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A B S T R A C T

As many safety- or mission-critical electric systems become equipped with batteries, we need to achieve
seemingly conflicting goals: G1) timely execution of power-consuming tasks (for safety or mission) while
G2) minimizing battery aging (for system sustainability). To this end, this paper proposes a novel scheduling
framework for a set of power-consuming real-time tasks, which efficiently utilizes run-time slack (i.e., system
idle time identified at run-time) to find the tasks’ schedule that achieves both G1 and G2. The proposed
framework is not only applicable to any existing prioritization policy (e.g., EDF and FP) but has also been
proven to reduce battery aging by up to 32.6% without compromising G1.
1. Introduction

As mobility becomes important, many real-time systems like satel-
lites, electric vehicles (EVs), uncrewed aerial vehicles (UAVs), and
drones are now equipped with battery packs as their main power
source, becoming safety- or mission-critical electric systems [1]. Since
the electric system’s battery pack is typically shared by its sub-systems
(e.g., sensors, motors, and computing units), each accommodating pe-
riodic power-consuming tasks, we need to achieve the following goals
for scheduling a set of power-consuming real-time tasks:

G1. timely execution of the tasks to assure the safety or accomplish
the mission,

G2. while minimizing battery aging that prolongs the system’s life-
time.

Existing techniques (called schedulability tests), which assure G1
offline under a target prioritization policy, utilize static task parameters
available offline, e.g., WCET (the Worst-Case Execution Time). On the
other hand, achieving G2 depends on the actual task execution behavior
available only at run-time, e.g., AET (the Actual Execution Time).
Therefore, achieving both G1 and G2 necessitates the development of
run-time mechanisms subject to the following requirements.

R1. We need to establish boundaries of run-time execution behavior
for each task, which does not compromise G1 assured by a
schedulability test under a target prioritization policy.
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R2. Once R1 is addressed, we need to systematically find a battery-
aging-favorable run-time execution behavior within the bound-
aries.

R3. Once R2 controls the run-time execution behavior for a task, the
boundaries for other tasks to be executed after the task are also
changed, which necessitates efficient update and reclamation of
the boundaries for each task at run-time.

The R1–R3 are essential requirements for achieving both G1 and
G2. In order to reduce battery aging (G2), it is essential to change
the power load of the system by altering the execution behavior of
tasks. Since these changes can violate the system’s timing guarantees
(G1), R1 is needed to find boundaries where execution behavior can
be changed without violating G1. Nonetheless, G2 cannot be not easily
achieved despite the capability to alter the execution behaviors of
tasks. For instance, one may think that simply replacing a prioritization
policy, which affects tasks’ behaviors, would attain G2, but we have
confirmed that prioritization policies show little difference in battery
aging, to be described in Section 6. Thus, R2 is needed that utilizes the
boundaries of R1 based on an understanding of battery-aging-favorable
power load. When both R1 and R2 are achieved, the execution behavior
changes caused by R2 can affect R1. This can either narrow the existing
boundaries of R1, potentially violating G1, or widen them, degrading
the achievement of G2. Therefore, R3 is also essential to update the
boundaries for meeting G1 and G2.
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Fig. 1. An overview of the proposed framework.

To the best of our knowledge, there is no study that addresses
R1–R3 together. Although there exist a group of studies that develop
power- or energy-aware real-time scheduling (e.g., improving energy
efficiency [2–4], managing power requirements [5–8], simply reducing
energy consumption [9–11], or conserving energy consumption in a
temperature-aware manner [12–15]) without compromising R1, they
cannot address R2 and R3 because they do not contend with battery
aging.

On the other hand, there exist a couple of relevant previous ap-
proaches that try to address both timing guarantees and batter ag-
ing [16,17]; however, (i) they fail to optimize G2 as they focus on R1
and R2 only (but not R3) and (ii) their applicability and performance
are limited to a certain schedulability test associated with EDF (Earliest
Deadline First) as a prioritization policy.

To address R1, the existing approaches [16,17] inflate WCET until
the schedulability test barely compromises G1 and then utilize the
difference between the inflated and original WCET as boundaries. As to
R2, the approaches simplify the effect of a run-time execution behavior
change on the battery aging, which eases exploiting the boundaries.
However, since the boundaries are derived from static task parameters
only (by the nature of schedulability tests), the approaches not only
result in narrow boundaries for R1 (due to being oblivious of run-time
information) but also fail to address R3 (due to absence of efficient
run-time update/reclamation of boundaries), both of which make it
impossible to fully achieve G2.

In this paper, we develop a novel run-time scheduling framework for
a set of power-consuming real-time tasks, called Run-time Slack Manage-
ment (RSM). By properly addressing the run-time requirements R1–R3,
RSM not only can be applied to any pair of a schedulability test and
prioritization policy but also fully addresses G2 without compromising
G1. To this end, we first define notions of WCET-based and AET-based
slacks; the former represents sub-system idle time identified at run-time
assuming every task executes for its WCET, while the latter represents
the time remainder unused by each task due to the difference between
its WCET and AET. We utilize the notions such that they play a key role
in addressing R1 as they help to derive a maximum tolerable duration
for which each task can delay its execution without compromising G1.

Considering the maximum tolerable duration depends on how effi-
ciently reclaim the two types of slacks at run-time, we propose a run-
time mechanism RSM that tightly calculates and utilizes both slacks,
addressing R3. Finally, we complete RSM by incorporating the tech-
nique for R2 in [16] into the run-time slack reclamation mechanism,
which enables us to fully achieve G2. Following RSM, we develop
RSM+, a framework that integrates RSM with the existing offline slack
management scheduling method (i.e., RET). Fig. 1 depicts the relation-
ship between RET, RSM, and RSM+. As shown in Fig. 1, the existing
offline slack management approach RET calculates static offline slack
based on a given schedulability test for a given scheduling policy.
On the other hand, our proposed RSM obtains run-time slack based
2

on the inspection of the run-time behavior of tasks, independent of
scheduling policy or schedulability test. Since RSM and RET find slack
at orthogonal timing, there is a chance to utilize both slacks together,
which is achieved by RSM+ that integrates their respective slacks by
leveraging the two methods. Finally, these slacks safely delay the
execution of tasks to decelerate battery aging without compromising
timing guarantees.

We demonstrate the battery aging reduction performance of our
proposed frameworks on a precise battery emulator with various pa-
rameters. The evaluation considers various sets of scheduling policies,
the number of tasks, utilization ratio, and task set parameters; it also
estimates battery aging through the electrochemical model battery
emulator, which is one of the most precise battery models [18,19].
The evaluation results demonstrate that RSM+ not only reduces battery
aging up to 32.6% and 28.2%, respectively, compared to the vanilla
prioritization policy and existing approach while conserving timely ex-
ecution of every job, but also showed the best average performance for
all parameters: the number of tasks, scheduling policy, and utilization
ratio.

We highlight the contributions of this paper as follows.

• We develop how to efficiently reclaim the notions of WCET-based
and AET-based slacks at run-time (in Sections 3 and 4).

• We propose a novel run-time scheduling framework RSM that
achieves both G1 and G2 by utilizing the slacks (in Section 4).

• We develop how to incorporate the existing offline slack manage-
ment method into RSM, yielding RSM+ that exploits the advan-
tages of both (in Section 5).

• We demonstrate the wide applicability of RSM and its accomplish-
ment of both G1 and G2 (in Section 6).

