, L. Gurses, and S. Rahman, “Perfor-
mance analysis of a hyperledger fabric blockchain framework: through-
put, latency and scalability,” in 2019 IEEE international conference on
blockchain (Blockchain), pp. 536–540.

[6] C. Wang and N. Raviv, “Low latency cross-shard transactions in coded
blockchain,” in 2021 IEEE International Symposium on Information
Theory (ISIT), pp. 2678–2683.

[7] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized business review, 2008.

[8] M. Jakobsson and A. Juels, “Proofs of work and bread pudding proto-
cols,” in Secure Information Networks: Communications and Multimedia
Security IFIP TC6/TC11 Joint Working Conference on Communications
and Multimedia Security (CMS’99). Springer, 1999, pp. 258–272.

[9] F. Saleh, “Blockchain without waste: Proof-of-stake,” The Review of
financial studies, vol. 34, no. 3, pp. 1156–1190, 2021.

[10] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger.”

[11] E. Kyriakides and M. Polycarpou, Intelligent monitoring, control, and
security of critical infrastructure systems. Springer, 2014, vol. 565.

[12] H. Stadtler, “Supply chain management: An overview,” Supply chain
management and advanced planning: Concepts, models, software, and
case studies, pp. 3–28, 2014.

[13] S. Baruah, A. Mok, and L. Rosier, “Preemptively scheduling hard-real-
time sporadic tasks on one processor,” in 1990 IEEE Real-Time Systems
Symposium (RTSS), pp. 182–190.

[14] Q. Wang, R. Li, Q. Wang, and S. Chen, “Non-fungible token (NFT):
Overview, evaluation, opportunities and challenges,” arXiv preprint
arXiv:2105.07447, 2021.

[15] J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, and Y. Liu, “A survey on the
scalability of blockchain systems,” IEEE Network, vol. 33, no. 5, pp.
166–173, 2019.

[16] H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and B. C. Ooi,
“Towards scaling blockchain systems via sharding,” in Proceedings of
the 2019 International Conference on Management of Data, pp. 123–
140.

[17] J. Poon and T. Dryja, “The bitcoin lightning network,” Scalable o-chain
instant payments, 2015.

[18] C. Sguanci, R. Spatafora, and A. M. Vergani, “Layer 2 blockchain
scaling: A survey,” arXiv preprint arXiv:2107.10881, 2021.

[19] A. Singh, K. Click, R. M. Parizi, Q. Zhang, A. Dehghantanha, and
K. K. R. Choo, “Sidechain technologies in blockchain networks: An
examination and state-of-the-art review,” Journal of Network and Com-
puter Applications, 2020.

[20] J. Poon and V. Buterin, “Plasma: Scalable autonomous smart contracts,”
White paper, pp. 1–47, 2017.

[21] L. T. Thibault, T. Sarry, and A. S. Hafid, “Blockchain scaling using
rollups: A comprehensive survey,” IEEE Access, 2022.

[22] “Turtlecoin,” http://www.turtlecoin.info/, accessed: 2023-05-26.
[23] C. Li, P. Li, D. Zhou, Z. Yang, M. Wu, G. Yang, W. Xu, F. Long,

and A. C.-C. Yao, “A decentralized blockchain with high throughput
and fast confirmation,” in 2020 USENIX Annual Technical Conference
(ATC), pp. 515–528.

[24] J. Göbel and A. E. Krzesinski, “Increased block size and bitcoin
blockchain dynamics,” in 2017 27th International Telecommunication
Networks and Applications Conference (ITNAC), pp. 1–6.

[25] X. Min, Q. Li, L. Liu, and L. Cui, “A permissioned blockchain
framework for supporting instant transaction and dynamic block size,”
in 2016 IEEE Trustcom/BigDataSE/ISPA, pp. 90–96.

[26] H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and B. C. Ooi,
“Towards scaling blockchain systems via sharding,” in Proceedings of
the 2019 international conference on management of data, pp. 123–140.

[27] C. Huang, Z. Wang, H. Chen, Q. Hu, Q. Zhang, W. Wang, and
X. Guan, “Repchain: A reputation-based secure, fast, and high incentive
blockchain system via sharding,” IEEE Internet of Things Journal, vol. 8,
no. 6, pp. 4291–4304, 2020.

[28] P. Zheng, Q. Xu, Z. Zheng, Z. Zhou, Y. Yan, and H. Zhang, “Meepo:
Sharded consortium blockchain,” in 2021 IEEE 37th International
Conference on Data Engineering (ICDE), pp. 1847–1852.

[29] L. T. Thibault, T. Sarry, and A. S. Hafid, “Blockchain scaling using
rollups: A comprehensive survey,” IEEE Access, 2022.

[30] V. Sivaraman, S. B. Venkatakrishnan, M. Alizadeh, G. Fanti, and
P. Viswanath, “Routing cryptocurrency with the spider network,” in
Proceedings of the 2018 17th ACM Workshop on Hot Topics in Networks,
pp. 29–35.

[31] U. Goel, R. Sonanis, I. Rastogi, S. Lal, and A. De, “Criticality aware
orderer for heterogeneous transactions in blockchain,” in 2020 IEEE
International Conference on Blockchain and Cryptocurrency (ICBC),
pp. 1–4.

[32] J. Shi, H. Wu, D. Luo, H. Gao, and W. Zhang, “Instantchain: Enhancing
order-execute blockchain systems for latency-sensitive applications,” in
International Conference on Database Systems for Advanced Applica-
tions. Springer, 2023, pp. 483–498.

[33] V. Buterin, D. Hernandez, T. Kamphefner, K. Pham, Z. Qiao, D. Ryan,
J. Sin, Y. Wang, and Y. X. Zhang, “Combining ghost and casper,” 2020.

[34] Ethereum, “Ethereum proof-of-stake attack and defense,”
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
attack-and-defense/, 2023.

[35] G. Sagirlar, B. Carminati, E. Ferrari, J. D. Sheehan, and E. Ragnoli,
“Hybrid-IoT: Hybrid blockchain architecture for internet of things-pow
sub-blockchains,” in 2018 IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CP-
SCom) and IEEE Smart Data (SmartData), pp. 1007–1016.

104

