
Journal of Systems Architecture 135 (2023) 102808

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Tight necessary feasibility analysis for recurring real-time tasks on a
multiprocessor
Hoon Sung Chwa a, Jinkyu Lee b,∗

a Department of Electrical Engineering and Computer Science, DGIST, Republic of Korea
b Department of Computer Science and Engineering, Sungkyunkwan University (SKKU), Republic of Korea

A R T I C L E I N F O

Keywords:
Necessary feasibility analysis
Multiprocessor platform
Real-time systems
Recurring real-time tasks

A B S T R A C T

One of the important design issues for time-critical embedded systems is to derive necessary conditions that
meet all job deadlines invoked by a set of recurring real-time tasks under a computing resource (called
feasibility). To this end, existing studies focused on how to derive a tight lower-bound of execution requirement
(i.e., demand) of a target set of real-time tasks. In this paper, we address the following question regarding the
supply provided by a multiprocessor resource: is it possible for a real-time task set to always utilize all the
provided supply? We develop a systematic approach that i) calculates the amount of supply proven unusable,
ii) finds a partial schedule that yields a necessary condition to minimize the amount of unusable supply, and
iii) uses the partial schedule to further reclaim unusable supply. While the systematic approach can be applied
to most (if not all) recurring real-time task models, we show two examples how the approach can yield tight
necessary feasibility conditions for the sequential task model and the gang scheduling model. We demonstrate
the proposed approach finds a number of additional infeasible task sets which have not been proven infeasible
by any existing studies for the task models.
1. Introduction

Nowadays, we have witnessed an increasing trend in system devel-
opments towards multiprocessor computing environments. One of the
most important issues for time-critical system design is how to utilize
a multiprocessor computing resource efficiently so as to accommodate
as many real-time tasks subject to timing constraints as possible [1,2],
which has been influenced by the increasing demand for safety-critical
systems such as autonomous vehicles.

To address the issue, the real-time systems community have fo-
cused on ‘‘feasibility’’ analysis to determine whether every instance
of recurring real-time tasks finishes its execution within its deadline
under a computing resource and have sought two research directions:
(i) developing scheduling algorithms and their schedulability analysis
to expand a set of real-time task sets proven schedulable by at least
a scheduling algorithm (i.e., addressing sufficient feasibility) [3], and
(ii) deriving conditions of task sets that are never schedulable by
any scheduling algorithm to reduce a set of task sets that are poten-
tially unschedulable but have not been proven unschedulable so far
(i.e., addressing necessary feasibility) [4–10].

The goal of this paper is to reduce a set of task sets whose feasibility
is unknown by existing studies. In particular, we aim at develop-
ing necessary feasibility tests that prove infeasibility of task sets on a
multiprocessor (also called infeasibility tests).

∗ Corresponding author.
E-mail addresses: chwahs@dgist.ac.kr (H.S. Chwa), jinkyu.lee@skku.edu (J. Lee).

Addressing necessary feasibility for real-time task systems is bene-
ficial both from the theoretical and the practical point of view [9,10].
On the theoretical side, tight necessary feasibility analysis eliminates
unnecessary efforts for researchers to try to make task sets schedulable
by developing a new scheduling algorithm if the task sets are proven
infeasible by the necessary feasibility analysis. On the practical side,
when system designers set the configuration for scheduling algorithms,
task parameters, and computing resources, tight necessary feasibility
results reduce the burden of tuning parameters for the configuration
by excluding some infeasible choices of the configuration.

A typical way to derive necessary feasibility conditions is demand–
supply comparison, which is, to compare a lower-bound of execution
requirements (i.e., demand) of a target set of real-time tasks in an
interval, with the amount of execution capability (i.e., supply) provided
by a target computing resource in the interval; if the former is larger
than the latter, the task set is deemed infeasible by any scheduling
algorithm on the resource. Existing studies have focused on finding
a tighter lower-bound of demand of a task set (e.g., demand bound
function [4], forced-forward demand bound function [7]), but they
assume that the supply is consistently provided by a computing resource
(i.e., 𝑚 × 𝑡 amount of supply provided in an interval of length 𝑡 by 𝑚
processors) [4–8,10]. The approach was successful for a uniprocessor
vailable online 20 December 2022
383-7621/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.sysarc.2022.102808
Received 20 June 2022; Received in revised form 4 November 2022; Accepted 14
 December 2022

https://www.elsevier.com/locate/sysarc
http://www.elsevier.com/locate/sysarc
mailto:chwahs@dgist.ac.kr
mailto:jinkyu.lee@skku.edu
https://doi.org/10.1016/j.sysarc.2022.102808
https://doi.org/10.1016/j.sysarc.2022.102808
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2022.102808&domain=pdf


Journal of Systems Architecture 135 (2023) 102808H.S. Chwa and J. Lee
Fig. 1. Available time slots for jobs of each sequential task 𝜏1(𝑇1 = 2, 𝐶1 = 1, 𝐷1 = 1),
𝜏2(3, 2, 2) and 𝜏3(4, 2, 3), and the number of available jobs in each time slot.

resource in that a necessary and sufficient feasibility condition was
derived for the most popular real-time task model [4]. However, the
approach cannot address the following important question regarding
the supply provided by a multiprocessor resource: is it possible for a
task set to always utilize all the provided supply?

The question can be answered by an example in Fig. 1, which
illustrates time slots for each task that is available to be executed and
the number of available tasks in each time slot1; a task is said to be
available in a time slot, if there exists the task’s job whose execution
window between its release time and deadline subsumes the time
slot. In the time slots [3, 4), [5, 6) and [7, 8), the number of available
tasks is only one, meaning that the supply provided by two processors
cannot be fully utilized by the task set because other tasks cannot
have their jobs that are available in those slots. Therefore, among
2 × 11 = 22 amount of supply provided by two processors in [0, 11),
the task set can utilize at most 22 − 3 = 19 amount of supply. Since
tasks 𝜏1(period = 2, relative deadline = 1, execution time = 1), 𝜏2(3, 2, 2)
and 𝜏3(4, 2, 3) need to execute 1×6 jobs=6, 2×4 jobs=8, and 2×3 jobs=6
amount of executions in [0, 11), respectively, the amount of demand
(i.e., 6+8+6=20) is strictly larger than an upper-bound of the supply
(i.e., 19), making the task set infeasible on two processors regardless
of scheduling algorithms. However, no existing necessary feasibility
conditions have proven the infeasibility because they have failed to
consider such unusable supply. This paper proposes the first approach
to derive a tighter upper-bound of the supply that can be utilizable by
a task set on a multiprocessor resource.

To this end, this paper addresses the following technical issues (in
Section 3):

Q1. How to calculate the amount of supply trivially proven unusable,
Q2. How to find a set of jobs to be necessarily executed in each time

slot in order to maximally utilize the supply,
Q3. How to use the set of jobs in each time slot to further reclaim

unusable supply, and
Q4. How to develop a systematic way to fully utilize the synergy of

the answers of Q2 and Q3.

While the proposed approach can be applicable to most (if not all)
real-time recurring task models, we demonstrate how the proposed ap-
proach improves the state-of-the-art necessary feasibility conditions for
two popular task models: the sequential task model [11] and the gang
task model [12] (in Section 4). Our simulation results show that the
proposed approach finds 297,622 (25%) and 980,205 (82%) additional
infeasible task sets among each of 1,200,000 generated sequential and
gang task sets, respectively, which have not been proven infeasible by
any existing studies (in Section 5).

This paper makes the following contributions.

• Development of the first approach to derive tight upper-bounds
of the supply for necessary feasibility conditions,

1 The example adopts the sequential task model [11] to be detailed in
Section 2.1.
2

Table 1
Summary of notation.
𝜏;  Task set; Job set
𝑚 # of processors
𝑇𝑖 Task period
𝐷𝑖 Task relative deadline
𝐶𝑖 Task execution time
𝑣𝑖 # of threads to be concurrently executed
𝐴𝑉 𝑥(𝑡, 𝑡 + 1) # of 𝑥-depth-available jobs in [𝑡, 𝑡 + 1)
𝑃𝐽 𝑥(𝑡, 𝑡 + 1) Partial job set in  in [𝑡, 𝑡 + 1), associated

with 𝐴𝑉 𝑥(𝑡, 𝑡 + 1) (see Definition 5)
𝐶𝐽 (𝑡, 𝑡 + 1) Complete job set in  scheduled in [𝑡, 𝑡 + 1)
𝑉 𝑆 ; 𝐼𝑉 𝑆 Valid schedule; Invalid schedule

• Establishment of a general methodology for identifying unus-
able supply, which can be incorporated into existing necessary
feasibility tests for recurring real-time task models,

• Development of improved necessary feasibility tests for two rep-
resentative task models by applying our approach, and

• Demonstration of effectiveness of the proposed tests in finding
infeasible task sets and thus in narrowing the area of uncertainty
between the task sets proven feasible and those proven infeasible.