2. Background

System model. Following the system model in [16], we consider a
battery-powered electric system  with 𝑁 sub-systems {𝑗}𝑁𝑗=1. Each
sub-system 𝑗 (e.g., sensors, motors, and computing units) operates
a set of 𝑁 𝑗 real-time power consuming tasks 𝜏𝑗 = {𝜏𝑗𝑖 }

𝑁𝑗

𝑖=1, and all
sub-systems share a battery pack as a main power source. We assume
that each real-time power-consuming task is periodic and has an im-
plicit deadline. Each real-time power consuming task 𝜏𝑗𝑖 is modeled
by (𝑇 𝑗

𝑖 , 𝐶
𝑗
𝑖 , 𝑃

𝑗
𝑖 ), where 𝑇 𝑗

𝑖 is both the period and the relative deadline,
𝐶𝑗
𝑖 is WCET, and 𝑃 𝑗

𝑖 is the power consumption during execution. Each
task 𝜏𝑗𝑖 invokes a series of jobs at every 𝑇 𝑗

𝑖 time unit, and each job
of 𝜏𝑗𝑖 released at 𝑡 should complete its execution no later than 𝑡 + 𝑇 𝑗

𝑖 ,
where the AET of each job of 𝜏𝑗𝑖 is no larger than its WCET (i.e., 𝐶𝑗

𝑖 ).
Due to the periodicity, each sub-system at any time knows the next job
release time of each task. A job is said to be active at 𝑡, if it is released
no later than 𝑡 and has remaining execution at 𝑡. Since there exists at
most one active job of a task at any time, we use a task and its job
interchangeably if no ambiguity arises. Each sub-system is allowed to
execute only one job at any time, and a job cannot be preempted once it
starts its execution. Therefore, apart from power consumption, schedul-
ing a set of real-time power-consuming tasks within each sub-system is
equivalent to real-time uniprocessor scheduling for non-preemptive tasks.
On the other hand, the aging of the battery pack depends on the sum
of power consumption of all sub-systems, implying that determining
the job schedule of a sub-system entails consideration of that of other
sub-systems. A more detailed explanation of the system model is given
in [16].

Prioritization policy and schedulability test. In real-time schedul-
ing, a prioritization policy  determines which job to be executed in
which time interval. For the timing guarantee of real-time scheduling,
there is an important notion of a schedulability test  for a prioritization
policy  , as follows. If a set of real-time tasks passes the condition of
 , timely execution (called schedulability) of every job of the task set

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Fig. 2. Our abstraction of reducing battery aging by minimizing Ohmic heat based
on the battery aging model [20–22].

is guaranteed by  as long as the task set is scheduled by  in a work-
conserving manner (which disallows to idle the sub-system if there exist
at least one active job).

Battery aging model. Battery’s capacity and performance degrade
as aging processes due to various mechanisms such as SEI layer growth,
active material loss, etc. This degradation is called battery aging, and
researchers have revealed many factors related to it [20,21,23,24].
Fig. 2 shows our battery aging model proposed by Jin et al. [22]
and our abstracted approach to decelerate battery aging. Jin et al.
modeled battery aging (𝑄) as Eq. (1), where 𝑘𝐴𝑀 , 𝐸𝐴𝑀 , 𝑘𝑆𝐸𝐼 , 𝐸𝑆𝐸𝐼 and
𝑔𝑎𝑠 denote some constants, respectively, and 𝑇 , 𝐿 and 𝑆𝑜𝐶 denote

emperature, length of a time interval and state of charge, respectively.

𝑄 = ∫ 𝐿
0

[

𝑘𝐴𝑀 ⋅ 𝑒𝑥𝑝( −𝐸𝐴𝑀
𝑅𝑔𝑎𝑠⋅𝑇

)𝑆𝑜𝐶 ⋅ |𝐼| + −𝑘𝑆𝐸𝐼
2
√

𝑡
⋅ 𝑒𝑥𝑝(−𝐸𝑆𝐸𝐼

𝑅𝑔𝑎𝑠⋅𝑇
)
]

𝑑𝑡 (1)

Among lots of variables, high temperature is the common acceler-
ator and is known to have the greatest effect on battery aging [23].
The battery temperature is determined by the internal heat generation
by the battery itself and external heat transfer, and the former is more
significant and dominated by Ohmic heat [20]. Since Ohmic heat is
calculated by 𝐼2 ⋅𝑅𝑐 , where 𝑅𝑐 is the internal resistance of the battery
and 𝐼 is the current load, minimizing ∑

𝐼2 is a simple yet effective
abstraction to minimize battery aging for power-consuming real-time
tasks [16].1

In this paper, we employ this abstraction as a means of achieving G2
(minimizing battery aging). Unlike our abstraction focusing on Ohmic
heat, our battery aging evaluation considers various battery aging
factors that our abstraction does not account for, using a sophisticated
battery emulator, as shown in Fig. 2. The relationship between achiev-
ing the abstraction and G2 will be addressed by evaluation results in
Section 6.

Notations. For the ease of understanding, important terminologies
and their notations used in this paper are presented in Table 1.

3. Run-time execution behavior analysis

We formally state the problem of this paper as follows.
Given an electric system  such that every sub-system’s task set

is deemed schedulable by a schedulability test  associated with a
prioritization policy  ,

Determine the schedule (i.e., which job starts its execution at which
time instant) of every sub-system’s task set, by changing the original
schedule by  at run-time,

Subject to (i) achieving both G1 and G2 and (ii) being applicable to
any pair of  and  .

1 Because of negligible change in voltage 𝑉𝐶 of the battery internal 𝑅𝐶 , the
abstraction in [16] approximates Ohmic heat 𝐼2𝑅𝑐 = 𝐼 ⋅ 𝑉𝐶 with the current
𝐼 , to be used in this paper.
3

Table 1
Important terminologies and their notations.

Symbol Description

WCET Worst-case execution time
AET Actual execution time
 Battery-powered electric system
𝑁 The number of sub-systems of 
 𝑗 Sub-system 𝑗 of 
𝑁 𝑗 The number of tasks of  𝑗

𝜏𝑗 Task set of  𝑗

𝜏𝑗𝑖 Task 𝑖 of 𝜏𝑗

𝑇 𝑗
𝑖 Period of 𝜏𝑗𝑖

𝐶𝑗
𝑖 WCET of 𝜏𝑗𝑖

𝑃 𝑗
𝑖 Power consumption of 𝜏𝑗𝑖 during its execution

 Prioritization policy
 Schedulability test for 
𝐼 Current load
𝑅𝑐 Internal resistance of a battery
𝑉𝑐 Voltage of a battery
𝑡0 Current time
𝑟𝑑𝑦𝑄𝑗 Ready queue of  𝑗

𝜏𝑗𝑟𝑒𝑠𝑣 Highest-priority job in 𝑟𝑑𝑦𝑄𝑗 (to be reserved)
𝑑𝑗
𝑠𝑙𝑎𝑐𝑘 Maximum tolerable delay time of 𝜏𝑗𝑟𝑒𝑠𝑣

𝑡𝑗𝑟𝑒𝑠𝑣 Time that  𝑗 is reserved for 𝜏𝑗𝑟𝑒𝑠𝑣
𝑡𝑗𝑛𝑗𝑟(𝑡0) Next job release time after 𝑡0 in  𝑗

𝜏𝑗𝑝𝑟𝑒𝑣 The previous 𝜏𝑗𝑟𝑒𝑠𝑣 that assigned at 𝑡−1.
𝜏𝑗𝑜𝑡ℎ𝑒𝑟 A job released at 𝑡𝑗𝑛𝑗𝑟(𝑡0) ∈ [𝑡0 , 𝑡

𝑗
𝑟𝑒𝑠𝑣]

𝑊𝑆𝑗 (𝑡0) WCET-based slack of  𝑗 at 𝑡0
𝐴𝑆𝑗 (𝑡0) AET-based slack of  𝑗 at 𝑡0
𝐽𝐻𝐼∕𝐿𝑂 Higher/Lower-priority job
𝐼𝐶𝑗

𝑖 Inflated WCET of 𝜏𝑗𝑖
𝐼 𝑗
𝑖 Amount of inflated time of 𝐼𝐶𝑗

𝑖 (𝐼𝐶𝑗
𝑖 = 𝐼 𝑗

𝑖 + 𝐶𝑗
𝑖 )

𝑈 𝑗 Utilization ratio of  𝑗 (∑𝜏𝑗𝑖
𝐶𝑗
𝑖 ∕𝑇

𝑗
𝑖 )

To solve the problem, this section analyzes the effect of the run-
time execution behavior on G1 and G2, which will be used for the
development of RSM in Section 4. To this end, this section considers
an electric system consisting of two sub-systems 𝑥 and 𝑦. In 𝑥,
here are four tasks: 𝜏𝑥𝑎 (𝑇 𝑥

𝑎 = 20, 𝐶𝑥
𝑎 = 5, 𝑃 𝑥

𝑎 = 5), 𝜏𝑥𝑏 (20, 3, 4) 𝜏𝑥𝑐
20, 2, 3), and 𝜏𝑥𝑑 (9, 1, 3). The first jobs of 𝜏𝑥𝑎 , 𝜏𝑥𝑏 , 𝜏𝑥𝑐 and 𝜏𝑥𝑑 are released
t 𝑡 = 0, 0, 5 and 3, respectively. In 𝑦, there is only one task 𝜏𝑦𝑒 (4, 2, 4)
hose first job is released at 𝑡 = 0. Suppose that we apply FP (Fixed
riority) as a prioritization policy, in which jobs’ priorities are inherited
y their invoking tasks with the priority order of 𝜏𝑥𝑎 ≻ 𝜏𝑥𝑏 ≻ 𝜏𝑥𝑐 ≻ 𝜏𝑥𝑑 .
s we explained in the problem statement, the schedulability of each
ub-system’s task set is already guaranteed by a schedulability test FP
ssociated with FP; this means, there is no job deadline miss, as long as
he task set in each sub-system is scheduled by FP in a work-conserving
anner.

