
Received October 21, 2021, accepted November 21, 2021, date of publication November 23, 2021,
date of current version December 6, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3130407

A Global DAG Task Scheduler Using Deep
Reinforcement Learning and Graph
Convolution Network
HYUNSUNG LEE 1, SANGWOO CHO2, YEONGJAE JANG2,
JINKYU LEE 3, (Senior Member, IEEE), AND HONGUK WOO 3, (Member, IEEE)
1Kakao Corporation, Seongnam 13494, South Korea
2Department of Mathematics, Sungkyunkwan University, Suwon 16419, South Korea
3Department of Computer Science and Engineering, Sungkyunkwan University, Suwon 16419, South Korea

Corresponding author: Honguk Woo (hwoo@skku.edu)

This work was supported in part by the Institute for Information and Communications Technology Planning and Evaluation (IITP) under
Grant 2021-0-00875, in part by the ICT Creative Consilience Program supervised by the IITP under Grant IITP-2020-0-01821, in part by
the National Research Foundation of Korea (NRF) funded by the Korean Government (MSIT) under Grant 2020M3C1C2A0108081 and
Grant 2021R1A2B5B02001758, and in part by Kakao I Research Supporting Program.

ABSTRACT Parallelization of tasks and efficient utilization of processors are considered important and
challenging in operating large-scale real-time systems. Recently, deep reinforcement learning (DRL) was
found to provide effective solutions to various combinatorial optimization problems. In this paper, inspired by
recent achievements in DRL, we employ DRL techniques for scheduling a directed acyclic graph (DAG) task
in which a set of non-preemptive subtasks are specified by precedence conditions among them.We propose a
DRL-based priority assignment model for scheduling a DAG task on a multiprocessor system, named GoSu,
which adapts a graph convolution network (GCN) to process a complex interdependent task structure and
minimize the makespan of a DAG task. Our proposed model makes use of both temporal and structural
features in a DAG to effectively learn a priority-based scheduling policy via GCN and policy gradient
methods. With comprehensive evaluations, we verify that our model shows comparable performance to
several state-of-the-art DAG task scheduling algorithms, and outperforms them by 2∼3% in the slowdown of
achieved makespans particularly in nontrivial system configurations where workloads are neither too small
nor heavy compared to the given number of processors. We also analyze the priority assignment behaviors
of our model by leveraging a regression method that imitates the learned policy of the model.

INDEX TERMS Deep reinforcement learning, graph convolution network, policy gradient learning, DAG
task.

I. INTRODUCTION
In cyber-physical real-time systems, there has been an
increasing demand for both high performance and strong
timeliness to execute a pipeline of complex functions, e.g.,
autonomous driving with perception, planning and con-
trol. One of the key techniques to meet the demand is to
exploit parallelism on a multiprocessor system. A directed
acyclic graph (DAG) task has been used to represent the
dependencies among a number of task components (sub-
tasks) and to formulate a fine-grained parallel schedul-
ing problem with the interdependent subtasks. Furthermore,

The associate editor coordinating the review of this manuscript and

approving it for publication was Binit Lukose .

as non-preemptive task models can avoid the overhead issue
of migration and switching tasks, recently, priority-based
non-preemptive scheduling for a DAG task has gained much
attention [1]. The problem has been tackled by investigating
scheduler techniques with priority assignments, which take a
set of subtasks in a single DAG as input and produce a priority
order for the subtasks and their non-deterministic execution
order [1], [2].

Given a priority order, subtasks can be scheduled to run
in parallel on multiple processors subject to the precedence
conditions. Existing studies have developed heuristic priority
assignment algorithms and analyzed their impact on the goal
of minimizing the elapsed time (or makespan) required to
complete all the subtasks [1]–[3], as there might be a number

158548 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-9814-9548
https://orcid.org/0000-0002-2332-1996
https://orcid.org/0000-0001-6948-3440
https://orcid.org/0000-0002-2109-7871

H. Lee et al.: Global DAG Task Scheduler Using Deep Reinforcement Learning and Graph Convolution Network

of different priority orders, e.g., up to n! where n is the
number of subtasks. Due to the nature of heuristic strategies,
they have not been able to establish fundamental design
principles for DAG schedulers such as exploiting temporal
and graph-structural spatial features under a variety of task
configurations and scales, which highly affect prioritization.

In this paper, we present a learning-based priority assign-
ment model for scheduling a single DAG task of multiple
interdependent subtasks on a multiprocessor system with a
non-preemptive mechanism. The model not only generates
a priority order more favorable than existing approaches to
achieving the goal but also automatically identifies critical
temporal and graph-structural features of a DAG and system-
atically utilizes the features for priority assignments under
various task configurations.

To do so, we use deep reinforcement learning (DRL) tech-
niques, considering the difficulty to collect sufficient super-
vised labels for optimal priority assignments for DAG tasks.
We also consider a large combinatorial problem space in
priority assignments. Furthermore, we adapt a graph convolu-
tion network (GCN) with both forward-path and inverse-path
aggregation to effectively extract temporal (e.g., execution
times) and structural (e.g., precedence conditions) features
from graph representations. We then present the GoSu (graph
convolutional task scheduler) model for which the priority
assignment policy using GCN-based embeddings is estab-
lished through the policy gradient learning with slowdown-
based rewards. In GoSu, each subtask is assigned a priority
offline, and then during runtime, subtasks are scheduled on
the basis of their priority order. This is the same as the fixed-
priority (static-priority) scheduling in the field of real-time
systems [4] where the highest-priority subtasks that are not
yet scheduled are executed first.

The GoSu model consistently shows competitive perfor-
mance compared to several state-of-the-art DAG schedul-
ing heuristic methods based on fixed-priority assignments
(i.e., [1], [2]) under various experimental settings. Further-
more, the model often achieves better performance than
those heuristic methods particularly in nontrivial task con-
figurations, e.g., showing a 2∼3% gain in the slowdown
of achieved makespans for the cases when the number of
processors is 3 or 4 with moderate parallelism and when
the number of processors is between 3 and 8 with high
parallelism (Figure 4(b) and (c)). We also demonstrate that
GoSu outperforms the others with a probability of up to 73%
for each testing DAG task sample in several nontrivial cases
(Figure 5(b) and (c)).

The main contributions of this paper are as follows.
• We present a DRL-based priority assignment model
GoSu for scheduling a single DAG task on a multipro-
cessor system.

• We devise a GCN path aggregation scheme and a
slowdown-based reward function specific to the objec-
tive of makespan minimization for a DAG task.

• We show performance gains by GoSu through com-
prehensive evaluations, and provide an analysis on the

TABLE 1. A list of symbols.

learned policy by projecting the GoSu model to a linear
model via differentiable programming.

The rest of the paper is organized as follows. Section III
briefly describes the DAG task scheduling problem and its
objective. Section IV presents our proposed encoder-decoder
model structure with GCN-based DAG embeddings and
Attention-based priority assignments for subtasks in a DAG.
Sections V and II provide the experiment results and anal-
ysis, and the review on related work, respectively. Finally,
Section VI concludes the study. In addition, Table 1 provides
a list of symbols used throughout this paper with three aspects
such as DAG tasks, model training, and datasets.