2. System model and background

2.1. System model

We describe our system model and notation, summarized in Table 1.
This paper develops tight upper-bounds of supply provided by a re-
source of 𝑚 ≥ 2 processors (to be detailed in Section 3), which can
be incorporated into existing necessary feasibility conditions for most
(if not all) recurring real-time task models, including the sequential
task model [11], the parallel task model [8], the gang task model [12],
and the mixed-criticality sequential task model [9,10]. In those task
models, a task 𝜏𝑖 in a task set 𝜏 invokes a series of sporadic jobs, and
two consecutive jobs of 𝜏𝑖 are separated by at least 𝑇𝑖 time units (called
the period or the minimum inter-job separation).

Among the task models, we choose the sequential task model and
the gang task model, to demonstrate how the new supply upper-
bounds improve the state-of-the-art necessary feasibility conditions in
Section 4. In the sequential task model, 𝜏𝑖 has two more parameters in
addition to 𝑇𝑖: the relative deadline 𝐷𝑖 and the execution time 𝐶𝑖. Once
a job of 𝜏𝑖 is released at 𝑟𝑖, it should execute for at most 𝐶𝑖 time units
until 𝑟𝑖+𝐷𝑖; whenever a job of 𝜏𝑖 is executed, the job occupies only one
processor. On the other hand, 𝜏𝑖 subject to the gang task model has one
more parameter in addition to 𝑇𝑖, 𝐷𝑖 and 𝐶𝑖, which is 𝑣𝑖, the number of
threads of each job of 𝜏𝑖. Whenever a job of 𝜏𝑖 is executed, its threads
are concurrently executed on 𝑣𝑖 processors. Note that we do not have
any restriction between 𝑇𝑖 and 𝐷𝑖 for both sequential and gang task
models (i.e., we consider arbitrary-deadline tasks).

In this paper, we focus on global preemptive scheduling; a job can
be executed on any processor, and a higher-priority job can preempt the
execution of any lower-priority job. We assume that each preemption
does not incur any overhead, and the quantum length is 1, meaning
that all task parameters are integer values.

For recurring real-time task models, in general, each task set may
legally generate infinitely many different job arrival sequences since
the actual inter-arrival time between any two consecutive jobs of each
task can vary (due to the inter-job separation of at least 𝑇𝑖 time units). A
task set is deemed infeasible if there exists a single job arrival sequence
that cannot meet at least one job deadline under global preemptive
scheduling; and it is deemed feasible otherwise.



Journal of Systems Architecture 135 (2023) 102808H.S. Chwa and J. Lee

c
e

t

𝑚
(

t
r
c

t

𝖫

w
n

𝖫

w
(

𝖣

t

T
r
m


𝑆

P
t
𝐴
t
d
w
𝑚

d
a
l
r
t
e

E
F
1
r
a
t
T
s
2
r
t
j
e
a

i
t
[
h
w
d
i
c
a

2.2. Background

There have been proposed many multiprocessor ‘‘feasibility’’ anal-
ysis techniques that determine whether every job of real-time tasks
finishes its execution within its deadline (see [3] for a survey). A
typical way to develop a feasibility test is to compare the sum of every
job’s execution requirement that should be performed in the interval
of interest to avoid its deadline miss (called demand), with the time
duration in which the computing platform allows jobs to execute within
the interval (called supply). A task set is feasible on a multiprocessor
omputing platform if and only if the demand of the task set does not
xceed the supply of the computing platform.

Horn [13] derived the exact necessary and sufficient condition for
he feasibility of the implicit-deadline sequential task model, where each

task has its relative deadline equal to its period (i.e., 𝐷𝑖 = 𝑇𝑖), as
follows:

𝑢𝑠𝑢𝑚 ≤ 𝑚, (1)

where 𝑢𝑠𝑢𝑚 =
∑

𝜏𝑖∈𝜏 𝐶𝑖∕𝑇𝑖. Eq. (1) implies that a task set is feasible on a
-processor platform if and only if the resource demand of the task set

captured by 𝑢𝑠𝑢𝑚) does not exceed the resource supply of the platform
(captured by 𝑚).

Necessary feasibility analysis. For the constrained-deadline sequen-
ial task model (i.e., 𝐷𝑖 ≤ 𝑇𝑖), the term 𝑢𝑠𝑢𝑚 is still a lower bound on
esource demand, but not an upper bound. That is, Eq. (1) is a necessary
ondition for the feasibility, but it is not sufficient.

Baruah and Fisher [14] proposed a tighter necessary condition with
he concept of the processor load (denoted by 𝖫𝖮𝖠𝖣(𝜏)) as follows:

𝖮𝖠𝖣(𝜏) ≤ 𝑚, (2)

here 𝖫𝖮𝖠𝖣(𝜏) represents the maximum cumulative resource demand
ormalized by the interval length. 𝖫𝖮𝖠𝖣(𝜏) can be expressed as

𝖮𝖠𝖣(𝜏) = max
∀𝑡>0

(

∑

𝜏𝑖∈𝜏 𝖣𝖡𝖥(𝜏𝑖, 𝑡)

𝑡

)

, (3)

here the demand bound function of 𝜏𝑖 for an interval of length 𝑡
denoted by 𝖣𝖡𝖥(𝜏𝑖, 𝑡)) is

𝖡𝖥(𝜏𝑖, 𝑡) = max
(

0,
⌊ 𝑡 −𝐷𝑖

𝑇𝑖

⌋

+ 1
)

× 𝐶𝑖. (4)

Fisher et al. [6] showed how to approximate the processor load in an
efficient way.

Baker and Cirinei [7] further improved upon the necessary feasibil-
ity condition in Eq. (2) by considering a synchronous arrival sequence
with the force-forward demand bound function (FFDBF) as stated in
Eq. (8) to be presented. This is the state-of-the-art necessary feasibility
analysis for the sequential task model.

Note that most studies for multiprocessor necessary feasibility anal-
ysis focused on the sequential task model explained so far, but there
exist some studies for the gang task model [12], the parallel task
model [8], and mixed-criticality task model [10].

All of the existing studies focused on finding a tighter lower-bound
of demand of a task set, but they assumed that the supply provided by a
computing resource is stationary (i.e., 𝑚× 𝑡 amount of supply provided
in an interval of length 𝑡 by 𝑚 processors). On the other hand, this
paper proposes the first approach to derive a tighter upper-bound of the
supply that can be utilizable by a task set on a multiprocessor platform.

3. Deriving tight supply upper-bounds

Generalizing the motivational example in Section 1, this section pro-
poses a systematic way to calculate tight upper-bounds of the amount
of supply to be actually utilizable by a set of jobs  , a single instance
of job arrival sequences generated by a set of recurring real-time tasks
𝜏. Although we target  subject to the sequential task model in the
examples to be explained, all the theories to be developed in this
section are valid for  subject to any recurring real-time task models
mentioned in Section 2.1. As the first step, we define the notion of
3

availability for each job. s
Definition 1 (1-Depth-Availability). Consider a job set  invoked by a
task set 𝜏. A job is said to be available or 1-depth-available in [𝑡, 𝑡+1), if
he job satisfies the following condition.

• The time slot [𝑡, 𝑡 + 1) belongs to the interval between the job’s
release time and deadline.

Let 𝐴𝑉 1(𝑡, 𝑡 + 1) denote the number of 1-depth-available jobs in  in
[𝑡, 𝑡 + 1).

For example, 𝜏3 in Fig. 1 has available jobs in [𝑡, 𝑡 + 1) where
𝑡 = 0, 1, 2, 4, 5, 6, 8, 9 and 10. Also, 𝐴𝑉 1(𝑡, 𝑡 + 1) = 1 holds for 𝑡 = 3, 5
and 7, while 𝐴𝑉 1(𝑡, 𝑡 + 1) ≥ 2 holds for other 𝑡 in the figure. Since
𝐴𝑉 1(𝑡, 𝑡 + 1) depends on the job release patterns of  but does not
depend on scheduling algorithms, we can utilize the notion for deriving
an upper-bound of supply regardless of scheduling algorithms.

