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Abstract—Mixed-criticality (MC) scheduling becomes popular in real-time systems as it supports different criticality levels in a

resource-efficient manner. Although it has been well established (i) how to guarantee MC schedulability offline, existing studies have

paid less attention to achieve (ii) how to minimize deadline misses of low-criticality tasks at runtime; in addition, it has not matured yet

how to address (ii) without compromising (i). In this paper, we propose MC�FLEX, which employs a task-level mode transition

mechanism (as opposed to system-level one). MC�FLEX not only determines time instants at which each high-criticality task enters

and exits the critical mode in a task level, but also selects time instants and target low-criticality task(s) to be dropped and resumed for

each task-level mode switch of individual high-criticality tasks, yielding the achievement of both (i) and (ii). Via simulation results, we

demonstrate that the proposed framework reduces the job deadline miss ratio of low-criticality tasks at runtime (by over 54.8%

compared to the existing work), without compromising offline MC schedulability.

Index Terms—Mixed-criticality systems, real-time scheduling, task-level mode switch, EDF-VD

Ç

1 INTRODUCTION

RECENT complex embedded systems are inherentlyMixed-
Criticality (MC) systems, where different components

with different criticality levels are integrated under a shared
platform. A typical example is an automotive system that
contains both high-criticality components (e.g., the engine)
and low-criticality ones (e.g., rear lights). To support such
different criticality components, the automotive industry
defined ISO 26262, an international standard for functional
safety; for example, the engine belongs to ASIL (Automotive
Safety Integrity Level) D (i.e., the highest criticality), while
the rear lights belong to ASIL A (i.e., the lowest criticality).

MC studies for real-time systems have typically targeted
two levels of criticality: high and low. Each MC task has two
different Worst-Case Execution Time (WCET) estimates
depending on its confidence level; a MC task may execute
for up to its high- and low-confidence WCET, respectively.
The system requirements are (i) all high-criticality tasks
always satisfy their deadline requirements and (ii) all low-
criticality tasks meet their deadline requirements as long as
no high-criticality task executes for more than its low-confi-
dence WCET. Since Vestal’s seminal work [1], earlier MC
studies [2], [3], [4], [5] have succeeded in providing offline
guarantees on (i) and (ii), by handling the system-level mode
switch from the situation where there does not exist any
high-criticality task with more than its low-criticality WCET

to the situation where there exists such a task (called system-
level mode switch).

However, in order to apply MC systems into diverse
industry domains, we need to guarantee the timely execu-
tion of low-criticality tasks as much as possible even under
existence of a high-criticality task executing for more than
its low-confidence WCET. For example, an autonomous
driving vehicle may enter the critical mode when a collision
is anticipated. Once the vehicle transits the critical mode,
subsystems thereof may need additional computing resour-
ces due to extra tasks such as the advanced emergency brak-
ing system and the collision avoidance system; to supply
additional computing resources to the extra tasks, the vehi-
cle may decide to turn off low-criticality subsystems such as
a navigation system. After the vehicle safely escapes from
the critical situation, the vehicle should recover its system
mode to the normal driving mode and turn on low-critical-
ity subsystems for full functionality of the vehicle. In
diverse industry domains such as an autonomous driving
vehicle, it is important to provide offline guarantees on (i)
and (ii) while satisfying the following requirement at run-
time: (iii) minimizing job deadline misses of low-criticality
tasks. So far, this matter has been partially addressed in sev-
eral attempts [6], [7], [8], [9], [10], [11], [12]; however, few
studies have systematically addressed (iii) at runtime with-
out compromising offline guarantees on (i) and (ii). Note
that (iii) is more favorable to many practical systems than
reducing execution of each job. For example, in a system
where degraded services are not allowed, a completion of a
job and a drop of the next job yield one complete result out
of two, while partial execution of the two jobs cannot yield
any single meaningful result.

In this paper, we propose MC�FLEX, which employs
a task-level mode transition mechanism (as opposed to
system-level one). MC�FLEX carefully determines time
instants at which each high-criticality task enters and exits
the critical mode in a task level manner (called switch-forward
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and switch-backward, respectively), such that the mechanism
not onlyminimizes the duration for the criticalmode address-
ing (iii) at runtime, but also preserves offline guarantees on (i)
and (ii). In particular, we re-design EDF-VD [3], one of the
most popular MC scheduling algorithms and develop the off-
line and online schedulability analysis for the re-designed
algorithm, so as to address (iii) without downgrading offline
guarantee for (i) and (ii) achieved by the vanilla EDF-VD.
Although there have been a few studies for (iii) [13], [14], [15],
[16], [17], [18], they have only partially addressed (iii) in that
none of them has succeeded in employing a mechanism that
supports task-level resuming of each low-criticality task.
Compared to those studies, MC�FLEX carefully designs
task-level switch-forward/backward mechanisms with off-
line schedulability guarantees; in addition,MC�FLEX allows
task-level dropping/resuming of low-criticality tasks, which
can minimize their job deadline misses. To this end,
MC�FLEX addresses the following two challenges.

Q1. When a high-criticality task performs a switch-for-
ward and switch-backward, how can we determine
a set of low-criticality task(s) to be dropped and
resumed, respectively, so as to achieve (i), (ii) and
(iii) during each mode change?

Q2. How can we derive offline schedulability analysis
that gives offline guarantees on (i) and (ii), which
accords with the answer of Q1?

We first address Q1 and Q2 with two assumptions (to be
detailed in Section 4): one regarding the inter-arrival time of
two mode switches, and the other regarding the rate of low-
and high-confidence WCET. As to Q1, we derive a condition
that depends onwhich tasks belong to the following four cat-
egories between two consecutive mode switches: (a) high-
criticality tasks in the high-criticality mode, (b) high-critical-
ity tasks in the low-criticality mode, (c) low-criticality tasks
to be executed, and (d) low-criticality tasks not to be exe-
cuted. We prove that all high-criticality tasks meet their
deadline requirements between two consecutive mode
switches as long as the condition is satisfied. We then pro-
pose two policies of determining a set of low-criticality tasks
whose state changes between (c) and (d), upon a mode
switch of a high-criticality task between (a) and (b). The poli-
cies aim at minimizing the number of job deadline misses of
low-criticality tasks, without compromising the condition.
For Q2, we analyze the condition, and derive the worst-case
requirement that holds under any sequences of mode
switches, yielding offline schedulability analysis.

OnceQ1 andQ2 are successfully addressed under the two
assumptions, the next step is to relax the two assumptions.
To this end, we propose two techniques for the advanced
version of MC�FLEX. First, we develop a notion of “virtual
criticality mode”, which separates the time instant of a high-
criticality task’s switch-backward and that of a set of low-
criticality tasks’ resuming, yielding the relaxation of the first
assumption. Second, we find that the schedulability analysis
can be improved if some high-criticality tasks always execute
in the high-criticality mode. To utilize the finding, we add a
run-time mechanism that disallows such high-criticality
tasks to become the low-criticality mode, which not only
relaxes the second assumption, but also improves schedul-
ability.We detail the two techniques in Section 5.

We evaluate the performance of MC�FLEX framework
in terms of offline schedulability and deadline miss ratio at
runtime, via simulation based on synthetic workloads. In
comparison with existing studies, simulation results show
thatMC�FLEX exhibits the equivalent offline schedulability
and reduce the job deadline miss ratio of low-criticality
tasks by over 54.8%.

This paper makes the following contributions:

� We develop MC�FLEX framework on MC systems
to guarantee MC schedulability offline and minimize
job deadline misses of low-criticality tasks at run-
time, which is the first mode switch mechanism that
supports not only task-level switch-forward/back-
ward of high-criticality tasks, but also task-level
dropping/resuming of low-criticality tasks.

� We present a run-time mechanism ofMC�FLEX that
determines a set of low-criticality tasks to be
resumed/dropped at each switch-forward/back-
ward of high-criticality tasks, and derive a schedul-
ability test that offers timing guarantees at each
mode switch.

� Based on the run-time mechanism and its schedul-
ability test, we derive offline schedulability test for
MC�FLEX that offers timing guarantees under any
mode switch.

� To improve the basic version of MC�FLEX, we pro-
pose/apply two advanced techniques, yielding
relaxation of the two assumptions.

� Via simulations, we demonstrate thatMC�FLEX sig-
nificantly reduces the job deadline miss ratio of low-
criticality tasks without degrading offline schedul-
ability performance.

The rest of the paper is structured as follows. Section 2
presents the system model, and Section 3 explains motiva-
tion and background. Section 4 proposes the basic version
of MC�FLEX, which is improved in Section 5. Section 6
evaluates MC�FLEX, and Section 7 explains related work.
Section 8 discusses remaining issues, and Section 9 con-
cludes the paper.

2 SYSTEM MODEL

We consider a dual-criticality uniprocessor system with two
distinct criticality levels: HI (high) and LO (low).

Task Model. We consider an implicit-deadline sporadic
task system (denoted t) of nMC tasks. Each MC task ti gen-
erates an infinite sequence of jobs fJ1

i ; J
2
i ; . . .g and is charac-

terized by ðTi; C
L
i ; C

H
i ;xiÞ, where

� Ti 2 R is the minimum inter-job separation time (or
period),

� CL
i 2 R is a LO-confidence WCET (L-WCET),

� CH
i 2 R is a HI-confidence WCET (H-WCET), and

� xi 2 fHI; LOg is a task criticality level.
We can categorize individual tasks ti by their criticality

levels xi. For notational convenience, let tHC denote a set of
tasks with HI-criticality levels (or a HC task set), i.e.,
tHC¼defft2tjxi ¼ HIg. Likewise, tLC denotes a set of tasks with
LO-criticality levels (or a LC task set), i.e., tLC¼defft2tjxi ¼ LOg.