Fig. 3 depicts different schedules of 𝑥 in [0, 13), when the schedule
f 𝑦 is given. In particular, Fig. 3(a) illustrates the schedule of 𝑥 when
very job of tasks in 𝑥 performs its execution during its WCET, which
s the longest execution scenario considered by FP. At the time instant
f 𝑡 = 5, at which the first job of 𝜏𝑥𝑎 finishes its execution, the first job
f 𝜏𝑥𝑏 is the highest-priority job among active jobs at 𝑡 = 5. Since the
um of execution of active jobs at 𝑡 = 5 is 3 + 2 + 1 = 6, and there is
o job release until 𝑡 = 12, there is an idle period of length 1 in [5, 12),
hich is [11, 12) as shown in Fig. 3(a). We define the duration of the

dle period as follows.

efinition 1. Let 𝑡′ denote the earliest job release time in a sub-system
𝑥 after 𝑡. Suppose that there is no job in 𝑥, which starts its execution
efore 𝑡 but does not finish its execution until 𝑡. The WCET-based slack
f 𝑥 at 𝑡 is defined as the duration of idle time of 𝑥 in [𝑡, 𝑡′) when
very job active at 𝑡 in 𝑥 is executed for its WCET.

In the situation shown in Fig. 3(a), the WCET-based slack of 𝑥

t 𝑡 = 5 is one time unit. Using the WCET-based slack at 𝑡 = 5, we
an delay the time to start 𝜏𝑥𝑏 ’s execution for one time unit without
ompromising the timely execution of any job active at 𝑡 = 5, as shown
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Fig. 3. The effect of the run-time execution behavior on G1 and G2.

in Fig. 3(b). This delay helps avoid simultaneous execution between
any job on 𝑥 and 𝜏𝑦𝑒 on 𝑦 in [5, 6), resulting in decelerated battery
ging by decreasing Ohmic heat through the reduced ∑

𝐼2 from 505 to
81. However, the delay cannot avoid simultaneous execution in other
ime slots, e.g., [8, 10).

Different from the schedule in Fig. 3(a), each job’s AET at run-time
s usually less than its WCET. For example, Fig. 3(c) shows the situation
here the AET of the first job of 𝜏𝑥𝑎 is one time unit, yielding earlier

ompletion of the first jobs of 𝜏𝑥𝑏 , 𝜏𝑥𝑐 , and 𝜏𝑥𝑑 executed for their WCET.
ince a schedulability test FP already guarantees timely execution
f every job, even for its WCET, we focus on the remainder period
noccupied by the first job of 𝜏𝑥𝑎 (i.e., [1, 5)) due to the difference
etween its AET and WCET, which is defined as follows.

efinition 2. Let 𝐽 denote the most recently executed job on 𝑥

efore 𝑡, and 𝑡′ denote the time instant at which 𝐽 finishes its execution,
ssuming its AET is the same as its WCET. The AET-based slack of 𝑥

t 𝑡 is defined as (𝑡′ − 𝑡); note that it is defined as 0, if (𝑡′ − 𝑡) < 0.

In the situation shown in Fig. 3(c), the AET-based slack of 𝑥 at
= 1 is 𝑡′ − 𝑡 = 5− 1 = 4. If we delay the execution of the first job of 𝜏𝑥𝑏
or 4 time units (by fully utilizing the amount of the AET-based slack
f 𝑥 at 𝑡 = 1), we can avoid simultaneous execution between any job
n 𝑥 and 𝜏𝑦𝑒 on 𝑦 in [1, 2) and [4, 5) while we cannot avoid it in [0, 1),
5, 6) and [8, 10), as shown in Fig. 3(d). On the other hand, utilizing a
ortion of the AET-based slack may help to further reduce the duration
f simultaneous execution. If 𝜏𝑥𝑏 delays its execution by only one time
nit as shown in Fig. 3(e), simultaneous execution happens only in [0, 1)
nd [4, 6), whose length is smaller than that in Fig. 3(d), decreasing
𝐼2 from 325 to 301.
Then, what if we have multiple AET-based slacks at different time

nstants? For example, consider a situation where the AET of the first
obs of 𝜏𝑥𝑎 and 𝜏𝑥𝑏 are 3 and 1, respectively, as shown in Fig. 3(f). In
he situation, the AET-based slacks of 𝑥 at 𝑡 = 3 and 𝑡 = 4 are
5 − 3 = 2 (i.e., WCET - AET for 𝜏𝑥𝑎 ) and 6 − 4 = 2 (i.e., (3+WCET) -
(3+AET) for 𝜏𝑥𝑏 ), respectively. Since the calculation of those slacks is
independent, the AET-based slack at 𝑡 = 4, which is 2, does not address
the situation where the AET-based slack at 𝑡 = 3 is not used for delaying
the execution of the first job of 𝜏𝑥𝑏 . In addition, it is unclear whether
he first job of 𝜏𝑥 at 𝑡 = 4 can utilize the unused AET-based slack at
4

𝑑 s
Algorithm 1 RSM: Run-time Slack Management at 𝑡0
1: if 𝜏𝑗𝑖 releases its job then
2: 𝑟𝑑𝑦𝑄𝑗 ← 𝑟𝑑𝑦𝑄𝑗 ∪ {𝜏𝑗𝑖 }
3: end if
4: if a job of a task in  𝑗 ∈  completes its execution then
5: Set the state of  𝑗 to idle
6: end if
7: if 𝑟𝑑𝑦𝑄𝑗 ≠ ∅ and the state of  𝑗 is idle then
8: 𝜏𝑗𝑟𝑒𝑠𝑣 ← the highest-priority job in 𝑟𝑑𝑦𝑄𝑗

9: 𝑑𝑗
𝑠𝑙𝑎𝑐𝑘 ← maxresv( 𝑗 , 𝑡0, 𝑡

𝑗
𝑟𝑒𝑠𝑣, 𝜏

𝑗
𝑟𝑒𝑠𝑣)

10: 𝑡𝑗𝑟𝑒𝑠𝑣 ← 𝑡0 + 𝑑𝑗
𝑠𝑙𝑎𝑐𝑘 + 𝐶𝑗

𝑟𝑒𝑠𝑣
11: 𝑟𝑑𝑦𝑄𝑗 ← 𝑟𝑑𝑦𝑄𝑗 ⧵ {𝜏𝑗𝑟𝑒𝑠𝑣}
12: Set the state of  𝑗 to reserved
13: end if
14: if the state of any sub-system is changed to reserved then
15: for every reserved  𝑗 ∈ , sorted by (𝑡𝑗𝑟𝑒𝑠𝑣−𝑡0)

𝑃 𝑗
𝑟𝑒𝑠𝑣

do
16: 𝑡𝑗𝑠𝑡𝑎𝑟𝑡 ← minIsquare( 𝑗 , 𝑡0, 𝑡

𝑗
𝑟𝑒𝑠𝑣 − 𝐶𝑗

𝑟𝑒𝑠𝑣)
7: end for
8: end if
9: if 𝑡𝑗𝑠𝑡𝑎𝑟𝑡 = 𝑡0 then
0: Start to execute 𝜏𝑗𝑟𝑒𝑠𝑣 on  𝑗

1: Set the state of  𝑗 to running
2: end if

𝑡 = 3 and how much unused AET-based slack can be re-used, without
incurring any job deadline miss. Including this issue, we need to address
the following issues regarding WCET- and AET-based slacks to achieve
both G1 and G2.

Q1. How to exploit the WCET-based slack without compromising G1?
Q2. How to efficiently calculate so-called cumulative AET-based slack

(that includes unused AET-based slacks at previous time instants),
and how to exploit the cumulative AET-based slack without com-
promising G1?

Q3. How to utilize the answers of Q1 and Q2 in fully achieving G2?