Using the property that 𝐴𝑉 1(𝑡, 𝑡+1) < 𝑚 implies the job set  cannot
fully utilize 𝑚 processors in [𝑡, 𝑡 + 1), the following theorem calculates
an upper-bound of the amount of supply to be utilized by  .

heorem 1. Consider a job set  invoked by a task set 𝜏 on an 𝑚-processor
esource. If 𝐴𝑉 1(𝑡, 𝑡 + 1) < 𝑚, the supply able to service  in [𝑡, 𝑡 + 1) is at
ost 𝐴𝑉 1(𝑡, 𝑡 + 1), not 𝑚. Therefore, the amount of supply able to service
in [0, 𝑡) by an 𝑚-processor platform is upper-bounded by 𝑆𝐵1(𝑡), where

𝐵1(𝑡)
def
= 𝑚 × 𝑡 −

𝑡−1
∑

𝑡𝑎=0
max

(

0, 𝑚 − 𝐴𝑉 1(𝑡𝑎, 𝑡𝑎 + 1)
)

. (5)

roof. Suppose  which satisfies 𝐴𝑉 1(𝑡𝑎, 𝑡𝑎 + 1) < 𝑚 occupies more
han 𝐴𝑉 1(𝑡𝑎, 𝑡𝑎 + 1) processors in [𝑡𝑎, 𝑡𝑎 + 1). By the definition of
𝑉 1(𝑡𝑎, 𝑡𝑎 + 1) with the definition of the 1-depth-availability of a job,

his contradicts that a job can be executed between its release time and
eadline. Therefore,  can occupy at most 𝐴𝑉 1(𝑡𝑎, 𝑡𝑎 + 1) processors
hen 𝐴𝑉 1(𝑡𝑎, 𝑡𝑎+1) < 𝑚 and at most 𝑚 processors when 𝐴𝑉 1(𝑡𝑎, 𝑡𝑎+1) ≥
, respectively. By applying 𝑡𝑎 to 0, 1, 2, . . . 𝑡−1, the theorem holds. □

While most existing necessary feasibility conditions that employ
emand–supply comparison [4–10] assume 𝑚 × 𝑡 amount of supply for
n interval of length 𝑡, Theorem 1 derives the amount of supply no
arger than 𝑚 × 𝑡, yielding tighter necessary feasibility conditions for
ecurring real-time task models to be detailed in Section 4. However,
here is room for further improvement to be explained in the following
xample.

xample 1. We add the fourth task to the task set of the example in
ig. 1. That is, we consider four sequential tasks 𝜏1(𝑇1 = 2, 𝐶1 = 1, 𝐷1 =
), 𝜏2(3, 2, 2), 𝜏3(4, 2, 3) and 𝜏4(8, 1, 6), to be scheduled on a two-processor
esource. From 𝑡 = 0, the four tasks invoke a series of jobs periodically
s shown in Fig. 2(a). In this case, [7, 8) is the only time slot in which the
ask set cannot fully utilize a two-processor resource (i.e., 𝐴𝑉 1(7, 8)=1).
herefore, the four tasks can utilize at most 2 × 11 − 1 = 21 amount of
upply in [0, 11). Since 𝜏1, 𝜏2, 𝜏3 and 𝜏4 need to execute 1×6 jobs=6,
×4 jobs=8, 2×3 jobs=6, 1×1 job=1 amount of executions in [0, 11),
espectively, the amount of demand (i.e., 6+8+6+1 = 21) is not larger
han the upper-bound of the supply (i.e., 21). Therefore, we cannot
udge that the task set is infeasible on two processors; note that no
xisting necessary feasibility conditions have proven the infeasibility
s well.

However, we need to scrutinize whether all the 21 amount of supply
n [0, 11) can be actually utilizable by the four tasks. This necessitates
he following conditions: if 𝐴𝑉 1(𝑡, 𝑡 + 1) ≤ 𝑚, all the available tasks in
𝑡, 𝑡+1) should be executed in [𝑡, 𝑡+1). For example, since 𝐴𝑉 1(3, 4) = 2
olds, the job of 𝜏2 and that of 𝜏4 should be executed in [3, 4); otherwise,
e cannot fully utilize the two-processor resource in [3, 4). Once we
ecide to execute the job of 𝜏4 in [3, 4), the job cannot be executed
n other time slots (due to 𝐶4 = 1), meaning that we can deduct the
ontribution of the job of 𝜏4 from 𝐴𝑉 1(𝑡, 𝑡+1) for [0, 1), [1, 2), [2, 3), [4, 5)
nd [5, 6). Then this deduction helps to further reclaim the unusable

upply, yielding a tighter upper-bound of supply.



Journal of Systems Architecture 135 (2023) 102808H.S. Chwa and J. Lee
Fig. 2. 𝑥-depth-available slots for jobs of each sequential task 𝜏1(𝑇1 = 2, 𝐶1 = 1, 𝐷1 = 1), 𝜏2(3, 2, 2), 𝜏3(4, 2, 3) and 𝜏4(8, 1, 6), slots for jobs that belong to 𝑃𝐽 𝑥(𝑡, 𝑡+ 1), and calculation
of 𝐴𝑉 𝑥(𝑡, 𝑡 + 1), when 𝑚 = 2.
To derive tighter supply upper-bounds than Theorem 1 using the
motivational example, we need to develop a systematic way of address-
ing the following issues:

I1. How to identify a set of jobs in  to be necessarily executed in
each time slot in order to maximally utilize the supply, and

I2. How to reduce the number of available jobs in each time slot by
considering I1 in order to further reclaim the unusable supply.

To address I1, we define 𝑃𝐽 1(𝑡, 𝑡+ 1), a unique partial set of jobs in
 that should be executed in [𝑡, 𝑡+ 1) in order to maximally utilize the
supply as follows.

Definition 2. Let 𝑃𝐽 1(𝑡, 𝑡+1) denote a set of jobs in  , each of which
satisfies the two following conditions; note that 𝑃𝐽 1(𝑡, 𝑡+1) is calculated
for 𝑡 = 0, 1, 2, 3,… in a sequential manner.

• The job is 1-depth-available in [𝑡, 𝑡 + 1) where 𝐴𝑉 1(𝑡, 𝑡 + 1) ≤ 𝑚
holds.

• The number of time slots [𝑡′, 𝑡′ + 1) where the job belongs to
𝑃𝐽 1(𝑡′, 𝑡′ + 1) for 𝑡𝑟 ≤ 𝑡′ ≤ 𝑡 − 1 is less than the execution time
of the job, where 𝑡𝑟 denotes the release time of the job.

Note that the second condition guarantees that the number of
different time slots such that the job of interest belongs to 𝑃𝐽 1(𝑡∗, 𝑡∗+1)
for any 𝑡∗ > 0 cannot be larger than the execution time of the job
of interest, by checking 𝑃𝐽 1(𝑡′, 𝑡′ + 1) for 𝑡′ ≥ 0 smaller than 𝑡 in a
sequential manner (but we do not need to investigate 𝑃𝐽 1(𝑡′, 𝑡′ + 1) if
[𝑡′, 𝑡′ + 1) is before the release time of the job of interest).

For example, since [3, 4), [5, 6) and [7, 8) are the time slots in
which 𝐴𝑉 1(𝑡, 𝑡 + 1) ≤ 𝑚 holds in Fig. 2(a), 𝑃𝐽 1(3, 4), 𝑃𝐽 1(5, 6) and
𝑃𝐽 1(7, 8) include the jobs of 𝜏2 and 𝜏4, the job of 𝜏3, and the job of
𝜏2, respectively, as shown in the figure. Note that the first job of 𝜏4
with 𝐶4 = 1 is included in 𝑃𝐽 1(3, 4), so it is excluded from 𝑃𝐽 1(5, 6)
due to the second condition of Definition 2.

Definition 3 (Valid Schedule). A schedule of  in [0, 𝑡∗) is said to be
valid, if every job in  can execute for its full execution time between
its release time and deadline. Also, a schedule of  can be expressed
by 𝐶𝐽 (𝑡, 𝑡 + 1) for every 𝑡 ≥ 0, where 𝐶𝐽 (𝑡, 𝑡 + 1) denotes a complete set
of jobs in  selected to be executed in [𝑡, 𝑡 + 1).

With the notion of a valid schedule, the following lemma states and
proves that 𝑃𝐽 1(𝑡, 𝑡 + 1) addresses I1.