Utilization. The utilization of a task ti is defined as
uLi ¼def CL

i =Ti for LO-confidence utilization and uH
i ¼def CH

i =Ti
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for HI-confidence utilization, respectively. For notational
convenience, we define the collective utilization of a task set
as follows:

UL
LC¼def

X
ti2tLC

uL
i ; UL

HC¼def
X

ti2tHC

uL
i ; UH

HC¼def
X

ti2tHC

uH
i :

Task Behavior Model. We assume some degree of uncer-
tainty on the execution time of different jobs for a task. We
consider task-level criticality mode (task mode). Each HC
task ti has its own task mode (denoted as Mi) that indicates
its behavior. A task ti is said to be in LO mode (Mi ¼ LO) if
no job of the task has executed more than its L-WCET (CL

i ),
and be in HImode (Mi ¼ HI) otherwise.

As the name indicates, an individual task changes its task
mode independently. Each HC task starts in LO mode, and
change its own task mode to HI mode (called switch-forward)
when its actual execution time exceeds CL

i (see Fig. 1a). For
a HC task in HI mode, its task mode can be switched to LO
mode (called switch-backward or switch-back) when the exe-
cution time of the task is observed as no more than CL

i (see
Fig. 1b). Each scheduling algorithm needs to determine the
time instance of switch-back, and Section 4.1 will discuss
how MC�FLEX does. We define mode switch for a HC task
as the transition of the task-level criticality mode including
both switch-forward and switch-backward.

In addition to HC tasks, we consider the execution state
of a LC task (see Fig. 1b); each LC task is in either an active
state or a dropped state. Initially, all LC tasks are active.
When the scheduler needs more computing resource (on
switch-forward of at least one HC task), some active LC
tasks are allowed to be dropped in order to support HC
tasks with their additional resource requests. When a LC
task is dropped, the current job of the task is suspended and
no subsequent job of the task is processed. When the sched-
uler has available resource (on switch-back of at least a HC
task), some LC tasks can be resumed to execute (i.e., jobs of
the LC tasks newly-released after the resuming decision are
processed) as some HC tasks require less resources. Each
scheduling algorithm needs to determine which LC task is
dropped/resumed, and Section 4.1 will detail this for
MC�FLEX.

System Goal. Besides the schedulability of MC systems,
the performance of LC tasks is also important [4], [19]. Our
system goal is to drop as few jobs of LC tasks as possible,
without compromising MC schedulability that consists of the
following two conditions:

� Condition MC-A: HC tasks are always schedulable.
� Condition MC-B: LC tasks are schedulable if no HC

task is in HImode.

3 MOTIVATION AND BACKGROUND

In this section, we first motivate the necessity of a task-level
mode switch mechanism. To this end, we present an exam-
ple of how a task-level mode switch mechanism can
improve the existing system-level one in terms of minimiz-
ing drops of low-criticality tasks. We then explain the EDF-
VD scheduling algorithm, which is a base prioritization pol-
icy ofMC�FLEX to be explained in Sections 4 and 5.

3.1 Motivation

As discussed in Section 1, we need a mode transition mech-
anism that provides offline guarantees on (i) and (ii) while
satisfying (iii) at runtime. However, most existing studies
have not fully addressed such a mechanism as they have
employed a system-wide switch-forward/backward mech-
anism. That is, in existing studies, a single job execution of a
HC task for longer than its L-WCET incurs a system-level
switch-forward, and the system incurs a system-level
switch-back only if it is guaranteed that all HC tasks do not
have their jobs whose execution are longer than their L-
WCET. Both yields unnecessary drops of LC tasks; the for-
mer starts dropping earlier than it should do, and the latter
keeps dropping even when it is not necessary. We now
explain how the existing system-level mode switch mecha-
nism incurs unnecessary job drops of LC tasks.

Example 1. Consider task set t ¼ ft1; t2; t3g where t1 is
ðTi ¼ 4; CL

i ¼ 2; CH
i ¼ 2;xi ¼ LOÞ, t2 is ð4; 1; 2;HIÞ, and t3

is ð12; 1; 2;HIÞ. Suppose that the task set is scheduled by
EDF (that gives a higher priority to a job with an earlier
deadline); for tie-breaking, a task with a smaller index
has a higher priority. As shown in both Figs. 2a and 2b,
suppose that the first job and the second job of t2 exe-
cuted for more than its L-WCET and the other jobs of HC
tasks (t2 and t3) completed their execution within L-
WCET. The scheduler performed switch-forward for t2
(from LO mode to HI mode) at time 3 and dropped LC

Fig. 1. Task behavioral model.

Fig. 2. Comparison of two switch-back mechanisms for Example 1.
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task t1 immediately (or allowed t1 to execute only when
no job of t2 and t3 is waited in the scheduler).

(a) Consider the existing switch-back mechanism at
the idle time [3], [14], [16] (see Fig. 2a). switch-back (of
HC tasks) is performed at the idle time (no HC job is
waited in the scheduler), which is time 7. At switch-back,
we can resume to execute all LC tasks since all HC tasks
are LO mode. Therefore, the second job of t1 cannot start
its execution until time 7, yielding its deadline miss. The
deadline miss ratio of the LC task’s jobs is 33.3%

(b) Consider an aggressive switch-back mechanism
(see Fig. 2b). In this simple example, t2 can be switched
back in the absolute deadline of its first job, which is time
4. At switch-back, we can resume to execute all LC tasks
since all HC tasks are LO mode. The second switch-for-
ward and switch-back are triggered at time 7 and 8,
respectively. Then, no job of t1 missed its deadline,
which means 0% deadline miss ratio.

As seen in Example 1, a task-level switch mechanism
described in Example 1(b) seems to yield an efficient mode
change in terms of dropping LC tasks’ jobs. However, in
order to utilize a task-level switch mechanism for general
cases, we need a more systematic scheduling mechanism
that addresses the following issues.

I1. When do we perform a task-level switch-forward or
switch-backward for each HC task?

I2. Which LC tasks are dropped for each switch-for-
ward and resumed for each switch-back? How can
we make conditions such that these selections do not
compromise timing guarantees of HC tasks?

I3. How can we derive offline schedulability analysis
from the derived conditions in I2?

The next subsection explains EDF-VD that is a basis for
MC�FLEX, and Section 4 proposes MC�FLEX that
addresses I1–I3.

3.2 Recapitulation of EDF-VD Scheduling

To develop MC�FLEX scheduling framework, we utilize
the EDF-VD [3] scheduling mechanism, whose algorithm
and offline schedulability analysis are simple yet optimal in
the speedup factor and competitive in empirical evaluation.
Due to its simplicity, EDF-VD has been extended into vari-
ous directions (e.g., the constrained-deadline task model [5],
[20] and imprecise computation model [21]). Based on the
classical EDF dynamic priority scheduling algorithm, EDF-
VD introduced the concept of virtual deadline, which is the
modified scheduling deadline in the EDF priority-driven
scheduling policy.

Capturing the characteristics of MC tasks that HC tasks
are subject to different WCET requirements in different
modes, EDF-VD assigns different absolute deadlines to jobs
of each HC task in different modes (i.e., the absolute virtual
deadline in LO mode and the absolute real deadline in HI
mode). Since the WCET requirement of HC task ti is usually
increased (CL

i to CH
i ) at each mode switch,1 we need to com-

plete the job execution earlier in LO mode, which will pro-
vide a time duration for the HC task to finish the remaining

WCET requirement ðCH
i � CL

i Þ if a mode switch happens.
For this reason, we assign the virtual relative2 deadline of
the task by Vi :¼ xTi where x is the virtual-deadline coeffi-
cient (x 2 R s.t. 0 < x � 1). Even if the HC task mode
switches at its virtual deadline (i.e., a job’s release time plus
the virtual relative deadline), it still has time duration ðTi �
ViÞ for its remaining execution. We note that the virtual-
deadline coefficient is a controllable scheduling parameter
for EDF-VD, which can be derived later in an offline sched-
ulability test.

Scheduling Policy. EDF-VD employs a system-level mode
switch mechanism (i.e., when a single HC task switches to
HI mode, all the other HC tasks switch to HI mode simulta-
neously). EDF-VD schedules the job of the earliest effective
deadline (i.e., the release time plus the virtual relative dead-
line if a HC task in HImode, the release time plus the period
in LOmode).

Offline Schedulability Analysis. We present the offline
schedulability condition of EDF-VD in the next lemma and
the assignment of the virtual-deadline coefficient.

Lemma 1 (from [3]). A task set t is schedulable by EDF-VD if
the following two inequalities hold:

UL
LC þ UL

HC

x
� 1; (1)

xUL
LC þ UH

HC � 1: (2)

We can derive the virtual-deadline coefficient from
Eq. (2) [3]: x ¼ min

�
1; ð1� UH

HCÞ=UL
LC

�
.

4 MC�FLEX SCHEDULING: BASIC VERSION

We now develop the MC�FLEX scheduling framework that
employs a task-level mode switch mechanism, based on
EDF-VD explained in Section 3.2. To this end, this section
presents a basic version of the MC�FLEX scheduling algo-
rithm and its schedulability analysis, under two assump-
tions to be presented. Then, Section 5 will show how to
relax the assumptions.

