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Abstract—As multiple software components with different safety-criticality levels are integrated on a shared computing platform,

a real-time embedded system becomes a mixed-criticality (MC) system, which should provide timing guarantees at all different levels of

assurance to software components with different criticality levels. In the real-time systems community, the concept of an MC system is

regarded as a promising, emerging solution to solve an inherent challenge of real-time systems: pessimistic reservation of computing

resources, which yields a low resource-utilization for the sake of guaranteeing timing requirements. Since a timing guarantee should be

provided before a real-time system starts to operate, its feasibility has been extensively studied for single-criticality systems; however,

the same cannot be said for MC systems. In this article, we develop necessary feasibility tests for MC real-time embedded systems,

which is the first study that yields non-trivial results for MC necessary feasibility on both uniprocessor and multiprocessor platforms.

To this end, we investigate characteristics of MC necessary feasibility conditions, and identify new challenges posed by the

characteristics. By addressing those challenges, we develop two collective necessary feasibility tests and their simplified versions,

which are able to exploit a tradeoff between capability in finding infeasible task sets and time-complexity. The simulation results

demonstrate that the proposed tests find a number of additional infeasible task sets for both uniprocessor and multiprocessor

platforms, which have been proven neither feasible nor infeasible by any existing studies.

Index Terms—Real-time embedded systems, mixed-criticality systems, necessary feasibility analysis, timing guarantees, uniprocessor and

multiprocessor platforms

Ç

1 INTRODUCTION

NOWADAYS, we have witnessed an increasing trend in
industrial developments towards integrated computing

environments, in which multiple software components (i.e.,
tasks) with different safety-criticality levels are integrated on
a shared computing platform. Their prototypical examples
are AUTOSAR in the automotive industry [1] and Integrated
Modular Avionics (IMA) in the aerospace industry [2]. Such
a mixed-criticality (MC) property is typically employed in
real-time embedded systems, whose correctness depends
not only on the functional correctness, but also on the tempo-
ral correctness (i.e., timing guarantees) [3], [4]. The real-time

systems community has paid attention to the emerging con-
cept of an MC property as it can be promising to solve a fun-
damental challenge of real-time systems—a low utilization
of computing resources due to inevitably pessimistic
resource reservation that guarantees timing requirements.
The major design challenge for MC real-time embedded sys-
tems is to simultaneously provide timing guarantees at all
different levels of assurance to tasks with different criticality
levels.

The most fundamental issue for the timing guarantees is
“feasibility” of timing guarantees—whether every instance
of real-time tasks finishes its execution within its deadline
under a given setting (e.g., a computing resource such as
uni- and multi-processors and a task model such as the Liu
and Layland task model [5]). We may classify the research
into two categories: (i) developing scheduling algorithms
and their schedulability analysis to expand a set of real-time
task sets proven schedulable by at least a scheduling algo-
rithm (i.e., addressing sufficient feasibility) [6], [7], and (ii)
deriving conditions of task sets that are never schedulable
by any scheduling algorithm to reduce a set of task sets that
are potentially unschedulable but have not been proven
unschedulable so far (i.e., addressing necessary feasibil-
ity) [8], [9], [10], [11].

Existing studies belonging to (i) and those belonging to
(ii) have matured for single-criticality (SC) task and some of
their results have been successfully adapted to MC task sys-
tems [3] in which tasks have different criticality levels.
However, most studies for MC task systems have focused
on (i) including MC-specific scheduling algorithms and/or
their schedulability analysis (see [4] for a survey); only a
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few studies have addressed (ii), but all of them have pre-
sented trivial results [12], [13], [14]. This paper aims at
reducing a set of MC task sets whose feasibility is unknown
by existing studies. In particular, we aim at developing nec-
essary feasibility tests that prove infeasibility of some of such
MC task sets not only for a uniprocessor platform, but also
for a multiprocessor one, which is the first study in MC
real-time embedded systems (except the trivial results
in [12], [13], [14]).

Addressing necessary feasibility for MC task systems is
beneficial both from the theoretical and the practical point
of view. On the theoretical side, when a schedulability test
is unable to verify that a target task set is schedulable, tight
necessary feasibility analysis can distinguish the cause of
failure: i) the problem is with the task set, which never be
schedulable by any scheduling algorithm, or ii) the problem
is with the scheduling algorithm and its schedulability test.
Thus, it eliminates unnecessary efforts for researchers to try
to make task sets schedulable by developing a new schedul-
ing algorithm, if the task sets are proven infeasible by the
necessary feasibility analysis. On the practical side, when
system software designers set the configuration for schedul-
ing algorithms, task parameters and computing resources,
tight necessary feasibility results reduce burden of tuning
parameters for the configuration by excluding some infeasi-
ble choices of the configuration. In addition, it helps under-
stand MC systems to investigate infeasible task sets proven
by a necessary feasibility analysis. For example, we can
derive characteristics for combinations of tasks belonging to
each infeasible task set. Also, those infeasible task sets give
a guideline of how to design MC systems to avoid infeasible
task sets.

Before we explain the development of necessary feasibili-
tiy tests for MC task systems, we present the MC feasibility
requirement (that is a de facto standard) as follows. A typical
MC task model [3] is to assume more pessimistic worst-case
execution times (WCETs) for higher criticality levels for each
task. In systems with two levels of criticality (i.e., high and
low), the system can be seen as exhibiting two different
behaviors at runtime: the low-criticality behavior as long as
each job signals its completion without exceeding its low-
criticality WCET, and the high-criticality behavior thereafter
if any high-criticality job does not signal its completion after
executing for its low-criticality WCET. A typical feasibility
requirement for MC systems is that 1) all high-criticality
tasks always meet their deadlines and 2) all low-criticality
tasks meet their deadlines during the low-criticality system
behavior, which is formally specified in Section 2.

To develop necessary feasibility tests in accordance with
the above MC feasibility definition, we first offer our own
interpretation of the existing necessary feasibility tests for SC
task systems on a uniprocessor and on amultiprocessor plat-
form (in Section 3.1). We next show that a straightforward
extension of such interpretation towards MC task systems is
limited to covering only partial cases of MC behaviors, yield-
ing a still huge gap between the region covered by task sets
proven feasible and that proven infeasible (in Section 3.2).
Utilizing the background, we identify unique issues/chal-
lenges specific to MC task systems for developing necessary
feasibility tests, based on investigation of their characteristics
(in Section 3.3), which can be summarized briefly as follows.

C1. According to the MC-feasibility requirement, (i) a set
of jobs whose execution requirement should be
guaranteed (i.e., all versus high-criticality jobs) and
(ii) high-criticality jobs’ amount of execution require-
ment that should be guaranteed (i.e., no more than
versus more than low-criticality WCET) vary
depending on the system behavior.

C2. It is impossible to know beforehand which system
behavior will be shown and when the system
switches from low-criticality to high-criticality
behavior (referred to as mode change) during runtime.

Such unique characteristics of MC task systems pose new
challenges that cannot be resolved by existing techniques
for SC task systems, which will be explained I1–I6 in Sec-
tion 3.3. We establish essential foundations for developing
necessary feasibility tests by addressing those challenges,
which are summarized in Section 4.2. Putting all the pieces
together, we develop two types of collective necessary feasi-
bility tests, considering different target scenarios (including
job release patterns) for a task set to check its infeasibility.
We also explore a tradeoff between time-complexity and
capability in finding infeasible task sets, by developing sim-
plified versions of the two collective tests that have the
same complexity as in the SC task system case at the
expense of sacrificing the capability.

We demonstrate effectiveness of the proposed necessary
feasibility tests in finding infeasible task sets via simula-
tions. The proposed tests are able to newly cover many
infeasible task sets which have not been proven neither fea-
sible nor infeasible. In particular, in case of constrained-
deadline task sets, a collective necessary feasibility test finds
11,375 (25.9%), 13,894 (24.7%), and 17,778 (22.3%) additional
infeasible task sets among 43,972, 56,199, and 79,806 task
sets of interests, which have not been proven infeasible by
any existing studies, on 1-, 2-, and 4-processor platforms,
respectively.

Contribution. The main contributions of this paper can be
summarized as follows:

1) We develop necessary feasibility tests for MC task
systems, which is the first study that yields non-triv-
ial results for MC necessary feasibility on both uni-
processor and multiprocessor platforms;

2) We pose new challenges for developing necessary
feasibility tests specialized for MC task systems (in
Section 3);

3) We establish foundations of necessary feasibility
tests for MC task systems, by addressing the new
challenges one by one (in Section 5);

4) We develop a collective necessary feasibility test to
determine infeasibility of MC task sets with as many
scenario instances as possible with reasonable
(pseudo-polynomial) complexity, by incorporating
the foundations (in Section 6);

5) We investigate another scenario (i.e., job release pat-
tern), favorable to finding infeasible MC task sets, by
developing an improved version of the collective
necessary feasibility test (in Section 7);

6) We explore a tradeoff between time-complexity and
capability in finding infeasible task sets, by develop-
ing simplified versions of the two types of necessary
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feasibility tests that have the same complexity as in
the SC task system case (in Sections 8 and 9); and

7) We demonstrate effectiveness of the proposed tests
in finding infeasible task sets for both uniprocessor
and multiprocessor platforms (in Section 10).

In our preliminary conference version [15], we presented
a collective necessary feasibility test and its simplified ver-
sion for MC task systems on a uniprocessor platform. In this
extended version, we generalize all the results in the confer-
ence version to a multiprocessor platform, and reveal
another scenario favorable to finding infeasible MC task
sets with further improvements. Therefore, the entire part
of 5) and 6) and the multiprocessor part of 1) and 7) are
novel contributions that have not been addressed in the con-
ference version. In addition, we provide an overview of our
approach to develop necessary feasibility tests for MC task
systems, including new scenario components for MC task
systems to consider the unique characteristics thereof (in
Section 4.2).

2 SYSTEM MODEL, ASSUMPTIONS AND NOTATIONS

We consider the problem of scheduling a dual-criticality
(high and low, namely HI and LO) task set t of n sporadic
MC tasks on a platform consisting of m � 1 identical pro-
cessors. This means, we cover both uniprocessor and multi-
processor platforms; only one job can be executed at any
time under the former, while at mostm jobs can be executed
at any time under the latter. Also, when it comes to a multi-
processor platform, we do not have any restriction for a job
to be executed on which processor, meaning that any global
and partitioned scheduling algorithm can be applied. Under
those settings, this paper aims at finding conditions for nec-
essary feasibility—whether a set of given tasks cannot meet
all their job deadlines with any scheduling algorithm.

MC Tasks. Each MC task ti 2 t is characterized by a tuple
ðTi;xi; C

LO
i ; CHI

i ; DiÞ, where Ti is the minimum separation (or
period) between successive job releases, xi 2 fLO; HIg is the
criticality level, CLO

i is the LO WCET (worst-case execution
time), CHI

i is the HI WCET, and Di is the relative deadline. A
task ti is said to be a LO and HI task, if xi is LO and HI,
respectively; let tLO and tHI denote a set of LO and HI tasks in
t, respectively. We assume that CLO

i � CHI
i for every HI task

and CLO
i ¼ CHI

i for every LO task. We target implicit- and
constrained-deadline task systems, respectively, in which
Di ¼ Ti andDi � Ti hold for every ti 2 t.

MC Jobs and Scenarios. Task ti generates a potentially infi-
nite sequence of jobs: J1

i ; J
2
i ; J

3
i ; . . . . The qth job of ti

(denoted by Jq
i ) is characterized by two parameters: Jq

i ¼
ðrqi ; gqi Þ, where rqi is the release time of the job, and g

q
i 2

ð0; CHI
i � is the execution requirement of the job; Jq

i has com-
pleted its execution if it executes for gqi . The absolute deadline

of job Jq
i is dqi ¼def rþi Di, and we call ½rqi ; dqi � the execution win-

dow of Jq
i . We target sporadic task systems, in which succes-

sive jobs are released at least Ti time units apart. A job of ti
is said to be a LO and HI job, if xi is LO and HI, respectively.
It is important to notice that neither the release times nor
the execution requirements are known in advance. Let a sce-
nario for a given task set t mean a collection of release times
and execution requirements of jobs of interest invoked by
tasks in t; there exist infinitely many scenarios for a given

task set. In this paper, we consider an independent, sequen-
tial task model in which every task (and job) is independent
of others, and every job cannot be executed in parallel.