Lemma 1. If there exists a valid schedule of  , the following statement
holds. For any arbitrary valid schedule 𝑉 𝑆, we can construct a valid
schedule 𝑉 𝑆∗ such that 𝐶𝐽 (𝑡, 𝑡 + 1) ⊃ 𝑃𝐽 1(𝑡, 𝑡 + 1) holds for every 𝑡 ≥ 0.

Otherwise, the following statement holds. For any arbitrary invalid
schedule 𝐼𝑉 𝑆, we can construct an invalid schedule 𝐼𝑉 𝑆∗ such that
𝐶𝐽 (𝑡, 𝑡+1) ⊃ 𝑃𝐽 1(𝑡, 𝑡+1) holds for every 𝑡 ≥ 0 and the amount of execution
of a job 𝐽 scheduled by 𝐼𝑉 𝑆∗ within its execution window is equal to or
4

larger than that by 𝐼𝑉 𝑆 for every job 𝐽 .
Proof. Suppose that there exists a 𝑉 𝑆, but there is no 𝑉 𝑆∗. If 𝑉 𝑆
does not execute a job 𝐽 ∗ in [𝑡, 𝑡 + 1) where 𝐽 ∗ ∈ 𝑃𝐽 1(𝑡, 𝑡 + 1), we can
guarantee the execution of 𝐽 ∗ in [𝑡, 𝑡+1) by migrating the execution of
𝐽 ∗ from another time slot to [𝑡, 𝑡+1). This is because, 𝐽 ∗ ∈ 𝑃𝐽 1(𝑡, 𝑡+1)
implies (i) 𝐴𝑉 1(𝑡, 𝑡 + 1) ≤ 𝑚 (i.e., a processor is availability for 𝐽 ∗) and
(ii) 𝐽 ∗ is 1-depth-available in [𝑡, 𝑡+1) (i.e., [𝑡, 𝑡+1) is between 𝐽 ∗’s release
time and deadline). Therefore, by migrating the execution of 𝐽 ∗ from
another time slot to [𝑡, 𝑡 + 1) where 𝐽 ∗ ∈ 𝑃𝐽 1(𝑡, 𝑡 + 1), we can make a
valid schedule of  such that 𝐶𝐽 (𝑡, 𝑡+ 1) ⊃ 𝑃𝐽 1(𝑡, 𝑡+ 1) holds for every
𝑡 ≥ 0. This contradicts the supposition, which proves the lemma for the
valid schedule case. The proof of the invalid schedule case is similar to
the valid schedule case. □

Thanks to Lemma 1, it suffices to consider a valid schedule 𝑉 𝑆∗

where all jobs in 𝑃𝐽 1(𝑡, 𝑡 + 1) should be executed in [𝑡, 𝑡 + 1) (if there
exists any valid schedule), and therefore, we can pin the execution of
the jobs in 𝑃𝐽 1(𝑡, 𝑡+1) on [𝑡, 𝑡+1), as shown in Fig. 2(a). Then, if there
is no remaining execution of a job after pinning, we declare that the
job is not available after pinning. This can yield the following notion
of more restricted availability for each job, addressing I2.

Definition 4 (2-Depth-Availability). Consider a job set  invoked by
a task set 𝜏. A job is said to be 2-depth-available in [𝑡, 𝑡 + 1), if the job
satisfies the following conditions.

• The time slot [𝑡, 𝑡+1) belongs to the interval between job’s release
time and deadline.

• The job belongs to 𝑃𝐽 1(𝑡, 𝑡+ 1), or the number of 𝑡′ ≥ 0 such that
𝑃𝐽 1(𝑡′, 𝑡′ + 1) includes the job is less than the execution time of
the job.

Let 𝐴𝑉 2(𝑡, 𝑡 + 1) denote the number of 2-depth-available jobs in  in
[𝑡, 𝑡 + 1).

Note that the second condition disallows a job to be 2-depth-
available in a time slot if the job already belongs to 𝑃𝐽 1(𝑡, 𝑡 + 1) for
other 𝐶 time slots for any 𝑡 > 0, where 𝐶 is the execution time of
the job. However, if a job belongs to 𝑃𝐽 1(𝑡, 𝑡 + 1) itself, the job is
2-depth-available in [𝑡, 𝑡+1) because the job can be executed in [𝑡, 𝑡+1).

For example, while the first job of 𝜏4 is 1-depth-available in [𝑡, 𝑡+1)
where 𝑡 = 0, 1, 2, 3, 4 and 5 in Fig. 2(a), the job is 2-depth-available in
[3, 4) only in Fig. 2(b) because the job belongs to 𝑃𝐽 1(3, 4) and 𝐶4 = 1.
Also, it is straightforward that 𝐴𝑉 2(𝑡, 𝑡 + 1) ≤ 𝐴𝑉 1(𝑡, 𝑡 + 1) holds for
every 𝑡. Using the notion of 𝐴𝑉 2(𝑡, 𝑡 + 1), we derive a tighter supply
upper-bound as follows.

Theorem 2. Consider a job set  invoked by a task set 𝜏 on an 𝑚-processor
resource. If 𝐴𝑉 2(𝑡, 𝑡 + 1) < 𝑚, the supply able to service  in [𝑡, 𝑡 + 1) is at
most 𝐴𝑉 2(𝑡, 𝑡 + 1), not 𝑚. Therefore, the amount of supply able to service
 in [0, 𝑡) by an 𝑚-processor platform is upper-bounded by 𝑆𝐵2(𝑡), where

𝑆𝐵2(𝑡)
def
= 𝑚 × 𝑡 −

𝑡−1
∑

max
(

0, 𝑚 − 𝐴𝑉 2(𝑡𝑎, 𝑡𝑎 + 1)
)

. (6)

𝑡𝑎=0



Journal of Systems Architecture 135 (2023) 102808H.S. Chwa and J. Lee

e
n
e
p
s
i
a
e
a

𝑆

t
w
𝑥

D
w
𝑃

D
t
i

L
[

t
i

w

T
o

P
f
w
s
o
u
E
l
a

t
s
w

Proof. The theorem holds by Lemma 1, which proves that we can
transform any arbitrary schedule (either valid or invalid) to the cor-
responding schedule such that 𝐶𝐽 (𝑡𝑎, 𝑡𝑎 + 1) ⊃ 𝑃𝐽 1(𝑡𝑎, 𝑡𝑎 + 1) holds for
very 𝑡𝑎 ≥ 0. Thanks to the lemma, to determine the feasibility, we only
eed to check the schedules that satisfy 𝐶𝐽 (𝑡𝑎, 𝑡𝑎+1) ⊃ 𝑃𝐽 1(𝑡𝑎, 𝑡𝑎+1) for
very 𝑡𝑎 ≥ 0, instead of checking all possible schedules. Therefore, it is
ossible to focus on the amount of supply utilized by the schedules that
atisfy 𝐶𝐽 (𝑡𝑎, 𝑡𝑎+1) ⊃ 𝑃𝐽 1(𝑡𝑎, 𝑡𝑎+1) for every 𝑡𝑎 ≥ 0. Since 𝐴𝑉 2(𝑡𝑎, 𝑡𝑎+1)
s the number of jobs that can be available to be executed in [𝑡, 𝑡 + 1)
fter pinning the execution of jobs in 𝑃𝐽 1(𝑡𝑎, 𝑡𝑎 + 1) in [𝑡𝑎, 𝑡𝑎 + 1) for
very 𝑡𝑎 ≥ 0, the remaining proof is the same as that of Theorem 1 by
pplying 𝑡𝑎 to 0, 1, 2, . . . 𝑡 − 1. □

We can easily check that 𝑆𝐵2(𝑡) in Theorem 2 is no larger than
𝐵1(𝑡) in Theorem 1, for every 𝑡 > 0.

Similar to deriving a tighter upper-bound of supply from 𝑆𝐵1(𝑡)
o 𝑆𝐵2(𝑡) using the notions of 𝑃𝐽 1(𝑡, 𝑡 + 1) and 2-depth-availability,
e can generalize 𝑃𝐽𝑥−1(𝑡, 𝑡 + 1), 𝑥-depth-availability and 𝑆𝐵𝑥(𝑡) for
= 3, 4, 5, 6,… in a sequential manner.

efinition 5. Let 𝑃𝐽𝑥−1(𝑡, 𝑡 + 1) denote a set of jobs in  , each of
hich satisfies the two following conditions (where 𝑥 ≥ 3); note that
𝐽𝑥−1(𝑡, 𝑡 + 1) is calculated for 𝑡 = 0, 1, 2, 3,… in a sequential manner.