II. RELATED WORK
In the real-time system literature, fixed-priority schedul-
ing schemes for parallel tasks have been receiving atten-
tion relatively recently in [1], [2], while many works
on DAG task scheduling considered dynamic scheduling
cases [3], [5], [6], [12], [13]. By fixed-priority scheduling,
subtasks (or nodes) in a DAG task can be scheduled glob-
ally on all processors, and furthermore, a platform can be
free from overhead issues of online scheduling in real-time
systems [1], [14]. The overview of these related works is at
the top of Table 2.

For example, He et al. [2] proposed a simple but effi-
cient scheduling heuristic by which nodes in the critical

VOLUME 9, 2021 158549

H. Lee et al.: Global DAG Task Scheduler Using Deep Reinforcement Learning and Graph Convolution Network

TABLE 2. Summary of related studies: At the top for DAG task scheduling, the ‘‘Properties’’ column describes which properties each method makes
explicit use of, i.e., temporal (execution time, deadline) in ‘‘Temp.’’ and spatial (precedence conditions) in ‘‘Spat.’’. At the middle for DRL-based scheduling,
the ‘‘Target’’ column describes the target application domain that each method focuses on. Our work addresses the issue of DAG task scheduling by using
both temporal (O in ‘‘Temp.’’) and spatial (O in ‘‘Spat.’’) properties, and shares the similar problem specification with [1], [2] where node-level fixed-priority
scheduling is explored; however, unlike those existing studies, GoSu leverages learning-based approaches through DRL and adapts GCN techniques
subject to DAG representations. In addition, regarding the ‘‘Target’’ column at the middle, GoSu is a novel DRL-based DAG task scheduling model.

path are first scheduled and then other nodes that might
immediately interfere with the critical path execution are
scheduled. Zhao et al. [1] presented a single non-preemptive
DAG scheduling framework that partitions nodes in a DAG
into providers (i.e., nodes in the critical path) and con-
sumers (nodes not in the critical path), intending to exploit
both parallelism and dependency conditions. Given the par-
titioned nodes, the highest priorities are assigned to the
providers, the second-highest priorities to nodes that might
block the providers, and the lowest priorities to the other
nodes. These prior works concentrate on structural features
of DAGs of which the representation needs to be designed
according to problem specifications and task configurations.
Our work shares the same problem structure with these,
focusing on fixed-priority scheduling and producing a prior-
ity order to minimize the makespan of a task running on a
multiprocessor system.However, unlike theseworks based on
sophisticated engineering procedures, our DRL-based model
employs GCNs to extract important features from both indi-
vidual node and graph-structural data, hence automating the
learning of relevant enriched features.

There exist several works on applying DRL for schedul-
ing tasks in the various domains such as cloud computing,
networks, and manufacturing systems [8]–[11], [15]–[18].
DeepRM [8] was the first attempt to learn a scheduling
policy systematically through DRL. This work introduces a
time-slice based framework to solve scheduling problems in
cluster management. However, this is limited in scales due
to no consideration on permutation-invariant properties, i.e.,
task sets [τ1, τ2, τ3] and [τ2, τ1, τ3] are treated differently.
Wang et al. [9] presented Metis, a DRL-based scheduler for

managing online long-running applications in a cloud com-
puting platform. They tackled the device placement issue in
application containers across a cluster of server machines
by exploring hierarchical DRL. Mao et al. [10] introduced a
DRL-based Scheduling for large-scale cluster task schedul-
ing. They developed sophisticated task and subtask embed-
ding techniques and used REINFORCE algorithm for model
training, maximizing service level objectives such as cluster
utilization and job completion time. Recently, Lee et al. [11]
adopted DRL for the global fixed-priority task scheduling on
a multiprocessor system using the Transformer architecture.

While DRL techniques were employed for task scheduling
in these studies, as summarized at the bottom of Table 2, the
applicability of DRL and GCNs for DAG task scheduling
has not been fully investigated. Our work focuses on the
learning-based DAG task schedulingmodel by not only lever-
aging DRL and adapting GCN techniques but also analyzing
the learned priority assignment policy of the model.

With the advancement of deep learning, numerous research
works based on DRL were proposed to solve combinatorial
optimization problems. The pointer network [19] provided
a well-structured mechanism to adopt neural networks for
combinatorial problems, e.g., traveling salesman problem
(TSP). It establishes the probabilistic representation of a
permutation by continuously estimating the probability of
selecting a next item, e.g., the next city to visit in TSP. The
pointer network was extended in a DRL framework [20]. This
extension has been considered effective in that it is often
impossible to establish labeled datasets of reliable quality
(e.g., those annotated by optimal solutions) for large-scale
combinatorial problems. In [21], a learning model based on

158550 VOLUME 9, 2021

H. Lee et al.: Global DAG Task Scheduler Using Deep Reinforcement Learning and Graph Convolution Network

FIGURE 1. A DAG task dependency graph: For a DAG task with 8 subtasks,
precedence conditions among 8 nodes v1, . . . , v8 are represented in a
DAG, where e.g., the condition by the edge from v1 to v2 specifies that
v2 cannot be executed before the completion of v1.

Transformer [22] was proposed to solve TSP and several
other representative combinatorial problems. In particular,
a simple rollout baseline for policy gradient algorithms was
introduced to facilitate model training and fast convergence.
In the same vein, our work leverages DRL in discrete opti-
mization problem spaces but concentrates on DAG task
scheduling with GCNs.

III. DAG TASK SCHEDULING
In this section, we describe the DAG task scheduling prob-
lem for which global fixed-priority scheduling (GFPS) [23]
schemes can be applied.

In the DAG task scheduling problem with GFPS, we con-
sider a single DAG task that consists of n subtasks and
precedence conditions among the subtasks. Regarding a
system model in which a DAG task runs, we consider a
multi-processor platform of m homogeneous processors with
non-preemptive scheduling. We also presume that n is much
larger than m, considering resource limitations. Then, GFPS
with a priority order for the n subtasks is able to schedule
the m highest-priority subtasks among the subtasks that have
not been scheduled but satisfy the precedence conditions in
each time slot upon the system of m processors. Since we
focus on non-preemptive scheduling, each subtask cannot be
preempted by any other subtasks once it starts its execution.
The goal of this scheduling is to minimize the makespan of a
DAG task. A priority order for the n subtasks corresponds to
a mapping of the subtasks to distinct integers i ∈ {1, . . . , n},
and it is fixed. That is, each subtask in a DAG task is assigned
such i as its priority so that the precedence conditions in the
DAG are satisfied and the makespan can be minimized, when
the subtasks are scheduled according to the priority order on
m processors inGFPS.We consider awork-conserving sched-
uler that intends to always utilize all available processors.

Specifically, a DAG task τ is represented in a task depen-
dency graph G = (V ,E) that specifies the precedence
conditions among subtasks within τ , where V denotes a set
of nodes corresponding to the subtasks (as many as n) and
E denotes a set of edges corresponding to the precedence
conditions. Each node vi ∈ V represents a subtask of τ
with worst-case execution time (WCET) Ci. Accordingly,
we use the terms node and subtask interchangeably. Same
as the DAG task scheduling formulation in the real-time

system literature [1]–[3], we assume that the DAG specifi-
cation including WCET Ci is known in advance. Each edge
eij ∈ E ⊂ V × V corresponds to a precedence condition
between two subtasks, specifying that vj cannot run before
the completion of vi. That is, vi is a predecessor of vj, and vj
is a successor of vi.