System Behavior and Requirement. Job Jq
i is released at time

rqi and needs to complete gq
i units of work before its absolute

deadline of dqi . The value of g
q
i is not known beforehand, but

only becomes revealed by actually executing the job until it
signals its completion. The values of fgq

ig for a given sce-
nario of a given task set t define system behavior and its
corresponding real-time requirements as follows.

� As long as no job executes for more than its LOWCET
for all jobs, the system is regarded as exhibiting the
LO behavior, and all jobs are required to be completed
before their deadlines.

� If any HI job does not signal its completion after exe-
cuting for its LO WCET at some time instant t�

referred to as mode change, the system is regarded as
exhibiting the HI behavior, and only HI jobs are
required to be completed before their deadlines after
the mode change; every LO job whose deadline is
later than t� can be discarded in the HI system
behavior.1

MC-Feasibility. Based on the above two real-time require-
ments, we define MC-feasibility as follows.

Definition 1 (MC-feasible). A scenario is said to be feasible
if there exists a schedule that satisfies i) every job Jq

i receives
execution time gq

i during its execution window ½rqi ; dqi � when
the system exhibits the LO behavior and ii) every HI job Jp

j

receives execution time gp
j during its execution window ½rpj ; dpj �

when the system exhibits the HI behavior. A task set t is said to
beMC-feasible if every scenario is feasible.

According to Definition 1, a task set t is said to be MC-
infeasible if there exists at least one scenario that is infeasible
(i.e., not feasible). Note that determining MC-feasibility for
collections of independent dual-criticality periodic and spo-
radic tasks is known to be NP-hard in the strong sense [16].

Assumption and Notation. We assume a quantum-based
time; let one time unit a quantum length without loss of
generality. We also assume that if the system has switched
to high-criticality behavior, it will never switch back to low-
criticality. Some recent studies have considered returning
the system to low-criticality mode (see[4] for a survey), but
this is not relevant to MC-feasibility because it does not
change the definition of MC-feasibility. Let LHS and RHS
denote left-hand-side and right-hand-side, respectively.

3 CHALLENGES

In this section, we consider the following problem: what are
unique issues of developing necessary feasibility tests for
MC task systems (that do not matter for SC task systems)?
To answer the question, we first present our own interpreta-
tion of the existing necessary feasibility test for SC task sys-
tems. We next present trivial existing results for necessary
feasibility of MC task systems. Based on the background,
we observe characteristics specialized for MC task systems,

1. Since we have a single computing platform (i.e., either uniproces-
sor or multiprocessor), the mode change to the HI system behavior is
reported and handled to the scheduler, which discards every LO job.
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and identify challenges for developing necessary feasibility
tests for MC task systems.

3.1 Existing Necessary Feasibility Test for SC
Task Systems

In this subsection, we offer our own interpretation of the
existing necessary feasibility test for SC task systems on a
uniprocessor platform [17] and on a multiprocessor
platform [8].

A typical way to develop a necessary feasibility test for
SC task systems is to focus on a scenario (associated with a
given interval of interest, each task’s job release pattern, and
each job’s execution requirement) and to compare the sum
of every job’s minimum execution requirement that should
be performed in the interval of interest to avoid its deadline
miss (called demand), with the time duration in which the
computing platform allows jobs to execute within the inter-
val (called supply). If the demand is larger than the supply,
at least one job in the scenario inevitably misses its deadline,
yielding infeasibility of the task set that invokes the sce-
nario. While the demand depends on the scenario’s interval
of interest, each task’s job release pattern and each job’s exe-
cution time requirement, the existing study for SC task sys-
tems focuses on the following scenario S1, S2 and S3’ with
given interval length tend > 0.

S1. Target ½0; tend� as an interval of interest, for given
interval length tend > 0.

S2. Generate jobs according to the synchronous periodic
job release pattern from t ¼ 0 as follows. The first job
of every task is released at 0, and the following jobs
of every task are released strictly periodically until
each job’s absolute deadline is no later than tend.

S3’. Determine the execution requirement of every job as
its WCET.

For the scenario of S1, S2 and S3’ with given tend > 0, the
existing study calculates demand and supply in the interval
of interest, and deems the scenario (and therefore the corre-
sponding task set) infeasible if the demand is strictly larger
than the supply. While it is straightforward that the supply
under S1 with given tend > 0 amounts to tend, the demand
of a SC task ti with its WCET of Ci under the scenario of S1,
S2 and S3’ with given tend > 0 is calculated by DBFiðtendÞ
where

DBFiðtÞ ¼
�j t�Di

Ti

k
þ 1

�
� Ci; (1)

which yields the following lemma.

Lemma 1. A SC task set t is infeasible on am-processor platform
(wherem � 1), if Eq. (2) is violated for given tend > 0

X
ti2t

DBFiðtendÞ � m � tend: (2)

The lemma comes from [17] for a uniprocessor platform,
and [8] for a multiprocessor platform. Note that while the
LHS of Eq. (2) is originally FFDBFiðtendÞ for a multiprocessor
platform in [8], which is slightly larger than DBFiðtendÞ only
for some tend, we use DBFiðtendÞ for consistency with the uni-
processor. It has been known that checking Eq. (2) for all
tend > 0 is equivalent to checking Eq. (2) for only some of

tend > 0, which are f0 < tend < tmax j ðtend �DiÞ mod Ti ¼
0 for any ti 2 tgwhere tmax depends on

P
ti2t Ci=Ti [17].

By Lemma 1, it is possible to find an infeasible task set (if
Eq. (2) is violated for at least one tend > 0), meaning that a
necessary feasibility test is successfully derived.

The next issue is how to systematically check the lemma
for the scenario of S1, S2 and S3’ with as many tend > 0 as
possible with reasonable time-complexity. The existing
study derives an upper bound of tend such that checking
Lemma 1 for the scenario of S1, S2 and S3’ with every tend >
0 less than the upper bound is equivalent to checking that
with every tend > 0 without the upper bound (up to infin-
ity). Using the upper-bound, the study develops the follow-
ing collective necessary feasibility test as follows.

� A SC task set t is infeasible, if there exists at least one
tend > 0 that violates Eq. (2) while we repeat to check
Lemma 1 with every tend > 0 less than the upper
bound.

Note that it has been proven that the collective necessary
feasibility test exhibits pseudo-polynomial time-complexity
in the task parameters. Also, note that the test is known to
be a necessary and sufficient feasibility test for SC task sys-
tems on a uniprocessor platform [17].

One may misunderstand that the collective necessary
feasibility test should check Lemma 1 for every tend > 0 less
the upper bound. Different from the corresponding suffi-
cient feasibility test, the necessary feasibility test can check
Lemma 1 for any number of candidates for tend > 0, which
can affect capability in finding infeasible task sets, but can-
not compromise the correctness of whether task sets
deemed infeasible by the test is actually infeasible.

3.2 Trivial Results for Necessary Feasibility of MC
Task Systems

Considering the most prominent difference between SC and
MC task systems is existence of the mode change and conse-
quences thereof, we may classify scenarios of MC task sys-
tems, based on relationship between the mode change
instant and the interval of interest. That is, the mode change
instant t� exists after, before, and within the interval of inter-
est, denoted by Cases A, B, and C, respectively.

Since all jobs in the interval of interest exclusively experi-
ences the LO and HI system behavior in Cases A and B,
respectively, each scenario of Case A and B can be equiva-
lent to a scenario of a SC task system. The following two
lemmas correspond Lemma 1 for Cases A and B, respec-
tively (similar conditions were presented in [12], [13], [14]
with a different form).

Lemma 2. A MC task set t is infeasible on a m-processor plat-
form (wherem � 1), if Eq. (3) is violated for given tend > 0:

X
ti2t

DBFLOi ðtendÞ � m � tend;

where DBFLOi ðtÞ ¼
�j t�Di

Ti

k
þ 1

�
� CLO

i :

(3)

Proof. Consider the scenario of S1, S2 and S3’ with given
tend > 0 when the mode change occurs at t ¼ 1. Then,
the scenario is the same as Lemma 1 with replacing Ci

with CLO
i for every ti 2 t. tu
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Lemma 3. A MC task set t is infeasible on a m-processor plat-
form (wherem � 1), if Eq. (4) is violated for given tend > 0:

X
ti2tHI

DBFHIi ðtendÞ � m � tend;

where DBFHIi ðtÞ ¼
�j t�Di

Ti

k
þ 1

�
� CHI

i :

(4)

Proof. Consider the scenario of S1, S2 and S3’ with given
tend > 0 when the mode change occurs at t ¼ �1. Since
there is no demand of LO tasks in ½0; tend�, the scenario is
the same as Lemma 1 with replacing Ci with CHI

i for every
ti 2 tHI and Ci with 0 for every ti 2 tLO. tu
To find as many infeasible task sets as possible, the col-

lective necessary feasibility test can be developed by apply-
ing Lemmas 2 and 3 for every tend > 0 less than its upper-
bound (derived by the same technique for SC task
systems).2

Although Lemmas 2 and 3 successfully address Cases A
and B, there is a still huge gap between the region covered
by task sets proven feasible and that proven infeasible, as
shown in Fig. 4 in Section 10; note that Lemmas 2 and 3
with every tend > 0 prove infeasibility of task sets beyond
the region X = 1.0 by Y = 1.0 (colored by grey) in the figure.
While tight necessary conditions for feasibility require to
consider Case C effectively, deriving the conditions from
Case C entails many challenges to be discussed in the next
subsection.

Note that although existing demand-based schedulabil-
ity tests [18], [19], [20] considered Case C using the notion
of demand, all of them are unable to detect infeasible task
sets because they are designed to find feasible task sets.

3.3 Challenges for Developing Necessary
Feasibility Tests for MC Task Systems

In this subsection, we identify challenges specialized for
MC tasks systems to develop necessary feasibility tests, by
considering Case C in which the mode change instant t�

exists in the middle of the interval of interest.
We may observe two characteristics of SC task systems to

derive necessary conditions for feasibility in Section 3.1.
First, the demand in the interval of interest is fixed with the
scenario of S1–S3’ with given tend > 0. Second, if the
demand is larger than the supply, the scenario (and there-
fore the corresponding task set) is actually infeasible. The
two characteristics, however, do not hold for MC task sys-
tems, due to existence of the mode change. We present the
following example showing characteristics of MC task sys-
tems that affect derivation of necessary conditions for feasi-
bility. Note that the characteristics to be explained are
mostly derived from existence of the mode change, which
switches (i) a set of jobs whose execution requirement
should be guaranteed (i.e., from HI and LO jobs, to HI jobs
only) and (ii) HI jobs’ amount of execution requirement that
should be guaranteed (i.e., from no more than the LO

WCET, to more than the LOWCET).

Example 1. Consider a task set t with the following three
tasks: t1ðT1 ¼ 12;x1 ¼ HI; CLO

1 ¼ 3; CHI
1 ¼ 6; D1 ¼ 12Þ, t2 ¼

t1, and t3 ¼ ð4; LO; 1; 1; 4Þ. Consider the following sce-
nario as shown in Fig. 1a: (i) the interval of interest is
[0,12]; (ii) the synchronous job release pattern from t ¼ 0
is applied to all tasks in [0,12], meaning that the release
time and deadline of J1

1 and J1
2 are 0 and 12, respectively,

and those of J1
3 , J

2
3 , and J3

3 are 0 and 4, 4 and 8, and 8 and
12, respectively; and (iii) the execution requirement of
every LO and HI job is its LO and HI WCET, respectively.
We now consider two cases with different choices of the
mode change instant: t� ¼ 3 and 4. In both cases, the fol-
lowing properties hold: (a) one of J1

1 or J1
2 should execute

for exactly 3 time units (i.e., its LO WCET) in ½0; t�� (i.e.,
before the mode change) to trigger the mode change, and
therefore (b) the job that triggers the mode change should
execute for exactly 3 time units (i.e., its HI WCET minus
LOWCET) in ½t�; 12� (i.e., after the mode change).

Suppose the mode change instant occurs at t� ¼ 3. The
demand of jobs of t3 in [0,12] is 0 because no job of t3 has
its deadline at or before the mode change instant. Also,
one of J1

1 and J1
2 that does not trigger the mode change

cannot execute before the mode change (i.e., in [0,3])
because of (a), and hence the job should execute for 6
time units (i.e., its HI WCET) after the mode change (i.e.,
in [3,12]). In this case, since there is no demand of t3, the
total demand in [0,12] is CHI

1 þ CHI
2 ¼ 12, which is no

larger than the supply in [0,12].
Suppose the mode change instant occurs at t� ¼ 4.