• The job is (𝑥−1)-depth-available in [𝑡, 𝑡+1) where 𝐴𝑉 𝑥−1(𝑡, 𝑡+1) ≤
𝑚 holds.

• The number of time slots [𝑡′, 𝑡′ + 1) where the job belongs to
𝑃𝐽𝑥−1(𝑡′, 𝑡′ + 1) for 𝑡𝑟 ≤ 𝑡′ ≤ 𝑡 − 1 is less than the execution time
of the job, where 𝑡𝑟 denotes the release time of the job.

efinition 6 (𝑥-Depth-Availability). Consider a job set  invoked by a
ask set 𝜏. A job is said to be 𝑥-depth-available in [𝑡, 𝑡 + 1) where 𝑥 ≥ 3,
f the job satisfies the following conditions.

• The time slot [𝑡, 𝑡 + 1) belongs to the interval between the job’s
release time and deadline.

• The job belongs to 𝑃𝐽𝑥−1(𝑡, 𝑡+1), or the number of 𝑡′ ≥ 0 such that
𝑃𝐽𝑥−1(𝑡′, 𝑡′ +1) includes the job is less than the execution time of
the job.

et 𝐴𝑉 𝑥(𝑡, 𝑡 + 1) denote the number of 𝑥-depth-available jobs in  in
𝑡, 𝑡 + 1).

The relationship between 𝑃𝐽𝑥−1(𝑡, 𝑡 + 1) and 𝑥-depth-availability is
he same as that between 𝑃𝐽 1(𝑡, 𝑡+ 1) and 2-depth-availability. Also, it
s easily checked that 𝐴𝑉 𝑥+1(𝑡, 𝑡+1) ≤ 𝐴𝑉 𝑥(𝑡, 𝑡+1) and 𝑃𝐽𝑥+1(𝑡, 𝑡+1) ⊃
𝑃𝐽𝑥(𝑡, 𝑡 + 1) hold for every 𝑡 where 𝑥 ≥ 1. Similar to Lemma 1, we can
prove that 𝑃𝐽𝑥−1(𝑡, 𝑡 + 1) for 𝑥 ≥ 3 also addresses I1.

Lemma 2. Lemma 1 holds by replacing 𝑃𝐽 1(𝑡, 𝑡+1) with 𝑃𝐽𝑥−1(𝑡, 𝑡+1),
for 𝑥 ≥ 3.

Proof. (Base case) In Lemma 1, we already proved that we can
transform any arbitrary schedule (either valid or invalid), to the cor-
responding schedule such that 𝐶𝐽 (𝑡, 𝑡+1) ⊃ 𝑃𝐽 1(𝑡, 𝑡+1) holds for every
𝑡 ≥ 0.

(Inductive case) Suppose that Lemma 1 holds for 𝑃𝐽𝑥−1(𝑡, 𝑡+ 1). By
the proof of Lemma 1 by replacing 𝑃𝐽𝑥−1(𝑡, 𝑡+ 1) with 𝑃𝐽𝑥(𝑡, 𝑡+ 1), we
can transform any arbitrary schedule such that 𝐶𝐽 (𝑡, 𝑡+1) ⊃ 𝑃𝐽𝑥−1(𝑡, 𝑡+
1) for every 𝑡 ≥ 0, to the corresponding schedule such that 𝐶𝐽 (𝑡, 𝑡+1) ⊃
𝑃𝐽𝑥(𝑡, 𝑡 + 1) holds for every 𝑡 ≥ 0.

By the base and inductive cases, the lemma holds. □

Finally, we can derive a tighter upper-bound of supply by using the
notions of 𝑃𝐽𝑥−1(𝑡, 𝑡+1) and 𝑥-depth-availability, stated in the following
theorem, which subsumes Theorems 1 and 2 by assigning 𝑥 = 1 and
𝑥 = 2, respectively.
5

d

Theorem 3. Consider a job set  invoked by a task set 𝜏 on an 𝑚-processor
resource. If 𝐴𝑉 𝑥(𝑡, 𝑡 + 1) < 𝑚 (where 𝑥 ≥ 1), the supply able to service 
in [𝑡, 𝑡 + 1) is at most 𝐴𝑉 𝑥(𝑡, 𝑡 + 1), not 𝑚. Therefore, the amount of supply
able to service  in [0, 𝑡) by an 𝑚-processor platform is upper-bounded by
𝑆𝐵𝑥(𝑡), where

𝑆𝐵𝑥(𝑡)
def
= 𝑚 × 𝑡 −

𝑡−1
∑

𝑡𝑎=0
max

(

0, 𝑚 − 𝐴𝑉 𝑥(𝑡𝑎, 𝑡𝑎 + 1)
)

. (7)

Proof. Applying the idea of how to derive Theorem 2 from Lemma 1,
we can derive the theorem for 𝑥 ≥ 3 from Lemma 2. The theorem
for 𝑥 = 1 and 𝑥 = 2 was already proven in Theorems 1 and 2,
respectively. □

Similar to the relationship of 𝑆𝐵2(𝑡) ≤ 𝑆𝐵1(𝑡) for every 𝑡 > 0,
𝑆𝐵𝑥+1(𝑡) ≤ 𝑆𝐵𝑥(𝑡) holds for every 𝑡 > 0 where 𝑥 ≥ 2.

4. Developing tight necessary feasibility conditions

A typical form of existing necessary feasibility conditions for 𝜏 on
an 𝑚-processor platform is the amount of demand of 𝜏 in an interval of
length 𝑡 no larger than the amount of supply in the interval. Focusing
on a single job arrival sequence where 𝜏 invokes a series of jobs
periodically from 𝑡 = 0, existing studies have found a tight lower-bound
of the amount of demand in an interval [0, 𝑡), but they have deployed
𝑚 × 𝑡 as the amount of supply, assuming that the job arrival sequence
of 𝜏 can always utilize 𝑚 processors, e.g., those for the sequential task
model [6,7], the parallel task model [8], the gang task model [12], and
the mixed-criticality sequential task model [9,10]. While our approach
can be applied to all of the mentioned necessary feasibility conditions,
this section shows two examples.

Sequential task model. The state-of-the-art necessary feasibility
condition for the sequential task model is as follows [7].
∑

𝜏𝑖∈𝜏
𝖥𝖥𝖣𝖡𝖥(𝜏𝑖, 𝑡) ≤ 𝑚 × 𝑡, 𝑤ℎ𝑒𝑟𝑒 (8)

𝖥𝖥𝖣𝖡𝖥(𝜏𝑖, 𝑡) = max
(

0,
⌊ 𝑡 −𝐷𝑖

𝑇𝑖

⌋

+ 1
)

× 𝐶𝑖

+ max
(

0, (𝑡 −𝐷𝑖) mod 𝑇𝑖 − 𝑇𝑖 + 𝐶𝑖

)

.

If we apply Theorem 3 by replacing the RHS of Eq. (8) with Eq. (7),
e can derive a tighter necessary feasibility condition.

heorem 4. For given 𝑥 ≥ 1, a task set 𝜏 of sequential tasks is feasible
n 𝑚 processors, only if the following condition holds for every 𝑡 ≥ 0.
∑

𝜏𝑖∈𝜏
𝖥𝖥𝖣𝖡𝖥(𝜏𝑖, 𝑡)

≤ 𝑚 × 𝑡 −
𝑡−1
∑

𝑡𝑎=0
max

(

0, 𝑚 − 𝐴𝑉 𝑥(𝑡𝑎, 𝑡𝑎 + 1)
)

(9)

roof. The theorem holds by Eq. (8) with Theorem 3, detailed as
ollows. Theorem 4 and Eq. (8) focus on the single job arrival sequence
here 𝜏 invokes a series of jobs periodically from 𝑡 = 0. Under that

equence, the study in [7] proves the LHS of Eq. (8) is a lower-bound
f the amount of demand in [0, 𝑡). Also, Theorem 3 proves Eq. (7) is an
pper-bound of the amount of supply in [0, 𝑡). Therefore, violation of
q. (9) implies that a lower-bound of the amount of demand in [0, 𝑡) is
arger than an upper-bound of the amount of supply in [0, 𝑡), yielding
t least one missed job deadline. □

