
IEEE EMBEDDED SYSTEMS LETTERS, VOL. 14, NO. 2, JUNE 2022 55

Infeasibility Test for Fixed-Priority Scheduling
on Multiprocessor Platforms

Hoon Sung Chwa , Member, IEEE, and Jinkyu Lee , Senior Member, IEEE

Abstract—Fixed-priority scheduling (FPS), due to its simplic-
ity to implement, has been one of the most popular scheduling
algorithms for real-time embedded systems equipped with multi-
processor platforms. While there have been many studies that
find sufficient conditions for a given task set to be feasible
(schedulable) by FPS with a proper priority assignment, the other
direction (i.e., finding infeasible task sets) has not been studied.
In this letter, we address a necessary feasibility condition that
judges a given task set to be infeasible under FPS with every
priority assignment on multiprocessor platforms. To this end,
we derive useful properties for the condition and develop the
first infeasibility test for FPS on multiprocessor platforms. Via
simulations, we show that the proposed infeasibility test discov-
ers a number of FPS-infeasible task sets which are not proven
FPS-infeasible by any existing studies.

Index Terms—Fixed-priority scheduling (FPS), infeasibility
test, multiprocessor platforms, real-time embedded systems.

I. INTRODUCTION

F IXED-PRIORITY scheduling (FPS) [1] has been widely
used in multiprocessor real-time embedded systems, and

its fundamental issue is to determine whether a set of real-time
tasks can be guaranteed to always meet their deadlines. We
may generally classify the research into two problems: 1) to
determine the priority ordering of tasks; and 2) to perform
feasibility (schedulability) test to determine whether a task set
with the given priority ordering is feasible (i.e., guaranteeing
all job deadlines).

Studies for both 1) and 2) have matured for FPS on unipro-
cessor platforms. Deadline-monotonic scheduling [2], where
invocations of tasks (called jobs) are scheduled in nonde-
creasing order of relative deadlines, has been proven to be
an optimal priority assignment (OPA), and its exact feasibility
test [3] has been also derived. However, for FPS on multipro-
cessor platforms, no OPA has been known yet, and all existing

Manuscript received August 19, 2021; accepted September 13, 2021. Date
of publication September 15, 2021; date of current version May 19, 2022. This
work was supported in part by the National Research Foundation of Korea
(NRF) under Grant 2017M3A9G8084463, Grant 2021R1A2B5B02001758,
and Grant 2020R1F1A1076058 funded by the Korea Government (MSIT);
in part by the Institute of Information & Communications Technology
Planning & Evaluation (IITP, Resilient Cyber-Physical Systems Research)
under Grant 2014-3-00065 funded by the Korea Government (MSIT); and in
part by the DGIST R&D Program of MSIT under Grant 20-CoE-IT-01. This
manuscript was recommended for publication by P. Roop. (Corresponding
author: Jinkyu Lee.)

Hoon Sung Chwa is with the Department of Information and
Communication Engineering, Daegu Gyeongbuk Institute of Science and
Technology, Daegu 42988, Republic of Korea (e-mail: chwahs@dgist.ac.kr).

Jinkyu Lee is with the Department of Computer Science and Engineering,
Sungkyunkwan University, Suwon 16419, Republic of Korea (e-mail:
jinkyu.lee@skku.edu).

Digital Object Identifier 10.1109/LES.2021.3112671

feasibility tests [4]–[7] are sufficient but not necessary, i.e.,
task sets that fail the test may still be feasible.

The goal of this letter is to reduce real-time task sets whose
feasibility under FPS is unknown by existing studies. In par-
ticular, we aim at developing a necessary feasibility test that
proves the infeasibility of a given task set under FPS on multi-
processor platforms. Addressing such infeasibility is beneficial
to real-time systems as follows. First, in a theoretical aspect,
it is meaningful to reduce a region of uncertainty between
task sets proven feasible and infeasible by FPS. Second, since
each study for the FPS schedulability analysis aims at cov-
ering additional FPS-feasible task sets that are not deemed
schedulable by any existing studies, this letter not only reduces
the candidate task sets potentially FPS-feasible but also helps
to develop a new FPS schedulability analysis by providing a
guideline of how to make a target task set feasible/infeasible
by FPS.