Then, the demand of jobs of t3 in [0,12] is 1 because J1
3

has its deadline no later than the mode change instant
(while other jobs of t3 do not). Also, one of J1

1 and J1
2 that

does not trigger the mode change executes for at most 1
time unit before the mode change (i.e., in [0,4]) because
of (a). Considering the sum of execution of the job in [0,4]
and that of [4,12] (therefore the sum of the demand in
both intervals) should be 6 (its HI WCET), the job should
execute for 5 or 6 time units after the mode change (i.e.,
in [4,12]). In this case, since the demand of t3 is 1, the
total demand in [0,12] is CLO

3 þ CHI
1 þ CHI

2 ¼ 13, which is
larger than the supply in [0,12].

In fact, the scenario is feasible if J1
1 and J1

2 are exe-
cuted in [0,6] and [6,12], respectively. This is because,

Fig. 1. (a) Illustration of Example 1 for Observations O1–O5, and (b)
Illustration of Example 2 for Observation O6.

2. The collective necessary feasibility test is reduced to checking vio-
lation of either

P
ti2t C

LO
i =Ti � m or

P
ti2tHI C

HI
i =Ti � m, for implicit-

deadline task systems [12], [13], [14].
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this schedule yields the mode change at t� ¼ 3, which is
before the deadline of all LO jobs (i.e., t ¼ 4, 8 or 12);
therefore, all LO jobs do not have any demand in [0,12].

We summarize the following observations fromExample 1.

O1. The contribution of each LO job to the demand varies
with the mode change instant. For example, the
demand of LO jobs amounts to 0 and 1 with t� ¼ 3
and t� ¼ 4, respectively.

O2. The constraints for the amount of the contribution of
each HI job to the demand varies with the mode
change instant. For example, one of J1

1 and J1
2 that

does not trigger the mode change executes for 0 and
at most 1 time unit before the mode change, respec-
tively in case of t� ¼ 3 and t� ¼ 4.

O3. By O1 and O2, it is impossible (or at least very diffi-
cult) to calculate demand without specifying the
mode change instant.

O4. The demand strictly larger than the supply in a case
does not necessarily yield infeasibility of the sce-
nario. For example, the scenario is feasible although
the demand is larger than supply with t� ¼ 4.

O5. Without a concrete schedule determined by the tar-
get scheduling algorithm, we may not calculate the
exact values for the demand of a HI job in one sub-
interval and that in another sub-interval; however,
there exists a relationship between the demand in
those intervals. For example, the sum of the demand
of J1

1 (or J1
2 ) in ½0; t�� and that in ½t�; 12� is 6.

We now present another example that shows necessity of
investigating sub-intervals of the interval of interest for
higher capability in finding infeasible task sets.

Example 2. Consider a task set t with the following three
tasks: t1ðT1 ¼ 12;x1 ¼ HI; CLO

1 ¼ 3; CHI
1 ¼ 6; D1 ¼ 12Þ, t2 ¼

ð12; HI; 3; 5; 12Þ, and t3 ¼ ð2; LO; 1; 1; 2Þ. Consider the sce-
nario same as Example 1.

As shown in Fig. 1b, we now present a case with the
mode change instant t� ¼ 3, in which one of J1

1 or J1
2

should execute for exactly 3 time units (i.e., its LOWCET)
in [0,3]. The demand of jobs of t3 in [0,3] is 1 (i.e., CLO

3 ),
because J1

3 is the only job whose deadline is no later than
t ¼ 3. Therefore, the total demand3 in [0,3] is 3þ 1 ¼ 4,
which is larger than the supply in [0,3]; this judges that
the mode change cannot occur at t� ¼ 3without violating
i) of Definition 1. However, the same cannot be judged if
we focus on the entire interval of [0,12]; this is because
the total demand in [0,12] is CLO

3 þ CHI
1 þ CHI

2 ¼ 12.
In fact (after investigating all possible schedules), the

scenario is deemed infeasible because there is no sched-
ule that satisfies i) and ii) in Definition 1. Note that both
Lemmas 2 and 3 cannot deem the task set infeasible,
while our proposed necessary feasibility test to be devel-
oped in this paper (i.e., Theorem 2) can.

From Example 2, we have the following observation.

O6. The inequality of the demand larger than the supply
holds in a subset of the interval of interest, while the
same does not hold in the entire interval of interest.
In Example 2, the inequality holds in [0,3], but does
not hold in [0,12].

Considering the unique observations O1–O6, we need to
address the following challenges to develop necessary feasi-
bility tests for MC task systems.

I1. For a given scenario, how can we characterize and
calculate the demand in an interval that changes
depending on the mode change instant? (from O1–
O3)

I2. For a given scenario, what is the meaning of the
demand larger than the supply in an interval when
the mode change instant is given? (from O4)

I3. For a given scenario, how can we derive infeasibility
of the scenario from the answer of I2 without assum-
ing the mode change instant is given? (from O3–O4)

I4. For a given scenario, what are good choices of sub-
intervals to be targeted for I1–I3? (from O6) How can
we utilize the relationship between demand of those
sub-intervals? (from O5)

Since I1–I4 need a given scenario, we have the following
challenge.

I5. What are additional scenario components for MC
task systems other than S1, S2 and S3’, which make it
possible to address I1–I4? In particular, how can we
make the components specify the mode change
instant without targeting a scheduling algorithm?
(from O3)

In addition, we have the following challenge for higher
capability in finding infeasible task sets.

I6. Once we develop a necessary feasibility test for a
given scenario by addressing I1–I5, how can we effi-
ciently check the test with as many scenarios as pos-
sible with reasonable time-complexity?

4 APPROACH OVERVIEW

In this section, we first define new scenario components
for MC task systems to consider the unique characteris-
tics thereof (C1 and C2 in Section 1), addressing I5.
Building upon the target scenario tailored to MC task
systems, we describe an overview of our approach to
develop necessary feasibility tests for MC task systems
by addressing I1–I4, I6 and other critical issues, which is
illustrated in Fig. 2.

4.1 New Scenario Components for MC
Task Systems

Among the scenario of S1, S2 and S3’ for SC task systems, S1
and S2 can be applied as they are, while S3’ should be
adapted because each HI job has LO and HI WCETs. Con-
sidering the execution requirement of each HI job is rele-
vant to the mode change instant, we need to adapt S3’ for
HI jobs so as to (i) determine each HI job’s execution
requirement as either its LO or HI WCET, and (ii) specify

3. In this case, the notion of demand implies the sum of every job’s
minimum execution requirement that should be performed in the inter-
val of interest not only to satisfy MC-feasility in Definition 1, but also to
trigger the mode change at t� ¼ 3.
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the mode change instant without the target scheduling
algorithm.

The main idea to address (i) and (ii) is to include a sce-
nario component of J�k , which indicates the job with the ear-
liest release time among all HI jobs whose execution
requirement is strictly larger than its LO WCET. By the pro-
posed definition, we can specify the range of the mode
change instant without targeting a scheduling algorithm, as
stated in the following lemma.

Lemma 4. J�k should observe a mode change (triggered by itself
or another job) within its execution window; otherwise, the job
cannot execute for more than its LO WCET, yielding its dead-
line miss.

Proof. Suppose that J�k does not observe a mode change
within its execution window. We consider two cases: a
mode change occurs (i) before and (ii) after the execution
window of J�k .

In case of (i), there should be another job that observes
a mode change before J�k ’s release time, which contra-
dicts the “the earliest release time” phrase in the defini-
tion of J�k . In case of (ii), J�k cannot have its execution
requirement larger than its LO WCET, which contradicts
the definition of J�k (i.e., the “whose execution require-
ment is strictly larger than its LOWCET” part). tu
Therefore, by targeting given J�k , we can restrict the range

of the mode change instant for each scenario, to the execu-
tion window of J�k or a part thereof. Also, by targeting given
J�k , we can determine each HI job’s execution requirement
based on its release time. Then, we consider S3 and S4 by
adapting/detailing S3’ as follows.

S3. Target a given job J�k among all jobs generated by S1
and S2 with given tend > 0, where J�k is the job which
has the earliest release time among all HI jobs whose
execution requirement is strictly larger than LOWCET.

S4. Determine the execution requirement of every LO job
as its LO WCET; determine the execution require-
ment of every HI job whose release time is earlier
and no earlier than r�k (i.e., J

�
k ’s release time) as its LO

and HIWCET, respectively.
In the rest of this paper, we target the scenario of S1 and

S2 defined in Section 3.1, and S3 and S4 defined in this

section, with given tend > 0 and J�k . Then, the following
lemma calculates a more refined range of the mode change
instant t� associated with given J�k as illustrated in Fig. 2a.

Lemma 5. The scenario of S1–S4 with given tend > 0 and J�k is
feasible, only if the mode change occurs within ½t�aðJ�k Þ; t�bðJ�k Þ�,
where t�aðJ�k Þ and t�bðJ�k Þ are respectively the earliest ðrpi þ CLO

i Þ
and the earliest ðdpi � CHI

i þ CLO
i Þ among every HI job Jp

i whose
release time is no earlier than r�k (i.e., the release time of J�k ).

Proof. Recall S4; every HI job Jp
i whose release time is no

earlier than r�k has the execution requirement for its HI

WCET.
Suppose that the mode change occurs at t� < t�aðJ�k Þ.

By S4 and the definition of t�aðJ�k Þ, it is impossible for
every HI job whose execution requirement equals to its
HI WCET to perform its executing for as much as its LO
WCET before t�aðJ�k Þ. This contradicts the supposition.

Suppose that a mode change occurs at t� > t�bðJ�k Þ. By
S4 and the definition of t�bðJ�k Þ, there exists at least one job
Jp
i whose execution requirement equals to its HI WCET,

but whose actual execution time performed until ðdpi �
CHI

i þ CLO
i Þ is less than CLO

i . If there exists no such job, the
mode change occurs no later than ðdpi � CHI

i þ CLO
i Þ. The

former contradicts feasibility, and the latter contradicts
supposition. tu

4.2 Approach Overview

We summarize essential parts to develop a necessary feasi-
bility test for MC task systems (i.e., how to address I1–I4).
Then, we provide an overview of our proposed necessary
feasibility tests to utilize the essential parts.

Addressing I4. Under the newly defined target scenario of
S1–S4, we determine sub-intervals to be investigated for
demand-supply comparison respectively by dividing the
interval of interest based on the mode change instant
(Fig. 2b). As shown in O6, demand-supply comparison with
the interval split is more effective in identifying infeasibile
task sets, compared to that without the interval split.

Addressing I1. We calculate the demand of a LO/HI task
in the target sub-intervals when the mode change instant is
given by considering the relationship between the mode
change instant and each job’s execution window (as shown
in Fig. 2c, and to be stated in Lemmas 6 and 7). For jobs of

Fig. 2. Overview of our proposed necessary feasibility tests for a task set described in Examples 2 and 3.
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HI tasks whose execution window overlaps with the mode
change instant, we derive the lower and upper bounds of
their demand contribution in the target sub-intervals,
respectively (to be stated in Lemma 8).

Addressing I2. Comparing the total demand with the total
supply in the target sub-intervals, we derive a necessary
condition for feasibility of the mode change instant t� with-
out missing any job deadline (as shown in Fig. 2d, and to be
stated in Lemma 9).

Addressing I3. By associating the necessary conditions
with every instant in the range of the mode change instant,
we develop a necessary feasibility test for a target scenario
(as shown in Fig. 2e, and to be stated in Theorem 1). If there
exists no feasible mode change instant, it is impossible for
the mode change instance to exist without any job deadline
miss, which yields infeasibility of the scenario.

Addressing Other Critical Issues to Complete the Proposed
Necessary Feasibility Tests. We develop a collective necessary
feasibility test for MC task systems to check the proposed
test for a single scenario with as many scenarios as possible
with reasonable (pseudo-polynomial) time-complexity (to
be presented in Section 6). In addition to the synchronous
job release pattern (i.e., S2), we investigate another job
release pattern favorable to finding more infeasible MC task
sets (to be stated in S2’ in Section 7) and develop an
improved version of the collective necessary feasibility test
(to be presented in Section 7). Furthermore, we also develop
simplified versions of the collective necessary feasibility test
and the improved one such that they have the same com-
plexity as in the SC task system case (to be presented in Sec-
tion 8). Finally, we discuss the relationship among the two
collective necessary feasibility tests and their simplified ver-
sions, in terms of capability in finding infeasible task sets
and time-complexity (to be presented in Section 9).