While 𝐴𝑉 𝑥(𝑡, 𝑡+ 1) in Eq. (9) can be calculated according to Defini-
ion 6 with 𝑡 = 0, 1, 2, 3,… in a sequential manner, one may wonder a
pecific way to calculate 𝐴𝑉 𝑥(𝑡, 𝑡 + 1) for the sequential task model,
hich is now explained in Algorithm 1. Note that Algorithm 1 is

escribed for constrained-deadline tasks (i.e., 𝐷𝑖 ≤ 𝑇𝑖 holds for every



Journal of Systems Architecture 135 (2023) 102808H.S. Chwa and J. Lee

t
w
d
f

w

T

e
t

L
E
(

P
i
w
o
E
t
d
a

v
v

C
r
𝑆
𝐴
w
c
t
h

n
e
i
s
t
w
i
i
f
t

5

i
g
t
s
o
1

(

p
i
g
𝛿
r
i

Algorithm 1 Calculating 𝐴𝑉 𝑥(𝑡, 𝑡 + 1) for the sequential task set 𝜏
1: 𝐴1

𝑖 (𝑡, 𝑡 + 1) ←  for every 𝜏𝑖 ∈ 𝜏
2: For every 𝜏𝑖 ∈ 𝜏, if (𝑡 + 1) mod 𝑇𝑖 ≤ 𝐷𝑖, then 𝐴1

𝑖 (𝑡, 𝑡 + 1) ←  .
3: 𝐴𝑉 1(𝑡, 𝑡 + 1) ← # of tasks 𝜏𝑖 ∈ 𝜏 that satisfy 𝐴1

𝑖 (𝑡, 𝑡 + 1) = 
4: if 𝑥 = 1, then return 𝐴𝑉 1(𝑡, 𝑡 + 1)
5: for 𝑦 = 2, 3, ..., 𝑥 do
6: 𝑃𝐽 𝑦−1(𝑡, 𝑡 + 1) ← ∅
7: For every 𝜏𝑖 ∈ 𝜏, if (a) 𝐴𝑦−1

𝑖 (𝑡, 𝑡+1) =  AND (b) 𝐴𝑉 𝑦−1(𝑡, 𝑡+1) ≤ 𝑚 AND
(c) # of 𝑃𝐽 𝑦−1(𝑡′, 𝑡′ + 1) ∋ 𝜏𝑖 for 𝑡′ = ⌊𝑡∕𝑇𝑖⌋, ..., 𝑡 − 1 is less than 𝐶𝑖, then
𝑃𝐽 𝑦−1(𝑡, 𝑡 + 1) ← 𝑃𝐽 𝑦−1(𝑡, 𝑡 + 1) ∪ {𝜏𝑖}

8: 𝐴𝑦
𝑖 (𝑡, 𝑡 + 1) ←  for every 𝜏𝑖 ∈ 𝜏

9: For every 𝜏𝑖 ∈ 𝜏, if
(

(d)(𝑡+1) mod 𝑇𝑖 ≤ 𝐷𝑖

)

AND
(

(e) 𝜏𝑖 ∈ 𝑃𝐽 𝑦−1(𝑡, 𝑡+1)

OR (f) # of 𝑃𝐽 𝑦−1(𝑡′, 𝑡′ + 1) ∋ 𝜏𝑖 for 𝑡′ = ⌊𝑡∕𝑇𝑖⌋, ..., ⌊𝑡∕𝑇𝑖⌋ + 𝐷𝑖 is less than
𝐶𝑖

)

, then 𝐴𝑦
𝑖 (𝑡, 𝑡 + 1) ←  .

10: 𝐴𝑉 𝑦(𝑡, 𝑡 + 1) ← # of tasks 𝜏𝑖 ∈ 𝜏 that satisfy 𝐴𝑦
𝑖 (𝑡, 𝑡 + 1) = 

11: end for
12: Return 𝐴𝑉 𝑥(𝑡, 𝑡 + 1)

𝜏𝑖 ∈ 𝜏), but the algorithm can be easily adapted to arbitrary-deadline
asks. Recall that Theorem 4 focuses on the single job arrival sequence
here 𝜏 invokes a series of jobs periodically from 𝑡 = 0, as Eq. (8)
oes. This job arrival pattern will be used to test some properties;
or example, a task 𝜏𝑖 ∈ 𝜏 has a 1-depth-available job in [𝑡, 𝑡 + 1) if
(𝑡 + 1) 𝑚𝑜𝑑 𝑇𝑖 ≤ 𝐷𝑖 holds.

In Lines 1–3, we check whether every task 𝜏𝑖 has a 1-depth-available
job in [𝑡, 𝑡+1). We mark the 1-depth-availability of 𝜏𝑖 as  (i.e., TRUE)
for 𝐴1

𝑖 (𝑡, 𝑡 + 1), and calculate 𝐴𝑉 1(𝑡, 𝑡 + 1) as the number of 𝜏𝑖 ∈ 𝜏
that satisfies 𝐴1

𝑖 (𝑡, 𝑡 + 1) =  . In Line 4, if 𝑥 = 1, return 𝐴𝑉 1(𝑡, 𝑡 + 1).
In Lines 5–11, we will calculate 𝑃𝐽 𝑦−1(𝑡, 𝑡 + 1) and 𝐴𝑉 𝑦(𝑡, 𝑡 + 1) for
𝑦 = 2, 3,… , 𝑥 in a sequential manner. Line 7 checks whether 𝜏𝑖 should
be included in 𝑃𝐽 𝑦−1(𝑡, 𝑡 + 1); (a) and (b) correspond to check the first
item in Definition 5, and (c) corresponds to the second item in the
definition. Since ⌊𝑡∕𝑇𝑖⌋ is the release time of the job of 𝜏𝑖 whose release
time is no later than 𝑡 but whose deadline is no earlier than 𝑡 + 1, we
only check 𝑡′ = ⌊𝑡∕𝑡𝑖⌋,… , 𝑡 − 1 for (c). Line 9 checks whether 𝜏𝑖 has
a 𝑦-depth-available job in [𝑡, 𝑡 + 1) by checking whether (d) is satisfied
(corresponding to the first item in Definition 6) and (e) or (f) is satisfied
within a job’s execution window [⌊𝑡∕𝑡𝑖⌋, ⌊𝑡∕𝑡𝑖⌋ + 𝐷𝑖) (corresponding to
the second item in the definition).

Gang task model. The demand bound function 𝖣𝖡𝖥(𝜏𝑖, 𝑡) of 𝜏𝑖
shown in Eq. (4) for the sequential task model can be extended for the
gang task model to compute a lower-bound of the amount of demand in
an interval [0, 𝑡), parallelized on 𝑣𝑖 processors. This yields the following
necessary feasibility conditions for the gang task model.
∑

𝜏𝑖∈𝜏
𝖣𝖡𝖥𝐺(𝜏𝑖, 𝑡) ≤ 𝑚 × 𝑡, 𝑤ℎ𝑒𝑟𝑒 (10)

𝖣𝖡𝖥𝐺(𝜏𝑖, 𝑡) = max
(

0,
⌊ 𝑡 −𝐷𝑖

𝑇𝑖

⌋

+ 1
)

× 𝐶𝑖 × 𝑣𝑖.

If we apply Theorem 3 by replacing the RHS of Eq. (10) with Eq. (7),
e can derive a tighter necessary feasibility condition.

heorem 5. For given 𝑥 ≥ 1, a task set 𝜏 of gang tasks is feasible on 𝑚
processors, only if the following condition holds for every 𝑡 ≥ 0.
∑

𝜏𝑖∈𝜏
𝖣𝖡𝖥𝐺(𝜏𝑖, 𝑡)

≤ 𝑚 × 𝑡 −
𝑡−1
∑

𝑡𝑎=0
max

(

0, 𝑚 − 𝐴𝑉 𝑥(𝑡𝑎, 𝑡𝑎 + 1)
)

(11)

Proof. Since 𝖣𝖡𝖥𝐺(𝜏𝑖, 𝑡) is equal to 𝑣𝑖 ⋅ 𝖣𝖡𝖥(𝜏𝑖, 𝑡) in Eq. (4) for the
sequential task model, 𝖣𝖡𝖥𝐺(𝜏𝑖, 𝑡) is a lower-bound of the amount of
demand of a gang task 𝜏𝑖. Then, the theorem holds by Eq. (10) with
6

Theorem 3. □ s
Note that we can calculate 𝐴𝑉 𝑥(𝑡, 𝑡+ 1) for the gang task model, by
modifying Algorithm 1 such that Lines 3 and 10 count the number of
threads (𝑣𝑖) of tasks 𝜏𝑖 ∈ 𝜏, instead of the number of tasks 𝜏𝑖 ∈ 𝜏.