Furthermore, we use degin(vi) = |{eji|eji ∈ E}| and
degout(vi) = |{eij|eij ∈ E}| to denote in-degree and out-degree
of node vi, respectively. In a task dependency graph, there
might be more than a single source node such that degin(v) =
0 or a single sink node such that degout(v) = 0. In the case of
multiple source nodes, we add a dummy source of WCET =
0 connecting to each of the multiple source nodes. Similarly,
in the case of multiple sink nodes, we add a dummy sink of
WCET = 0 connected to each of the multiple sink nodes.
This allows us to consider only the DAG formation with one
single source and sink. For example, Figure 1 illustrates a
DAG task dependency graph with the precedence conditions
among 8 nodes where v1 and v8 are source and sink nodes,
respectively. In this example, the edge from v1 to v2 specifies
that v2 cannot be executed before the completion of v1.

A path λ = [vλ1 , vλ2 , . . . , vλk] is a finite sequence of
nodes such that (vλi , vλi+1) ∈ E for i ∈ {1, . . . , k − 1}.
A path is called complete path if it contains both a source
and a sink. A path length is the sum of the execution times of
nodes in a path, i.e.,

∑
vi∈λ Ci. A path with the longest path

length among complete paths is called critical path. We use
L to denote the critical workload, the sum of WCETs of only
the nodes in a critical path, while we use W to denote the
total workload, the sum of WCETs of all nodes such that
W =

∑
vi∈V Ci.

For a DAG task τ of n nodes, our model is learned to
generate a priority order for a system of m processors, which
maps the nodes in τ ,

[v1, v2, . . . , vn] (1)

to a permutation of distinct integers from 1 to n such as

π = [π1, π2, . . . , πn]. (2)

That is, given such π , we establish a priority-ordered node
list,

[vπ1 , vπ2 , . . . , vπn] (3)

which specifies that node vπ1 is assigned the highest priority,
vπ2 is assigned the next highest priority, and so on for GFPS
upon a system of m processors.

We use makespan M (π, τ) to denote the elapsed time for
task τ by π -scheduling, which is required to complete τ when
GFPS with priority order π is considered. Our model aims to
find a priority order π∗ that minimizes the makespan of τ ,
allowing efficient use of the computing resources of a system
running τ .

π∗ = argminπM (π, τ) (4)

Notice that our model can be used scheduling a periodic
DAG task τ with its deadline D and period T , where jobs

VOLUME 9, 2021 158551

H. Lee et al.: Global DAG Task Scheduler Using Deep Reinforcement Learning and Graph Convolution Network

FIGURE 2. Overall structure of GoSu: The GoSu model takes a DAG task as
input, generating the embeddings for the DAG task via the GCN-based
encoder, and uses the sequential decoder to produce a priority order π
from the embeddings for the DAG task upon a multiprocessor system. The
model is learned to minimize the makespan of running each DAG task,
so calculated makespans are used as reward signals for updating the
model through REINFORCE algorithm [24].

for τ repeat regularly at the inter-release time of T . It is
determined that the periodic task τ is schedulable if themodel
yields such π∗ that the time constraint of τ , M (π∗, τ) ≤ D
holds. In this regard, it is also feasible to use the model for
scheduling multiple DAG tasks, because for each DAG task,
its WCET can be individually induced by its respective tight
makespan bound.

IV. PROPOSED APPROACH
In this section, we describe our scheduling model that takes
a DAG task as input and produces a priority order in GFPS
for the task. Figure 2 illustrates the overall model structure
with encoder and decoder modules. The modules are end-
to-end trained through DRL to generate a priority order of
a DAG task input, where the learning objective is to min-
imize the makespan of the task scheduled by the priority
order. Specifically, we adapt graph learning with two-way
path aggregation in the encoder to effectively extract the
relational information in a DAG.We also employ a sequential
selection procedure in the decoder to robustly update the
ordering probability over timesteps of variable input task
sizes.

In the GCN-based encoder, the raw features of individual n
nodes (or n subtasks) in a DAG task τ are first processed via
a feed-forward network (FFN). The structural information of
τ ’s task dependency graph is encoded via themessage passing
mechanism of a GCN, and then latent vectors of the nodes
are generated. With the latent vectors, the Attention-based
decoder generates a priority order for the nodes of τ , estab-
lishing a probability distribution, i.e., pθ (π |τ) over prior-
ity orders π . Given the learning objective to minimize the
makespan, the model with the encoder and decoder is trained
in an end-to-end fashion by DRL with calculated makespans.
Note that throughout this paper, a subscript θ is used to
represent trainable model parameters.

The decoding for a priority order is conducted in a sequen-
tial selection procedure of n (time)-steps,

pθ (π |τ) =
n∏
t=1

pθ (πt |π1, . . . , πt−1, τ) (5)

where Attention mechanism [19] is used to calculate the
probability of each selection pθ (πt |π1, . . . , πt−1, τ). Each
selection at step t assigns the priority (n − t) to a selected
node. In general, a problem space for DAG task scheduling
can be intractably large, e.g., there are 100! different combi-
nations in priority orders for a DAG task with 100 subtasks,
so it is not effective to use a single probability distribution
on whole possible orders of n subtasks. Rather, it is more
feasible to use a sequential procedure to select a subtask with
the next-highest priority iteratively, as have been studied in
combinatorial optimization problems [19], [20].

In the following, we describe these encoding and decoding
procedures based on DRL. We notate functions or modules
parameterized by θ using a subscript θ . For example, an affine
transform function parameterized by θ is represented in

Affθ (x) = Wθx + bθ . (6)

Note that parameters in different modules denote different
parameter sets.

It is noteworthy that while our model is intended for
scheduling a single DAG task with many interdependent
subtasks, it can be used for scheduling multiple parallel DAG
tasks. For a DAG task, themodel generates a priority order for
its subtasks and yields the makespan bound by the priority
order. Then, such makespan bound can be used to estimate
the WCET of a DAG task. Given a set of DAG tasks where
each task is associated with its respective WCET estimated
by the model, it is feasible to adopt multiprocessor real-time
task scheduling methods (e.g., [11], [25]).

A. GCN-BASED ENCODER
The encoder learns to represent each node in a DAG task into
a fixed-sized vector. Each node has its own execution time,
and a set of nodes forms a graph structure with precedence
dependency. To reflect both individual node information and
graph-structured information, the encoder takes a two-step
procedure in that it first transforms individual raw features of
each node into vectors through an FFN and then incorporates
graph structure into the vectors through a GCN.

1) NODE EMBEDDING
Using an affine transform with the tanh(·) activation, the
encoder transforms raw features xi of node vi into a latent
vector representation via an FFN.

h(0)i = tanh (W (0)
θ xi + b

(0)
θ) (7)

The raw features used in our implementation are all listed
in Table 3. In addition to node-level features such as execution
time, the number of incoming edges, and the number of
outgoing edges, we also include several graph-level features
such as critical and non-critical workloads.

2) GRAPH-LEVEL EMBEDDING
The encoder iteratively updates the generated vector rep-
resentations with the affine projection above through a

158552 VOLUME 9, 2021

H. Lee et al.: Global DAG Task Scheduler Using Deep Reinforcement Learning and Graph Convolution Network

TABLE 3. Raw node-level features xi of node vi and additional
graph-level features in DAG task τ : Ci denotes WCET of vi , W denotes
total workload of τ , and L denotes critical workload of τ , as described in
Section III.