4.1 Scheduling Algorithm

We develop the MC�FLEX scheduling algorithm extending
EDF-VD as follows. On the one hand, the prioritization pol-
icy for MC�FLEX exactly follows that for EDF-VD. This
means, we assign different deadlines to jobs of each HC task
depending on its task mode: the virtual deadline in LO mode
and the real deadline in HImode. For HC task ti, the relative
virtual deadline of the task (Vi) is assigned by Vi ¼ xTi,
where x is the virtual-deadline coefficient (x 2 R s.t.
0 < x � 1); whenever a job of a HC task ti is released at ta in
LO mode, its virtual deadline ðta þ ViÞ is used for prioritiza-
tion instead of its real deadline ðta þ TiÞ. ForMC�FLEX, x is
set to minð1; ð1� UH

HCÞ=UL
LCÞ, which is the same as that of

EDF-VD;wewill explain how to set x later in Section 4.2.
On the other hand, the mode switch mechanism for

MC�FLEX is totally different from that for EDF-VD, as it

1. In classic MC systems, only switch-forward is considered.

2. From now on, if the term “deadline” means “absolute deadline”,
we omit “absolute”; on the other hand, if the term “deadline” means
“relative deadline”, we specify “relative”.
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operates in a task-level manner. As to switch-forward,
whenever a HC task in LO mode executes for more than its
L-WCET, the HC task itself changes its task mode from LO
to HIwhile other HC tasks keep their task mode unchanged.
For switch-backward, whenever a HC task in HI mode
reaches its job deadline, the HC task itself changes its task
mode from HI to LO while other HC tasks keep their task
mode unchanged.

From now on, we detail the MC�FLEX scheduling algo-
rithm, under the following two assumptions: one regarding
runtime inter-arrival time between switch-back and switch-
forward, and the other regarding the ratio of L- andH-WCET.

A1. When a switch-back occurs at t, no switch-forward
happens until ðtþmaxti2tHC

ViÞ.
A2. Each HC task ti satisfies C

L
i =x � CH

i .

The assumptions are applied due to the following rea-
sons. A1 enables to simplify tricky cases that make it difficult
develop a tight schedulability condition (e.g., a switch-for-
ward occurs right after a switch-back). A2 allows not to con-
sider the case where a LO-mode bandwidth of a HC task is
larger than its HI-mode bandwidth. Note that the advanced
version of MC�FLEX to be presented in Section 5 will relax
the above assumptions.

We first present the runtime scheduling policy of the
MC�FLEX scheduling algorithm.

Runtime Scheduling Policy.MC�FLEX schedules the job of
the earliest effective deadline (which is the same as EDF-
VD) with the following instructions.

P1. Initially, all LC tasks are active and all HC tasks are
in LOmode.

P2. When a job of HC task ti arrives at time ta, schedule
the task with its virtual deadline (ta þ Vi) in LOmode
andwith its real deadline (ta þ Ti) is inHImode.

P3. When a job of LC task ti arrives at time ta, schedule
the task with its real deadline (ta þ Ti).

P4. When a job of HC task ti in LO mode executes for
more than its CL

i (i.e., a switch-forward for ti occurs),
set Mi :¼ HI and drop active LC task(s) selected by
the MC�FLEX task dropping algorithm to be
presented.

P5. When a job of HC task ti in HI mode reaches its
deadline (i.e., a switch-backward for ti occurs), set
Mi :¼ LO and resume dropped LC task(s) selected
by the MC�FLEX task resuming algorithm to be
presented.

P6. When no job of any task waits in the ready queue
(when the system is idle), the system changes its
state to the initial state (all LC tasks are active and all
HC tasks are in LOmode).

Before presenting task dropping/resuming algorithms,
we introduce system state that captures the dynamic system
behavior at mode switch, including the task mode for each
HC task and the execution state for each LC task.

Definition 1 (System State). Sj indicates the system state
after the jth mode switch, and is defined as a four-tuples of dis-
joint sets: Sj ¼ ðtH1; tH2; tL1; tL2Þ where

� tH1: a set of HC tasks whose task mode is LO,
� tH2: a set of HC tasks whose task mode is HI,

� tL1: a set of LC tasks whose execution state is “active,”
and

� tL2: a set of LC tasks whose execution state is
“dropped.”

By definition, tHC ¼ tH1 [ tH2 and tH1 \ tH2 ¼ ; hold,
and tLC ¼ tL1 [ tL2 and tL1 \ tL2 ¼ ; hold. Note that the ini-
tial system state is S0 ¼ ðtHC; ;; tLC; ;Þ.

Similarly to UL
LC , U

L
HC and UH

HC , we define collective utili-
zation of each of the above disjoint task sets

Uy
x¼def

X
ti2tx

uy
i ;

where x 2 fL1; L2; H1; H2g and y 2 fL;Hg.
Considering that individual tasks that belong to tH1, tH2,

tL1 and tL2 contribute to different resource demand (i.e.,
execution requirement for a unit of period), we may express
a MC-schedulability condition at a time instant using the
following inequality:

FðUL
L1; U

L
L2; U

L
H1; U

H
H2Þ � 1: (3)

We will derive the function Fð�Þ in Section 4.2.
Using the function, we present the MC�FLEX task drop-

ping/resuming algorithm as follows:

� Task dropping algorithm: repeat to drop an LC task
from the active LC task set (i.e., tL1) until Eq. (3)
becomes satisfied.3

� Task resuming algorithm: repeat to resume an LC task
in the dropped LC task set (i.e., tL2) as long as Eq. (3)
is still satisfied.4

Then, whenever P4 or P5 happens at runtime, we can
choose the LC task to be dropped or resumed using the fol-
lowing two criteria.

C1. Choose the LC task with the highest utilization5 (i.e.,
CL

i =Ti) among the active LC task set (i.e., tL1) for the
task dropping algorithm, and the LC task with the
lowest utilization among the dropped LC task set
(i.e., tL2).

C2. Choose the LC taskwith the highest value of task utili-
zation multiplying task period6 (i.e., CL

i =Ti � Ti ¼ CL
i )

among the active LC task set (i.e., tL1) for the task
dropping algorithm, and the LC task with the lowest
value of task utilization multiplying task period (i.e.,
CL

i ) among the dropped LC task set (i.e., tL2).
C1 and C2 are heuristic approaches in minimizing the dead-
line miss ratio of LC tasks’ jobs, which are designed as fol-
lows. C1 aims at achieving the minimum number of LC
tasks whose execution state is “droppped” in a greedy man-
ner, while C2 aims at achieving the minimum number of
jobs whose invoking LC tasks’ execution state is “dropped”
in a greedy manner. Section 6 will show the performance of

3. A feasible system can execute all HC tasks of any task mode by
dropping all LC tasks in the worst case.

4. A feasible system can resume to execute all LC tasks when all HC
task are switched back.

5. As a task with a higher utilization is dropped, the total number of
dropped tasks decreases.

6. As a task with a larger period is dropped, the total number of
dropped jobs decreases.
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MC�FLEX with C1 and that with C2, in terms of the dead-
line miss ratio of LC tasks’ jobs.

We explain the MC�FLEX scheduling algorithm using
the following example.

Example 2. Consider task set t ¼ ft1; t2; t3; t4g as shown
in Table 1. We can compute x by Eq. (8) to be presented
in Section 4.2: x ¼ minð1; ð1� UH

HCÞ=UL
LCÞ ¼ min

�
1; ð1�

26=36Þ=ð5=12Þ� ¼ 2=3. We show that assumptionA2 holds
for t3 and t4: 1=x � 2. We assign the relative virtual dead-
line for t3 and t4: V3 ¼ 4=x ¼ 8=3 and V4 ¼ 9=x ¼ 6.

As shown in Fig. 3, suppose that the first job of t3 exe-
cuted for more than its L-WCET and the other jobs of HC
tasks (t3 and t4) completed their execution within L-
WCET. At time 1, the scheduler switches t3 forward and
checks the online schedulability by Eq. (4) to be presented
in Section 4.2: 1=3þ 1=12þ ð1=9Þ=ð2=3Þ þ 2=4 > 1, which
means unschedulable without dropping LC tasks. Then,
the scheduler drops t1 and check Eq. (4): ð2=3Þ � ð1=3Þ þ
1=12þ ð1=9Þ=ð2=3Þ þ 2=4 � 1, which means schedulable
now. At time 4, the scheduler switches t3 back and is able
to resume the dropped LC task since Eq. (4) still holds even
with the resume of t1: 1=3þ 1=12þ ð1=4þ 1=9Þ=ð2=3Þ � 1.

4.2 Schedulability Analysis

In this subsection, we first analyze online schedulability at a
specific mode switch, which means whether a given task set
is schedulable by MC�FLEX for a given mode switch situa-
tion. Then, we can analyze offline schedulability by finding
the worst case of mode switches, which means whether a
given task set is schedulable by MC�FLEX with any
sequence of mode switches.

Online Schedulability Analysis. To describe various system
scenarios for MC systems, we define system scenario Zk as
below.

Definition 2 (System Scenario). For a given task set t and a
series of system states fS0; S1; . . . ; Skg, system scenario Zk ¼

fS0; S1; . . . ; Skg is defined that the system starts with S0,
changes its state to S1 after a mode switch, and reaches its state
to Sk after k mode switches.

In other words, Zk and Zk�1 are identical until t
�
k where t�k

denotes the time instant when the system state is changed
from Sk�1 to Sk under Zk. At t�k, while the system state under
Zk is changed into Sk, that under Zk�1 remains the same as
shown in Fig. 4. Note that by definition, Z0 ¼ fS0g and Zk ¼
Zk�1 [ Sk hold.

To analyze system scenario Zk, we need to consider
online schedulability on two different kinds of system
states: the initial state (S0) and the transitive state (Sk) that is
switched from the previous state (Sk�1) with k > 0, which
are described in Fig. 4.

First, we consider schedulability on S0. We know that S0

is identical to system-level LOmode in EDF-VD [3].

Lemma 2 (From [3]). Consider a task set t. Under system state
S0 (defined in Definition 1), the task is schedulable by
MC�FLEX if

UL
LC þ UL

HC

x
� 1:

Proof. From the sustainability property of preemptive uni-
processor EDF, we can schedule LC tasks with their origi-
nal period and HC tasks with their reduced period (due
to the relative virtual deadline). Then, the schedulability
condition in Lemma 2 can be derived from the utilization
bound result of EDF. Its detail can be found in Theorem 1
of Baruah et al. [3]. tu
Next, we consider schedulability on Sk with k > 0.