Recent studies [16,17] have also proposed approaches to reduce
battery aging by delaying the execution of tasks while achieving both
G1 and G2. However, since the previous approaches distribute slacks
to each task offline (and then each task delays its execution with
its own slack), tasks cannot fully utilize both WCET-based slack nor
AET-based slack, failing to address Q1–Q3. For example, in the case
of Fig. 3(a)–(e), 𝜏𝑥𝑏 ’s execution should be delayed for achieving G2;
owever, under the previous approaches, delaying 𝜏𝑥𝑏 is possible only if
lacks happen to be distributed to 𝜏𝑥𝑏 offline, and if 𝜏𝑥𝑏 does not receive
ny slack, delaying the 𝜏𝑥𝑏 is impossible. Therefore, we need a novel
pproach that fully utilizes the WCET-based slack and AET-based slacks
uring run-time to achieve both G1 and G2, which remedies previous
pproaches.

. RSM: Run-time Slack Management

In this section, we present a novel scheduling framework called
SM (Rum-time Slack Management), which fully achieves G2 without
ompromising G1.

.1. Operation of RSM at Each Time Instant

Algorithm 1 presents the operation of RSM at 𝑡0, which manages
he following states of each sub-system 𝑗 : running (execution of a
ob), idle (no job execution due to non-existence of any active job),
nd reserved (no job execution despite the existence of active job(s)
ue to the sub-system reservation). Lines 1–3 put a task 𝜏𝑗𝑖 in the ready
ueue of 𝑗 (denoted by 𝑟𝑑𝑦𝑄𝑗) if 𝜏𝑗𝑖 releases a new job, and Lines 4–6
et the state of 𝑗 to idle if a job of 𝜏𝑗 in 𝑗 completes its execution.
𝑖
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If there is at least one job in the ready queue of 𝑗 whose state
s idle (Line 7), Lines 7–13 and Lines 14–18, respectively, perform
wo distinct stages: sub-system reservation and execution timing decision.
nstead of executing 𝜏𝑗𝑟𝑒𝑠𝑣 (i.e., the highest-priority job in the ready
ueue of 𝑗) immediately at 𝑡0, the sub-system reservation stage in
ines 7–13 delays the execution of 𝜏𝑗𝑟𝑒𝑠𝑣. To this end, we calculate 𝑑𝑗𝑠𝑙𝑎𝑐𝑘,
he maximum tolerable delay of the execution of 𝜏𝑗𝑟𝑒𝑠𝑣 without incurring
ny job deadline miss in 𝑗 , by calling maxresv(𝑗 , 𝑡0, 𝑡

𝑗
𝑟𝑒𝑠𝑣, 𝜏

𝑗
𝑟𝑒𝑠𝑣). We

hen reserve 𝑗 until 𝑡𝑗𝑟𝑒𝑠𝑣 that consists of the current time (i.e., 𝑡0),
he maximum tolerable delay of the job execution (i.e., 𝑑𝑗𝑠𝑙𝑎𝑐𝑘) and
he maximum execution time of the job (i.e., 𝐶𝑗

𝑟𝑒𝑠𝑣). Section 4.2 will
etail how the function of maxresv tightly utilizes the WCET-based and
umulative AET-based slacks, which is a key to achieving G2 without
ompromising G1.

Next, the execution timing decision stage in Lines 14–18 targets every
ub-system 𝑗 whose state is reserved and determines the time
nstant at which a delayed job of 𝜏𝑗𝑟𝑒𝑠𝑣 actually starts its execution on
𝑗 (denoted by 𝑡𝑗𝑠𝑡𝑎𝑟𝑡) within the boundary of the reservation (i.e., 𝑡0 ≤
𝑗
𝑠𝑡𝑎𝑟𝑡 ≤ 𝑡𝑗𝑟𝑒𝑠𝑣 −𝐶𝑗

𝑟𝑒𝑠𝑣) by calling minIsquare(𝑗 , 𝑡0, 𝑡
𝑗
𝑟𝑒𝑠𝑣 −𝐶𝑗

𝑟𝑒𝑠𝑣). We employ
lgorithm 3 in [16] for the function of minIsquare, which finds 𝑡𝑗𝑠𝑡𝑎𝑟𝑡

hat minimizes ∑

𝐼2 based on a local minimum of given time series of
xpected 𝐼 of other sub-systems. Regarding the order of sub-systems to
etermine 𝑡𝑗𝑠𝑡𝑎𝑟𝑡, we sort sub-systems by (𝑡𝑗𝑟𝑒𝑠𝑣 − 𝑡0)∕𝑃

𝑗
𝑟𝑒𝑠𝑣 to prioritize a

ub-system with a shorter reservation period of [𝑡0, 𝑡
𝑗
𝑟𝑒𝑠𝑣) (implying less

andidate time instants for 𝜏𝑗𝑟𝑒𝑠𝑣 to start its execution) and larger power
onsumption of 𝜏𝑗𝑟𝑒𝑠𝑣 (implying a higher impact on ∑

𝐼2).
Finally, if there exists a sub-system 𝑗 whose 𝑡𝑗𝑠𝑡𝑎𝑟𝑡 is the same as the

urrent time 𝑡0, we start the execution of 𝜏𝑗𝑟𝑒𝑠𝑣 on 𝑗 and set its state to
unning (Lines 19–22). Note that when the system  starts, the state,
𝑗
𝑟𝑒𝑠𝑣 and 𝑡𝑗𝑠𝑡𝑎𝑟𝑡 for every sub-system 𝑗 ∈  are set to idle, −∞ and
∞, respectively.

Separating the sub-system reservation stage for G1 from the execution
iming decision stage for G2, the structure of RSM offers an interface to
ddress Q3 (i.e., efficiently achieving G2 without compromising G1).
owever, the full achievement of G1 and G2 through the interface
epends on how to derive the latest 𝑡𝑗𝑟𝑒𝑠𝑣 without compromising G1 by
ddressing Q1 and Q2. This will be presented in the next subsection.

.2. maxresv: Calculation of maximum tolerable execution delay

As we explained in the example associated with Fig. 3(a), we can
alculate the WCET-based slack of 𝑗 at 𝑡0 (denoted by 𝑊𝑆𝑗 (𝑡0))
efined in Definition 1, as long as we know the information of the next

job release time after 𝑡0 in 𝑗 (denoted by 𝑡𝑗𝑛𝑗𝑟(𝑡0)) and a set of jobs in
𝑗 active at 𝑡0 (denoted by 𝑟𝑑𝑦𝑄𝑗 at 𝑡0). Line 1 of Algorithm 2 records

the calculation of 𝑊𝑆𝑗 (𝑡0), by subtracting the sum of WCET of every
active job at 𝑡0 on 𝑗 , from the length of the interval between 𝑡0 and
𝑗
𝑛𝑗𝑟(𝑡0). Then, utilizing the WCET-based slack does not compromise G1
s follows.

emma 1. Suppose that there is no job in 𝑗 , which starts its execution
efore 𝑡0 but does not finish its execution until 𝑡0, and let 𝜏𝑗𝑟𝑒𝑠𝑣 denote
he highest-priority active job at 𝑡0 on 𝑗 . Then, delaying the start of the
ob execution of 𝜏𝑗𝑟𝑒𝑠𝑣 until 𝑡0 + 𝑊𝑆𝑗 (𝑡0) does not compromise the timely
xecution of any job in 𝑗 .

roof. By the definition of 𝑡𝑗𝑛𝑗𝑟(𝑡0), there is no job release on 𝑗 in the
interval of

(

𝑡0, 𝑡
𝑗
𝑛𝑗𝑟(𝑡0)

)

, implying that there is no job deadline on 𝑗 in
the interval due to the periodicity of each task. Therefore, it suffices
to prove that every job active at 𝑡0 finishes its execution until 𝑡𝑗𝑛𝑗𝑟(𝑡0),
which trivially holds by 𝑊𝑆𝑗 (𝑡0) calculated in Line 1 of Algorithm 2.