Dominance relation. We now discuss the relationship between the
xisting infeasibility tests and those associated with our approach, in
erms of finding infeasible task sets, recorded in the following lemma.

emma 3. Any task set 𝜏 deemed infeasible by the infeasibility test with
q. (8) (likewise that with Eq. (10)) is also deemed infeasible by Theorem 4
likewise Theorem 5).

roof. Suppose that there is a task set 𝜏 is deemed infeasible by the
nfeasibility test with Eq. (8). Then, according to the infeasibility test
ith Eq. (8), there exists 𝑡∗ which makes Eq. (8) false. Since the RHS
f Eq. (9) is always no larger than that of Eq. (8), such 𝑡∗ also makes
q. (9) false. This implies the dominance between the infeasibility
est with Eq. (8) and Theorem 4 holds. With the same reason, the
ominance between the infeasibility test with Eq. (10) and Theorem 5
lso holds. □

Time-complexity for Theorems 4 and 5. In Theorem 4, the set of
alues of 𝑡 to be checked has pseudo-polynomial size [15]. For a given
alue of 𝑡, the LHS of Eq. (9) can be computed with 𝑂(𝑛) complexity [4].

Note that the values of 𝑡 to be checked are monotonically increasing.
Thus, when computing the RHS of Eq. (9), i.e., 𝑆𝐵𝑥(𝑡), for a given value
of 𝑡 with 𝑥 = 1, we store the value of 𝑆𝐵1(𝑡 − 1) that can be used to
calculate 𝑆𝐵1(𝑡) as 𝑆𝐵1(𝑡) = 𝑆𝐵1(𝑡 − 1) + 𝑚 − max

(

0, 𝑚 − 𝐴𝑉 1(𝑡 − 1, 𝑡)
)

.
omputing 𝐴𝑉 1(𝑡−1, 𝑡) requires 𝑂(𝑛), so computing the RHS of Eq. (9)
equires 𝑂(𝑛) for a given value of 𝑡 with 𝑥 = 1. In order to compute
𝐵𝑥(𝑡) for a given value of 𝑡 with 𝑥 ≥ 2, we store the values of
𝑉 𝑥−1(𝑡 − 1, 𝑡) and 𝐴𝑥−1

𝑖 (𝑡 − 1, 𝑡) for every 𝜏𝑖 ∈ 𝜏. Then, 𝐴𝑉 𝑥(𝑡 − 1, 𝑡)
ith 𝑥 ≥ 2 can be also computed with 𝑂(𝑛) complexity. Thus, the total

omplexity of Theorem 4 is pseudo-polynomial, which is equivalent to
hat of the corresponding necessary feasibility test in Eq. (8). The same
olds for Theorem 5.
Discussion. The proposed approach utilizes the time slots in which

o job of a target task can be executed. Therefore, it cannot improve
xisting studies in terms of finding infeasible task sets, if every task 𝜏𝑖
n the target task set satisfies 𝐷𝑖 ≥ 𝑇𝑖. However, as long as there exist
ome constrained-deadline (i.e., 𝐷𝑖 < 𝑇𝑖) tasks in the target task set,
he proposed approach potentially finds the infeasibility of the task set,
hich is not proven by existing studies. Note that when every task 𝜏𝑖

n the target task set satisfies 𝐷𝑖 ≥ 𝑇𝑖, Eq. (8) for the sequential model
s equivalent to ∑

𝜏𝑖∈𝜏 𝐶𝑖∕𝑇𝑖 ≤ 𝑚, which is necessary and sufficient
easibility test; therefore, no one for the sequential model can improve
he existing study in terms of finding infeasible task sets.

. Evaluation

We now demonstrate the capability of the proposed feasibility tests
n covering a broader range of infeasible task sets for the sequential and
ang sporadic task models. We generate a synthetic task set by using
he Dirichlet-Rescale (DRS) algorithm [16], known as an efficient task
et generation method. We have four input parameters: (i) the number
f processors 𝑚 ∈ {2, 4, 8}, (ii) the number of tasks 𝑛 ∈ {𝑚 + 1, 3∕2𝑚 +
, 2𝑚+1, 5∕2𝑚+1, 3𝑚+1}, (iii) total utilization 𝑢𝑠𝑢𝑚

def
=

∑

𝜏𝑖∈𝜏 𝐶𝑖∕𝑇𝑖, and

iv) total density 𝛿𝑠𝑢𝑚
def
=

∑

𝜏𝑖∈𝜏 𝐶𝑖∕𝐷𝑖.
Given a 4-tuple (𝑚, 𝑛, 𝑢𝑠𝑢𝑚, 𝛿𝑠𝑢𝑚) for a sequential task set, each task

arameter is determined as follows: 𝑇𝑖 is uniformly chosen in [1, 5000];
ts utilization (𝑢𝑖 = 𝐶𝑖∕𝑇𝑖) and density (𝛿𝑖 = 𝐶𝑖∕𝐷𝑖) are randomly
enerated using the DRS algorithm such that ∑

𝑢𝑖 = 𝑢𝑠𝑢𝑚 and ∑

𝛿𝑖 =
𝑠𝑢𝑚, respectively; 𝐶𝑖 and 𝐷𝑖 (≤ 𝑇𝑖) are computed as 𝑢𝑖 ⋅ 𝑇𝑖 and 𝐶𝑖∕𝛿𝑖,
espectively. For a gang task set, one additional task parameter 𝑣𝑖
s uniformly chosen in [1, 𝑚], and the other parameters are chosen

imilarly with the sequential one by replacing 𝐶𝑖 to 𝑣𝑖 ⋅ 𝐶𝑖.



Journal of Systems Architecture 135 (2023) 102808H.S. Chwa and J. Lee

r

D

n

Fig. 3. Detection ratio of the proposed necessary feasibility tests for sequential task sets ((a) and (b)) and gang task sets ((c) and (d)).
w
a
n
a
t
9
g
f
o
t
u
t
t

e
u
e
e
t

p
w
i
F
r
2
m
t

In order to show how many infeasible task sets can be found by
our proposed tests over the existing state-of-the-art necessary feasi-
bility analysis, we generate sequential and gang task sets which are
not proven infeasible by Eq. (8) and by Eq. (10), respectively. We
emphasize that all the generated task sets have not proven infeasible
by any existing necessary feasibility analysis for the corresponding task
model. We compare the following four proposed necessary feasibility
tests:

• FFDBF+SB1 and FFDBF+SB*: the necessary feasibility test for the
sequential task model in Theorem 4, respectively with 𝑥 = 1 and the
smallest 𝑥 ≥ 1 such that 𝑆𝐵𝑥+1(𝑡) = 𝑆𝐵𝑥(𝑡) for every 𝑡 > 0;

• DBFG+SB1 and DBFG+SB*: the necessary feasibility test for the gang
task model in Theorem 5, respectively with 𝑥 = 1 and the smallest
𝑥 ≥ 1 such that 𝑆𝐵𝑥+1(𝑡) = 𝑆𝐵𝑥(𝑡) for every 𝑡 > 0;

We use detection ratio as a performance metric, defined as the percent-
age of task sets that are deemed infeasible by each individual necessary
feasibility test to the total number of generated task sets.

Figs. 3(a) and 3(b) plot the detection ratios by FFDBF+SB1 and
FFDBF+SB* for 1,200,000 sequential task sets while (a) varying the
number of tasks 𝑛 when 𝑢𝑠𝑢𝑚 = 0.95𝑚 and 𝛿𝑠𝑢𝑚 = (𝑛 + 𝑚)∕2 and (b)
varying total utilization 𝑢𝑠𝑢𝑚 from 0.82𝑚 to 0.98𝑚 when 𝑛 = 𝑚 + 1
and 𝛿𝑠𝑢𝑚 = (𝑛 + 𝑚)∕2, respectively, for 𝑚 = 2, 4, and 8. The proposed
necessary feasibility tests can newly find a number of infeasible task
sets for all 𝑛 and 𝑢𝑠𝑢𝑚 values when 𝑚 = 2, 4 and 8. They identify more
infeasible task sets as the number of tasks becomes smaller and the total
utilization becomes larger. For example, in Fig. 3(a), FFDBF+SB* finds
51% and 11% infeasible task sets with 𝑛 = 5 and 13, respectively, and,
in Fig. 3(b), 6% and 79% infeasible task sets with 𝑢𝑠𝑢𝑚 = 3.28 and 3.92,
espectively, when 𝑚 = 4. In total, FFDBF+SB1 and FFDBF+SB* find

256,873 (21%) and 297,622 (25%) infeasible task sets, respectively,
among 1,200,000 generated task sets. FFDBF+SB* exhibits 16% higher
capability in finding infeasible task sets than FFDBF+SB1. Such an
improvement can be interpreted as the benefit of reclaiming more
amount of unusable supply by identifying an optimal way to utilize the
supply, yielding tighter supply upper-bounds.