GCN to further incorporate graph-structural features into
the vector representations. In principle, the encoding pro-
cess through a GCN can be seen as iterative message
passings along the paths in a DAG. At step k , a latent
representation h(k)i of node vi is updated by aggregating
latent representations of vi’s neighbor nodes as shown in
Figure 3. Note that in a GCN, vi’s neighbors include
directly connected nodes as well as vi itself. Accordingly,
we define

N (vi) = {vk |eki ∈ E} ∪ {vi} (8)

hereafter.
Then, the GCN message passing can be formulated as

h(k+1)i = Update(Aggregateθ ({h
(k)
j |vj ∈ N (vi)})) (9)

where the Aggregate function accumulates messages from
the neighbors of vi, and the Update function takes the
accumulated embedding and performs a nonlinear transfor-
mation on the embedding. The representations generated
by iterating the above message passing operation K times
can contain structural features in that each node is differ-
ently aggregated according to graph topology. The repre-
sentations also preserve node features; at k = 0, h(0)i in
Eq. (7) is an initial node embedding from node features that
are preserved during GCNs along with structural varieties
embedded [26].

For aggregation, we adopt Attention [27] similar to [28].
Specifically, the encoder performs the Attention operations
such as

Attθ ({h
(k)
j |vj ∈ N (vi)}) = Wθ

∑
vj∈N (vi)

αijh
(k)
j (10)

where αij denotes the Attention coefficient that estimates the
importance of node vj to node vi’s representation. We restrict
αij to satisfy

∑
j αij = 1 and formulate it as

αij =
exp

(
aTθWθhi + bTθWθhj

)∑
vj′∈N (vi) exp

(
aTθWθhi + bTθWθhj′

) (11)

where a and b are trainable vectors, and W is a trainable
matrix.

We exploit several Attention modules (heads) simultane-
ously and aggregate them to get the final latent representation.

FIGURE 3. Graph path aggregation with two path types, forward- and
inverse-path: This illustrates how to produce the representation of node
v7 in a DAG (in Figure 1) using the forward-path and inverse-path
aggregation, where self-loops in the aggregate are omitted for simplicity.

This is useful since different Attention heads can give weights
more relevantly to different latent representations (h). The
Aggregate function is implemented using multi-head Atten-
tion, and is defined as

Aggregateθ ({h
(k)
j |vj ∈ N (vi)})

=
(
Attθ,1 ⊕ Attθ,2 ⊕ · · · ⊕ Attθ,H

)
(12)

where ⊕ concatenates vectors, and Attθ,1, . . . ,Attθ,H are
H -individual Attention modules. H denotes the number of
distinct Attention heads per layer.

We then apply an affine transform followed by the expo-
nential linear unit activation (ELU) [29] for the Update
function. This constructs the Attention network layer for the
GCN message passing in Eq. (9).

h(k+1)i = Update(Aggregate({h(k)j |vj ∈ N (vi)}))

= ELU
(
Wθ

(
Attθ,1 ⊕ · · · ⊕ Attθ,H

)
+ bθ

)
(13)

The result latent vectors h(k)i are produced through consec-
utive GCN layers. We refer to those as node embeddings for
k = 3 in our implementation.

3) TWO-WAY PATH AGGREGATION
In a DAG, an edge eij normally specifies a predecessor con-
dition such that a node vj cannot be executed without the
termination of a node vi. However, in the message passing,
we observe that successor conditions are equally important as
predecessor conditions. Thus, we adopt two types of Atten-
tion heads, incorporating them in the message-passing loop.
This is similar with [22], [28] except we exploit different
masks for eachAttention head. Specifically, we define inverse
neighbors as

N−1(vi) = {vk |eik ∈ E} ∪ {vi}. (14)

Then, among H Attention heads, we set half of them to be
forward-path graph Attention in Eq. (10) and the other half to
be inverse-path graph Attention in Eq. (15).

Attθ ({h
(k)
j |vj ∈ N−1(vi)}) (15)

This graph path aggregation in a GCN with both
forward-path and inverse-path is illustrated in Figure 3.
Employing Attention from the two path types enables the
model to learn features on predecessor conditions as well

VOLUME 9, 2021 158553

H. Lee et al.: Global DAG Task Scheduler Using Deep Reinforcement Learning and Graph Convolution Network

as successor conditions in a DAG while preserving their
different relations.

B. SEQUENTIAL DECODER
With the node embeddings (the final latent vectors h(k)i in
Eq. (9)) from the encoder, for a DAG task τ of n nodes,
the decoder sequentially selects nodes to generate an n-sized
priority order π = [π1, π2, . . . , πn]. If node vi is selected
earlier than another vj, then vi has a higher priority than vj for
i, j ∈ {1, 2, . . . , n}. Thus, π corresponds to a priority-ordered
node list [vπ1 , vπ2 , . . . , vπn]. In the following, we omit super-
script k for hi, as it is fixed in the decoder.

1) SEQUENTIAL NODE SELECTION
As formulated in Eq. (5), we decompose the probability func-
tion of a priority order into a product of probabilities of node
selection in sequence. The decoder chooses a node to have
the highest priority by sampling from probability distribution
pθ (π1|τ). It then chooses another node with the next highest
priority (i.e., the highest priority among nodes not chosen yet)
by sampling from pθ (π2|π1, τ). For each selection at step t ,
the embedding of a partial priority order (π1, . . . , πt−1, τ) is
used to generate the respective conditioned probability. This
procedure continues until no node is left, so it comprises
n-iterative decoding.

It is observed that the order of selected nodes is not impor-
tant when choosing a node vt since those are indifferent in
that they do not compete with vt [11]. Thus, we maintain two
partitions of nodes, a set of nodes already chosenOt and a set
of nodes that are not chosen yet Lt , and exploit the two sets
(Ot , Lt) as context information for t = 1, . . . , n. The context
information is used to calculate a probability distribution over
nodes in Lt . In doing so, we aggregateOt and Lt via nonlinear
transformation and obtain their respective vectors g(O)t and
g(L)t for steps t = 1, . . . , n,

g(O)t = σθ

(∑
j∈Ot

tanh
(
Affθ (hj)

))
,

g(L)t = σθ

(∑
j∈Lt

tanh
(
Affθ

(
hj
)))

(16)

where σ (·) is an arbitrary nonlinear activation function.
We also consider the previously selected node vπt−1 as an

important factor to determine its next node and thus make
use of its embedding hπt−1 when making the successive
selections. This is consistent with common observation such
that fixed-priority task scheduling heuristics share the same
pattern that similar priorities are assigned for tasks of similar
properties.

g(last)t = σθ (hπt−1) (17)

Given the three vectors for the partitioned set and the
previously selected node in Eq. (16) and Eq. (17), we combine
them into a context vector by

ct = Affθ (g
(O)
t + g

(L)
t + g

(last)
t). (18)

Then, we exploit the context vector ct to derive a proba-
bilistic inference for the tth subsequent node selection.

pθ (πt |π1, . . . , πt−1, τ)

= Softmax(C · tanh(hi Wθ Attθ (ct , {hj|vj ∈ Lt })))

for all vi ∈ Lt . (19)

Wemultiply the output of tanh(·) by an inverse temperature
C to confine logits within the range [−C,C], where C is
empirically chosen. This derives the probability of priority
orders.

pθ (π |τ) =
n∏
t=1

pθ (πt |π1, . . . , πt−1, τ) (20)

2) SAMPLING PRIORITY FROM THE DISTRIBUTION
Here we describe our strategy for sampling πt from the
distribution at step t in Eq. (19). We can conduct successive
selection in a greedy way using

πt = argmax (pθ (πt |π1, . . . , πt−1, τ)) . (21)

It is also possible to use stochastic sampling that randomly
draws πt according to the distribution. Note that there are
other sampling strategies than those simple approaches, e.g.,
A∗ [30], BeamSearch [31], which are computationally expen-
sive and thus are not appropriate for large-scale problem
settings.