As we explained in the schedule in Fig. 3(c), it is simple to calculate
the AET-based slack at 𝑡0 defined in Definition 2. However, different
from the WCET-based slack, the calculation of the AET-based slack
5

at 𝑡0 does not consider the situation where the AET-based slack at b
Algorithm 2 maxresv(𝑗 , 𝑡0, 𝑡
𝑗
𝑟𝑒𝑠𝑣, 𝜏

𝑗
𝑟𝑒𝑠𝑣)

1: 𝑊𝑆𝑗 (𝑡0) = 𝑡𝑗𝑛𝑗𝑟(𝑡0) − 𝑡0 −
∑

𝜏𝑗𝑥∈𝑟𝑑𝑦𝑄𝑗 at 𝑡0
𝐶𝑗
𝑥

2: if 𝑡𝑗𝑟𝑒𝑠𝑣 < 𝑡𝑗𝑛𝑗𝑟(𝑡0) then
3: 𝐴𝑆𝑗 (𝑡0) = 𝑡𝑗𝑟𝑒𝑠𝑣 − 𝑡0
4: else if 𝑡𝑗𝑛𝑗𝑟(𝑡0) ≤ 𝑡𝑗𝑟𝑒𝑠𝑣 then
5: 𝐴𝑆𝑗 (𝑡0) = max

(

𝑡𝑗𝑛𝑗𝑟(𝑡0) − 1 − 𝑡0, 𝑡
𝑗
𝑟𝑒𝑠𝑣 − 𝐶𝑗

𝑟𝑒𝑠𝑣 − 𝑡0
)

6: end if
7: return max

(

𝑊𝑆𝑗 (𝑡0), 𝐴𝑆𝑗 (𝑡0), 0
)

𝑡−1 (< 𝑡0) is not used or partially used for job execution delay. This
necessitates the management of a series of AET-based slacks at different
time instants in a cumulative manner. Therefore, we calculate 𝐴𝑆𝑗 (𝑡0),
the cumulative AET-based slack of 𝑗 at 𝑡0, such that delaying the job
execution until 𝑡0 + 𝐴𝑆𝑗 (𝑡0) does not compromise the timely execution
f any job in 𝑗 .

To this end, we review our design of RSM in Algorithm 1, in which
ach sub-system 𝑗 updates 𝑡𝑗𝑟𝑒𝑠𝑣, until which the job of 𝜏𝑗𝑟𝑒𝑠𝑣 can reserve
i.e., idle or execute in) 𝑗 without missing any job deadline in 𝑗 . At
0, after the highest-priority task 𝜏𝑗𝑟𝑒𝑠𝑣 is selected by Line 8 of Algorithm
, Algorithm 2 (called by Line 9 of Algorithm 1) calculates 𝑑𝑗𝑠𝑙𝑎𝑐𝑘 by
tilizing 𝑡𝑗𝑟𝑒𝑠𝑣 assigned at a previous time instant 𝑡−1 (< 𝑡0) from Line 10
f Algorithm 1; therefore, utilizing 𝑡𝑗𝑟𝑒𝑠𝑣 is a key to reclaim unused AET-
ased slacks at previous time instants. Let 𝜏𝑗𝑝𝑟𝑒𝑣 denote 𝜏𝑗𝑟𝑒𝑠𝑣 assigned
y Line 8 of Algorithm 1 at 𝑡−1. Along with the time instant 𝑡𝑗𝑟𝑒𝑠𝑣, we

also focus on 𝑡𝑗𝑛𝑗𝑟(𝑡0), the next job release time instant after 𝑡0 due to
the following property for non-preemptive work-conserving scheduling:
a higher-priority job 𝐽𝐻𝐼 released at 𝑡𝑗𝑛𝑗𝑟(𝑡0) can be blocked by at
most one lower-priority job 𝐽𝐿𝑂, only if 𝐽𝐿𝑂 starts its execution before
𝑗
𝑛𝑗𝑟(𝑡0). Therefore, if we want to rely on the target schedulability test
o guarantee the timely execution of every job in a situation, it is not
llowed to start the execution of 𝐽𝐿𝑂 at or after 𝑡𝑗𝑛𝑗𝑟(𝑡0) in the situation
efore 𝐽𝐻𝐼 finishes its execution.

Focusing on the time instants 𝑡𝑗𝑟𝑒𝑠𝑣 and 𝑡𝑗𝑛𝑗𝑟(𝑡0), we now derive
𝑆𝑗 (𝑡0) with two cases (the latter of which consists of two sub-cases)
s shown in Fig. 4: (Case 1) no job is released in [𝑡0, 𝑡

𝑗
𝑟𝑒𝑠𝑣] implying

𝑗
𝑟𝑒𝑠𝑣 < 𝑡𝑗𝑛𝑗𝑟(𝑡0) in Line 2 of Algorithm 2, and (Case 2) a job (denoted by
𝑗
𝑜𝑡ℎ𝑒𝑟) is released at 𝑡𝑗𝑛𝑗𝑟(𝑡0) ∈ [𝑡0, 𝑡

𝑗
𝑟𝑒𝑠𝑣] implying 𝑡𝑗𝑛𝑗𝑟(𝑡0) ≤ 𝑡𝑗𝑟𝑒𝑠𝑣 in Line 4

f Algorithm 2. All cases in Fig. 4 illustrate the following situation at
0: 𝜏

𝑗
𝑝𝑟𝑒𝑣 finishes its execution at 𝑡0 although it reserves 𝑗 until 𝑡𝑗𝑟𝑒𝑠𝑣,

nd at 𝑡0, 𝜏𝑗𝑟𝑒𝑠𝑣 determines how long it can delay its execution. Note
hat each case in the figure describes a different time instant 𝑡𝑗𝑛𝑗𝑟(𝑡0) at
hich 𝜏𝑗𝑜𝑡ℎ𝑒𝑟 is released.

Since 𝜏𝑗𝑟𝑒𝑠𝑣 is the highest-priority job at 𝑡0, Case 1 implies that 𝜏𝑗𝑟𝑒𝑠𝑣 is
till the highest-priority job until 𝑡𝑗𝑟𝑒𝑠𝑣. Since it was already guaranteed
t 𝑡−1 (< 𝑡0) that 𝜏𝑗𝑝𝑟𝑒𝑣 can reserve 𝑗 until 𝑡𝑗𝑟𝑒𝑠𝑣 without compromising
ny job deadline miss, executing the highest-priority job (i.e., 𝜏𝑗𝑟𝑒𝑠𝑣) no
ater than 𝑡𝑗𝑟𝑒𝑠𝑣 does not compromise any job deadline miss. Therefore,
e can delay starting the execution of 𝜏𝑗𝑟𝑒𝑠𝑣 until 𝑡𝑗𝑟𝑒𝑠𝑣, as shown in
ase 1 of Fig. 4, yielding Line 3 of Algorithm 2.

Under Case 2, 𝜏𝑗𝑜𝑡ℎ𝑒𝑟 could be the highest-priority job in [𝑡𝑗𝑛𝑗𝑟(𝑡0), 𝑡
𝑗
𝑟𝑒𝑠𝑣],

nd therefore executing 𝜏𝑗𝑟𝑒𝑠𝑣 at or after 𝑡𝑗𝑛𝑗𝑟(𝑡0) may compromise the
imely execution of 𝜏𝑗𝑜𝑡ℎ𝑒𝑟. However, if we start the execution of 𝜏𝑗𝑟𝑒𝑠𝑣 no
ater than 𝑡𝑗𝑛𝑗𝑟(𝑡0) − 1 (i.e., before 𝑡𝑗𝑛𝑗𝑟(𝑡0)), we can guarantee that 𝜏𝑗𝑜𝑡ℎ𝑒𝑟
uffers at most one lower-priority job blocking, which yields a legal
chedule and therefore makes it possible for the target schedulability
est to guarantee timely execution of 𝜏𝑗𝑜𝑡ℎ𝑒𝑟 and following jobs (as long as
ll jobs after 𝜏𝑗𝑟𝑒𝑠𝑣 are scheduled in a work-conserving manner with the
arget prioritization policy), yielding the first max argument of Line 5
f Algorithm 2.

Since it is already guaranteed that 𝜏𝑗𝑝𝑟𝑒𝑣 can reserve 𝑗 until 𝑡𝑗𝑟𝑒𝑠𝑣
ithout compromising any job deadline miss, it also does not yield
ny job deadline miss to finish the execution of 𝜏𝑗𝑟𝑒𝑠𝑣 until 𝑡𝑗𝑟𝑒𝑠𝑣 for

𝑗
oth cases, implying that 𝜏𝑟𝑒𝑠𝑣 can delay starting its execution until
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Fig. 4. Different cases for calculation of 𝐴𝑆𝑗 (𝑡0) in Algorithm 2.