Theorem 1. Consider a task set t and its system scenario Zk.
Suppose that the task set is MC-schedulable by MC�FLEX on
Zk�1 with k > 0. Then, t is MC-schedulable by MC�FLEX
on Zk if

UL
L1 þ

UL
H1

x
þ xUL

L2 þ UH
H2 � 1: (4)

To prove the above theorem, we consider system sce-
nario Zk (defined in Definition 2). We know that Zk is the
same as Zk�1 except addition of the last (i.e., kth) mode
switch in Zk. Assume that the last mode switch happens at
time t�k (called mode switch time instant) and the system
state is changed from Sk�1 to Sk at t�k. Then, we know that
Sk�1 of Zk is identical to Sk�1 until t

�
k of Zk�1.

TABLE 1
Task Parameters for Example 2

Ti CL
i CH

i xi

t1 3 1 1 LO
t2 12 1 1 LO
t3 4 1 2 HI
t4 9 1 2 HI

Fig. 3. Schedules by MC� FLEX for Example 2.

Fig. 4. Illustration of Z0, Zk�1, and Zk: note that Zk is the same as Zk�1

except the addition of the kth mode switch.
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To check the schedulability on Zk, we need to bound the
resource demand (i.e., execution requirement) on the sys-
tem. Since the collective resource demand can be derived
from the resource demand of each task, we define the
demand of a task as follows:

Definition 3 (Resource Demand). DEMk
i ðtÞ is defined as the

demand of task ti over time interval ½0; tÞ under system sce-
nario Zk, which is the amount of necessary execution of jobs of
ti within ½0; tÞ in order to avoid any job deadline miss of ti
under the MC�FLEX scheduling algorithm. Until the first
mode switch, DEMk

i ðtÞ is similar to the demand of ti in ½0; tÞ
under single-criticality systems; for example, if ti 2 tHC

invokes its jobs in a strictly periodic manner from 0, DEM0
i ðtÞ is

calculated by
�
tþTi�Vi

Ti

� � CL
i , as shown in Fig. 5 (which is simi-

lar to [22]). After some mode switches, it is challenging to
develop how to calculate DEMk

i ðtÞ, which will be explained in
Eq. (5) as well as Lemmas 4 and 5.

The amount of the resource demand of a task (shown in
Definition 3) is changed by each mode switch: when a HC
task switches forward, the demand of the task is changed
from L-WCET (CL

i ) to H-WCET (CH
i ); after switch-back, the

demand of the task is changed from H-WCET (CL
i ) to L-

WCET. To calculate the amount, we need to define the time
instant when the demand is changed as follows.

Definition 4 (The demand change time instant). Let t0k
indicate the start time when the resource demands is changed
due to the kth mode switch.

In scenario Zk, consider the kth (last) mode switch occurs
at t�k as shown in Fig. 6, and let J�

k denote the job that incurs
the kth mode switch from Sk�1 to Sk at t�k. For switch-for-
ward, we set the release time of J�

k to t0k, because the WCET
requirement of the switch-forwarding job is changed from
L-WCET to H-WCET and the job is released before the
mode switch. For switch-back, we set the deadline of J�

k to
t0k because the WCET requirement of jobs following the
switch-back job is changed from H-WCET to L-WCET and
the following jobs are released after the deadline of the job.
Note that for switch-back, t0k is the same as t�k by P5 of the
runtime scheduling policy as shown in Fig. 6b.

With the demand change time instant, we can compute
the demand before t0k. For task ti, and system scenarios Zk�1

and Zk, we have

8t � t0k; DEMk
i ðtÞ ¼ DEMk�1

i ðtÞ: (5)

This is because of the definition of Zk�1 and Zk. Until t�k, all
the situations in Zk�1 are the same as those in Zk, and t0k � t�k

holds for both switch-forward and backward. For initializa-
tion, we have DEM0

i ð0Þ ¼ 0 for any task ti and the initial sys-
tem scenario Z0.

To tightly upper-bound
P

ti2t DEM
k
i ðtÞ, we need to maxi-

mize the interval in which each HC task exhibits LOmode as
much as possible. Targeting J�

k that incurs switch-forward at
t�k, we can tightly upper-bound

P
ti2t DEM

k
i ðtÞ in an interval

between t0k (i.e., the virtual deadline of J�
k , which is also the

demand change time instant) and t�k, as long as there exists
no task ti 2 tH1 that incurs its switch-forward in the interval.
The next lemma shows a property that every LO-mode HC
task (ti 2 tH1) does not change its mode in ½t0k; t�kÞ. Then, the
lemma enables to tightly upper-bound the resource demand
of a LO-mode HC task at a mode switch instant without the
history of previousmode switches of the task.

Lemma 3. For system scenario Zk, assume that the kth (last)
mode switch happens at t�k and the mode switch type is switch-
forward. Consider a HC task with LO mode (ti 2 tH1) at t

�
k,

which does not invoke J�
k (i.e., job incurring the last mode

switch). Then, the task stays in LO mode during ½t0k; t�kÞ.
Proof. From assumption A1, we know that ti executes in LO

mode from the system initialization or switches back to
LO mode at least maxti2tHC

Vi earlier than t�k (i.e., the last
switch-forward time instant of Zk).

Let tj denote the task that invokes J�
k . Since the

switch-forward of J�
k happens before its virtual deadline

(t�k � t0k � Vj) and Vj � maxti2tHC
Vi holds, we conclude

that ti executes in LOmode during ½t0k; t�kÞ. tu
Using the above lemma, we derive the following relation-

ship between DEMk
i ð�Þ and DEMk�1

i ð�Þ.
Lemma 4. For system scenario Zk and time t > t0k, the following

condition holds for a HC task:

DEMk
i ðtÞ ¼ DEMk�1

i ðt0kÞ þ ðt� t0kÞ � uLi =x;
DEMk

i ðtÞ � DEMk�1
i ðt0kÞ þ ðt� t0kÞ � uHi ;

Proof. We can compute the demand within time ½0; t0k� by
Eq. (5) using the previous system scenario Zk�1. For the
demand in time ½t0k; tÞ, which is the changed demand
associated with a new mode switch in Zk, we divide cases
depending on which task mode the task belongs to.

Case (a) Consider a task ti 2 tH1, which can be divided
into two subcases according to whether J�

k is an instance
of ti or not.

Fig. 5. Illustration of the demand of task ti over time interval ½0; tÞ under
system scenario Zk, i.e., DEM

k
i ðtÞ.

Fig. 6. Demand change time instant in Definition 4.
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Case (a1) (J�
k is an instance of ti). Since the task is in LO

mode in Sk, we know that J�
k incurs a switch-back. After

the mode change instant (t�k ¼ t0k), the jobs of ti execute
its L-WCET (CL

i ) until its virtual deadline. Then, we have

DEMk
i ðtÞ ¼ DEMk�1

i ðt0kÞ þ
uL
i

x
ðt� t0kÞ:

Case (a2) (J�
k is not an instance of ti). First, consider

that J�
k incurs a switch-back. Since ti is in LO mode after

t�k ¼ t0k, we have

DEMk
i ðtÞ ¼ DEMk�1

i ðt0kÞ þ
uL
i

x
ðt� t0kÞ:

Second, consider that J�
k incurs a switch-forward. Since ti

remains in LO mode in ½t0k; t�kÞ (by Lemma 3) and ti is LO
mode in ½t�k; tÞ by the case, we have

DEMk
i ðtÞ ¼ DEMk�1

i ðt0kÞ þ
uLi
x
ðt� t0kÞ:

Case (b) Consider a task ti 2 tH2, which can be also
divided into two subcases according to whether J�

k is an
instance of ti or not.

Case (b1) (J�
k is an instance of ti). Since the task is in HI

mode in Sk, we know that J�
k is the switch-forward job.

Consider time t such that t � t�k. Before the last mode
switch time instant (t�k), the task ti needs to finish its exe-
cution for L-WCET within in its relative virtual deadline
ðViÞ. By assumption A2, we have CL

i =x � CH
i , which is

equivalent to CL
i =ðx � TiÞ � CH

i =Ti, yielding uL
i =x � uH

i .
Then, we have

DEMk
i ðtÞ � DEMk�1

i ðt0kÞ þ uL
i =xðt� t0kÞ

� DEMk�1
i ðt0kÞ þ uH

i ðt� t0kÞ: (by A2)

Consider the other time t (i.e., t > t�k). Due to the last
switch-forward, the task may execute up to its H-WCET
(CH

i ) within its period (Ti) after the last mode switch
time instant (t�k). Then, we have

DEMk
i ðtÞ � DEMk�1

i ðt0kÞ þ uH
i ðt� t0kÞ:

Case (b2) (J�
k is not an instance of ti). First, consider

that J�
k incurs a switch-back. Since ti is in HI mode in

½t�k ¼ t0k; tÞ, we have

DEMk
i ðtÞ � DEMk�1

i ðt0kÞ þ uH
i ðt� t0kÞ:

Second, consider that J�
k incurs a switch-forward. By

Lemma 3, ti is in HI mode in ½t0k; t�kÞ; by the case, ti is also
in HImode in ½t�k; tÞ. Therefore,

DEMk
i ðtÞ � DEMk�1

i ðt0kÞ þ uH
i ðt� t0kÞ: tu

Lemma 5. For system scenario Zk and time t > t0k, the following
condition holds for a LC task.

DEMk
i ðtÞ ¼ DEMk�1

i ðt0kÞ þ ðt� t0kÞ � uL
i ; ti 2 tL1;

x � uL
i ; ti 2 tL2:

�

Proof. We can compute the demand within time ½0; t0k� by
Eq. (5). For the demand in time ½t0k; tÞ, we divide cases
depending on which execution state the task belongs to.