C. MDP FORMULATION
Here, we discuss the formulation of DAG task scheduling
problems from the perspective of a Markov decision process
(MDP). In general, an MDP is specified by a tuple with a set
of states, a set of actions, a reward function, a state transition
probability, and a discount factor.
• State. For scheduling a DAG task through sequential
selection, a state needs to include information about the
subtask partitions that evolve over time (i.e., a set of
priority-assigned subtasks Ot and a set of the others or
priority-unassigned subtasks Lt as in Eq. (16)). As step
t goes on, Ot starts with an empty set and expands to a
set containing more subtasks. More formally, according
to the probability of priority orders in Eq. (20), a state
consists of the embeddings about a DAG task τ with
n subtasks (i.e., h1, h2, . . . , hn) and priority-assigned
subtasks; a state at step t is given as

((h1, . . . , hn) , [π1, π2, . . . , πt−1]) . (22)

Recall that the embeddings for τ are calculated by
the encoder in Section IV-A, and our model yields
an n-sized priority order π = [π1, π2, . . . , πn].
Through sequential selection on the subtasks by the
decoder, at each step t ≤ n, a partial permutation
[π1, π2, . . . , πt−1] is generated. This corresponds to the
indices of priority-assigned subtasks and is used as part
of the state.

158554 VOLUME 9, 2021

H. Lee et al.: Global DAG Task Scheduler Using Deep Reinforcement Learning and Graph Convolution Network

• Action. Upon a state in Eq. (22), the decoder calculates
an action to select πt (i.e., assigning the tth highest pri-
ority to the πt th subtask in τ) at step t . Accordingly, a set
of actions corresponds to the distinct integers from 1 to
n, and a set of states corresponds to a partial permutation
of the subtask embeddings.

• Reward. A reward is yielded according to a given objec-
tive of scheduling, i.e., minimizing the makespan for
a DAG task in Eq. (4). We specifically use the slow-
down metric (in Eq. (26)) to evaluate the advantage of
specific priority orders over others. The details of our
reward design subject to DRL training are described in
Section IV-E2.

• Transition probability. In this MDP formulation,
a transition is assumed to be deterministic in that for
a state and action, the next state is determined without
randomness. It is because an action for scheduling does
not execute a task and it only affects the scheduling
strategy and changes a permutation (a priority order) for
a task. This setting is common when adopting DRL for
large scale combinatorial optimization problems [20].

• Discount factor. Given the DAG task specification of
finite n subtasks, we have episodic DRL with terminal
states where a full permutation is obtained, and accord-
ingly, we set the discount factor to be 1.

D. COMPLEXITY ANALYSIS
In the encoder, K iterations of encoding via self-attention
with masking for DAG precedence conditions are per-
formed, where K denotes the number of GCN layers. The
self-attention requires O(n2d + nd2) scalar multiplications
for a single input of n subtasks and embedding dimension
d . Then, the encoding complexity is O(K × (n2d + nd2)).
In the decoder, for each selection (each time-step), context
information for a partitioned set {Ot , Lt } in Eq. (16) and
a subtask previously chosen is calculated in O(nd2). This
is iteratively performed n times for n subtasks, requiring
O(n2d2).
Therefore, the complexity to infer a priority order for a

DAG task input is O(n2d2). Note that the number of GCN
layers K is much smaller than the number of subtasks n (i.e.,
as in Table 5) and the embedding dimension d (d = 64 in our
implementation).

E. DRL TRAINING
As previously explained, the priority assignment for DAG
task scheduling is formulated in a probability distribution in
Eq. (20), which represents a policy in DRL. In the following,
we describe how to establish such a policy through a policy
gradient method.

1) LEARNING OBJECTIVE
The objective function J to learn Eq. (20) is defined as

J = Eπ∼pθ (τ) [S(π, τ)] =
∑
π

pθ (π |τ)S(π, τ) (23)

where π ∼ pθ (τ) specifies that the priority order is sam-
pled from a learned policy, and S(π, τ) denotes score values
which will be explained in Section IV-E2. We update model
parameters θ by the policy gradient in that differentiating the
objective in Eq. (23) derives a gradient update rule as

∇θJ =
∑
π

∇θpθ (π |τ)S(π, τ)

=

∑
π

pθ (π |τ)∇θ log(pθ (π |τ))S(π, τ)

= Eπ∼pθ
[
∇θ log (pθ (π |τ)) S (π, τ)

]
(24)

using ∇x f (x) = f (x)∇x log f (x). Specifically, we use
the Monte-Carlo stochastic gradient descent method or
REINFORCE algorithm [24] to estimate the gradient in
Eq. (24) and its average value over a batch of tasks,

∇θJ =
1
|B|

∑
τ∈B

pθ (π |τ)∇θ log(pθ (π |τ))S(π, τ) (25)

where B is a batch list of tasks randomly sampled from a
training dataset.

2) SLOWDOWN-BASED REWARD
As part of the objective function in Eq. (23), the score S(π, τ)
is used to formulate the relevance of priority orders π for
task τ . This score is calculated based on reward values [32] in
DRL. Given a DAG representation for parallel task schedul-
ing on amultiprocessor system, our model is intended to learn
an optimal priority order for τ in terms of the makespan of τ .
The makespan specifies the required time that elapses from
the execution of τ ’s source node to its sink node. Specifically,
we implement the slowdown-based reward (score) function
S(π, τ) using normalized makespans for scheduling a task τ
with a priority order π , i.e.,

S(π, τ) =
−M (π, τ)
MLB(τ)

(26)

where M (π, τ) denotes the makespan of τ by π and MLB(τ)
denotes the lower bound of the makespan of τ by any pri-
ority order. Note that M (π,τ)

MLB(τ)
represents a slowdown of τ ’s

makespan by π compared to the ideal case for τ . Since the
smaller the slowdown or the makespan, the better the priority
order, we define negative rewards based on slowdowns.