However, it is difficult to develop an infeasibility test for
FPS because 1) it has not been known how to derive condi-
tions for a task set to be infeasible under FPS and 2) such a
condition should not necessitate an investigation of all prior-
ity assignments (because the number of priority assignments
increases exponentially as the number of tasks increases lin-
early, i.e., n! versus n). In this letter, we address 1) and 2) as
follows. First, we focus on a given task and derive two lower
bounds of execution of its higher-priority tasks within a given
interval, which hold regardless of relative priorities among the
higher-priority tasks; one lower bound is for the m highest-
priority tasks, and the other lower bound is for other tasks,
where m is the number of processors. Using the two lower
bounds, we derive a condition for a given task to be infeasible
assuming a set of its higher-priority tasks is known (but their
relative priorities are not known). Applying the OPA tech-
nique [8] to the derived condition, we develop an infeasibility
test that proves a given task set to be infeasible under FPS
with every priority assignment on a multiprocessor platform.

Via simulations, we demonstrate that the proposed infea-
sibility test finds a number of FPS-infeasible task sets. For
instance, if we target implicit-deadline task sets whose task
set utilization is no smaller than 99% on a two-processor plat-
form, the proposed infeasibility test reveals that 81.7% of them
are FPS-infeasible, which has not been proven by any existing
studies.

II. SYSTEM MODEL, ASSUMPTIONS, AND NOTATIONS

This letter studies the feasibility problem on a multipro-
cessor platform with m (≥ 2) identical processors with the
same speed. We consider a sporadic task model [1], [9] com-
posed of n tasks, in which a task τi ∈ τ is characterized by
(Ti, Ci, Di) : Ti is the minimum interjob separation, Ci is the

1943-0671 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on May 27,2022 at 12:23:09 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0355-5784
https://orcid.org/0000-0002-2332-1996

56 IEEE EMBEDDED SYSTEMS LETTERS, VOL. 14, NO. 2, JUNE 2022

worst-case execution time, and Di is the relative deadline.
Such a task τi is assumed to generate a potentially infinite
sequence of jobs, each of which is separated from its prede-
cessor by at least Ti time units and is required to complete Ci
units of work within Di time units from its release. We target
implicit- and constrained-deadline task sets, in which every
task τi ∈ τ satisfies Di = Ti and Di ≤ Ti, respectively. We
assume quantum-based time, and without loss of generality, a
time unit describes a quantum length of 1; all task parameters
are specified by the multiples of the quantum length. A single
job is assumed to be unable to execute in parallel upon more
than one processor. Since any task set with n ≤ m is trivially
schedulable, we only consider n > m.

We consider FPS, under which each task is assigned a
unique priority and all jobs released by the task inherit this
priority; under FPS, the system chooses to execute at most m
highest-priority jobs in each time slot. We assume that jobs
are independent and preemptible, and migrate from one pro-
cessor to another (i.e., global scheduling); also, we assume
that the preemption/migration costs are already included in
the worst-case execution time. We define FPS-feasibility and
FPS-infeasibility as follows.

Definition 1: A task set τ is said to be FPS-feasible if there
exists at least one priority assignment for FPS that satisfies
all the jobs of τi ∈ τ meet their deadlines for all possible
legitimate job arrival sequences. Also, a task set τ is said to
be FPS-infeasible if there exists no such priority assignment.

III. DEVELOPMENT OF INFEASIBILITY TEST FOR FPS

Different from existing feasibility tests for FPS [4]–[7],
we aim at developing an infeasibility test for FPS, which
proves that a task set is FPS-infeasible (i.e., not feasible under
FPS with every priority assignment) on a multiprocessor plat-
form. To this end, we focus on the synchronous periodic
release pattern, implying that the first job invoked by each
task in the target task set is released at the same time and
the following jobs are released in a strictly periodic manner.1

We then derive a condition for the first job of each task to
be infeasible under FPS with every priority assignment. We
would like to emphasize that deriving the condition should
not necessitate the investigation of all possible priority assign-
ments; this is because, such investigation is intractable for the
large number of tasks (due to n! priority assignments with n
tasks).

We first consider the following situations. For a given task
τk, we assume to know a set of its higher-priority tasks
[denoted by τHI(τk)], but we do not assume to know the rela-
tive priorities among tasks in τHI(τk). We now check whether
the first job of τk triggers its deadline miss when there is
no deadline miss of jobs of tasks in τHI(τk). To this end,
we need to calculate Ei(�) for τi ∈ τHI(τk), which is the
amount of execution of jobs of τi in an interval of length
� when the first job of τi is released at the beginning of the
interval and the following jobs are released in a strictly peri-
odic manner. The following lemma calculates a lower bound
of Ei(�).