Case (a). Consider a task ti 2 tL1. Since the task is active
at and after t0k, we haveDEMk

i ðtÞ ¼ DEMk�1
i ðt0kÞ þ uL

i ðt� t0kÞ.
Case (b). Consider a task ti 2 tL2. Since ti’s execution

state is “dropped” after t�k, its execution state can be active
in ½t0k; t�kÞ. This means, ti’s execution state is changed into
“dropped” due to a HC task’s switch-forward at t�k. Then,
for ti to contribute to the demand in ½t0k; t�, its job deadline
should be earlier than the HC task’s virtual deadline
(which is no later than t). Therefore, ti’s job deadline
should be no later than t0k þ x � ðt� t0kÞ. Then, ti can con-
tribute to the demand for up to uL

i � x � ðt� t0kÞ, and there-
fore we have DEMk

i ðtÞ ¼ DEMk�1
i ðt0kÞ þ uL

i � x � ðt� t0kÞ. tu
Based on these lemmas, we will prove Theorem 1.

Proof of Theorem 1 The base case (i.e., MC-schedulablity
under Z0) holds by Lemma 2. Now, we prove whether t is
MC-schedulable under Zk, assuming t is MC-schedulable
under Zk�1 (i.e., DEMk�1

i ðtÞ � t holds for all t > 0) and
Eq. (4) holds under Zk. We will divide cases depending on t.

Case 1 (t � t0k).

X
ti2t

DEMk
i ðtÞ ¼

X
ti2t

DEMk�1
i ðtÞ; ðby Eq: ð5ÞÞ

which is less than or equal to t by the assumption of MC-
schedulability under Zk�1.

Case 2 (t > t0k).

X
ti2t

DEMk
i ðtÞ �

X
ti2t

DEMk�1
i ðt0kÞ þ ðUL

L1 þ
UL
H1

x
þ xUL

L2

þ UH
H2Þðt� t0kÞ ðby Lemmas 4; 5Þ

� t0k þ UL
L1 þ

UL
H1

x
þ xUL

L2 þ UH
H2

� �
ðt� t0kÞ;

ðby the supposition of Theorem 1; i:e:;

MC-schedulability under Zk�1Þ

which is less than or equal to t if Eq. (4) holds. tu
By Theorem 1, t is MC-schedulable by MC�FLEX if

MC�FLEX employs the task dropping/resuming algorithm
associated with Eq. (4); in other words, Fð�Þ in Eq. (3) is set
to the left-hand-side of Eq. (4).

For each mode switch, the complexity of the runtime
scheduling algorithm is OðnÞ because it depends on the task
dropping/resuming algorithm, where Eq. (4) requires the
task parameters of each task in tH1, tH2, tL1, and tL2: jtH1j þ
jtH2j þ jtL1j þ jtL2j ¼ n. If switch-forward happens k times
on runtime, the MC�FLEX task dropping/resuming algo-
rithm is invoked at most 2 � k times (the system invokes the
switch-back mechanism at most k times.)

Offline Schedulability Analysis. Although we derived online
schedulability analysis at each specific mode switch situation,
we need to develop offline schedulability analysis, which
indicates whether a task set is MC-schedulable (defined in
Section 2) by MC�FLEX under any sequences of mode
switches. To this end, we need to find the worst-case condi-
tions of all possible mode switch sequences when the
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scheduler drops/resumes LC tasks by the online schedulabil-
ity test (i.e., Eq. (4)), recorded in the following theorem.

Theorem 2. A task set t is MC schedulable by MC�FLEX that
employs the task dropping/resuming algorithm associated with
Eq. (4), if the following two conditions hold:

UL
LC þ UL

HC

x
� 1; (6)

xUL
LC þ UH

HC � 1: (7)

Proof. For MC schedulability, we need to show that both
conditions MC-A and MC-B in Section 2 are satisfied.
From Eq. (6), t is schedulable on S0 by Lemma 2, which
corresponds condition MC-B. For condition MC-A, we
show that Eq. (4) holds with any tH2 6¼ ; by Theorem 1.
By assumption A2, the situation where all HC tasks are in
LO mode yields the largest value for HC tasks to contrib-
ute to the left-hand-side of Eq. (4). In this case, the small-
est value for LC tasks to contribute to the left-hand-side
of Eq. (4) occurs when all LC tasks’ execution mode is
“dropped”. Considering that the dropping/resuming
algorithm can adjust the execution mode of LC tasks
based on the task mode of HC tasks, we need xUL

LC þ
UH
HC � 1, which is Eq. (7). tu
Similar to EDF-VD, we derive the virtual-deadline coeffi-

cient of MC�FLEX from Eq. (7) and the range of x
(0 � x � 1)

x ¼ min
�
1; ð1� UH

HCÞ=UL
LC

�
: (8)

We show how Theorem 2 works in the following example.

Example 3. Consider task set t ¼ ft1; t2; t3; t4g in Example 2.
From Eq. (6), we have 1=3þ 1=12þ ð1=4þ 1=9Þ=x � 1, i.e.,
13=21 � x. From Eq. (7), we have x � ð1=3þ 1=12Þ þ 2=4þ
2=9 � 1, i.e., x � 2=3. By Theorem 2, the task set is schedu-
lable when 13=21�x�2=3, approximately, 0:619�x�0:667.

For a given task set, the complexity of offline schedulabil-
ity test (i.e., Theorem 2) is OðnÞ because Eqs. (6) and (7)
require investigating the task parameters of all tasks in tHC

and tLC : jtHC j þ jtLC j ¼ n.

5 MC�FLEX SCHEDULING: ADVANCED VERSION

In this section, we present the advanced version ofMC�FLEX
by relaxing the two assumptions (i.e., A1 and A2) of the basic
version presented in Section 4. First, we introduce a concept
of virtual criticality mode to relax A1.We then present how to
handle fixed-mode high-criticality tasks separately, yielding
relaxation of A2 as well as improvement of the schedulability
ofMC�FLEX.

5.1 Virtual Criticality Mode

This subsection aims at relaxing the assumption of A1 in
MC�FLEX: the inter-arrival time between a switch-back
and the next mode switch should be upper-bounded by ðtþ
maxti2tHC

x � TiÞ. Relaxing the assumption may invalidate
the online and offline schedulability analysis (i.e., Theo-
rems 1 and 2), because the relaxation compromises Lemma 3

and consequently Lemmas 4 and 5. Without the lemmas, the
online and offline schedulability analysis will be much more
pessimistic as the runtime utilization of tH1 cannot be
bounded. To resolve the problem, we introduce a concept of
virtual mode.

Definition 5 (Virtual Mode). For task ti, we define the virtual
mode M 0

i, which is used for the online schedulability test (i.e.,
Eq. (4)). At the switch-forward of ti, we set M 0

i :¼ HI, which is
the same as the task mode for the switch-forward (i.e.,
Mi :¼ HI). However, while we setMi :¼ LO at the switch-back-
ward of ti, we set M

0
i :¼ LO after waiting for the longest rela-

tive virtual deadline (maxti2tHC
Vi) from the switch-back of ti.

Using the virtual mode (that delays the mode transition
of switch-back), we bound the runtime utilization of tH1,
which improves the offline schedulability and reduces the
online job deadline miss ratio.

Under the virtual mode, we separate the switch of criti-
cality mode and the resuming of LC tasks. We present run-
time scheduling policy of the advanced MC�FLEX, which
is modified from P5 in the runtime scheduling policy in
Section 4.1:

P5’. When a job of HC task ti in HI mode reaches its
deadline (i.e., a switch-backward for ti occurs) at t,
setMi :¼ LO. At the virtual switch-back of the task at
ðtþmaxti2tHC

ViÞ, set M 0
i ¼ LO, and resume dropped

LC task(s) selected by the MC�FLEX task resuming
algorithm presented in Section 4.

For task dropping/resuming algorithms, we need to con-
sider the virtual mode of HC tasks in Eq. (4).

Based on P5’, we replace the proof of Lemma 3, which
does not rely on the assumption of A1 in the basic
MC�FLEX.
Proof of Lemma 3 By P5’, we know that ti stays in LO mode
from the system start or switches back to LO mode at least
ðmaxti2tHC

ViÞ earlier than t�k (i.e., the last switch-forward
time instant of Zk).

Let tj denote the task that invokes J�
k . Since the

switch-forward of J�
k happens before its virtual deadline

(t�k � t0k � Vj) and Vj � maxti2tHC
Vi holds, we conclude

that ti executes in LOmode during ½t0k; t�kÞ. tu
We explain the virtual mode in the following example.

Example 4. Consider task set t ¼ ft1; t2; t3; t4g in Example 2.
Since x ¼ 2=3, we have V3 ¼ 8=3; V4 ¼ 6. As shown in
Fig. 7, suppose that the first job of t3 executed for more
than its L-WCET and the other jobs of HC tasks (t3 and t4)
completed their execution within L-WCET. At time 1, the
scheduler switches t3 forward and drops t1 by Eq. (4). The
scheduler switches t3 back (from HI mode to LO mode) at
time tSB ¼ 4 (real switch-back). A virtual switch-back of t3
is invoked at time 10 since tSB þmaxti2tHC

Vi ¼ 4þ 6 ¼ 10.
Then, the scheduler resumes t1 at time 10 (the next job
of t1 released at time 12 will be serviced) by Eq. (4):
1=3þ 1=12þ ð1=4þ 1=9Þ=ð2=3Þ � 1.