The lower bound of the makespan of τ upon an
m-processor system is calculated by

MLB(τ) = L +max
(
0,
⌈
1
m
(W−L · m)

⌉)
(27)

where L and W are the critical workload and the total work-
load of τ .
Claim: The makespan of a task τ is lower bounded by

Eq. (27)
Proof: According to the definition of the critical path of

a DAG task τ , the task requires at least the critical workload
L in time to execute. During L, the m-processor system can
process at most L · m for τ ’s nodes (in the case when no
dependency blocks processing). In that ideal case, if τ ’s total

VOLUME 9, 2021 158555

H. Lee et al.: Global DAG Task Scheduler Using Deep Reinforcement Learning and Graph Convolution Network

workloadW is no larger than L · m, then τ can be completed
within L. Otherwise, there is at least (W−L · m) workload
not yet processed until L. It requires at least

⌈
1
m (W−L · m)

⌉
in time. Summing these two components establishes
Eq. (27). �
Reward normalization is intended to prevent overweighing

of rewards of tasks with high parallelism. Suppose that we
have an optimal order π∗ and another order π of lower
quality for a task τ . It is observed that the less the par-
allelism degree of τ , the smaller the makespan difference
M (π∗, τ) − M (π, τ). At one extreme, in the case where τ
has no parallelism (e.g., there is only a single path from
source to sink), every priority order yields the samemakespan
(reward). This case is not very meaningful for our model
training. For establishing the stability of model training, it is
critical to define rewards to be fully dependent on the quality
of priority orders, especially when the structure of DAG tasks
is complex.

3) BASELINE REDUCTION
In model training, we employ an additional variance reduc-
tion technique with baseline [32]. Specifically, we exploit a
greedy baseline method, similar to [21], in which a target
model pθ and another base model pβ are used. The two
models share the same neural network structure but have
distinct θ and β parameters. For a task τ , suppose that we
obtain priority orders π and b where the former is sampled
from pθ with stochastic decoding and the latter is sampled
from pβ .We then obtain a reward by b, i.e.,B(b, τ) = −M (b,τ)

MLB(τ)
in Eq. (26). By replacing S(π, τ) in Eq. (24) with S(π, τ) −
B(b, τ), we adopt baseline reduction and hence establish the
below.

∇θJ = Eπ∼pθ [∇θpθ (π |τ) [S(π, τ)− B(b, τ)]]

=
1
|B|

∑
τ∈B

[
∇θ log(pθ (π |τ))

[M (b, τ)−M (π, τ)]
MLB(τ)

]
Eπ∼pθ [∇θpθ (π |τ)B] = ∇θEπ∼pθ [B] = ∇θ [B] = 0

(28)

We update the base model pβ , if a makespan calculated
by pβ ’s priority order is statistically different from that
calculated by pθ ’s priority order. We perform the paired
t-test on the makespans from the two models to check
their difference, e.g., they are different if p-value is smaller
than 0.01.

Our model training scheme is summarized in Algorithm 1.

V. EVALUATIONS
In this section, we evaluate the performance of our model.

A. EXPERIMENTAL SETTINGS
We describe the experimental settings including data genera-
tion, evaluation metrics, and the models in comparison.

Algorithm 1Model Training of GoSu
// Parameter initialization
Initialize the target model pθ with parameters θ
Initialize the baseline model pβ with parameters β
Initialize β ← θ

//Model learning procedure
for i← 1, . . . ,Ntrain do
1θ ← 0 , Sample batch B from training dataset D
for task τ in B do
Sample priority order π from pθ (·|τ) stochastically
Sample priority order b from pβ (·|τ) greedily
1θ ← 1θ + 1

|B|
[M (b,τ)−M (π,τ)]

MLB(τ)
∇θ log pθ (π |τ)

end for
// If target is better than baseline
if paired-T Test onM (π, τ) 6= M (b, τ) then

// Update baseline
Update β ← θ

end if
Update θ with 1θ using Adam Optimizer

end for

TABLE 4. Parameters for task dataset generation with different degrees
of parallelism: Unif() denotes uniform distribution.

1) DATASET GENERATION
As there is no publicly available large-scale DAG task
datasets with a variety of configurations in real-time task
specifications, we use synthetic datasets in which each
DAG task is generated according to a nested fork-join task
model [33]. This is a widely adopted scheme for analyzing
and generating DAG tasks [34], [35]. The task generation
algorithm works as follows, similar to [35]. For each node
vi in the layer k , its child nodes vj and edges eij are gen-
erated based on fork probability pfork where the number
of child nodes in layer k + 1 are determined by uniform
distribution nchild. This procedure starts from a source node
and repeats for ndepth times, thus creating a DAG of ndepth
layers. In addition, the edges of a node pair between the
layer k and the layer k + 1 are randomly added in the DAG
based on perturbation probability ppert. A large perturbation
probability leads to a high degree of parallelism. Finally,
the edges from nodes in the last layer to the sink node are
added.

To perform experiments in various task configurations,
we create three datasets with varying degrees of parallelism:
Low, Moderate and High. The degree is configured by the
aforementioned parameters such as fork probability pfork,
perturbation probability ppert, the number of children nchild,
and depth limit ndepth, as shown in Table 4. The characteristics
of the datasets are summarized in Table 5.

158556 VOLUME 9, 2021

H. Lee et al.: Global DAG Task Scheduler Using Deep Reinforcement Learning and Graph Convolution Network

TABLE 5. Characteristics of task datasets: # nodes and # edges denote
the average number of nodes and edges. L and W denote the average
workload of critical paths and the average total workload of DAG tasks.

2) IMPLEMENTATION
For evaluation, we implement a task scheduling simulator
by which the makespan of each DAG task by a given prior-
ity order is exactly calculated upon a system of m proces-
sors. For implementing the dataset generation module and
the models in comparison, we also exploit the open-source
implementation provided in [1].1 Our implementation is
based on Python 3.7.9, PyTorch 1.6.0 [36], and PyTorch-
geometric [37]. We train and test the models on a system of
an Intel(R) Core(TM) i9-9940X processor with 160G mem-
ory, and an NVIDIA Tesla V100 GPU with CUDA 10.1.
and cuDNN 7.6.0. In addition, we implement the heuristic
algorithms and schedulability tests using Cython [38].

As for a multiprocessor system where DAG tasks are
scheduled to run, we set its configuration, such as the number
of homogeneous processors m, to be data specific and sub-
sumed in training datasets. That is, for a model learned on
specific datasets, each DAG task sampled from the datasets
is configured to run upon a system of m processors during
model training, and its evaluation system environment is
set to have m processors. Thus, each model is evaluated in
the same system environment with m processors (e.g., m ∈
{2, 3, 4, 6, 8} in Figure 4) which it has been trained on.
The models in comparison are two state-of-the-art DAG

task scheduling algorithms: He19 [2] and Zhao20 [1].
As described previously, our model aims at minimizing the

makespan of individual DAG tasks. Accordingly, we measure
the model performance in the slowdown ratio of an achieved
makespan to its respective ideal makespan in Eq. (27) and use
it as the evaluation metric.

3) MODEL HYPERPARAMETERS
The hyperparameter settings for our model are shown in
Table 6. Unless otherwise mentioned, all the hyperparameters
are set the same for all experiments.

We generate 10K datasets for each configuration. We use
8K samples for model training, 1K samples for model vali-
dation, and 1K samples for evaluation. In the encoder, we set
the number of graph convolution layers to K = 2. For
each graph convolution layer, we set the number of heads
to 4 where two of them are forward-path Attention modules
and the others are inverse-path Attention modules. We set the
hidden representation layer to 64. We exploit dropout [39]
with probability p = 0.1. We set the inverse temperature
C to 5. A larger value of C makes models less exploitative.
We set the batch size to 128 and use Adam Optimizer [40]

1https://github.com/automaticdai/research-dag-scheduling-analysis

TABLE 6. Hyperparameter settings in datasets, neural network
implementation, and training for our GoSu model.

where the learning rate sets to 0.0001. We clip gradients
before model update by (−1, 1).