1By Definition 1, a task set is said to be FPS-infeasible, if there exists a job
arrival sequence under which no priority assignment of the task set makes all
the jobs meet their deadlines. In this section, we choose the synchronous peri-
odic release pattern, which has been widely used for deriving tight necessary
feasibility conditions, e.g., [10].

Fig. 1. Release and execution pattern to calculate Wi(�).

Lemma 1: Ei(�) for τi is at least as much as Wi(�), which
is calculated as follows:

Wi(�) =
⌊ �

Ti

⌋
· Ci

+ max

(
0, min

(
Ci, �−

⌊ �

Ti

⌋
· Ti − (Di − Ci)

))
. (1)

Proof: The release and execution pattern for Wi(�) is
depicted in Fig. 1, and calculated as follows. There are
�(�/Ti)� jobs of τi in the interval of length �, whose deadlines
are within the interval, e.g., the first and second jobs in Fig. 1.
Then, each of the �(�/Ti)� jobs should execute for Ci time
units within the interval; otherwise, it misses its deadline. For
a job whose deadline is later than the interval (if any), e.g., the
third job in Fig. 1, we focus on the interval between the job’s
release and the end of the interval of length � and consider
three cases: the interval length (i.e., �−�(�/Ti)� · Ti) is 1) no
larger than (Di−Ci); 2) larger than Di; and 3) otherwise. For
1)–3), the job’s minimum execution within the interval to avoid
its deadline miss is 0, Ci, and (�−�(�/Ti)�·Ti−(Di−Ci)) times
units, respectively. The max term in (1) unifies the execution
requirements for 1)–3). Therefore, Wi(�) is a lower bound for
Ei(�), which proves the lemma.

If we use the fact that on an m-processor platform, every job
of the m highest-priority tasks starts its execution as soon as it
is released and is not preempted by other jobs, the following
lemma derives a tighter lower bound for Ei(�).

Lemma 2: If τi is one of the m highest-priority tasks, Ei(�)
for τi is at least as much as W ′i (�), which is calculated as
follows:

W ′i (�) =
⌊ �

Ti

⌋
· Ci +min

(
Ci, �−

⌊ �

Ti

⌋
· Ti

)
. (2)

Proof: The release and execution pattern for W ′i (�) can be
depicted in a figure similar to Fig. 1, where the third job is
executed as early as possible. The proof for the �(�/Ti)� · Ci
part is the same as Lemma 1. Since every job of the m highest-
priority tasks starts its execution as soon as it is released and
is not preempted by other jobs, a job whose deadline is later
than the interval (if any) executes for min(Ci, �−�(�/Ti)� ·Ti)
within the interval of length �. This proves the lemma.

Note that it is easily observed that W ′i (�) ≥ Wi(�) for every
τi and � ≥ 0.

Using Lemmas 1 and 2, we can derive a condition for a task
to be infeasible under FPS assuming its higher-priority set is
known (but their relative priorities are not known), recorded
in the following lemma.

Lemma 3: Suppose that τk’s higher-priority tasks [denoted
by τHI(τk)] are known. Then, τk is infeasible under FPS on
an m-processor platform, if the following condition holds for
at least one α where 1 ≤ α ≤ Ck:

m · (Dk − Ck + α) < α + Diff(τk)+
∑

τi∈τHI(τk)

Wi(Dk − Ck + α)

(3)

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on May 27,2022 at 12:23:09 UTC from IEEE Xplore. Restrictions apply.

CHWA AND LEE: INFEASIBILITY TEST FOR FPS ON MULTIPROCESSOR PLATFORMS 57

Algorithm 1 FPS-Infeasibility Test on an m-Processor
Platform

1: for every τk ∈ τ do
2: Pk ← 0 (i.e., the priority for τk is not assigned.)
3: end for
4: for Priority p = n, n− 1, n− 2, ... 1 do
5: for every τk ∈ τ |Pk = 0 do
6: if Eq. (3) does not hold for every 1 ≤ α ≤ Ck then
7: Pk ← p and break
8: end if
9: end for

10: if there exists no τi ∈ τ satisfying Pi = p then
11: Return “Infeasible”
12: end if
13: end for
14: Return “No decision”

where Diff(τk) is calculated using Diffi(τk) as follows. For
every task τi ∈ τHI(τk), we compute the value of Diffi(τk)
as W ′i (Dk − Ck + α) − Wi(Dk − Ck + α); for every task
τi /∈ τHI(τk), we set Diffi(τk) = 0. Then, Diff(τk) is
set to the summation of the m smallest values among all
Diffi(τk).