𝑗
𝑟𝑒𝑠𝑣 − 𝐶𝑗

𝑟𝑒𝑠𝑣, which is addressed in the second max argument of Line 5
f Algorithm 2, as shown in Case 2B of Fig. 4. Note that 𝑡𝑗𝑟𝑒𝑠𝑣−𝐶𝑗

𝑟𝑒𝑠𝑣− 𝑡0
in the second max argument of Line 5) is always smaller than 𝑡𝑗𝑟𝑒𝑠𝑣 − 𝑡0
in Line 3), so we do not apply the second max argument of Line 5 to
ine 3.

The cumulative AET-based slack also does not compromise G1.

emma 2. Suppose that there is no job in 𝑗 , which starts its execution
efore 𝑡0 but does not finish its execution until 𝑡0, and let 𝜏

𝑗
𝑟𝑒𝑠𝑣 denote the

ighest-priority active job at 𝑡0 on 𝑗 . Then, delaying the start of the job
xecution of 𝜏𝑗𝑟𝑒𝑠𝑣 until 𝑡0 + 𝐴𝑆𝑗 (𝑡0) does not compromise timely execution
f any job in 𝑗 .

roof. Suppose that there is a job deadline miss. We show the contra-
iction when 𝐴𝑆𝑗 (𝑡0) was calculated by (Case 1) Line 3 in Algorithm 2,
Case 2 A) the first max argument of Line 5, and (Case 2B) the second
ax argument of Line 5, which accords with Fig. 4.

(Case 1) Since 𝜏𝑗𝑟𝑒𝑠𝑣 is the highest-priority task until 𝑡𝑗𝑟𝑒𝑠𝑣, the suppo-
ition contradicts that the reservation by 𝜏𝑗𝑝𝑟𝑒𝑣 until 𝑡𝑗𝑟𝑒𝑠𝑣 does not incur
job deadline miss.2

(Case 2 A) Since the schedule in the interval starting at 𝑡𝑗𝑛𝑗𝑟(𝑡0)−1 is a
egal schedule by the target prioritization policy  in a work-conserving
anner, the supposition contradicts a schedulability test  guarantees

imely execution of every job subject to a legal schedule.
(Case 2B) Since the execution of 𝜏𝑗𝑟𝑒𝑠𝑣 finishes no later than 𝑡𝑗𝑟𝑒𝑠𝑣, the

upposition contradicts that the reservation by 𝜏𝑗𝑝𝑟𝑒𝑣 until 𝑡𝑗𝑟𝑒𝑠𝑣 does not
ncur a job deadline miss.

By Lemmas 1 and 2, we can delay the start of 𝜏𝑗𝑟𝑒𝑠𝑣 for as much as
𝑗
𝑠𝑙𝑎𝑐𝑘 in Line 9 of Algorithm 1, without incurring any job deadline miss.

.3. Properties of RSM

emma 3. The proposed run-time slack management RSM in Algorithm 1
an be applied to any pair of a prioritization policy  and its schedulability
est  .

roof. First, since RSM does not use any specific job priority, any
rioritization policy  can be applied to RSM. Second, since RSM does
ot use any property specialized for a certain schedulability test, any
chedulability test  can be applied to RSM.

heorem 1. The proposed run-time slack management RSM in Algorithm
satisfies the two requirements of the problem statement in Section 3:

2 This is a mathematical induction, where the basis case with 𝑡𝑗𝑟𝑒𝑠𝑣 = −∞
rivially holds.
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o

(i) achieving both G1 and G2 and (ii) being applicable to any pair of a
prioritization policy and its schedulability test.

Proof. Since (ii) is addressed by Lemma 3, it suffices to address (i). Re-
garding G1 in (i), Lemmas 1 and 2 guarantee no job deadline miss even
in the presence of the execution delay for max

(

𝑊𝑆𝑗 (𝑡0), 𝐴𝑆𝑗 (𝑡0), 0
)

,
hich is the return value of maxresv(𝑗 , 𝑡0, 𝑡

𝑗
𝑟𝑒𝑠𝑣, 𝜏

𝑗
𝑟𝑒𝑠𝑣) in Algorithm 2.

herefore, no job deadline miss is guaranteed as long as the execution
f 𝜏𝑗𝑟𝑒𝑠𝑣 assigned in Line 8 of Algorithm 1 is finished no later than 𝑡𝑗𝑟𝑒𝑠𝑣
ssigned in Line 10. This is achieved by making 𝜏𝑗𝑟𝑒𝑠𝑣 start its execution
o later than 𝑡𝑗𝑟𝑒𝑠𝑣 − 𝐶𝑗

𝑟𝑒𝑠𝑣 in Lines 16 and 20–21, which proves the
chievement of G1 in (i).

As to G2 in (i), unless the sub-system utilization 𝑈 𝑗 =
∑

𝜏𝑗𝑖
𝐶𝑗
𝑖 ∕𝑇

𝑗
𝑖

s 1.0 and every job’s AET is equal to WCET,3 RSM derives a positive
alue of 𝑑𝑗𝑠𝑙𝑎𝑐𝑘 (i.e., the maximum tolerable delay of the job execution),
hich is used to determine 𝑡𝑗𝑠𝑡𝑎𝑟𝑡 (i.e., the actual time instant to start

he job execution) that reduces battery aging. Therefore, RSM can
educe battery aging, while Section 6 shows how much battery aging
s reduced.

Run-time complexity of RSM. The only additional steps for RSM
re Lines 7–13 of Algorithm 1 that calls maxresv (i.e., the sub-system
eservation stage) and Lines 14–18 of Algorithm 1 that calls minIsquare
i.e., the execution timing decision stage). The former operates in con-
tant time while the latter exhibits 𝑂

(

𝑁 𝑗 ⋅ log(𝑁 𝑗 ) + 𝑑𝑗𝑠𝑙𝑎𝑐𝑘
)

time-
omplexity due to sorting at Line 15 and checking the interval of length
𝑗
𝑠𝑙𝑎𝑐𝑘 in minIsquare [16]. Therefore, RSM requires a little additional
omputational cost at run-time.

. Integrating Run-Time and Offline Slack Management Frame-
orks

Our proposed RSM functions at run-time, so it can be utilized
rthogonally with existing slack management frameworks that compute
lack offline. In this section, we demonstrate how RSM can be integrated
ith offline slack management frameworks. As an example, we propose
SM+, a synergistic run-time and offline slack management frame-
ork that combines RSM with an offline slack management framework
roposed by Kwak et al. [16].

.1. Existing offline slack management framework

Kwak et al. [16] proposed a Reserved Execution Time (RET) frame-
ork, which is an offline slack management framework that statically
tilizes unchangeable slack. RET intentionally inflates the WCET of
asks up to a limit that passes a target schedulability test at the offline
ime. Let 𝐼𝐶𝑗

𝑖 and 𝐼 𝑗𝑖 denote the task 𝑖 of sub-system 𝑗’s inflated WCET
𝐶𝑗
𝑖 ) and the amount of inflated time, respectively, such 𝐼𝐶𝑗

𝑖 = 𝐼 𝑗𝑖 +𝐶𝑗
𝑖 .

asks are then executed as if their WCET is 𝐼𝐶𝑗
𝑖 , while the time of 𝐼 𝑗𝑖

s secured as offline slack. In this way, RET can use slack, but it cannot
pdate nor reclaim its offline slack, compromising R3 in Section 1.

Fig. 5 depicts cases where RET, RSM, and RSM+ use slack to delay
nd run task 𝜏𝑗𝑎 and then reserve a sub-system 𝑗 for the subsequent task
𝑗
𝑏 . When to start running 𝜏𝑗𝑎 , RET delays the execution of 𝜏𝑗𝑎 with 𝐼 𝑗𝑎 and
eserves its corresponding sub-system. However, after the reservation,
t cannot reclaim the unused 𝐼 𝑗𝑎 for 𝜏𝑗𝑏 .