Figs. 3(c) and 3(d) plot the detection ratios by DBFG+SB1 and
BFG+SB* for 1,200,000 gang task sets while (c) varying the total

def ∑
7

umber of threads 𝑣𝑠𝑢𝑚 = 𝜏𝑖∈𝜏 𝑣𝑖 when 𝑢𝑠𝑢𝑚 = 0.95𝑚 and 𝛿𝑠𝑢𝑚 = p
Table 2
Running times (ms) with respect to the number of tasks.
# of tasks (𝑛) 5 9 13 17 21 25

FFDBF+SB1 0.2 0.2 0.4 0.5 0.5 0.7
FFDBF+SB* 4.3 7.5 16.8 24.2 29.9 33.9

(𝑣𝑠𝑢𝑚 + 𝑚)∕2 and (d) varying total utilization 𝑢𝑠𝑢𝑚 from 0.82𝑚 to 0.98𝑚
hen 𝑣𝑠𝑢𝑚 = 𝑚 + 1 and 𝛿𝑠𝑢𝑚 = (𝑣𝑠𝑢𝑚 + 𝑚)∕2, respectively, for 𝑚 = 2, 4,
nd 8. Similar trends have observed for gang task sets as the total
umber of threads and the total utilization increase, but both DBFG+SB1

nd DBFG+SB* exhibit much higher capability in finding infeasible
ask sets in that DBFG+SB1 and DBFG+SB* find 943,285 (79%) and
80,205 (82%) total infeasible task sets, respectively, among 1,200,000
enerated task sets. Such higher capability for gang task sets (than that
or sequential task sets) mainly comes from the accurate calculation
n the amount of unusable supply, in that the threads that belong
o a single gang task share their execution windows, yielding more
navailable time slots for each gang task, although the total number of
hreads in a gang task set is same as the number of tasks in a sequential
ask set.

Note that although, among generated task sets, there might also
xist task sets proven feasible by existing sufficient schedulability tests
nder some scheduling algorithms, we did not identify them in our
valuation, implying that the presented detection ratio as of now
xhibits the minimum capability of the proposed necessary feasibility
ests in finding infeasible task sets.
Running time. We measure the average running times of the

roposed necessary feasibility tests to identify an infeasible task set
ith respect to the number of tasks shown in Table 2. When 𝑛 is

ncreased from 5 to 25, the average running times of FFDBF+SB1 and
FDBF+SB* increase from 0.2ms to 0.7ms and from 4.3ms to 33.9ms,
espectively. Under FFDBF+SB*, the supply upper-bound converges at
-depth-availability on average with 8-depth-availability at the maxi-
um. Note that DBFG+SB1 and DBFG+SB* show less average running

ime than FFDBF+SB1 and FFDBF+SB*, respectively, because they are

erformed with a smaller number of tasks.



Journal of Systems Architecture 135 (2023) 102808H.S. Chwa and J. Lee
6. Conclusion

In this paper, we propose a new general methodology for deriving
tight supply upper-bounds to be utilizable by a set of jobs on multi-
processor platforms and demonstrate its utility and power in finding
infeasible task sets by developing necessary feasibility conditions for
two representative task models. In the future, we would like to extend
our approach to develop a collective way of identifying the amount of
unusable supply in the interval length of more than one in order to
further narrow the area of uncertainty between the task sets proven
feasible and those proven infeasible for a wide range of task models on
multiprocessor platforms.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgement

This work was supported by the National Research Foundation of
Korea (NRF) grant (NRF-2021R1A2B5B02001758, NRF-2022R1A4A301
8824, NRF-2017M3A9G8084463, NRF-2018R1A5A1060031, NRF-
2020R1F1A1076058) and Institute of Information & communications
Technology Planning & Evaluation (IITP), South Korea grant (IITP-
2022-0-01053) funded by the Korea government (MSIT).

References

[1] M. Bertogna, S. Baruah, Tests for global EDF schedulability analysis, J. Syst.
Archit. 57 (5) (2011) 487–497.
8

[2] S. Chang, J. Sun, Z. Hao, Q. Deng, N. Guan, Computing exact WCRT for typed
DAG tasks on heterogeneous multi-core processors, J. Syst. Archit. 124 (2022)
102385, 1–11.

[3] R.I. Davis, A. Burns, A survey of hard real-time scheduling for multiprocessor
systems, ACM Comput. Surv. 43 (4) (2011) 1–44.

[4] S. Baruah, A. Mok, L. Rosier, Preemptively scheduling hard-real-time sporadic
tasks on one processor, in: Proceedings of IEEE Real-Time Systems Symposium,
RTSS, 1990, pp. 182–190.

[5] S. Baruah, N. Fisher, The feasibility analysis of multiprocessor real-time systems,
in: Proceedings of Euromicro Conference on Real-Time Systems, ECRTS, 2006,
pp. 85–96.

[6] N. Fisher, T.P. Baker, S. Baruah, Algorithms for determining the demand-based
load of a sporadic task system, in: Proceedings of IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications, RTCSA, 2006.

[7] T.P. Baker, M. Cirinei, A necessary and sometimes sufficient condition for
the feasibility of sets of sporadic hard-deadline tasks, in: Proceedings of IEEE
Real-Time Systems Symposium, RTSS, 2006, pp. 178–190.

[8] B. Andersson, G. Raravi, Scheduling constrained-deadline parallel tasks on two-
type heterogeneous multiprocessors, in: Proceedings of International Conference
on Real-Time Networks and Systems, RTNS, 2016, pp. 247–256.

[9] H.S. Chwa, H. Baek, J. Lee, Necessary feasibility analysis for mixed-criticality task
systems on uniprocessor, in: Proceedings of IEEE Real-Time Systems Symposium,
RTSS, 2019, pp. 446–457.

[10] H.S. Chwa, H. Baek, J. Lee, Necessary feasibility analysis for mixed-criticality
real-time embedded systems, IEEE Trans. Parallel Distrib. Syst. 33 (7) (2022)
1520–1537.

[11] A. Mok, Fundamental Design Problems of Distributed Systems for the Hard-
Real-Time Environment (Ph.D. thesis), Massachusetts Institute of Technology,
1983.

[12] S. Kato, Y. Ishikawa, Gang EDF scheduling of parallel task systems, in:
Proceedings of IEEE Real-Time Systems Symposium, RTSS, 2009, pp. 459–468.

[13] W.A. Horn, Some simple scheduling algorithms, Nav. Res. Logist. Q. 21 (1)
(1974) 177–185.

[14] S. Baruah, N. Fisher, The partitioned multiprocessor scheduling of sporadic task
systems, in: Proceedings of IEEE Real-Time Systems Symposium, RTSS, 2005, pp.
321–329.

[15] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, Implementation of
a speedup-optimal global EDF schedulability test, in: Proceedings of Euromicro
Conference on Real-Time Systems, ECRTS, 2009, pp. 259–268.

[16] D. Griffin, I. Bate, R.I. Davis, Generating utilization vectors for the systematic
evaluation of schedulability tests, in: Proceedings of IEEE Real-Time Systems
Symposium, RTSS, 2020, pp. 76–88.

http://refhub.elsevier.com/S1383-7621(22)00293-4/sb1
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb1
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb1
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb2
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb2
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb2
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb2
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb2
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb3
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb3
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb3
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb4
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb4
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb4
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb4
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb4
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb5
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb5
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb5
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb5
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb5
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb6
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb6
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb6
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb6
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb6
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb7
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb7
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb7
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb7
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb7
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb8
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb8
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb8
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb8
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb8
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb9
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb9
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb9
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb9
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb9
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb10
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb10
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb10
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb10
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb10
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb11
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb11
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb11
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb11
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb11
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb12
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb12
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb12
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb13
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb13
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb13
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb14
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb14
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb14
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb14
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb14
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb15
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb15
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb15
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb15
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb15
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb16
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb16
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb16
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb16
http://refhub.elsevier.com/S1383-7621(22)00293-4/sb16

	Tight necessary feasibility analysis for recurring real-time tasks on a multiprocessor
	Introduction
	System Model and Background
	System Model
	Background

	Deriving Tight Supply Upper-bounds
	Developing Tight Necessary Feasibility Conditions
	Evaluation
	Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgement
	References