5 NECESSARY FEASIBILITY CONDITION

FOR A SCENARIO

In this section, we focus on a single scenario associated with
S1–S4, and derive a necessary feasibility condition for the
scenario by addressing I1–I4. The condition can operate as a
necessary feasibility test for MC task systems, because infea-
sibility of a task set can be verified by a necessary feasibility
condition for even a single scenario of the task set. Once this
section finishes deriving the condition for a single scenario,
Section 6 will present how to check the condition for as
many as scenarios as possible within a short time, which
enables to find more infeasible task sets.

We first explain how to choose sub-intervals to be inves-
tigated (i.e., addressing the first part of I4), which should
precede addressing I1–I3. As shown in O1 and O2 in Sec-
tion 3.3, the mode change instant t� determines not only
whether each LO job contributes to the demand or not, but
also how much execution each HI job can contribute to the
demand before and after the mode change. Since the mode
change instant t� is a criterion that determines the demand
(or its constraints) of LO and HI jobs, we not only target a
situation with given t�, but also divide the interval of inter-
est into two sub-intervals based on the mode change instant
t� (i.e., ½0; t�� and ½t�; tend�), to be targeted for deriving neces-
sary feasibility conditions as illustrated in Fig. 2b. As shown

in O6, demand-supply comparison with the interval split
yields higher capability in finding infeasible task sets, com-
pared to that without the interval split.

Once we determine the target sub-intervals, we are ready
to address I1, which is to calculate the demand in the target
sub-intervals when the mode change instant t� is given. One
may wonder whether it is possible to use the techniques of
demand calculation in existing demand-based schedulabil-
ity tests for MC task systems [18], [19], [20]; this is impossi-
ble because they were designed for a target scheduling
algorithm to derive sufficient feasibility conditions, while
this paper derives necessary feasibility conditions meaning
that no target scheduling algorithm is assumed.

We first investigate the demand of a LO task. Considering
a LO job can contribute the demand only if the job’s deadline
is no later than t�, the demand of jobs of a LO task in ½0; t��
can be calculated (and that in ½t�; tend� is zero), as stated in
the following lemma.

Lemma 6. Target the scenario of S1–S4 with given tend > 0 and
J�k , and target a single mode change instant t� belonging to
½t�aðJ�k Þ; t�bðJ�k Þ� (defined in Lemma 5). Then, the demand of jobs
of a LO task ti 2 t in ½0; t�� and ½t�; tend� can be calculated as
follows.

� The demand of jobs of ti 2 tLO in ½0; t�� is DBFLOi ðt�Þ.
� The demand of jobs of ti 2 tLO ti in ½t�; tend� is 0.

Proof. If the mode change occurs before the LO job’s dead-
line, we do not need to execute the job, meaning that the
demand for the job is zero. Therefore, the latter directly
holds. Considering the definition of DBFLOi ðtÞ in Eq. (3), the
former also holds. tu
The next issue is to calculate the demand of a HI task in

the target sub-intervals. Considering the relationship
between the mode change instant t� and each job’s execu-
tion window, we may classify all jobs of a HI task ti 2 tHI

into three categories:

CG1. jobs Jp
i whose deadline is no later than t� (i.e.,

dpi � t�),

CG2. at most one job Jp
i whose release time is earlier than t�

butwhose deadline is later than t� (i.e., rpi < t� < dpi ),

CG3. jobs Jp
i whose release time is no earlier than the

mode change instant (i.e., t� � rpi Þ.
While CG1 and CG3 exclusively contribute to the

demand in ½0; t�� and that in ½t�; tend�, respectively, CG2 may
contribute to both. Let OP�i ðt�Þ and OPþi ðt�Þ denote the
demand of a job of ti 2 tHI belonging to CG2 in ½0; t�� and
that in ½t�; tend�, respectively, under the scenario of S1–S4
with given tend > 0 and J�k , and given t� 2 ½t�aðJ�k Þ; t�bðJ�k Þ�.
Note that OP�i ðt�Þ and OPþi ðt�Þ are 0, if no job of ti 2 tHI

belongs to CG2.
Then, we can calculate/express the demand of jobs of a

HI task in ½0; t�] and that in ½t�; tend� by CG1, CG2, and CG3
separately, as stated in the following lemma.

Lemma 7. Target the scenario of S1–S4 with given tend > 0 and
J�k , and target a single mode change instant t� belonging to
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½t�aðJ�k Þ; t�bðJ�k Þ� (defined in Lemma 5). Then, the demand of jobs
of a HI task ti in ½0; t�� and ½t�; tend� can be calculated/expressed
as follows.

� The demand of jobs of ti 2 tHI belonging to CG1 in
½0; t�� amounts to DBFLOi ðt�Þ.

� The demand of jobs of ti 2 tHI belonging to CG1 in
½t�; tend� amounts to 0.

� The demand of at most one job of ti 2 tHI belonging to
CG2 in ½0; t�� amounts to OP�i ðt�Þ.

� The demand of at most one job of ti 2 tHI belonging to
CG2 in ½t�; tend� amounts to OPþi ðt�Þ.

� The demand of jobs of ti 2 tHI belonging to CG3 in
½0; t�� amounts to 0.

� The demand of jobs of ti 2 tHI belonging to CG3 in
½t�; tend� amounts to DBFHIi

�
tend � dt�=Tie � Ti

�
.

Proof. Since every HI job of ti belonging to CG1 executes
for its LO WCET, the first statement holds. The second
and fifth statements hold by the definition of jobs in CG1
and CG3. The third and fourth statements are the defini-
tion of OP�i ðt�Þ and OPþi ðt�Þ. Among jobs of ti belonging to
CG3, the earliest release time is ðdt�=Tie � TiÞ; considering
the definition of DBFHIi ðtÞ in Eq. (4), the sixth statement
holds. tu
While the first, second, fifth and sixth statements in

Lemma 7 calculate exact values for the corresponding
demand, the third and fourth statements do not. Consider-
ing the sum of OP�i ðt�Þ and OPþi ðt�Þ equals to the execution
requirement of the job of ti belonging to CG2 (addressing
the second part of I4), we can derive the constraints of the
contribution of OP�i ðt�Þ and OPþi ðt�Þ to the demand in the tar-
get sub-intervals, as shown in the following example.

Example 3. Recall the task set and the scenario in Example 2
in Section 3.3, and target the mode change instant t� ¼ 7.
We now explain the constraints of OP�1 ð7Þ and OPþ1 ð7Þ for
J1
1 . If J

1
1 triggers the mode change, the job should execute

for exactly 3 time units (i.e., CLO
1 ) in [0,7] and 3 time units

(i.e., CHI
1 � CLO

1 ) in [7,12], implying OP�1 ð7Þ ¼ 3 and
OPþ1 ð7Þ ¼ 3. We discuss the case where J1

1 does not trigger
the mode change, from now on, which is illustrated in
Fig. 2c.

Let LB2� and UB2� denote lower and upper bounds for
OP�1 ð7Þ, and LB2þ and UB2þ denote lower and upper
bounds for OPþ1 ð7Þ. Then, J1

1 ’s execution cannot be larger
than its target sub-interval lengths, UB2� � 7 and UB2þ �
5. Also, for J1

1 not to trigger the mode change, J1
1 ’s execu-

tion in [0,7] should be strictly less than its LO WCET,
yielding UB2� ¼ minð7; CLO

1 � 1 ¼ 2Þ ¼ 2. Also, J1
1 ’s exe-

cution in [7,12] should not be larger than its execution
requirement, yielding UB2þ ¼ minð5; CHI

1 ¼ 6Þ ¼ 5. Con-
sidering the sum of OP�1 ð7Þ and OPþ1 ð7Þ equals to J1

1 ’s exe-
cution requirement, we can calculate LB2� ¼ CHI

1 � UB2þ

¼ 6� 5 ¼ 1 and LB2þ ¼ CHI
1 � UB2� ¼ 6� 2 ¼ 4.

Inspired by the example, the following lemma formalizes
the constraints of the contribution of OP�i ðt�Þ and OPþi ðt�Þ to
the demand in the target sub-intervals.

Lemma 8. Target the scenario of S1–S4 with given tend > 0 and
J�k , and target a single mode change instant t� belonging to

½t�aðJ�k Þ; t�bðJ�k Þ� (defined in Lemma 5). Consider a job of ti 2
tHI potentially belonging to CG2, Jq

i , whose release time and
deadline are rqi ¼ bt

�
Ti
c � Ti and dqi ¼ rqi þDi, respectively. Con-

sidering Jq
i , we have three cases for calculating OP�i ðt�Þ and

OPþi ðt�Þ. In Case 1, there is no job of ti in CG2; Jq
i does not

belong to CG2. In Cases 2 and 3, Jq
i is the job of ti that belongs

to CG2, but the job’s execution requirement amounts to its LO
and HI WCET, respectively. Case 3 consists of Subcases 3A
and 3B, in which Jq

i does trigger and does not trigger the mode
change, respectively. Then, OP�i ðt�Þ and OPþi ðt�Þ for every ti 2
tHI should satisfy the following constraints.

� Case 1: If rqi ¼ t�, dqi � t� or dqi > tend,
OP�i ðt�Þ ¼ OPþi ðt�Þ ¼ 0 holds.

� Case 2: Otherwise, if rqi < r�k (recall r�k is J�k ’s release
time),

(i) LB� � OP�i ðt�Þ � UB�,
(ii) LBþ � OPþi ðt�Þ � UBþ, and
(iii) OPþi ðt�Þ þ OP�i ðt�Þ ¼ CLO

i hold, where
UB� ¼ minðt� � rqi ; C

LO
i Þ, UBþ ¼ minðdqi � t�; CLO

i Þ,
LB� ¼ CLO

i � UBþ and LBþ ¼ CLO
i � UB�.

� Case 3: Otherwise (i.e., rqi � r�k), (Subcase 3A) if t
� �

rqi � CLO
i and dqi � t� � CHI

i � CLO
i hold and the job of

ti triggers the mode change,
(i) OP�i ðt�Þ ¼ CLO

i and
(ii) OPþi ðt�Þ ¼ CHI

i � CLO
i hold; (Subcase 3B) other-

wise (i.e., the job of ti does not trigger the mode
change),

(i) LB2� � OP�i ðt�Þ � UB2�,
(ii) LB2þ � OPþi ðt�Þ � UB2þ, and
(iii) OPþi ðt�Þ þ OP�i ðt�Þ ¼ CHI

i hold, where
UB2� ¼ minðt� � rqi ; C

LO
i � 1Þ, UB2þ ¼ minðdqi�

t�; CHI
i Þ,

LB2� ¼ CHI
i � UB2þ and LB2þ ¼ CHI

i � UB2�.

Proof. (Case 1) If rqi ¼ t� (or dqi � t�), Jq
i belongs to CG3 (or

CG1) and there is no job of ti in CG2. Also, if dqi > tend,
the scenario of S2 does not generate Jq

i .
(Cases 2 and 3) The cases can be proved by utilizing

OP�i ðt�Þ þ OPþi ðt�Þ ¼ CLO
i and OP�i ðt�Þ þ OPþi ðt�Þ ¼ CHI

i ,
respectively. See the details in the supplement, which
can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TPDS.
2021.3118610. tu
Combining Lemmas 7 and 8, we can calculate the

demand of all HI tasks in ½0; t�� and ½t�; tend�, by adding the
demand of jobs of each HI task in CG1, CG2 and CG3. By
combining the demand of all HI tasks and that of all LO
tasks in Lemma 6, we can calculate the total demand in
½0; t�� and ½t�; tend�. If the total demand is larger than the total
supply in ½0; t�� or the same holds in ½t�; tend�, it is impossible
for the mode change to occur at t� without any job deadline
miss, which addresses I2. In other words, comparing the
total demand with the total supply in ½0; t�� and ½t�; tend�, we
can judge the feasibility of the mode change at t� without
missing any job deadline, as stated in the following lemma,
which is illustrated in Fig. 2d.