5.2 Fixed-Mode High-Criticality Tasks

In this subsection, we present how to relax the assumption
A2 and how to improve offline schedulability. As investi-
gated in Lee et al. [12], a scheduling algorithm with a naive
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task-level mode switch may have schedulability perfor-
mance lower than approaches with the system-level mode
switch because they have different worst-case mode switch
patterns. This necessitates a modification of a naive task-
level mode switch policy such that some HC tasks initiate its
state atHImode and never bemode-switched, which outper-
forms the existing system-level mode switch approaches.
This policy relaxes the assumption of A2 in the basic
MC�FLEX (Section 4). We apply such a task-level mode
switch idea from Lee et al. [12], toMC�FLEX.

We define the fixed-mode tasks for HC tasks that execute
only in HImode.

Definition 6. Fixed-mode tasks (tF ) are a set of HC tasks s.t.
CL

i =Vi > CH
i =Ti: tF ¼ fti 2 tHC j uL

i =x > uH
i g. At run-

time, fixed-mode tasks are executed only in HI mode and not
switched back to LO mode.

Next, we present the revised runtime scheduling policy
(i.e., P1 in Section 4.1), where the basic MC�FLEX runtime
scheduling policy is modified with the fixed-mode task.

P1’. Initially, all LC task are active. All fixed-mode HC
tasks (tF ) are inHImode and other HC tasks (tH n tF )
are in LOmode.

Then, the advanced version ofMC�FLEX has the runtime
scheduling policy consisting of P1’, P2, P3, P4, P5’, and P6,
which does not necessitate any assumption such as A1 and
A2 in Section 4. When it comes to the online and offline
schedulability tests of the advanced version, the former
remains the samewhile the latter should be changed. That is,
dues to the fixed-mode task, S0 and the worst case mode
switch pattern of the advanced version is different from that
of the basic version, which derives the following theorem.

Theorem 3. A task set t is MC-schedulable by the advanced
MC�FLEX that employs the task dropping/resuming algorithm
assicated with Eq. (4), if the following two conditions hold:

UL
LC þ

X
ti2tHCntF

uL
i

x
þ

X
ti2tF

uH
i � 1; (9)

xUL
LC þ UH

HC � 1: (10)

Proof. The proof of Theorem 3 is the same as that of Theo-
rem 2 except the fact that some HC tasks (i.e., tF ) always
stay in HI mode. In this case, Eq. (6) should be modified

to accommodate tasks in tF ; by moving the contribution
of tasks tF from tH1 to tH2, Eq. (9) holds. tu
From the modified offline schedulability, we confirm that

the virtual-deadline coefficient assignment is not changed
between the basic and advanced versions of MC�FLEX. We
show how to apply Theorem 3 in the following example.

Example 5. Consider task set t ¼ ft1; t2; t3g where t1 is
ðTi ¼ 3; CL

i ¼ 1; CH
i ¼ 1;xi ¼ LOÞ, t2 is ð8; 1; 4;HIÞ, and t3

is ð12; 3; 4;HIÞ. We can compute x ¼ ð1� 5=6Þ=ð2=6Þ ¼
1=2. We know that t3 is a fixed-mode task since ð3=12Þ=
ð1=2Þ > 4=12. Since Eqs. (9) and (10) hold (i.e., 1=3þ
ð1=8Þ=ð1=2Þ þ 4=12 � 1 and the choice of x), the task set is
MC schedulable by Theorem 3.

6 EVALUATION

In this section, we evaluate performance of MC�FLEX (the
advanced version in Section 5) compared to the existing
approaches. To show that our approach does not sacrifice
offline schedulability of the base algorithm, we compare
MC�FLEX with EDF-VD [3] (i.e., the base algorithm of
MC�FLEX), MC-ADAPT [12] (i.e., our previous work based
on EDF-VDwith task-level mode switch), and FMC [16] (i.e.,
an existing task-level mode switch algorithm based on EDF-
VD) in terms of MC-schedulability, based on synthetic work-
loads.7 Next, we evaluate the runtime performance (i.e., job
deadline miss ratio) of MC�FLEX in comparison with EDF-
VD, MC-ADAPT, and FMC, via runtime simulation with
synthetic workloads; we consider the following two different
task dropping/resuming algorithms forMC�FLEX:

� MC�FLEX�C1: task dropping/resuming algorithm
to minimize the number of dropped LC tasks (i.e.,
C1 in Section 4.1).

� MC�FLEX�C2: task dropping/resuming algorithm
to minimize the number of dropped jobs of LC tasks
(i.e., C2 in Section 4.1).

6.1 Simulation Setup

In this subsection, we describe simulation setup regarding
task set generation and runtime simulation.8

Task Set Generation.We generate random task sets accord-
ing to the workload-generation algorithm [3], [11], [12], [16].
Let Ub be the upper bound of both collective utilization of
MC tasks in LO mode (i.e., UL

LC þ UL
HC) and collective utili-

zation of MC tasks in HI mode (i.e., UH
HC). A random task is

generated as follows (note that all task parameters are ran-
domly drawn in uniform distribution). For a task ti,

� ui (task utilization) is a real number drawn from the
range ½0:02; 0:2�.

� Ti (task period) is an integer chosen in the range
½20; 150�.

� Ri (the ratio of uH
i =u

L
i ) is a real number drawn from

the range [1,4].

Fig. 7. Schedules with a virtual switch-back for Example 4.

7. We exclude FMC-MST [17] and Boudjadar et al. [18] from compar-
ison because the former is based on multi-criticality systems and the lat-
ter applies fixed-priority scheduling.

8. Our simulation code is available at https://github.com/icpslab/
mcflex.
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� PHC (the probability of being a HC task) is set to 0.25,
0.5 and 0.75; note that PHC is set to 0.5 unless speci-
fied. We uniformly generate a real number in
½0:0; 1:0�. If the number is not larger than PHC , we set
xi :¼ HI, CH

i :¼ bui � Tic, and CL
i :¼ bui � Ti �Ric. Oth-

erwise (i.e., the number is larger than PHC), we set
xi :¼ LO and CL

i :¼ bui � Tic.
Each task set is constructed by repeating generation of a

task until maxðUL
LC þ UL

HC; UH
HCÞ > Ub holds and discard-

ing the task added last.
Runtime Simulation. After evaluating the offline schedul-

ability of MC�FLEX by simply applying Theorem 3, we will
evaluate the performance ofMC�FLEX in terms of the dead-
line miss ratio (DMR)9 for jobs of LC tasks, via runtime simu-
lation (Figs. 9, 10, 11, 12, and 13). For a randomly-generated
synthetic workload, which is schedulable byMC-ADAPT, we
simulate the behavior of tasks with a given probability of
switch-forward for any HC task’s job, denoted as PSF ; note
that PSF is set to 0.2 unless specified. We simulate each syn-
thetic workload with each scheduling algorithm (either EDF-
VD, MC-ADAPT, FMC,MC�FLEX�C1 orMC� FLEX� C2)
for 32,000 time units, to be justified later with Fig. 13.

In simulation for runtime performance, we consider two
kinds of runtime simulation:

� The existing deterministic runtime environment
(DRE): jobs of dropped LC tasks never execute. The
system only allows to execute jobs which can com-
plete their execution. This setting is widely used for
evaluating runtime performance of MC systems
(e.g., [12], [16]).

� A new best-effort runtime environment (BRE): jobs
of the dropped LC tasks may execute only when no
job of reserved tasks (i.e., all HC tasks and LC tasks
with the active state) waits for execution. The system
executes jobs in the best effort manner. Jobs executed
in the best-effort manner will be prioritized accord-
ing to EDF.

6.2 Simulation Results

We evaluate the performance of MC�FLEX in terms of off-
line schedulability (Fig. 8), the runtime performance of

MC�FLEX via DRE runtime simulation (Fig. 9), and the
runtime performance of MC�FLEX via BRE runtime simu-
lation (Figs. 10, 11, 12, and 13).

Acceptance Test for Offline Schedulability. Fig. 8 shows the
acceptance ratio (the ratio of schedulable task sets over total
task sets) varying utilization bound Ub from 0.55 to 1.0 in
step of 0.05. The number of task sets for each data point is
5,000 task sets and the number of total task sets are 50,000
(which is also applicable to Figs. 9, 10, 11, 12, and 13). In the
figure, FMC shows the lower acceptance ratio than EDF-VD
because FMC applies task-level mode switch without apply-
ing the fixed-mode HC tasks.10 MC-ADAPT and MC�FLEX
dominate EDF-VD by applying their fixed-mode HC task
strategy. Since we aim to improve runtime performance of
LC tasks without sacrifice in schedulability, we confirm that
MC�FLEX has acceptance ratio identical toMC-ADAPT.

DRE Runtime Simulation for Deadline Miss Ratio. Fig. 9
shows the average DMR of LC tasks’ jobs under varying utili-
zation bound Ub for different probabilities of switch-forward:
PSF ¼ 0:05, PSF ¼ 0:2, and PSF ¼ 0:5, according to Gu et al.
[11]. The result shows that task-mode approaches (FMC,MC-
ADAPT, MC�FLEX�C1, and MC�FLEX�C2) significantly
outperform the system-mode approach (EDF-VD) in all cases.
FMC and MC-ADAPT show identical DMR performance
becausewe conjecture their online schedulability test is equiv-
alent. Both MC�FLEX approaches outperform MC-ADAPT
and FMC in most cases. In Fig. 9c,MC�FLEX�C1 has higher
DMR than MC-ADAPT when Ub ¼ 0:95. This is because MC-
ADAPT employs a task dropping strategy similar to C2,while
MC�FLEX�C1 employs C1 as a task dropping/resuming
strategy.MC�FLEX�C2 exhibits slightly better performance
thanMC�FLEX�C1 regardless of PSF . As PSF increases, the
performance gap increases.