.2. RSM +: Run-Time and Offline Integrated Slack Management

Our proposed RSM+ integrates RSM and RET. RSM and RET secure
lack at orthogonal stages, but both of them utilize slack for execution

3 The former disallows a schedulability test to guarantee the schedulability
f a set of non-preemptive tasks, and the latter is infeasible in reality.
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Fig. 5. Comparing RSM+ with RSM and RET; RSM+ is superior to others, in terms of
the efficiency of slack management.

delay at run-time. Based on this principle, RSM+ integrates RSM and
RET by securing slacks using the methods of RET and RSM inde-
pendently and combining the slacks obtained from each method. The
behaviors of RSM+ during offline and run-time stages are as follows:

Offline Stage. Before the system is operated, RSM+ inflates the
WCET of the tasks as long as all task-sets pass their schedulability
tests, according to the methodology of RET. During the WCET inflation,
RSM+ prioritizes tasks in decreasing order of 𝑃 𝑗

𝑖 ∗𝐶
𝑗
𝑖

𝐼𝑗𝑖
to give priority to

tasks that consume more energy and make tasks be inflated evenly.
Through this WCET inflation, the WCET of task 𝑖 in a sub-system 𝑗
ecomes 𝐼𝐶𝑗

𝑖 , and it obtains offline slack 𝐼 𝑗𝑖 .
Run-time Stage. The run-time behavior of RSM+ is not much

ifferent from RSM. RSM+ schedules and manages tasks in the same
ay as RSM in Algorithm 1. Since the actual WCETs of tasks are not

hanged, the calculation of maxresv (Algorithm 2) also does not change.
herefore, RSM+ calculates the same as RSM to get its run-time slack
𝑗
𝑖 .

Finally, RSM+ simultaneously utilizes the offline slack and run-time
lack to reserve sub-systems. Line 10 of Algorithm 1 should be replaced
y Eq. (2) in RSM+, where 𝑡𝑗𝑟𝑒𝑠𝑣, 𝑡0, 𝑑

𝑗
𝑠𝑙𝑎𝑐𝑘, 𝐼

𝑗
𝑟𝑒𝑠𝑣, and 𝐶𝑗

𝑟𝑒𝑠𝑣 denote time to
eserve, current time, run-time slack, offline slack, and WCET. Since
un-time slack and offline slack yield separate real-time guarantees in
n independent manner, the two slacks can be integrated by addition.
𝑗
𝑟𝑒𝑠𝑣 ← 𝑡0 + 𝑑𝑗𝑠𝑙𝑎𝑐𝑘 + 𝐼 𝑗𝑟𝑒𝑠𝑣 + 𝐶𝑗

𝑟𝑒𝑠𝑣 (2)

In Fig. 5, both RSM and RSM+ utilize 𝑑𝑗𝑎 to delay running 𝜏𝑗𝑎 and re-
laim the unused slack for 𝜏𝑗𝑏 . The difference is that RSM+ additionally

secures slacks 𝐼 𝑗𝑎 and 𝐼 𝑗𝑏 , providing chances of longer delay to tasks.

.3. Advances of RSM +

Utilizing run-time and offline slack management together enables
anaging slack more efficiently than using only one. First, RSM+

eclaims offline slack, which is not possible in RET. RET cannot reclaim
emaining unused slacks, as its slacks are calculated offline and thus
ixed. On the other hand, RSM+ secures unused slacks by run-time
lacks as RSM’s AET-based slack calculation covers them. In Fig. 5, 𝜏𝑗𝑏 of
ET is unavailable to reclaim unused slack 𝐼 𝑗𝑎 and waits for the duration
f 𝐼 𝑗𝑎 before its execution, while 𝜏𝑗𝑏 of RSM+ reclaims it by 𝑑𝑗𝑏 .

Second, RSM+ more evenly distributes slack opportunities to tasks
ompared to RSM. In Fig. 3., we discussed the chances for 𝜏𝑥𝑏 , 𝜏

𝑥
𝑐 , and

𝑥
𝑑 to have slacks through RSM, but we did not discuss that there
s nearly no such chance for 𝜏𝑥𝑎 . In RSM, there will be tasks with
elatively few slack claim opportunities depending on their execution
rder, which causes a slack imbalance among tasks. RSM+ resolves the
lack imbalance by distributing offline slacks to tasks in advance. 𝜏𝑗𝑎 of
SM in Fig. 5 has much less slack than 𝜏𝑗𝑏 , showing an imbalance, while
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SM+ shows a more balanced slack distribution among tasks through t
ffline slack management. As such, using run-time slack and offline
lack together compensates for the disadvantages of each, enabling
ore efficient slack management.

. Evaluation

.1. Experiment setup

Target system. This paper focuses on safety- or mission-critical
lectric systems such as drones, UAVs, and EVs. These systems consist
f several sub-systems in charge of actuation, sensing, computation,
tc., and require high power loads (particularly for drones and UAVs).
onsidering these characteristics, we target a system that demands
n average 5C load and consists of four sub-systems.4 To model the
orkload of the system, we generate task sets for each sub-system
𝑗 , by varying utilizing (𝑈 𝑗 =

∑

𝜏𝑗𝑖
𝐶𝑗
𝑖 ∕𝑇

𝑗
𝑖 ) and the number of tasks

𝑁 𝑗). For each task 𝜏𝑗𝑖 , 𝑇 𝑗
𝑖 is uniformly chosen in [10 ms, 1000 ms),

𝑗
𝑖 is generated based on UUniFast-Discard algorithm [25], and 𝑃 𝑗

𝑖 is
andomly generated such that the average system-wide discharge C-rate
ecomes 0.5C per 0.1 utilization. The AET of each task 𝜏𝑗𝑖 is employed
o distribute normally between 10 ms and its 𝐶𝑗

𝑖 (i.e. WCET) as the AET
s known to follow a normal distribution [26,27].
Battery emulator. We develop our own accurate battery emula-

or to evaluate battery aging based on the thermal–electrochemical
seudo-2D (P2D) model [20,28], the capacity degradation model for
raphite anode LIBs [22], and cell parameters [29]. The P2D model
athematically calculates the ion transport, kinetics, and thermody-
amics of a battery and is regarded as one of the most precise battery
odels [30]. The battery emulator models a 26650-size 2.3Ah lithium

ron phosphate (LFP) battery cell, widely used in drones and EVs, at
oom temperature (25◦𝐶), and emulates the battery’s internal state and
ging with an error of less than 1% [20] and a 1.51 RMS error [22],
espectively.
Experiment process. As an underlying prioritization policy, we

pply EDF and RM (Rate Monotonic, FP that prioritizes a task with a
maller period). We generate task sets for 4,000 sub-systems (i.e., 1,000
ystems), each of which passes the schedulability tests of non-
reemptive uniprocessor scheduling under RM and EDF [31–33]. We
ompared the following run-time scheduling mechanisms.

• Vanilla: The vanilla non-preemptive and work-conserving
scheduling (without being idle deliberately), which is traditional
RM and EDF [31–33],

• RET: An existing approach based on the WCET inflation [16],
• RSM: Our approach in Algorithm 1 as it is, and
• RSM+: Our approach of Algorithm 1 by setting each task’s WCET

to the WCET inflated by RET.

We conduct our experiments in two stages: power load generation
nd battery emulation. The first stage simulates the power load of 1,000
ifferent electric systems under every pair of a run-time scheduling
echanism and underlying prioritization policy. For the second step,
e emulate the battery aging for 5,000 h with the battery emulator,
lso under every pair of a run-time scheduling mechanism and under-
ying prioritization policy. The emulation repeats fully discharging the
attery according to the generated power load and fully charging it at
C. Note that our power load variance evaluation targets the whole
,000 generated electric systems, while our battery aging evaluation
argets 100 out of them due to overlong emulation time (taking 30 to
0 h per system). From the two-stage experiment, we measure power
oad variance (for ∑

𝐼2) and the percentage of degraded capacity (for
attery aging).

4 The discharge C-rate of 1C means a constant current rate that completely
ischarges a fully-charged battery in one hour. 𝑥C is a constant current rate 𝑥
imes of 1C.



Journal of Systems Architecture 144 (2023) 103001J. Kwak et al.

i
v
p
u
R
𝑈
W
e
b
t
e
t
8

s
V
4
0
w
t
s
l

Fig. 6. The power load variance, under different parameters of the utilization 𝑈 𝑗 , the number of tasks 𝑁 𝑗 and the prioritization policy.
Fig. 7. The percentage of degraded capacity, under different parameters of the utilization 𝑈 𝑗 , the number of tasks 𝑁 𝑗 and the prioritization policy.
t
s
s

i
V
b
l
l
p
a
l
d
R
R
p
s
E

6

b
a
t
a
w
r
r

l
c
v
p
d
s
d
R

m
c

6.2. Evaluation results: Minimizing ∑ 𝐼2

Although the ultimate goal of RSM is to minimize battery aging,
we first inspect system-wide power load variance to evaluate how
RSM effectively reduces ∑

𝐼2 as it is designed to minimize ∑

𝐼2. We
evaluate the power load variance with varying parameters of the system
utilization 𝑈 𝑗 , the number of tasks 𝑁 𝑗 , and the prioritization policy  ,
which are illustrated in Figs. 6(a) and 6(b). From the figures, we make
the following observations.