Lemma 9. Target the scenario of S1–S4 with given tend > 0 and
J�k , and target a single mode change instant t� belonging to
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½t�aðJ�k Þ; t�bðJ�k Þ� (defined in Lemma 5). The mode change instant
t� is infeasible without any job deadline miss, if it is impossible
to satisfy both Eqs. (5) and (6) subject to Lemma 8 and the fol-
lowing constraint.

� There exists at least one tj 2 tHI belonging to Subcase
3A of Lemma 8.

X
ti2tLO

DBFLOi ðt�Þ þ
X
ti2tHI

�
DBFLOi ðt�Þ þ OP�i ðt�Þ

�
� m � t�:

(5)

X
ti2tHI

�
DBFHIi

�
tend �

l t�
Ti

m
� Ti

�þ OPþi ðt�Þ
�
� m � ðtend � t�Þ:

(6)

Proof. By Lemma 8 and the fact that the mode change
should be triggered by at least one (but at most m) jobs,
the two constraints (i.e., the “subject to” part) hold.

By Lemmas 6 and 7, the LHS of Eq. (5) and that of
Eq. (6) calculate the total demand of t in ½0; t�� and
½t�; tend�, respectively under the scenario of S1–S4 with
given tend > 0 and J�k . Considering the supply amounts
to the interval length, violating either Eqs. (5) or (6)
implies that the mode change cannot occur at t� or at
least one job misses its deadline. tu
Once we repeat Lemma 9 with every t� 2 ½t�aðJ�k Þ; t�bðJ�k Þ�,

we know whether there exists at least one mode change
instant that does not yield any job deadline miss. If it does
not exist, it is impossible for the mode change instance to
exist without any job deadline miss, which yields infeasibil-
ity of the scenario by Lemma 5. This addresses I3, and is
recorded by the following theorem (as also illustrated in
Fig. 2e).

Theorem 1. A MC task set t is infeasible, if every mode change
instant t� 2 ½t�aðJ�k Þ; t�bðJ�k Þ� associated with the scenario of S1–
S4 with given tend > 0 and J�k makes the “if” statement in
Lemma 9 true.

Proof. By Lemma 9 and the range of t� 2 ½t�aðJ�k Þ; t�bðJ�k Þ�, the
impossibility to satisfy both Eqs. (5) and (6) subject to
Lemma 8 and the constraint in Lemma 9 implies that the
scenario of S1–S4 with given tend > 0 and J�k yields no
existence of the mode change instant without any job
deadline miss. According to Lemma 5, existence of the
mode change instant in ½t�aðJ�k Þ; t�bðJ�k Þ� is a necessary feasi-
bility condition for the scenario. Therefore, the theorem
holds. tu

6 COLLECTIVE NECESSARY FEASIBILITY TEST

In this section, we address I6 in Section 3.3—how to check
the proposed test with as many scenarios as possible with
less time-complexity. To this end, we develop (i) how to test
Lemma 9 (and therefore Theorem 1) with low time-com-
plexity and (ii) how to apply the necessary feasibility test in
Theorem 1 to the scenario of S1–S4 with every pair of tend >
0 and J�k with reasonable time-complexity.

While we successfully developed a necessary feasibility
test in Theorem 1 using Lemma 9, we did not discuss how
to check the “if” statement of the lemma. A simple way is to

check all possible combinations of OP�i ðt�Þ and OPþi ðt�Þ for
every ti 2 tHI. Since there are multiple options of a HI job’s
contribution to the demand in ½0; t�� and that in ½t�; tend�, the
number of combinations of all HI jobs’ contribution to those
demands can be an exponential function of the number of
HI jobs. This entails to find a way that tests Lemma 9 in a
time-efficient manner, without investigating all possible
combinations.

Algorithm 1. Efficient Test for Lemma 9

1: for tk 2 tHI do
2: if tk satisfies (i) and (ii) of Subcase 3A in Lemma 8, and

every ti 2 tHI � ftkg belonging to Case 3 can satisfy (i’),
(ii’) and (iii) of Subcase 3B then

3: SumOP�  CLO
k þ

P
ti2tHInftkgmaxOP�i ðt�Þ

4: SumOPþ  CHI
k � CLO

k þ
P

ti2tHInftkgmaxOPþi ðt�Þ
5: DiffOP P

ti2tHInftkgmaxOP�i ðt�Þ �
P

ti2tHInftkg
minOP�i ðt�Þ-

6: DiffLO max
�
0;
P

ti2t DBF
LO
i ðt�Þ þ SumOP� �m � t�

�

7: DiffHI max
�
0;
P

ti2t
HIDBFHIi

�
tend � dt�=Tie �Ti

�þ
SumOPþ �m � ðtend � t�Þ�

8: if DiffLOþ DiffHI � DiffOP then
9: Return TRUE

10: end if
11: end if
12: end for
13: Return FALSE

Under a uniprocessor platform (i.e., m ¼ 1), there exists
only one task (job) that triggers the mode change. Therefore,
it is possible to check the constraint in Lemma 9 (i.e., “there
exists at least one tj 2 tHI . . .”) by checking there exists a
task tk such that tk satisfies Conditions (i) and (ii) of
Subcase 3A in Lemma 8 (i.e., tk triggers the mode change)
and the other tasks belonging to Case 3 satisfy Conditions
(i)–(iii) of Subcase 3B (i.e., the other tasks do not trigger the
mode change). Then, if there exists no such tk, we conclude
that the “if” statement of Lemma 9 is true.

On the other hand, under a multiprocessor platform (i.e.,
m � 2), the number of tasks (jobs) that trigger the mode
change can be between 1 and m, which necessitates check-
ing all combinations of choosing x tasks (where 1 � x � m)
such that the x tasks satisfy Conditions (i) and (ii) of
Subcase 3A and the other tasks belonging to Case 3 satisfy
Conditions (i)–(iii) of Subcase 3B. Since the number of com-
binations is an exponential function of the number of tasks
belonging to Case 3, we need to develop an efficient way to
check all the combinations. To this end, we will use Condi-
tions (i’) and (ii’) of Subcase 3B, in which UB2� and LB2þ in
Conditions (i) and (ii) of Subcase 3B are replaced with UB2�

0

and LB2þ
0
, respectively as follows:

(i’) LB2� � OP�i ðt�Þ � UB2�0, and
(iI’) LB2þ0 � OPþi ðt�Þ � UB2þ, where
UB2�0 ¼ minðt� � rqi ; C

LO
i Þ, and LB2þ0 ¼ CHI

i � UB2�0.
By changing the upper-limit of OP-i ðt�Þ from ðCLO

i � 1Þ in
UB2- to CLO

i in UB2�
0
, a task that satisfies Conditions (i’), (ii’)

and (iii) of Subcase 3B may or may not trigger the mode
change. Then, we can efficiently check all combinations of
choosing x tasks that trigger the mode change (where
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1 � x � m) as follows: we check there exists a task tk such
that 1) tk is one of tasks that trigger the mode change, which
is checked by Conditions (i) and (ii) of Subcase 3A, and 2)
the other tasks belonging to Case 3 satisfy Conditions (i’),
(ii’) and (iii) of Subcase 3B (i.e., the other tasks may or may
not trigger the mode change). Then, instead of checking all
combinations of choosing x tasks that trigger the mode
change (where 1 � x � m) one by one, we only need to
check 1) and 2) for every tk belonging to Case 3.

Using the method explained so far, we develop Algo-
rithm 1. We repeat the following steps in Lines 2–11 for
every tk 2 tHI (Line 1). We first check whether it is possible
for the job of tk to trigger the mode change by checking 1) tk
satisfies the conditions (i) and (ii) of Subcase 3A in Lemma 8,
and 2) every ti 2 tHI n ftkg belonging to Case 3 can satisfy
the conditions (i’), (ii’) and (iii) of Subcase 3B (by having at
least one possible value for both OP�i ðt�Þ and OPþi ðt�Þ) in
Line 2.4 From Line 3, we use the following notations. Let
maxOP�i ðt�Þ andminOP�i ðt�Þ denote the upper bound and the
lower bound of OP�i ðt�Þ, which are calculated by 0 and 0,
UB� and LB�, and UB2�

0
and LB2�, respectively when the job

of ti belongs to Case 1, Case 2, and Subcase 3B. Likewise, let
maxOPþi ðt�Þ denote the upper bound of OPþi ðt�Þ which is cal-
culated by 0, UBþ, and UB2þ, respectively when the job of ti
belongs to Case 1, Case 2, and Subcase 3B. In Line 3, we cal-
culate the sum of CLO

k (i.e., OP�k ðt�Þ for tk) and the upper
bounds of OP�i ðt�Þ (i.e., maxOP�i ðt�Þ) for all ti 2 tHI n ftkg.
Likewise, we calculate the sum of ðCHI

k � CLO
k Þ (i.e., OPþk ðt�Þ

for tk) and the upper bounds of OPþi ðt�Þ for all ti 2 tHI n ftkg
in Line 4. We also calculate the difference between the sum
of the upper bound of OP�i ðt�Þ (i.e., maxOP�i ðt�Þ) for ti 2
tHI n ftkg and the sum of the lower bound of OP�i ðt�Þ (i.e.,
minOP�i ðt�Þ) for ti 2 tHI n ftkg, called DiffOP in Line 5.
Note that DiffOP is the same as the sum of the followings
for every ti 2 tHI n ftkg: the sum of the difference between
maxOP�i ðt�Þ and the actual assignment of OP�i ðt�Þ, and the
difference betweenmaxOPþi ðt�Þ and the actual assignment of
OPþi ðt�Þ. See the proof of Lemma 10 about why DiffOP is
the same as the above value.

Then, we calculate DiffLO, the LHS minus the RHS of
Eq. (5) assuming the maximum (upper bound) of OP�i ðt�Þ
for every ti 2 tHI n ftkg (Line 6); in other words,DiffLO
means the minimum amount to be reduced to satisfy Eq. (5)
when OP�i ðt�Þ for every ti 2 tHI n ftkg has the maximum.
Similarly, we calculate DiffHI, the LHS minus RHS of
Eq. (6) assuming the maximum (upper bound) of OPþi ðt�Þ
for every ti 2 tHI n ftkg (Line 7); in other words,DiffHI
means the minimum amount to be reduced to satisfy Eq. (6)
when OPþi ðt�Þ for every ti 2 tHI n ftkg has the maximum.
Then, to satisfy Eqs. (5) and (6), we need to reduce the sum
of OP�i ðt�Þ by as much as DiffLO and the sum of OPþi ðt�Þ by
as much as DiffHI, while the total budget we can reduce
the former or latter sum is as much as DiffOP. Therefore, if
DiffLOþ DiffHI � DiffOP holds, we return TRUE (Lines 8
and 9), meaning that it may be possible for the mode change
to occur at t� without missing any job deadline. Finally, we

return FALSE in Line 13, if every tk 2 tHI cannot yield
TRUE, meaning that it is impossible for the mode change to
occur at t� without missing any job deadline.

Algorithm 1 can replace Lemma 9, as in the following
lemma.

Lemma 10. If Algorithm 1 returns FALSE, Theorem 1 (and
Lemma 9) judges that for given t� it is impossible to satisfy
both Eqs. (5) and (6) subject to Lemma 8 and the constraint in
Lemma 9.

Proof. The lemma can be proved by showing contradiction
of the following statement: Algorithm 1 returns FALSE

but Lemma 9 cannot judge that a mode change cannot
occur at given t� 2 ½t�aðJ�k Þ; t�bðJ�k Þ� without any deadline
miss of jobs invoked by t in ½0; tend�. The details are shown
in the supplement, available online. tu
The time-complexity of Algorithm 1 is Oðn2Þ, and there

are at most maxti2tHIDi choices of t
� for any given J�k in The-

orem 1. Therefore, if we test Theorem 1 using Algorithm 1,
the time-complexity of Theorem 1 is Oðn2 �maxti2tHIDiÞ.

While Theorem 1 focuses on the scenario of S1–S4 with
given tend > 0 and J�k , we can find more infeasible task sets
if we apply every pair of tend > 0 and J�k . The following
lemma calculates an upper-bound of tend > 0 as well as t�

associated with J�k .