In lower utilization bound (Ub < 0:65), all algorithms
except EDF-VD have no deadline miss because their algo-
rithms pass the online schedulability test (i.e., Eq. (4)) with-
out dropping any LC tasks. In higher utilization bound
(Ub � 0:65), MC�FLEX�C2 reduces the DMR of
MC�FLEX�C1 by up to 28.0%.

BRE Runtime Simulation for Deadline Miss Ratio. Fig. 10
shows the average DMR of LC tasks’ jobs under varying utili-
zation bound Ub for different probabilities of switch-forward.
The result shows similar trends with Fig. 9. Due to the best-
effort job executions, the performance gap between
MC�FLEX and MC-ADAPT is larger compared to Fig. 9. In
BRE, MC�FLEX�C1 dominates MC-ADAPT and FMC even
for Ub ¼ 0:95 and PSF ¼ 0:5. This implies that, whether the
task-level resuming strategy in MC�FLEX is applied or not
has a greater impact on the DMR than which dropping/
resuming approaches are selected (between C1 and C2). In
higher utilization bound (Ub � 0:65),MC�FLEX�C2 reduces
the DMR of MC-ADAPT by at least 54.8%. In Fig. 10a,
MC�FLEX�C2 reduces the DMR ofMC�FLEX�C1 by up to
77.4%

Fig. 11 shows the average DMR of LC tasks’ jobs under
varying utilization bound Ub for different probabilities of
being a HC task: PHC ¼ 0:25, PHC ¼ 0:5, and PHC ¼ 0:75. As
PHC is closer to either 0.0 or 1.0, the DMR of all algorithms

Fig. 8. Acceptance ratio of different scheduling algorithms under varying
utilization bound (MC-FLEX and MC-ADAPTare identical).

9. DMR is the ratio of the number of the unfinished jobs over the
total number of jobs released in a given time interval.

10. The schedulability anomaly is explained in the beginning of
Section 5.2.
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decreases because the task set is closer to a non-MC task set. In
higher utilization bound (Ub � 0:65),MC�FLEX�C2 reduces
the DMR of MC-ADAPT by at least 78.8%. In Fig. 11a,
MC�FLEX�C2 reduces the DMR ofMC�FLEX�C1 by up to
85.3%. For Ub ¼ 0:65 in Figs. 11b and 11c, MC� FLEX � C1
shows slightly better performance than MC�FLEX�C2,
which means that MC�FLEX�C2 is not always better task
dropping/resuming strategy compared toMC�FLEX�C1.

Fig. 12 shows the average DMR of LC tasks’ jobs under
varying utilization bound Ub for different range of Ri: [1,2],
[2,3], and [3,4]. As Ri is closer to 1.0, the DMR of all algo-
rithms decreases because HC tasks are similar to normal
non-MC tasks due to a smaller gap between L-WCET and
H-WCET, which requires less LC task dropping. In higher

utilization bound (Ub � 0:65), MC�FLEX�C2 reduces the
DMR of MC-ADAPT by at least 61.1%. In Fig. 12b,
MC�FLEX�C2 reduces the DMR of MC�FLEX�C1 by up
to 68.6%.

BRE Simulation Duration Test. Fig. 13 shows the average
DMR of LC tasks’ jobs under different simulation duration:
4,000, 8,000, 16,000, 32,000, 64,000, and 128,000. In this
experiment, we use the following parameters: Ub ¼ 0:90,
PSF ¼ 0:3, and PHC ¼ 0:5. In the results, the DMR of all
approaches is slightly higher in smaller simulation duration
(e.g., 4,000, 8,000). In smaller duration, the performance is
much affected by the worst case release pattern (critical
instant). The DMR of all algorithms is converged in a large
simulation duration (over 32,000 time units).

Fig. 9. (DRE runtime) Deadline miss ratio of LC tasks’ jobs with different PSF (FMC and MC-ADAPTare identical).

Fig. 10. (BRE runtime) Deadline miss ratio of LC tasks’ jobs with different PSF (FMC and MC-ADAPTare identical).

Fig. 11. (BRE runtime) Deadline miss ratio of LC tasks’ jobs with different PHC (FMC and MC-ADAPTare identical).

Fig. 12. (BRE runtime) Deadline miss ratio of LC tasks’ jobs with different range of Ri (FMC and MC-ADAPTare identical).
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7 RELATED WORK

Since Vestal introduced a concept of MC real-time sys-
tems [1], a number of studies have addressed MC real-time
scheduling (see [23] for a survey). Baruah et al. [2] introduced
runtime criticality mode to identify the time instant when a
task executes for more than low-confidence WCET. Most of
early MC studies [2], [3], [5], [24] employed the system-level
mode switch mechanism: once a single high-criticality task
violates its low-confidence WCET, all the other high-critical-
ity tasks will simultaneously enter the high-criticality mode.
For static certification, they took the pessimistic strategy of
dropping all low-criticality tasks immediately.

Recent MC studies considered graceful degradation to
provide better runtime performance, which is not consid-
ered in static verification domain. There is a method to
delay dropping low-criticality tasks by adjusting the thresh-
old of mode switch in offline computation [25] or runtime
computation [7]. Degraded service is provided to low-criti-
cality tasks after system-level mode switch: stretching their
periods [4], [8], [9], [26], lowering their priorities [4], skip-
ping their jobs [6], reducing their execution times [7], [21],
[27], or providing more resource supply with workload
shaper [28], [29]. Some studies [10], [11], [12], [15], [16], [18],
[30], [31] relaxed the system-level mode switch assumption
and considered task-level mode switch: one task’s violation
of low-confidence WCET does not affect other tasks. It ena-
bles low-criticality tasks to be penalized selectively in the
event of individual task mode switch.

Toprovide flexibility inMCsystems, an efficientmechanism
to recover degraded service of low-criticality tasks is necessary
when the system becomes stable (not high-criticality mode).
Buruah et al. [3] proposed a simple solution that the system can
be transited to low-criticality mode and resume to execute low-
criticality taskswhen the system is idle. Bate et al. [13] presented
a scheduling protocol for returning to the low-criticality mode
so as to resume the execution of low-criticality tasks. Guo et al.
[14] bounds the time duration from high-criticality mode to the
system idle time. Boudjadar et al. [18] proposed switch-back at
the absolute deadline of the job which triggers system-level
mode switch under fixed-priority scheduling.

For further flexibility, this paper proposes a mechanism to
resume each low-criticality task independently. Although
some existing studies [3], [13], [14], [16], [17], [18] searched a
time instant to resume all low-criticality tasks at once, this
paper proposes an algorithm to identify a time instant to
resume a subset of low-criticality tasks when resource is avail-
able. To this end, this paper develops an efficient switch-back

mechanism through task-level mode switch.11 With the task-
level resuming algorithmand the task-level switch-backmech-
anism, this paperminimizes the job deadlinemiss ratio of low-
criticality taskswithout scarifyingMC schedulability.

There has been MC work on providing pre-defined QoS
guarantee on LC tasks [14], [21]. They have investigated
trade off between schedulability and guarantee on low-criti-
cality tasks, which can be complements to this paper that
yields no schedulability loss.

8 DISCUSSION

Extension to Multi-Criticality Systems.While this paper considers
dual-criticality systems only, we can generalize ourMC�FLEX
scheduling framework towardmultiple levels of criticality with
the consideration of multiple WCET estimates in the MC task
model. For example, wemay follow how FMC [16] that consid-
ers dual-criticality levels is extended tomultiple criticality levels
in FMC-MST [17]. In futurework,wewill extend online and off-
line schedulability analysis (i.e., Theorems 1 and 3) according to
themulti-criticality environment.

The Runtime Overheads ofMC�FLEX . The runtime schedul-
ing algorithm of MC�FLEX consists of the EDF-VD schedul-
ing algorithm (as a prioritization policy) andC1 andC2 (as task
dropping/resuming algorithms). The task dropping/resum-
ing algorithms are invoked every mode switch time instant
with additional computation resource to determine which LC
task is dropped/resumed. The required computation resource
is acceptable because the complexity of online schedulability
test in the task dropping/resuming algorithm is OðnÞ, which
traverses the status of allMC tasks. In the future,wewill inves-
tigate the possibility of enabling the runtime scheduling algo-
rithm to exhibit less runtime overhead without compromising
schedulability performance.

9 CONCLUSION

We present the MC�FLEX framework that employs a task-
level mode transitionmechanism (supporting both switch-for-
ward and switch-backward) and minimizes the job deadline
misses of low-criticality tasks at runtime. To reduce deadline
misses, we present a runtime mechanism that determines
which low-criticality tasks are dropped/resumed at each
switch-forward/backward. Simulation results show that our
proposed framework reduces the job deadline miss ratio of
low-criticality tasks at runtime (by over 54.8% compared to the
existingwork), without any loss of offline schedulability.

As future work, we have a plan to apply our framework on
real-world testbed such as automotive systems (e.g.,[32], [33])
or locomotive systems. During a real-world case study, we
can extend our framework considering practical issues such
as adaptive variable-rate tasks in engine components [34].

ACKNOWLEDGMENTS

This researchwas supported in part by theMSIT (Ministry of
Science and ICT), Korea, under the ITRC (Information Tech-
nology Research Center) support program (IITP-2021-2020-

Fig. 13. (BRE runtime) The deadline miss ratio of LC tasks’ jobs with
different simulation duration (FMC and MC-ADAPTare identical).

11. The existing work with switch-back through task-level mode
switch [16], [17], [18] does not support to resume each low-criticality
tasks independently.

LEE AND LEE: MC�FLEX: FLEXIBLE MIXED-CRITICALITY REAL-TIME SCHEDULING BY TASK-LEVEL MODE SWITCH 1901

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on August 01,2022 at 01:34:37 UTC from IEEE Xplore.  Restrictions apply. 