O1. RSM results in a smaller power load variance than RET under
many settings. In particular, as 𝑈 𝑗 gets larger or 𝑁 𝑗 gets smaller,
RSM becomes more effective in reducing the power load variance.

O2. RSM+ always outperforms all other approaches in terms of mini-
mizing the power load variance due to its effectiveness in various
settings.

O3. In general, the trend of evaluation results for the power load
variance under RM is similar to that under EDF, but there exist
non-negligible differences.

Regarding O1, while we can easily find many settings in which RSM
s more advantageous than RET in terms of reducing the power load
ariance, we observe that RSM becomes more effective in reducing the
ower load variance when 𝑈 𝑗 is higher. For example, in the settings
nder RM with 𝑁 𝑗 = 4, the ratio between the power load variance of
SM and RET is 118.8%, 96.3%, 84.1%, and 71.7%, respectively, for
𝑗 = 0.3, 0.5, 0.7, and 0.9. This is because the amount of inflating
CET under RET becomes smaller as 𝑈 𝑗 becomes higher, while RSM

fficiently reclaims and utilizes the run-time slack from the difference
etween AET and WCET for every 𝑈 𝑗 . When it comes to 𝑁 𝑗 , we observe
hat a smaller 𝑁 𝑗 yields more reduced power load variance of RSM. For
xample, in the settings under RM with 𝑈 𝑗 = 0.9, the ratio between
he power load variance of RSM and RET is 71.1%, 75.2%, 78.6%, and
1.7%, respectively, for 𝑁 𝑗 = 4, 8, 12 and 16, due to the similar reason.

As to O2, we observe RSM+ outperforms other approaches for all
ettings. When 𝑁 𝑗 = 4 under RM, as shown in Fig. 6(a), RSM+ reduces
anilla’s power load variance by an average of 54.3%, 57.6%,
4.8%, and 33.0%, respectively, for 𝑈 𝑗 = 0.3 to 0.9 with a step of
.2. Considering it is generally difficult to reduce power load variance
ith higher 𝑈 𝑗 due to limited flexibility to change each job execution

ime, the results demonstrate the effectiveness of RSM+ for various
ettings, which is different from RET, that reduces Vanilla’s power
8

oad variance by an average of 51.8%, 41.3%, 21.4%, and 3.2% for a
he same settings. The reason why RSM+ dominates others for various
ettings is that it integrates the merit of RSM (effective for high 𝑈 𝑗 and
mall 𝑁 𝑗) and RET (effective for low 𝑈 𝑗).

For O3, we observe that the trend of power load variance under EDF
s mostly similar to that under RM in Figs. 6(a) and (b). In particular,
anilla makes almost no difference in the power load variance
etween RM and EDF, which indicates it is not easy to reduce the power
oad variance using any vanilla prioritization policy oblivious to power
oad. Since RSM does not have any mechanism that employs any job
riority, RSM also yields a similar power load variance between RM
nd EDF. On the other hand, RET and RSM+ under RM yield less power
oad variance reduction than those under EDF. This comes from RET’s
ependency on the schedulability tests; since the schedulability test for
M allows less inflation of WCET than that for EDF, RET itself and
SM+ that utilizes the inflated WCET by RET exhibit such a different
ower load variance reduction between RM and EDF. However, RSM+
hows a smaller gap between the power load variance under RM and
DF than RET, as it employs features of not only RET but also RSM.

.3. Evaluation results: Minimizing battery aging

Now, we validate the effectiveness of RSM and RSM+ in minimizing
attery aging. First, we validate our abstraction to minimize battery
ging by minimizing ∑

𝐼2 to lower battery temperature. We calculate
he correlation coefficients between the power load and temperature,
s well as between the power load variance and capacity degradation,
hich are 0.99 and 0.95, respectively, indicating robust positive cor-

elations. As intended by our abstraction, minimizing ∑

𝐼2 effectively
educes battery temperature and battery aging.

In accordance with the positive correlation between the power
oad variance and capacity degradation, the percentage of degraded
apacity in Figs. 7(a) and (b) exhibits a similar trend to the power load
ariance in Figs. 6(a) and (b). Similar to the evaluation results of the
ower load variance, we observe that RSM yields a smaller capacity
egradation than RET in many settings, and RSM+ always yields the
mallest capacity degradation. In particular, RSM+ reduces capacity
egradation by up to 32.6% and 28.2%, compared to Vanilla and
ET, respectively.

Note that since the correlation coefficient is not 1.0, there exists a
inor discrepancy between minimizing the power load variance and

apacity degradation. For example, in the case of EDF with 𝑈 𝑗 = 0.8
𝑗
nd 𝑁 = 4, the power load variance of RET (4.67) is larger than that



Journal of Systems Architecture 144 (2023) 103001J. Kwak et al.

R

of RSM (4.37) in Fig. 6(a), but the percentage of degraded capacity of
ET (26.6%) is slightly smaller than RSM (26.7%) in Fig. 7(a). Although

the minor discrepancy is a limitation that comes from the abstraction
of complex battery behaviors, it does not damage our general claim,
the effectiveness of RSM in achieving battery aging.

7. Related work

Battery aging models and control. Battery aging is one of the
most important factors in many industries from battery manufacturers
to device or car makers. Many studies have investigated various aging
mechanisms [19–24,34–37]. Many researchers in the electrochemistry
community analyzed and modeled batteries and their aging [19–24,
34]. In addition, plenty of research aims to use such models to control,
predict, and inspect battery aging on various systems [35–37]. These
studies provide principles to combat battery aging, however, they do
not deal with timing guarantees and thus cannot be applied to real-time
systems.

Battery aging-aware real-time systems. Recently, only a few
studies have aimed to slow down battery aging in real-time systems
requiring timing guarantees. Kwak et al. [16] proposed a schedul-
ing framework, RET, to decelerate battery aging while meeting tim-
ing constraints by timely delaying real-time power-consuming tasks.
RET framework searches for the opportunity to delay execution time
(i.e., slack) in offline by analyzing the schedulability test of the desig-
nated scheduling policy. This way, RET delays execution to diminish
heat generation from batteries to decrease battery aging. Similarly,
Jang et al. [17] exploited the principles of RET framework to reduce
battery aging in satellite systems. They rather increase heat gener-
ation from batteries considering the low-temperature environments
of satellites. Unlike existing offline frameworks, the proposed online
RSM framework analyzes execution delay opportunities at run-time,
effectively reducing aging in the case of the static scheduler and high
utilization task sets, as demonstrated in Section 6. We also proposed
RSM+ framework by combining the benefits of both RET and RSM, thus
showing the most effective solution space in decelerating battery aging
in real-time systems.

Energy-, or power-aware schedulers for real-time systems. There
have been a group of studies that address scheduling algorithms for
improving energy efficiency [2–4], managing power requirements [5–
8], simply reducing energy consumption [9–11] or conserving energy
consumption in a temperature-aware manner [12–15] while guaran-
teeing the constraints of real-time systems. Such scheduling algorithms
may help with battery usage, but expecting them to reduce battery
aging is difficult as they are not directly related to battery aging. Specif-
ically, these studies primarily focus on reducing either instantaneous
power or overall energy consumption both of which affect battery
aging. In contrast, our solution aims to directly reduce battery aging
by efficiently scheduling both power and energy consumption.

8. Conclusion

In this paper, we proposed a run-time slack management frame-
work that mitigates the battery aging in power-consuming real-time
systems. The framework not only guarantees the timely execution of
power-consuming real-time tasks but also is applicable to any schedul-
ing policies and schedulability test without design changes. We also
extended the proposed framework by integrating it with an exist-
ing offline slack management framework. We evaluated the proposed
framework on a precise battery emulator varying multiple parameters
and found that it significantly reduced battery aging (up to 32.6%)
compared to other approaches. In future work, we will apply the pro-
posed slack management framework to other domains besides battery
aging and study a new framework for multi-core and mixed-criticality
9

systems.
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