Lemma 11. If Eq. (5) is violated with any t�, it is also violated
with some t� which is smaller than

�P
ti2tðTi �DiÞ �

C
LO=
i Ti þ

P
ti2tHI C

LO
i

�
=
�
m�P

ti2t C
LO
i =Ti

�
: Also, if Eq. (6)

is violated with any (tend � t�), it is also violated with some
(tend � t�) which is smaller than

�P
ti2tHIðTi �DiÞ � CHI

i =Tiþ
CHI

i

�
=
�
m�P

ti2tHI C
HI
i =Ti

�
:

Proof.We can prove the lemma using a similar technique to
[21], which will be detailed in the supplement, available
online. tu
Applying Lemma 11, we can test the scenario of S1–S4

with all possible pairs of tend > 0 and J�k with reasonable
time-complexity, yielding the following collective necessary
feasibility test.

Theorem 2. A MC task set t is infeasible, if the following collec-
tive necessary feasibility test finds at least one pair of tend > 0
and J�k that makes it impossible to satisfy both Eqs. (5) and (6)
subject to Lemma 8 and the constraint in Lemma 9.

� Repeat Theorem 1 using Algorithm 1 for every pair of
tend > 0 and J�k that satisfies (i) tend is less than the
sum of upper bounds of t� and (tend � t�) in Lemma 11
and (ii) J�k ’s release time is earlier than the upper-
bound of t� in the lemma.

Proof. By Algorithm 1 and Theorem 1, the theorem holds. tu
One may wonder how to “Repeat Theorem 1 using Algo-

rithm 1 for every pair of tend > 0 and J�k” in Theorem 2.
First, by adding two upper-bounds for t� and (tend � t�) in
Lemma 11, we have an upper-bound for tend. Second, we
target every job J�k whose execution window overlaps with
½0; tendÞ. For each job J�k , we calculate ½t�aðJ�k Þ; t�bðJ�k Þ� using
Lemma 5, and then check all t� 2 ½t�aðJ�k Þ; t�bðJ�k Þ� using
Algorithm 1.

4. If there is only one processor, only one task can trigger the mode
change. Therefore, on a uniprocessor platform (i.e., m ¼ 1), we can
apply Conditions (i) and (ii) of Subcase 3B as they are, instead of Condi-
tions (i’) and (ii’).
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For a given tend > 0 and J�k , Theorem 1 conducts Algo-
rithm 1 at most maxti2tHIDi times, resulting in Oðn2 �
maxti2tHIDiÞ as explained. As proved in Lemma 11, the
upper-bounds on tend and (tend � t�) are a pseudo-polyno-
mial in the size of task parameters (if the following condi-
tion holds:

P
ti2t C

LO
i =Ti and

P
ti2tHI C

HI
i =Ti are upper-

bounded by some constant strictly less than m). Therefore,
the overall time complexity of the above collective necessary
feasibility test in Theorem 2 is also pseudo-polynomial in
the size of task parameters (if the same condition holds).

We would like to emphasize that the collective necessary
feasibility test in Theorem 2 can check Theorem 1 for any
number of pairs of tend > 0 and J�k , which can affect capa-
bility in finding infeasible task sets, but cannot compromise
the correctness of whether task sets deemed infeasible by
the test is actually infeasible. Therefore, if time-complexity
matters, we can limit the number of pairs to be checked, at
the expense of sacrificing capability in finding infeasible
task sets.

7 IMPROVED VERSION OF NECESSARY

FEASIBILITY TEST

Sections 5 and 6 developed necessary feasibility tests by
considering the synchronous job release pattern (i.e., S2).
Then, we need to knowwhether the synchronous job release
pattern is the best in finding infeasible task sets or not,
which is addressed by the following example.

Example 4. There are three tasks: t1ðT1 ¼ 12;x1 ¼ HI; CLO
1 ¼

3; CHI
1 ¼ 6; D1 ¼ 12Þ, t2 ¼ t1, and t3 ¼ ð4; LO; 2; 2; 4Þ. Con-

sider the scenario of S1–S4 with tend ¼ 12 and J�k ¼ J1
1 .

According to Example 1 where its t1 and t2 are the same
as those in this example, t�aðJ1

1 Þ ¼ 3 and t�bðJ1
1 Þ ¼ 9 hold

and Lemma 9 concludes that the “if” statement is false for
t� ¼ 3, as shown in Fig. 3a. This means that Lemma 9 can-
not prove that the mode change cannot occur at t� ¼ 3
without missing any job deadline, and therefore Theo-
rem 1 cannot deem the task set infeasible.

Now, consider another scenario in which all other
conditions are the same as the previous scenario, except
the job release pattern of the LO task (i.e., t3). t3 invokes
its jobs strictly-periodically, but one of the jobs has its
deadline at t ¼ 3. Then, r13 and d13 for J

1
3 are �1 and 3; r23

and d23 for J2
3 are 3 and 7; and r33 and d33 for J3

3 are 7 and
11. Then, different from the previous scenario, it is
impossible to trigger a mode change at any t� 2 ½3; 9�
without any job deadline miss, because the deadline of J1

3

(i.e., t ¼ 3) is no later than the mode change instant and
therefore J1

3 contributes to the demand in [0,3]. That is, if

J1
3 does not execute in [0,3], the job should execute for

two time units in ½�1; 0�, which is impossible; therefore,
J1
3 should execute for at least one time unit in [0,3], as

shown in Fig. 3b. Considering the first jobs of t1 and t2
respectively contribute six time units to the demand in
[0,12], the total demand in [0,12] is 6þ 6þ 1 ¼ 13, yield-
ing infeasibility of the scenario as well as the task set.

Motivated by the example, we may consider another job
release pattern of LO tasks favorable to finding infeasible
task sets without changing that of HI tasks, stated in S2’
that corresponds to S2.

S2’. Generate jobs using the synchronous periodic job
release pattern, as follows. First, the first job of every
HI task is released at 0, and the following jobs of
each HI task are released strictly periodically until
each job’s absolute deadline is no later than tend. Sec-
ond, every LO task has a job with its absolute dead-
line of t ¼ t�aðJ�k Þ for given J�k in S3. The preceding
jobs of each LO task are generated backwards such
that their deadlines are determined strictly periodi-
cally until each job’s absolute deadline is later than
t ¼ 0. The following jobs of each LO tasks are gener-
ated forwards such that their deadlines are deter-
mined strictly periodically until each job’s absolute
deadline is no later than tend.

Then, the difference between S2 and S2’ that affects
Lemma 9 is the contribution of LO tasks to the demand in
Eq. (5), in particular its first term (i.e.,

P
ti2tLO DBF

LO
i ðt�Þ);

since LO tasks cannot contribute to the demand after the
mode change, Eq. (6) is irrelevant to the change of S2 to S2’.
Then, we calculate the demand of LO tasks in ½0; t�� for S2’,
by splitting the interval into ½t�aðJ�k Þ; t�� and ½0; t�aðJ�k Þ�. Since
there exists a job of ti 2 tLO, whose deadline is t�aðJ�k Þ, the
next job’s release time is t�aðJ�k Þ þ ðTi �DiÞ. Therefore, the
demand in ½t�aðJ�k Þ; t�� is calculated by DBFLOi

��
0; t� � t�a

ðJ�k Þ � ðTi �DiÞ
�1
0

�
.5 The demand of all jobs of ti 2 tLO

whose release time is no earlier than t ¼ 0 in ½0; t�aðJ�k Þ� is
simply calculated by DBFLOi

�
t�aðJ�k Þ

�
, and the demand of a job

(if any) of ti 2 tLO whose release time is earlier than t ¼ 0
but whose deadline is later than t ¼ 0 is calculated by�ðt�aðJ�k Þ þ Ti �DiÞmodT i � ðTi � CLO

i Þ
�1
0
. For example, in

Fig. 3b, the demand of the first job of t3 in [0,3] is
�ð3þ 4�

4Þmod 4� ð4� 2Þ�1
0
¼ �

3� 2
�1
0
¼ 1. Therefore, for the sce-

nario of S1, S2’, S3 and S4 with given tend and J�k , Eq. (5) for
t�aðJ�k Þ � t� � t�bðJ�k Þ is changed as follows:

X
ti2tLO

�
DBFLOi

��
0; t� � t�aðJ�k Þ � ðTi �DiÞ

�1
0

�þ DBFLOi
�
t�aðJ�k Þ

�

þ �ðt�aðJ�k Þ þ Ti �DiÞmodT i � ðTi � CLO
i Þ

�1
0

�

þ
X
ti2tHI

�
DBFLOi ðt�Þ þ OP�i ðt�Þ

�
� m � t�:

(7)

Applying S2’ instead of S2 needs to replace Eq. (5) in
Lemma 9 with Eq. (7) only. Therefore, we develop a new
necessary feasibility test and prove its properties

Fig. 3. Synchronous job release pattern and another job release pattern.

5. We use ½a�bc to denotemax
�
minða; bÞ; c�.
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corresponding to Lemma 9 and Theorem 1, as stated in the
following lemma and theorem.

Lemma 12. Target the scenario of S1, S2’, S3 and S4 with given
tend > 0 and J�k , and target a single mode change instant t�

belonging to ½t�aðJ�k Þ; t�bðJ�k Þ� (defined in Lemma 5). The mode
change instant t� is infeasible without any job deadline miss, if
it is impossible to satisfy both Eqs. (7) and (6) subject to
Lemma 8 and the constraint in Lemma 9.

Proof. By Lemma 8 and the fact that the mode change is
triggered by at least one (but at mostm) jobs, the two con-
straints (i.e., the “subject to” part) hold.

The LHS of Eq. (7) and that of Eq. (6) calculate the total
demand of t in ½0; t�� and ½t�; tend�, respectively under the
scenario of S1, S2’, S3 and S4 with given tend > 0 and J�k .
Considering the supply amounts to the interval length,
violating either Eqs. (7) or (6) implies that the mode
change cannot occur at t� or at least one job misses its
deadline. tu

Theorem 3 (Another necessary feasibility condition). A
MC task set t is infeasible, if every mode change instant t� 2
½t�aðJ�k Þ; t�bðJ�k Þ� associated with the scenario of S1, S2’, S3, and
S4 with given tend > 0 and J�k makes the “if” statement in
Lemma 12 true.

Proof. By Lemma 12 and the range of t� 2 ½t�aðJ�k Þ; t�bðJ�k Þ�, the
impossibility to satisfy both Eqs. (7) and (6) subject to
Lemma 8 and the constraint in Lemma 9 implies that the
scenario of S1, S2’, S3 and S4 with given tend > 0 and J�k
yields no existence of the mode change instant without
any job deadline miss. Since Lemma 5 also holds for the
scenario of S1, S2’, S3 and S4, existence of themode change
instant in ½t�aðJ�k Þ; t�bðJ�k Þ� is a necessary feasibility condition
for the scenario. Therefore, the theorem holds. tu
We note that all the theories in Section 6 hold for

Lemma 12 and Theorem 3, after slight modification; here,
we present a new theorem corresponding to Theorem 2 as
follows.

Theorem 4. A MC task set t is infeasible, if the following collec-
tive necessary feasibility test finds at least one pair of tend > 0
and J�k that makes it impossible to satisfy both Eqs. (7) and (6)
subject to Lemma 8 and the constraint in Lemma 9.

� Repeat Theorem 3 using Algorithm 1 for every pair of
tend > 0 and J�k that satisfies (i) tend is less than the
sum of upper bounds of t� and (tend � t�) in a lemma6

corresponding to Lemma 11 and (ii) J�k ’s release time
is earlier than the upper-bound of t� in the lemma.

Proof. By Algorithm 1 and Theorem 3, the theorem holds. tu

8 SIMPLIFIED VERSION OF NECESSARY

FEASIBILITY TEST

Although we successfully developed two types of necessary
feasibility tests, one may desire simpler versions of the tests
that not only exhibit the same (or similar) time-complexity

as the existing necessary feasibility test for SC task systems,
but also make it possible to easily compare them with
Eqs. (3) and (4) in terms of capability in finding infeasible
task sets. In this section, we develop such simpler versions
of Theorems 2 and 4.