0-01655) supervised by the IITP (Institute for Information &
Communications Technology Planning & Evaluation). This
researchwas also supported in part by theNational Research
Foundation of Korea (NRF) funded by the MSIT under
Grants 2021R1A2B5B02001758 and 2018R1C1B5083050. This
work was also supported by the Korea Institute of Energy
Technology Evaluation and Planning (KETEP) and the Min-
istry of Trade, Industry & Energy (MOTIE) of the Republic of
Korea under Grant 20199710100060.

REFERENCES

[1] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in Proc. Real Time
Syst. Symp., 2007, pp. 239–243.

[2] S. Baruah, A. Burns, andR. Davis, “Response-Time analysis formixed
criticality systems,” inProc. Real Time Syst. Symp., 2011, pp. 34–43.

[3] S. Baruah et al., “The preemptive uniprocessor scheduling of
mixed-criticality implicit-deadline sporadic task systems,” in
Proc. Euromicro Conf. Real-Time Syst., 2012, pp. 145–154.

[4] A. Burns and S. Baruah, “Towards a more practical model for
mixed criticality systems,” in Proc. Workshop Mixed Criticality
Syst., 2013, pp. 1–6.

[5] P. Ekberg and W. Yi, “Bounding and shaping the demand of
mixed-criticality sporadic tasks,” in Proc. Euromicro Conf. Real-
Time Syst., 2012, pp. 135–144.

[6] O. Gettings, S. Quinton, and R. I. Davis, “Mixed criticality systems
with weakly-hard constraints,” in Proc. Real-Time Netw. Syst.,
2015, pp. 237–246.

[7] X. Gu and A. Easwaran, “Dynamic budget management with ser-
vice guarantees for mixed-criticality systems,” in Proc. Real Time
Syst. Symp., 2016, pp. 47–56.

[8] M. Jan, L. Zaourar, and M. Pitel, “Maximizing the execution rate
of low-criticality tasks in mixed criticality systems,” in Proc. Work-
shop Mixed Criticality Syst., 2013, pp. 1–6.

[9] H. Su, N. Guan, and D. Zhu, “Service guarantee exploration for
mixed-criticality systems,” in Proc. IEEE 20th Int. Conf. Embedded
Real-Time Comput. Syst. Appl., 2014, pp. 1–10.

[10] P. Huang, P. Kumar, N. Stoimenov, and L. Thiele, “Interference
constraint graph - A new specification for mixed-criticality sys-
tems,” in Proc. Emerg. Technol. Factory Automat., 2013, pp. 1–8.

[11] X. Gu, A. Easwaran, K.-M. Phan, and I. Shin, “Resource efficient
isolation mechanisms in mixed-criticality scheduling,” in Proc.
Euromicro Conf. Real-Time Syst., 2015, pp. 13–24.

[12] J. Lee, H. S. Chwa, L. T. X. Phan, I. Shin, and I. Lee, “MC-ADAPT:
Adaptive task dropping inmixed-criticality scheduling,”ACMTrans.
Embed. Comput. Syst., vol. 16, no. 5s, pp. 163:1–163:21, Sep. 2017.

[13] I. Bate, A. Burns, and R. I. Davis, “A bailout protocol for mixed
criticality systems,” in Proc. Euromicro Conf. Real-Time Syst., 2015,
pp. 259–268.

[14] Z. Guo, K. Yang, S. Vaidhun, S. Arefin, S. K. Das, and H. Xiong,
“Uniprocessor mixed-criticality scheduling with graceful degra-
dation by completion rate,” in Proc. IEEE Real-Time Syst. Symp.,
2018, pp. 373–383.

[15] A. V. Papadopoulos, E. Bini, S. Baruah, and A. Burns, “AdaptMC:
A control-theoretic approach for achieving resilience in mixed-
criticality systems,” in Proc. 30th Euromicro Conf. Real-Time Syst.,
2018, pp. 14:1–14:22.

[16] G. Chen et al., “Utilization-based scheduling of flexible mixed-
criticality real-time tasks,” IEEE Trans. Comput., vol. 67, no. 4,
pp. 543–558, Apr. 2018.

[17] G. Chen, N. Guan, B. Hu, and W. Yi, “EDF-VD scheduling of flexi-
ble mixed-criticality system with multiple-shot transitions,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 37, no. 11,
pp. 2393–2403, Nov. 2018.

[18] J. Boudjadar, S. Ramanathan, A. Easwaran, and U. Nyman,
“Combining task-level and system-level scheduling modes for
mixed criticality systems,” in Proc. IEEE/ACM 23rd Int. Symp. Dis-
trib. Simul. Real Time Appl., 2019, pp. 1–10.

[19] A. Burns, R. I. Davis, S. Baruah, and I. Bate, “Robust mixed-criticality
systems,” IEEE Trans. Comput., vol. 67, no. 10, pp. 1478–1491, Oct.
2018.

[20] A. Easwaran, “Demand-Based scheduling of mixed-criticality
sporadic tasks on one processor,” in Proc. Real Time Syst. Symp.,
2013, pp. 78–87.

[21] D. Liu, et al., “EDF-VD scheduling of mixed-criticality systems
with degraded quality guarantees,” in Proc. Real Time Syst. Symp.,
2016, pp. 35–46.

[22] S. Baruah, A. Mok, and L. Rosier, “Preemptively scheduling hard-
real-time sporadic tasks on one processor,” in Proc. Real-Time Syst.
Symp., 1990, pp. 182–190.

[23] A. Burns and R. Davis, “Mixed criticality systems – A review,”
2019. [Online]. Available: http://www-users.cs.york.ac.uk/burns/
review.pdf

[24] N. Guan, P. Ekberg, M. Stigge, and W. Yi, “Effective and efficient
scheduling of certifiable mixed-criticality sporadic task systems,”
in Proc. Real Time Syst. Symp., 2011, pp. 13–23.

[25] F. Santy, L. George, P. Thierry, and J. Goossens, “Relaxing mixed-
criticality scheduling strictness for task sets scheduled with FP,”
in Proc. Euromicro Conf. Real-Time Syst., 2012, pp. 155–165.

[26] H. Su and D. Zhu, “An elastic mixed-criticality task model and its
scheduling algorithm,” in Proc. Des., Automat., Test Eur., 2013,
pp. 147–152.

[27] S. Baruah, A. Burns, and Z. Guo, “Schedulingmixed-criticality systems
to guarantee some service under all non-erroneous behaviors,” in
Proc. 28th Euromicro Conf. Real-Time Syst., 2016, pp. 131–138.

[28] S. Tobuschat,M.Neukirchner, L. Ecco, andR. Ernst, “Workload-aware
shaping of shared resource accesses in mixed-criticality systems,” in
Proc. Int. Conf. Hardware/Softw. Codes. Syst. Synth., 2014, pp. 1–10.

[29] B. Hu, K. Huang, G. Chen, L. Cheng, and A. Knoll, “Adaptive
workload management in mixed-criticality systems,” ACM Trans.
Embedded Comput. Syst., vol. 16, no. 1, pp. 1–27, Oct. 2016.

[30] J. Ren and L. T. X. Phan, “Mixed-Criticality scheduling on multi-
processors using task grouping,” in Proc. Euromicro Conf. Real-
Time Syst., 2015, pp. 25–34.

[31] H. Choi, H. Kim, and Q. Zhu, “Job-class-level fixed priority sched-
uling of weakly-hard real-time systems,” in Proc. IEEE Real-Time
Embedded Technol. Appl. Symp., 2019, pp. 241–253.

[32] M. O’Kelly et al., “F1/10: An open-source autonomous cyber-
physical platform,” 2019, arXiv:1901.08567v1. [Online]. Available:
http://arxiv.org/abs/1901.08567

[33] S. Kato, et al., “Autoware on board: Enabling autonomous vehicles
with embedded systems,” in Proc. ACM/IEEE 9th Int. Conf. Cyber-
Phys. Syst., 2018, pp. 287–296.

[34] G. C. Buttazzo, G. Lipari, and L. Abeni, “Elastic task model for
adaptive rate control,” in Proc. 19th IEEE Real-Time Syst. Symp.,
1998, pp. 286–295.

Jaewoo Lee (Member, IEEE) received the BS and
MS degrees in computer science and engineering
from Seoul National University, Republic of Korea,
in 2006 and 2008, respectively, and thePhDdegree
in computer and information science from the Uni-
versity of Pennsylvania, USA, in 2017. He is cur-
rently an assistant professor with Chung-Ang
University, Republic of Korea, where he joined in
2018. From 2017 to 2018, he was a postdoctoral
research fellow with Seoul National University,
Republic of Korea . His research interests include
cyber-physical systems, realtime embedded sys-
tems, and information system security.

Jinkyu Lee (Senior Member, IEEE) received the
BS, MS, and PhD degrees in computer science
from the Korea Advanced Institute of Science
and Technology, Republic of Korea, in 2004,
2006, and 2011, respectively. He is currently an
associate professor with Department of Com-
puter Science and Engineering, Sungkyunkwan
University, Republic of Korea, where he joined in
2014. From 2011 to 2014, he was a visiting
scholar or research fellow with the Department of
Electrical Engineering and Computer Science,

University of Michigan, USA. His research interests include system
design and analysis with timing guarantees, QoS support, and resource
management in realtime embedded systems, mobile systems, and
cyber-physical systems. He was the recipient of Best Student Paper
Award from 17th IEEE Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS) in 2011 and Best Paper Award from 33rd
IEEE Real-Time Systems Symposium (RTSS) in 2012.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1902 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 8, AUGUST 2022

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on August 01,2022 at 01:34:37 UTC from IEEE Xplore.  Restrictions apply. 

http://www-users.cs.york.ac.uk/burns/review.pdf
http://www-users.cs.york.ac.uk/burns/review.pdf
http://arxiv.org/abs/1901.08567


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