B. PERFORMANCE COMPARISON
For each experiment condition where a dataset is defined
by a specific DAG task configuration and the number of
processors, we compare the performance of our model with
that of other models.

Figures 4(a), 4(b), and 4(c) show the average relative
slowdown (i.e., M (π,τ)

MLB(τ)
in Eq. (26)) of achieved makespans

with respect to various m processors (m = {2, 3, 4, 6, 8}) for
low, moderate, and high parallelism datasets. As shown, our
model achieves comparable performance for all the cases and
outperforms He19 [2] and Zhao20 [1], with a relatively large
margin of 2∼3% for the cases whenm = 3 orm = 4 with the
moderate parallelism datasets and when m = 3 ∼ 8 with the
high parallelism datasets. This result is consistent with our
expectation on DRL-based scheduling approaches such that
they learn priority assignment rules tailored for specific envi-
ronment settings, achieving performance improvement com-
pared to other heuristics upon complex conditions. Notice
that the more capable a system with more processors is (e.g.,
larger m settings), the less performance impact a specific
priority order is likely to have on less or moderate parallelism
datasets. This is because most executable subtasks can run
immediately regardless of their priority assigned on many
available processors. Another extreme case is a single proces-
sor system where it necessarily takes the total workloadW in
time to complete a DAG task regardless of priority orders.

The cases where the number of processors is 3 or 4 nor-
mally correspond to nontrivial configurations in between the
cases of highly capable multiprocessor systems and con-
strained single processor systems in our experimental settings
and datasets, rendering our DRL-based model more effective
and achieving better makespans and slowdowns.

Figures 5(a), 5(b), and 5(c) represent the performance in
terms of the number of testing data samples for which GoSu
performs better than another model. Note that considering
that Zhao20 shows relatively better performance than He19

VOLUME 9, 2021 158557

H. Lee et al.: Global DAG Task Scheduler Using Deep Reinforcement Learning and Graph Convolution Network

FIGURE 4. The performance in the slowdown of makespans by compared methods with respect to various system and task configurations: The Y-axis
denotes the slowdown that represents the relative execution time compared to ideal execution time in Eq. (27). The lower the slowdown, the better
the performance. The X-axis denotes the number of processors of a platform, representing the system configuration. The task configuration depends
on the datasets of (a) low, (b) moderate, and (c) high parallelism in Table 5.

FIGURE 5. The performance comparison in terms of frequency of wins (the number of task instances for which each method yields the shortest
makespan.) for Figure 4: The Y-axis represents the frequency of wins by a method. The pink-colored bar denotes the number of testing data samples
for which GoSu outperforms another state-of-the-art method (Zhao20) on the whole testing dataset of 1000 samples. The gray-colored bar denotes
the opposite case. The green-colored bar denotes the tie case. The length difference of the long pink-colored bars (GoSu) and short gray-colored bars
(Zhao20) indicates the performance gain of GoSu. The X-axis denotes the number of processors of a platform, representing the system configuration.
The system and task configurations are the same as those in Figure 4.

in our experiments, we include only the comparison with
Zhao20. The data samples for each configuration are divided
into three portions. The pink-colored bar indicates the portion
of samples for which GoSu’s priority order outperforms (i.e.,
yielding a tighter makespan than) that of Zhao20 by at least
1% margin in terms of the slowdown in achieved makespans.
The gray-colored bar indicates the portion of the opposite
case samples. The green-colored bar indicates the portion of
the other samples that tie.

It is consistently observed that GoSu performs more com-
petitively in nontrivial configurations; the pink-colored bar
increases when the number of processors is either 3 or 4,
and its portion is up to 73% in the case when m = 3 with
the moderate and high parallelism datasets. It is interesting
that significant performance improvement is made with the
systems of 2 and 3 processors for the low parallelism datasets
and with the systems of a wider range of processor numbers,
from 3 to 8, for the high parallelism datasets. This is because,
for the low parallelism datasets, a system of more than 3 pro-
cessors is likely to enable most executable tasks to run imme-
diately and concurrently, thereby rendering specific priority
orders less influential in terms of reducingmakespans. For the
high parallelism datasets, on the other hand, the same system

has much opportunity to minimize makespans of individual
tasks by priority orders that are appropriately chosen. This
result demonstrates the benefit of GoSu performing steadily
in various configurations including nontrivial cases. Through
the paired-T tests, we also confirmed that except for the cases
of m = 8 with the low and moderate parallelism datasets and
m = 2 with the high parallelism datasets, our model shows
statistically much better performance than the others.

C. COMPARISON OF GCN SCHEMES
In Table 7, we compare the models with different GCN
schemes in terms of achieved slowdowns to verify the effect
of our GCN processing with both forward-path and inverse-
path aggregation. For comparison, GCNs are differently set to
have only forward-path aggregation, only inverse-path aggre-
gation, or both, while all the other model hyperparameters are
set to the same.

For the low parallelism dataset, all the models show sim-
ilar performance. However, as the complexity of parallel
tasks grows, it is observed that the inverse-path aggregation
becomes beneficial. For the moderate parallelism dataset, the
model with only forward-path aggregation performs worse
than the models with only inverse-path aggregation or both.

158558 VOLUME 9, 2021

H. Lee et al.: Global DAG Task Scheduler Using Deep Reinforcement Learning and Graph Convolution Network

TABLE 7. The performance in the slowdown by the models with different
GCN schemes: The number of processors is 4, and Both (GoSu)
corresponds to the proposed GoSu model that has forward-path and
inverse-path aggregation in GCN processing. The other models are set to
consider either of two path types only.

For the high parallelism dataset, the model with both per-
forms better than the others. The inverse-path aggregation for
node v allows the model to embed the information of nodes
blocked by v to the representation of v via message passing.
This enables a better scheduling policy for large-scale and
highly parallel DAGs.

D. CHARACTERISTICS OF LEARNED POLICY
To inspect what kind of policy the GoSu model learns
through DRL, we conduct a regression-based experiment by
employing differential programming techniques [41], [42].
It turns out that the experiment results allow us to identify
which properties the model learns to value more. Specifi-
cally, we construct a linear regression model to produce a
pointwise score si for a node (subtask) vi and then fit the
regression model to render a score list [s1, s2, . . . , sn] con-
sistent with the ranking of a priority order π generated by
GoSu. That is, the linear model is fitted to [sπ1 , sπ2 , . . . , sπn]
which is correctly sorted in the descending order with π using
Fast-Soft-Sort [41].

For simple analysis, we selectively use the following raw
features of individual nodes as input: execution time, out-
degree, in-degree, and whether a node is in the critical path
(is-critical). A linear model si = wxi + b is learned where
each element of w is set to be in [0, 1] and b in [0, 10] using
clipping. We pose strong L1 regularization 3.0 on w to make
the weights of irrelevant properties be zeros, thus having only
weights of significance for scheduling decisions [43], [44].

Figure 6 shows theweight valuesw of the linearmodel with
respect to different parallelism datasets. If an input feature has
a large weight, it can be interpreted as an important factor for
the priority assignment policy of GoSu. We observe that the
out-degree is most critical for all task configurations. This
is consistent with the effect of the inverse-path aggregation
in Section V-C, showing that a larger out-degree means the
node is more likely to be blocking other nodes and considered
important. However, the in-degree does not play an important
role, and its weight becomes zero in all task configurations.
Another important observation is that the GoSu’s policy
varies depending on task configurations. As the parallelism
increases, the weight of the is-critical feature increases while
those of the out-degree and the execution time decrease.
This indicates the adaptability of the DRL-based model for
a variety of task configurations. Note that we view that the
linear model correctly imitates GoSu since the linear model
yields similar but slightly worse (about 6%) performance than
GoSu due to its structural limitations and lack of features.