Proof: By Lemma 1, τi should execute for at least
Wi(Dk − Ck + α) time units within the interval of length
(Dk − Ck + α). Also, by Lemma 2, τi should execute for at
least W ′i (Dk − Ck + α) time units within the interval of length
(Dk − Ck + α), if τi belongs to the m highest-priority tasks.

Therefore, regardless of relative priorities among tasks in
τHI(τk), Diff(τk) +∑

τi∈HI(τk)
Wi(Dk − Ck + α) is a lower

bound of the amount of execution of jobs of tasks in τHI(τk)
within the interval of length (Dk − Ck + α).

Also, within the interval of length (Dk−Ck+α), the job of
τk should execute for at least α time units; otherwise, it will
miss the deadline.

Hence, the right-hand side of (3) is a lower bound of the
amount of execution of the job of τk and jobs of tasks in
τHI(τk) within the interval of length (Dk − Ck + α), in order
to avoid any job deadline miss. Since the amount of total
execution within the interval of length (Dk − Ck + α) on an
m-processor platform is at most m · (Dk−Ck+α), the lemma
holds.

Using Lemma 3, we can develop an FPS-infeasibility test
on an m-processor platform, presented in Algorithm 1. Since
Lemma 3 calculates the minimum execution of higher-priority
tasks [using Diff(τk)] that does not depend on the relative
priorities of the higher-priority tasks, we can apply the OPA
technique [8].

In lines 1–3, we set Pk for every τk ∈ τ to 0 (which means
the priority for τk is not assigned). In lines 4–13, we try to
assign each priority to a task from the lowest priority (p = n)
to the highest priority (p = 1). For given priority, lines 5–9 find
a task whose priority is unassigned and which is not proven
infeasible by Lemma 3. Once line 6 finds such a task, we
continue repeating the process for the next priority. Otherwise
(i.e., if there is no such a task checked by line 10), return
“Infeasible” (by line 11); in this case, all tasks whose priorities
are unassigned are proven infeasible by Lemma 3. Since no
task can be assigned to the given priority, the task set is infea-
sible under FPS with every priority assignment. On the other
hand, if every priority is assigned, the algorithm concludes
“No decision” in line 14, which means that it is impossible

to prove FPS-infeasibility. The following theorem records the
correctness of Algorithm 1.

Theorem 1: If Algorithm 1 returns “Infeasible” for a task
set, the task set is infeasible under FPS with every priority
assignment on an m-processor platform.

Proof: Suppose that Algorithm 1 returns “Infeasible” for the
task set but the task set is actually feasible under FPS with
a priority assignment; let {P∗k} denote the priority assignment.
Then, there should exist a priority p = x in lines 4–13, such
that p = x yields “Infeasible” in lines 10 and 11; then, pri-
orities p = n, n − 1, . . . , x + 1 are assigned, and priorities
p = x, x− 1, . . . , 1 are not assigned. Let {P′k} denote the pri-
ority assignment by Algorithm 1. We show the contradiction
for the following two cases: 1) a set of tasks τk that satisfy
x + 1 ≤ P∗k ≤ n is the same as a set of tasks τk that satisfy
x+ 1 ≤ P′k ≤ n and 2) otherwise.

Case (i): Lines 4–13 check whether priority x can be
assigned to every task whose priority is not assigned, but
Lemma 3 (i.e., line 6) concludes that every task whose pri-
ority is not assigned cannot be feasible with priority x. This
contradicts that {P∗k} is a priority assignment that makes the
task set FPS-feasible in the supposition.

Case (ii): In this case, there should exist τk that does not
satisfy x + 1 ≤ P∗k ≤ n, but satisfies x + 1 ≤ P′k ≤ n. Then,
Lemma 3 (i.e., line 6) should conclude that τk can be fea-
sible with priority P′k. However, this is impossible, because
Lemma 3 (i.e., line 6) concludes that every task whose pri-
ority is not assigned cannot be feasible with priority x for
case (i), and τHI(τk) for case (ii) subsumes τHI(τk) for case (i).
Therefore, τk cannot be feasible with priority x+ 1 ≤ P′k ≤ n.
This contradicts the qualification of case (ii).

Both cases contradict, which proves the theorem.

IV. EVALUATION

In this section, we evaluate the performance of Algorithm 1
in finding FPS-infeasible task sets.