Compared with the existing test for SC task systems pre-
sented in Lemma 1, our proposed test presented in Theo-
rem 2 additionally requires to i) target every job J�k whose
execution window overlaps with ½0; tendÞ and ii) check all
t� 2 ½t�aðJ�k Þ; t�bðJ�k Þ�. To develop a simpler version of Theo-
rem 2 that exhibits the same time-complexity as Lemma 1,
we first restrict to target J�k as the first job of any HI task,
meaning that the execution requirement of every HI job
amounts to its HI WCET. Then, the total demand of tHI in
½0; tendÞ is upper-bounded by

P
ti2tHI DBF

HI
i ðtendÞ, which is

independent of J�k . Second, we only check t� ¼ t�aðJ�k Þ; con-
sidering DBFLOi ðt�Þ non-decreases as t� increases, it is suffi-
cient to check the combined inequality only with t� ¼ t�aðJ�k Þ
for Lemma 9, and the earliest t�aðJ�k Þ is calculated by
minti2tHIC

LO
i . By adding Eqs. (5) and (6) under the scenario

of S1–S4 with given tend, the targeted J�k , and t� ¼ t�aðJ�k Þ, we
derive the following combined inequality:

X
ti2tLO

DBFLOi ðt�aÞ þ
X
ti2tHI

DBFHIi ðtendÞ � m � tend; (8)

where t�a ¼ minti2tHIC
LO
i . Then, the following theorem holds.

Theorem 5. A task set t is infeasible, if there exists tend � t�a ¼
minti2tHIC

LO
i which makes Eq. (8) false.

Proof. In the target scenario, it is impossible for any HI job
to trigger the mode change (by executing for its LO

WCET) before t�a. Therefore, LO jobs should perform their
execution for as much as the first term of Eq. (8) in ½0; tend�
with tend � t�a; otherwise, there exists a LO job’s deadline
miss. Also, HI jobs should perform their execution for as
much as the second term of Eq. (8) in ½0; tend� with tend >
0; otherwise, there exists a HI job deadline miss. tu
Similarly, if we consider the scenario of S1, S2’, S3 and S4

instead of S1–S4, we have the following combined inequal-
ity from Eqs. (7) and (6), which corresponds to Eq. (8):

X
ti2tLO

�
DBFLOi ðt�aÞ þ

�ðt�a þ Ti �DiÞmodT i � ðTi � CLO
i Þ

�1
0

�

þ
X
ti2tHI

DBFHIi ðtendÞ � m � tend;

(9)

which yields the following theorem.

Theorem 6. A task set t is infeasible, if there exists tend � t�a ¼
minti2tHIC

LO
i which makes Eq. (9) false.

Proof. The proof is the same as that of Theorem 5 except the
demand of LO tasks. tu
It is trivial that the time-complexity of testing Theorem 5

or 6 with all possible tend is equivalent to that of testing
Lemma 1 with all possible tend. Also, it is easily observed
that Theorems 5 and 6 exhibit better capability in finding
infeasible task sets, than Lemma 3, which is recorded in the
following lemma.

6. To derive a condition for Eq. (7) corresponding to the condition
for Eq. (5) in Lemma 11, it is sufficient to add

P
ti2tLO C

LO
i in the numera-

tor for the upper bound of t�.
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Lemma 13. If a task set t is deemed infeasible by Lemma 3, t is
also deemed infeasible by Theorems 5 and 6. However, the con-
verse does not always hold.

Proof. Since the LHS of Eq. (4) is no larger than that of
Eq. (8) and that of Eq. (9), the lemma trivially holds. tu

9 RELATIONSHIP AMONG PROPOSED TESTS

So far, we have presented four necessary feasibility tests:
two collective necessary feasibility tests with different target
job release patterns, and two simplified versions thereof. We
now discuss their relationship in terms of capability in find-
ing infeasible task sets and time-complexity.

Capability in Finding Infeasible Task Sets. A collective nec-
essary feasibility test with S2 and that with S2’ complement
each other in finding infeasible task sets, since we cannot
say that either the LHS of Eq. (5) or that of Eq. (7) is always
no smaller than the other, recorded in the following lemma.

Lemma 14 (Incomparability between Theorems 2 and 4).
There exists a task set t deemed infeasible by Theorem 2, not by
Theorem 4, and the converse is true.

Proof. The lemma can be proven by showing the existence
of two opposite situations: (i) the latter (i.e., Theorem 4) is
more favorable in finding infeasible task sets than the for-
mer (i.e., Theorem 2), meaning that the latter yields a
larger demand than the former, and (ii) the vice versa.

First, (i) is already presented in Example 4.
Second, for (ii), we consider the task set in Example 4,

with replacing t3 with t03 ¼ ð4; LO; 1; 1; 4Þ; also, we con-
sider t� ¼ 4. Then, the former yields the demand of one
time unit by t03 in [0,4] (which is one LO WCET of t3). On
the other hand, the latter yields the demand of zero time
unit by t03 in [0,4] as follows. Since the first job of t03
(whose deadline is t ¼ 3) can be executed in ½�1; 0�, there
is no demand by the job in [0,3]; also, the next jobs of t03
cannot yield any demand because their deadlines are
later than t� ¼ 4.

Due to the existence of the two opposite situations (i)
and (ii), the lemma holds. tu
Different from the two collective necessary feasibility

tests with different release patterns, there is a dominance
relationship between their simplified versions, since the
LHS of Eq. (9) is always no smaller than that of Eq. (8),
recorded in the following lemma.

Lemma 15 (Dominance between Theorems 5 and 6).
Any task set t deemed infeasible by Theorem 5 is also deemed
infeasible by Theorem 6.

Proof. Suppose that there is a task set t is deemed infeasible
by Theorem 5. Then, according to Theorem 5, there exists
tend � t�a ¼ minti2tHIC

LO
i which makes Eq. (8) false. Since

the LHS of Eq. (9) is always no smaller than that of
Eq. (8), such tend also makes Eq. (9) false. Therefore, the
lemma holds. tu
The relationship between collective necessary feasibility

tests and their simplified versions is recorded in the follow-
ing lemma.

Lemma 16 (Dominance between individual collective
tests and their simplified versions). Any task set t

deemed infeasible by Theorem 5 (likewise Theorem 6) is also
deemed infeasible by Theorem 2 (likewise Theorem 4).

Proof. Theorem 2 checks all possible pairs of J�k and t� for
given tend, and any pair that violates Eqs. (5) or (6) yields
infeasibility of the target task set. On the other hand, The-
orem 5 checks only one pair of J�k and t�, and the pair
belongs to a set of pairs checked by Theorem 2. This
implies the dominance between Theorems 2 and 5 holds.
With the same reason, the dominance between Theorem 2
with replacing S2 with S2’ and Theorem 6 holds. tu
Also, it is easily observed that Theorems 5 and 6 exhibit

better capability in finding infeasible task sets, than
Lemma 3 (i.e., one of trivial extensions of the necessary fea-
sibility test for SC task systems), without incurring addi-
tional time-complexity.

Time-Complexity. Although all proposed necessary feasi-
bility tests are of pseudo-polynomial time complexity in the
task parameters, the simplified versions of the collective
necessary feasibility tests (i.e., Theorems 5 and 6) have a
much lower degree of the pseudo-polynomial—even with
the same complexity as the one for SC task systems pre-
sented in Lemma 1.

10 EVALUATION

In this section, we demonstrate the capability of the pro-
posed feasibility tests in covering a broader range of infeasi-
ble MC task sets on both uniprocessor and multiprocessor
platforms.

10.1 Generation of Task Sets

We generate a synthetic task set similarly in [22], [23], [24],
which can be summarized as follows. We have six input
parameters: (i) the number of processors m 2 f1; 2; 4g, (ii)
the number of tasks n 2 f4; 6; 8; 10g, (iii) the probability
(CP) of each task ti having xi ¼ HI 2 f0:3; 0:5; 0:7g, (iv) the
maximum ratio (CF) of each HI task ti’s HI WCET to LO

WCET, i.e., CF ¼CHI
i =CLO

i

def
2 f1:25; 1:5; 2; 3; 4g, (v) LO total uti-

lization ULO ¼P
ti2t

def
CLO

i =Ti, and (vi) HI total utilization

UHI ¼P
ti2tHI

def
CHI

i =Ti. We choose ULO and UHI from ðm�
0:55Þ to m with an incremental step of 0.05 (resulting in 12
choices), respectively.

Given a 6-tuple ðm;n;CP;CF; ULO; UHIÞ for a task set, each
task parameter is determined as follows: Ti is uniformly
chosen in [1,1000]; xi is selected as HI with probability CP
(and as LO with probability ð1:0� CPÞ); CLO

i is determined
by using the UUniFast-Discard algorithm [25], [26]; CHI

i is
uniformly chosen in ½CLO

i þ 1;CF � CLO
i þ 1�, if xi ¼ HI (and

set to CLO
i , otherwise); and Di is set to Ti for implicit-dead-

line task sets. Using the above task parameters, we first gen-
erate 1,000 implicit-deadline task sets whose LO and HI total
utilizations are in ½ULO � 0:05; ULO� and ½UHI � 0:05; UHI� for
given ULO and UHI, respectively, resulting in a total of
144,000 task sets for given m, n, CP, and CF. Accordingly,
constrained-deadline task sets are generated to have the
same task parameter values as implicit-deadline ones except
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choosing Di uniformly in ½CHI
i ; Ti�. Among the generated

constrained-deadline task sets, we exclude all task sets that
can be proven infeasible by trivial necessary feasibility tests
shown in Lemmas 2 and 3 and consider the remaining task
sets as task sets of interest.

With the generated task sets, we compare the following
four proposed necessary feasibility tests:

� MC-NFT: the collective necessary feasibility test in
Theorem 2 (with the scenario of S1–S4),

� MC-NFT�: the collective necessary feasibility test in
Theorem 4 (with the scenario of S1, S2’, S3 and S4),

� MC-NFT-S: the simplified version of MC-NFT in
Theorem 5,

� MC-NFT�-S: the simplified version of MC-NFT� in
Theorem 6, and

� MC-NFT-ALL: the necessary feasibility test in which
a task set is deemed infeasible by either MC-NFT or
MC-NFT�.

Note that we also compare MC-NFT-ALL. Since MC-NFT
and MC-NFT� are incomparable as stated in Lemma 14,
combining the results of MC-NFT and MC-NFT� can find
more infeasible task sets than those proven infeasible by
either test alone.

10.2 Simulation Results

We show the results of implicit-deadline task sets and con-
strained-deadline task sets for different combinations of
input parameters (i.e., m, n, CP, CF, ULO, and UHI). In order
to show how many infeasible task sets can be found by our
proposed tests, we use detection ratio as performance metric,
defined as the percentage of task sets that are deemed infea-
sible by each individual necessary feasibility test to the total
number of task sets of interest. First, we focus on the unipro-
cessor case and discuss i) how the detection ratios of the
proposed necessary feasibility tests vary with different val-
ues of ULO and UHI for implicit-deadline task sets (with
Fig. 4) and then those for constrained-deadline task sets
(with Fig. 5), respectively, ii) how other input combinations
(i.e., n, CP, CF) influence the overall detection ratios (with
Fig. 6), and iii) how scalable the proposed tests are with
respect to the number of tasks (with Table 1). Next, we
show the results of multiprocessor cases (with Figs. 7 and 8).

For Implicit-Deadline Task Sets. Fig. 4 shows the implicit-
deadline task sets (marked in the region between X=0.75 by
Y=0.75 and X=1.0 by Y=1.0)—which were not proven infea-
sible by any existing studies but which were newly proven
infeasible by the five proposed necessary feasibility tests—
in (ULO, UHI)-plane when m ¼ 1, n ¼ 4, CF ¼ 3 and
CP ¼ 0:3.7 In (ULO, UHI)-plane, we focus on the region where
0:75 < maxðULO; UHIÞ � 1:0, yielding 95,000 task sets of
interest among 144,000 generated task sets. This is because
all task sets with maxðULO; UHIÞ � 0:75 and those with
maxðULO; UHIÞ > 1:00 are already proven feasible [27] and
infeasible [12], [13], [14], respectively.

We have the following observations. First, the proposed
necessary feasibility tests can newly find a number of infea-
sible task sets over a wider range of LO and HI total utiliza-
tion. Second, they identify significantly more infeasible task
sets as LO and HI total utilization become close to 1.0; for
example, among 1,000 task sets with 0:95 � ULO � 1:0 and
0:95 � UHI � 1:0, MC-NFT and MC-NFT� find 443 (44.3%)
and 489 (48.9%) infeasible task sets, respectively. Third,
MC-NFT-S and MC-NFT�-S rarely find infeasible task sets
in the region where 0:75 � ULO � 1:0 and 0:4 � UHI � 0:75,
whereas MC-NFT and MC-NFT� can do. This is because
MC-NFT-S and MC-NFT�-S restrict to target J�k as the first
job of any HI task, meaning that most of the interval of inter-
est exhibits the HI behavior, so it is difficult to determine
infeasibility when exhibiting the LO behavior. On the other

Fig. 4. All task sets in the region between X=0.75 by Y=0.75 and X=1.0
by Y=1.0 have not been proven infeasible by any existing studies. The
necessary feasibility tests proposed in this paper proves infeasibility of
the task sets marked in the region.

Fig. 5. Detection ratio of the four proposed necessary feasibility tests for
constrained-deadline task sets with different ranges of minðULO; UHIÞ
whenm ¼ 1, n ¼ 4, CP ¼ 0:3 and CF ¼ 3.

TABLE 1
Average Running Times of the Four Proposed Necessary Feasi-
bility Tests for Constrained-Deadline Task Sets With Different
Numbers of Tasks (n) Whenm ¼ 1, CP ¼ 0:3, and CF ¼ 3

n 4 6 8 10

Avg. running time (ms)

MC-NFT 19 41 77 75
MC-NFT� 16 55 79 137
MC-NFT-S 4 5 9 5
MC-NFT�-S 4 4 4 5

7. We do not plot task sets proven infeasible by MC-NFT-ALL in
Fig. 4, as the result of MC-NFT-ALL is a combination of all the task
sets marked by at least one of MC-NFT, MC-NFT�, MC-NFT-S and
MC-NFT�-S.
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hand,MC-NFT andMC-NFT� considermany choices of J�k and
separately investigate the two sub-intervals of each interval of
interest exhibiting LO and HI behavior, resulting in higher capa-
bility in finding infeasible task sets over a wider range of LO
and HI total utilization. Fourth, MC-NFT and MC-NFT� are
shown to dominate MC-NFT-S and MC-NFT�-S, respectively,
and MC-NFT�-S is shown to dominate MC-NFT-S. Mean-
while, MC-NFT and MC-NFT� are incomparable; 361 task sets
are proven infeasible by MC-NFT, not by MC-NFT�, and 402
task sets are proven infeasible byMC-NFT�, not byMC-NFT.

In total, MC-NFT, MC-NFT�, MC-NFT-S, MC-NFT�-S,
and MC-NFT-ALL find 2,989, 3,030, 1,556, 1,952, and 3,391
infeasible task sets, respectively, among 95,000 generated
task sets. Note that although, among generated task sets,
there might also exist task sets proven feasible by existing
sufficient schedulability tests under some scheduling algo-
rithms, such as PLRS [18], EDF-VD [28], GREEDY [19], and
ECDF [20], we did not identify them in our evaluation. This
is because the number of task sets proven infeasible by this
paper is independent of those sufficient feasibility tests.
Instead, if we exclude those feasible task sets from task sets
of interest, the detection ratio presented in this section will
increase, implying that the presented detection ratio as of
now exhibits the minimum capability of the proposed nec-
essary feasibility tests in finding infeasible task sets.

For Constrained-Deadline Task Sets. Recall that, among
the generated task sets, we exclude all task sets that can
be proven infeasible by trivial necessary feasibility tests
shown in Lemmas 2 and 3 and consider the remaining
task sets as task sets of interest, which are 43,972 task
sets for m ¼ 1.

Fig. 5 plots the detection ratio by the five proposed neces-
sary feasibility tests while varying minðULO; UHIÞ from

[0.40,0.45) to ½0:95; 1:0� on a uniprocessor platform (i.e.,
m ¼ 1). We have the following observations. First, all the
proposed tests exhibit high capability in finding infeasible
task sets in that MC-NFT, MC-NFT�, MC-NFT-S,
MC-NFT�-S, and MC-NFT-ALL find 9,028 (20.5%), 10,805
(24.6%), 6,981 (15.9%), 9,395 (21.4%), and 11,375 (25.9%)
infeasible task sets, respectively, among 43,972 task sets of
interests. Such high capability can be interpreted as the ben-
efit of dealing with unique issues pertaining to MC task sys-
tems. In particular, higher capability for constrained-
deadline task sets (than that for implicit-deadline task sets)
mainly comes from accurate calculation on the execution
contribution of HI to the sub-intervals and precise con-
straints thereof, in that we generate a constrained-deadline
task set by reducing the relative deadline of tasks in the cor-
responding implicit-deadline task set. Second, all the pro-
posed tests find more infeasible task sets as minðULO; UHIÞ
increases; for example, using MC-NFT�, 8.8% and 91.7% of
the task sets are proven infeasible with minðULO; UHIÞ in
[0.4,0.45) and [0.95,1.0], respectively. This is due to the diffi-
culty in meeting all job deadlines of a task set with high
minðULO; UHIÞ. Third, MC-NFT and MC-NFT� are shown to
outperform MC-NFT-S and MC- NFT�-S, respectively, for
all values of minðULO; UHIÞ. This is because MC-NFT and
MC-NFT� (i) derive a tighter bound on the demand of HI
jobs by considering the relationship between the mode
change instant and each HI job’s execution window, and (ii)
test many choices of J�k (while MC-NFT-S and MC-NFT�-S
test one choice of J�k ). Nevertheless, MC-NFT-S and
MC-NFT�-S have the same time complexity as in the SC
task system case, while finding some infeasible task sets.
Fourth,MC-NFT� andMC-NFT�-S outperform MC-NFT and
MC-NFT-S, respectively, to some extent (by up to 10:6% and

Fig. 6. Detection ratio of the four proposed necessary feasibility tests for constrained-deadline task sets with (a) varying n when CP ¼ 0:3 and CF ¼ 3,
(b) varying CP when n ¼ 4 and CF ¼ 3, and (c) varying CF when n ¼ 4 and CP ¼ 0:3.

Fig. 8. Detection ratio of the four proposed necessary feasibility tests for
constrained-deadline task sets with different ranges of minðULO; UHIÞ
whenm ¼ 4, n ¼ 16, CP ¼ 0:3 and CF ¼ 3.

Fig. 7. Detection ratio of the four proposed necessary feasibility tests for
constrained-deadline task sets with different ranges of minðULO; UHIÞ
whenm ¼ 2, n ¼ 8, CP ¼ 0:3 and CF ¼ 3.

CHWA ETAL.: NECESSARY FEASIBILITYANALYSIS FOR MIXED-CRITICALITY REAL-TIME EMBEDDED SYSTEMS 1535



10:7% detection ratio, respectively) for all ranges of
minðULO; UHIÞ. Such an improvement can be interpreted as
the benefit of considering another job release pattern favor-
able to finding infeasible MC task sets, compared to the syn-
chronous one.

Recall that MC-NFT and MC-NFT� are incomparable in
terms of capability in finding infeasible task sets as stated in
Lemma 14. Thus, these two tests can be used to complement
each other in discovering more infeasible task sets. By
combining the results of MC-NFT and MC-NFT�, 11,375
(25.9%) infeasible tasks sets were proven infeasible by
MC-NFT-ALL, which finds 1.3% more infeasible task sets
than the maximum performance ofMC-NFT andMC-NFT�.

Note that, in our preliminary conference version [15],
there was a minor implementation error in the simulation
results of MC-NFT for constrained-deadline task sets; the
corrected results are shown in the supplement, available
online.

For Other Input Combinations. We now discuss how each
input parameter influences the overall detection ratio of the
five necessary feasibility tests. Fig. 6 plots the detection ratio
by five proposed necessary feasibility tests while (a) varying
n from 4 to 10, (b) varying CP from 0.3 to 0.7, and (c) varying
CF from 1.25 to 4 when m ¼ 1. The overall detection ratio of
all the proposed tests is decreased as n or CP increases. For
example, usingMC-NFT�, 24.6% and 4.4% of the task sets are
proven infeasible with n ¼ 4 and 10, and 24.6% and 8.8% of
the task sets are proven infeasible with CP ¼ 0:3 and 0.7,
respectively. As n or CP increases, the number of HI jobs
whose execution windows overlap with the mode change
instant increases, yielding more combinations for con-
straints. If at least one combination yields a feasible schedule,
the necessary feasibility tests cannot deem the task sets infea-
sible. On the other hand, the overall detection ratio of all the
proposed tests is slightly increased as CF increases. For
example, using MC-NFT�, 19.3% and 25.0% of the task sets
are proven infeasible with CF ¼ 1:25 and 4, respectively.

Scalability With Respect to the Number of Tasks. We now
briefly show the scalability of the proposed feasibility tests
with respect to the number of tasks. Table 1 shows the aver-
age running time of the proposed feasibility tests to identify
an infeasible constrained-deadline task set with different
numbers of tasks when m ¼ 1, CP ¼ 0:3, and CF ¼ 3. The
running time of MC-NFT and MC-NFT� increases as n
increases by reflecting their analytical procedures while the
running time ofMC-NFT-S andMC-NFT�-S is relatively sta-
ble to the number of tasks and an order of magnitude
shorter than that of MC-NFT and MC-NFT� . In particular,
as n increases from 4 to 10, the average running time of
MC-NFT� is increased from 16ms to 137ms, while the average
running time ofMC-NFT�-S is almost the same for all values
of n.8 Note that the running time of the proposed feasibility
tests is independent of the number of processors as shown
in their time complexity.

For Multiprocessor Platforms. Figs. 7 and 8 plot the detec-
tion ratio by the four proposed necessary feasibility tests
while varying minðULO; UHIÞ from ½m� 0:6;m� 0:55Þ to
½m� 0:05;m� when m ¼ 2 and 4 (n ¼ 4m), respectively. We

have the following observations. First, we confirmed that
the similar tendency is observed for multiprocessor plat-
forms with that for uniprocessor platforms as minðULO; UHIÞ
increases. Second, the performance gap between MC-NFT
(MC-NFT�) and MC-NFT-S (MC-NFT�-S) becomes larger as
m increases. We can interpret such a gap as the benefit of
separate demand-supply comparison with the interval split
based on the mode change instant, compared to that with-
out the interval split. As m increases, the number of HI jobs
whose execution windows overlap with the mode change
instant increases, imposing more constraints of the contri-
bution of those jobs to demand in each sub-interval.
MC-NFT and MC-NFT� more accurately capture those con-
straints and derive a tighter bound on the execution contri-
bution of HI tasks to the demand in the sub-intervals
separately, yielding higher capability in finding infeasible
task sets with a larger value ofm (i.e., a larger value of n).

In total, MC-NFT, MC-NFT�, MC-NFT-S, MC-NFT�-S,
and MC-NFT-ALL find 7,942 (14.1%), 13,627 (24.2%), 758
(1.3%), 2,269 (4.0%), and 13,894 (24.7%) infeasible task sets,
respectively, among 56,199 task sets of interests, when m ¼
2. Also, MC-NFT, MC-NFT�, MC-NFT-S, MC-NFT�-S, and
MC-NFT-ALL find 4,017 (5.0%), 17,751 (22.2%), 158 (0.2%),
944 (1.2%), and 17,778 (22.3%) infeasible task sets, respec-
tively, among 79,806 task sets of interests, when m ¼ 4.
Note that, form ¼ 8 or more, it was very time-consuming to
generate enough valid task sets by using the UUniFast-Dis-
card algorithm as mentioned in [26]; recent studies [29], [30]
proposed more efficient algorithms for task set generation
to resolve the scalability issue.

11 CONCLUSION

In this paper, we investigated characteristics of MC neces-
sary feasibility conditions and identified challenges for
deriving those conditions. By resolving the challenges, we
successfully established the following foundations for nec-
essary feasibility tests for MC task systems: i) how to select
a scenario, favorable to derive necessary conditions, ii) how
to calculate demand, when the mode change occurs, iii)
how to determine the target sub-intervals, for demand-sup-
ply comparison, and iv) how to derive an infeasibility con-
dition from demand-supply comparisons with different
possible mode change instants, v) how to reduce time-com-
plexity of the proposed tests, and vi) which job release pat-
tern is favorable to finding infeasible task sets. We then
completed to develop a collection of necessary feasibility
tests, by considering different job release patterns as a target
scenario and a tradeoff between time-complexity and capa-
bility in finding infeasible task sets, which are the first study
that yield non-trivial results for MC necessary feasibility for
both uniprocessor and multiprocessor platforms. We dem-
onstrated that the proposed necessary feasibility tests find a
number of infeasible task sets which have been proven nei-
ther feasible nor infeasible by any existing studies.
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