Task Set Generation: To generate task sets to be tested, we
consider three parameters: 1) five distributions for task uti-
lization Ci/Ti (bimodal distributions with 0.1, 0.3, 0.5, 0.7,
and 0.9); 2) the number of processors (m = 2, 4, and 8);
and 3) implicit- or constrained-deadline task set (Di = Ti or
Di ≤ Ti). For given combination of 1)–3), we randomly gener-
ate 10 000 task sets according to a popular task set generation
method in [11], all of which are not proven infeasible by exist-
ing infeasibility tests for implicit- or constrained-deadline task
sets [10]; in total, we generate 10 000× 5× 3× 2 = 300 000
task sets.

Evaluation Settings: Since it is known that a task set tends
to be FPS-feasible if its task set utilization (i.e.,

∑
τi∈τ Ci/Ti)

is low compared to m, we present three different groups of
task sets, whose task set utilization is no smaller than 0.90 ·m,
0.95 · m, and 0.99 · m, respectively, and plot the ratio of task
sets proven FPS-infeasible by Algorithm 1 for each group in
Fig. 2. In this section, we present the evaluation results for
implicit-deadline task sets; those for constrained-deadline task
sets exhibit a similar trend.

Considering no test has been developed to prove FPS-
infeasibility, we apply the following simulation method for
checking the effectiveness of Algorithm 1 in finding FPS-
infeasible task sets. Focusing on the synchronous periodic
release pattern, we simulate the task set by FPS with a given
priority assignment until 100 000 time units. We can judge

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on May 27,2022 at 12:23:09 UTC from IEEE Xplore. Restrictions apply.

58 IEEE EMBEDDED SYSTEMS LETTERS, VOL. 14, NO. 2, JUNE 2022

(a) (b)

Fig. 2. Ratio of implicit-deadline task sets proven FPS-infeasible by
Algorithm 1 [and the simulation method only for m = 2 in (b)]. (a) Different
task set utilization groups. (b) Different bimodal distributions with at least
90% task set utilization.

that the task set is FPS-infeasible if the simulation with every
priority assignment yields at least one job deadline miss. Due
to necessitating the simulation for every priority assignment,
the simulation method can be applied only for task sets each
of whose number of tasks is small; for example, even a task
set with n = 10 yields 10! · 0.01 s ≈ 10 h (if it takes 0.01 s
to simulate a task set with a priority assignment). Therefore,
we apply the simulation method to task sets only for m = 2
with bimodal parameters of 0.5, 0.7, and 0.9, each of whose
number of tasks is small.

Performance in Finding FPS-Infeasible Task Sets: We have
the following four observations. First, as task set utilization
becomes closer to m, the ratio of task sets proven FPS-
infeasible increases. For example, for the case of m = 2
shown in Fig. 2(a), 26.1%, 38.2%, and 49.8% task sets are
proven FPS-infeasible if the task set utilization is no smaller
than 90%, 95%, and 99%, respectively. This demonstrates
that Algorithm 1 properly captures the property of FPS-
infeasible task sets: the higher task set utilization, the more
FPS-infeasible task sets.

Second, as the number of tasks in each task set gets smaller
(which is equivalent to employing a larger bimodal parame-
ter), the ratio of task sets proven FPS-infeasible increases. This
is shown in Fig. 2(b), in which we do not plot for bimodal
parameters with 0.1 and 0.3 due to their low ratio. For the
case of m = 2 with task set utilization no smaller than 90%,
Algorithm 1 proves 0.6%, 5.2%, 15.2%, 27.1%, and 48.3%
task sets to be FPS-infeasible for bimodal distributions with
parameters 0.1, 0.3, 0.5, 0.7, and 0.9, respectively. Likewise,
the case of m = 2 with task set utilization no smaller than
99%, Algorithm 1 proves 2.4%, 6.9%, 30.5%, 57.5%, and
81.7%, respectively. This is due to the pessimism in calcu-
lating a lower bound of higher-priority execution; the larger
number of tasks, the more pessimism. This commonly happens
in interference-based analysis techniques [4]–[7].

Third, as the number of processors gets larger, the ratio of
task sets proven FPS-infeasible decreases (shown in Fig. 2).
This also comes from the pessimism in calculating a lower
bound of higher-priority execution; as the number of proces-
sors gets larger, the number of tasks also gets larger, which
yields more pessimism.

Finally, Algorithm 1 finds many FPS-infeasible task
sets that are covered by the simulation method. For
example, Algorithm 1 exhibits 48.3%/77.9% = 62.0%,
27.1%/68.3% = 40.0% and 13.5%/68.7% = 19.7% of the
simulation method’s performance, respectively, in the case of

task sets with the bimodal parameter of 0.9, 0.7, and 0.5 for
m = 2 as shown in Fig. 2(b). We would like to emphasize
that Algorithm 1 can be applied to general task sets (even
with large n), but the simulation method can be applied only
to task sets with small n.

Time Complexity: The time complexity for Algorithm 1 can
be calculated as follows. To test Lemma 3 for τk (i.e., line 6
in Algorithm 1), we need O(n) calculation for given α, and
we have Ck options of α for τk; therefore, Lemma 3 for τk
requires O(n · maxτi∈τ Ci) computations. Also, lines 4–13 in
Algorithm 1 try to test Lemma 3 at most n+ (n− 1)+ · · · +
1 = O(n2) times. Therefore, the total time complexity for
Algorithm 1 is O(n3 ·maxτi∈τ Ci).

If a lower time complexity is required, we can only apply
α = 1 and α = Ck for Lemma 3. This modification decreases
the total time complexity of Algorithm 1 into O(n3), but it
slightly drops the performance in finding FPS-infeasible task
sets. For example, for the case of m = 2 and implicit-deadline
task sets, 22.4%, 33.8%, and 47.9% task sets are proven infea-
sible if the task set utilization is larger than 90%, 95%, and
99%, respectively, when we only apply α = 1 and α = Ck to
Lemma 3 (which are 26.1%, 38.2%, and 49.8%, respectively
when we apply all alphas).

V. CONCLUSION

In this letter, we addressed the multiprocessor feasibility
problem with a special focus on FPS and discovered a number
of FPS-infeasible task sets. In the future, we would like to
make the proposed FPS-infeasibility test tighter, reducing the
gap between the coverage of existing FPS-feasibility tests and
that of the proposed FPS-infeasibility test.

REFERENCES

[1] C. L. Liu and J. W. Layland, “Scheduling algorithms for multipro-
gramming in a hard-real-time environment,” J. ACM, vol. 20, no. 1,
pp. 46–61, 1973.

[2] J. Y.-T. Leung and J. Whitehead, “On the complexity of fixed-
priority scheduling of periodic real-time tasks,” Perform. Eval., vol. 2,
pp. 237–250, Dec. 1982.

[3] M. Joseph and P. Pandya, “Finding response times in a real-time system,”
Comput. J., vol. 29, no. 5, pp. 390–395, 1986.

[4] M. Bertogna and M. Cirinei, “Response-time analysis for globally sched-
uled symmetric multiprocessor platforms,” in Proc. IEEE Real Time Syst.
Symp. (RTSS), Tucson, AZ, USA, 2007, pp. 149–160.

[5] N. Guan, M. Sitgge, W. Yi, and G. Yu, “New response time bounds for
fixed priority multiprocessor scheduling,” in Proc. 30th IEEE Real Time
Syst. Symp. (RTSS), Washington, DC, USA, 2009, pp. 387–397.

[6] N. Guan, M. Han, C. Gu, Q. Deng, and W. Yi, “Bounding carry-in
interference to improve fixed-priority global multiprocessor scheduling
analysis,” in Proc. IEEE Int. Conf. Embedded Real Time Comput. Syst.
Appl., Hong Kong, 2015, pp. 11–20.

[7] Q. Zhou, G. Li, and J. Li, “Improved carry-in workload estimation for
global multiprocessor scheduling,” IEEE Trans. Parallel Distrib. Syst.,
vol. 28, no. 9, pp. 2527–2538, Sep. 2017.

[8] N. Audsley, “Optimal priority assignment and feasibility of static priority
tasks with arbitrary start times,” Dept. Comput. Sci., Univ. York, York,
U.K., Rep. YCS164, 1991.

[9] A. Mok, “Fundamental design problems of distributed systems for
the hard-real-time environment,” Ph.D. dissertation, Dept. Elect. Eng.
Comput. Sci., Massachusetts Inst. Technol., Cambridge, MA, USA,
1983.

[10] T. P. Baker and M. Cirinei, “A necessary and sometimes sufficient con-
dition for the feasibility of sets of sporadic hard-deadline tasks,” in
Proc. IEEE Real Time Syst. Symp. (RTSS), Rio de Janeiro, Brazil, 2006,
pp. 178–190.

[11] T. P. Baker, “Comparison of empirical success rates of global vs. parti-
tioned fixed-priority EDF scheduling for hard real-time,” Dept. Comput.
Sci., Florida State Univ., Tallahassee, FL, USA, Rep. TR–050601, 2005.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on May 27,2022 at 12:23:09 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