FIGURE 6. Characteristics of learned policy in GoSu: The Y-axis denotes
the normalized weight of features in the linear model with respect to
different task configurations on the X-axis. The higher property weights
(e.g., w ∈ [0,1] of a linear model wxi + b) of features can be interpreted
as having a greater impact on scheduling. This significance of features
varies across different task configurations. GoSu can learn an appropriate
scheduling policy without exhaustive feature engineering.

FIGURE 7. The performance comparison of multi-DAG scheduling: The
Y-axis denotes the achieved schedulability ratio of testing task sets by
three methods in comparison with respect to the utilization on the X-axis.
The utilization interval denotes a total utilization range of a task set T ,
i.e.,

∑
τi ∈T

Ci
Ti

where Ci and Ti are the WCET and period of a task τi ,
respectively. A higher schedulability ratio means more task sets of DAG
tasks are scheduled, indicating better performance.

E. SCHEDULING MULTI-DAG TASKS
Here, we discuss how to extend our approach for scheduling
multi-DAG tasks [35]. Given a periodic DAG task τ with
deadline D and period T , we calculate the makespan of τ
using the priority order (i.e., π∗ in Eq. (4)) produced by
our model and set it as τ ’s WCET. In this way, we induce
WCET estimates of multi-DAG tasks. Then, it is possible to
adopt priority assignment methods in real-time task schedul-
ing (e.g., deadline monotonic (DM)) to schedule multi-DAG
tasks.

In Figure 7, we shows the performance in schedulabil-
ity ratio of multi-DAG tasks by three methods calculating
WCETs using different single DAG scheduling approaches.
We adopt the same DM algorithm and the same schedula-
bility test in [1] for the three methods. The schedulability

VOLUME 9, 2021 158559

H. Lee et al.: Global DAG Task Scheduler Using Deep Reinforcement Learning and Graph Convolution Network

ratio represents ratio between the number of schedulable task
sets and the number of tested task sets, where each task
set consists of 12 individual DAG tasks in this experiment.
We set the number of processors to 4 and test 5000 task
sets (samples). As shown, GoSu achieves better performance
in schedulability ratio than the other methods. This result
implies that tighter makespan bounds induced by GoSu can
lead to better performance in scheduling multi-tasks. The per-
formance gain is relatively larger when the utilization is high.
This is consistent with the benefits of GoSu particularly for
nontrivial cases, as the same scheduling and schedulability
test methods are used.

VI. CONCLUSION
In this work, we presented GoSu, a DRL-based priority
assignment model for DAG task scheduling, which adapts
graph learning to utilize the graph structure of a DAG task.
On graph embedding results, our model performs a sequential
decoding procedure to obtain a permutation for subtasks in
a DAG task. That permutation represents a priority order
for task scheduling to minimize the makespan of the DAG
task. Through extensive experiments, we demonstrated that
GoSu achieves robust performance in the slowdown of DAG
tasks, compared to other state-of-the-art priority assignment
heuristics.We also showed the adaptability of our DRL-based
approach for various configurations by leveraging the rank
regression mimicking the policy of GoSu.
The direction of our future work is to develop an integrated

learning approach of hierarchical DRL and GCN techniques
for large-scale virtual application management problems.
As network service chains consist of many virtual network
functions, they can be analyzed through GCNs to be mapped
on underlying network infrastructures with heterogeneous
resources in data centers. While exploiting the structural
similarity in the use of graph representation learning between
DAG task scheduling and virtual network mapping, the latter
has scalability issues on underlying large networks. Hierar-
chical learning techniques in DRL can be explored for those
issues.

REFERENCES
[1] S. Zhao, X. Dai, I. Bate, A. Burns, and W. Chang, ‘‘DAG scheduling

and analysis on multiprocessor systems: Exploitation of parallelism and
dependency,’’ in Proc. IEEE Real-Time Syst. Symp. (RTSS), Dec. 2020,
pp. 128–140.

[2] Q. He, X. Jiang, N. Guan, and Z. Guo, ‘‘Intra-task priority assignment in
real-time scheduling of DAG tasks on multi-cores,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 30, no. 10, pp. 2283–2295, Oct. 2019.

[3] F. Guan, J. Qiao, and Y. Han, ‘‘DAG-fluid: A real-time scheduling algo-
rithm for DAGs,’’ IEEE Trans. Comput., vol. 70, no. 3, pp. 471–482,
Mar. 2021.

[4] R. I. Davis, L. Cucu-Grosjean, M. Bertogna, and A. Burns, ‘‘A review
of priority assignment in real-time systems,’’ J. Syst. Archit., vol. 65,
pp. 64–82, Apr. 2016.

[5] J. Li, Z. Luo, D. Ferry, K. Agrawal, C. Gill, and C. Lu, ‘‘Global EDF
scheduling for parallel real-time tasks,’’ Real-Time Syst., vol. 51, no. 4,
pp. 395–439, Jul. 2015.

[6] R. Pathan, P. Voudouris, and P. Stenström, ‘‘Scheduling parallel real-time
recurrent tasks on multicore platforms,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 29, no. 4, pp. 915–928, Apr. 2018.

[7] Y. Nazarathy and G.Weiss, ‘‘A fluid approach to job shop scheduling: The-
ory, software and experimentation,’’ J. Scheduling, vol. 13, pp. 509–529,
Nov. 2009.

[8] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, ‘‘Resource manage-
ment with deep reinforcement learning,’’ in Proc. 15th ACMWorkshop Hot
Topics Netw., Nov. 2016, pp. 50–56.

[9] L. Wang, Q. Weng, W. Wang, C. Chen, and B. Li, ‘‘Metis: Learning to
schedule long-running applications in shared container clusters at scale,’’
in Proc. SC Int. Conf. High Perform. Comput., Netw., Storage Anal.,
Nov. 2020, pp. 1–17.

[10] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and
M. Alizadeh, ‘‘Learning scheduling algorithms for data processing clus-
ters,’’ in Proc. ACM Special Interest Group Data Commun., Aug. 2019,
pp. 270–288.

[11] H. Lee, J. Lee, I. Yeom, and H. Woo, ‘‘Panda: Reinforcement learning-
based priority assignment for multi-processor real-time scheduling,’’ IEEE
Access, vol. 8, pp. 185570–185583, 2020.

[12] J. Kwon, K.-W. Kim, S. Paik, J. Lee, and C.-G. Lee, ‘‘Multicore scheduling
of parallel real-time tasks with multiple parallelization options,’’ in Proc.
IEEE Real-Time Embedded Technol. Appl. Symp., 2015, pp. 232–244.

[13] P. Chen, W. Liu, X. Jiang, Q. He, and N. Guan, ‘‘Timing-anomaly free
dynamic scheduling of conditional DAG tasks on multi-core systems,’’
ACM Trans. Embedded Comput. Syst., vol. 18, no. 5s, pp. 1–19, Oct. 2019.

[14] A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. D. Gill, ‘‘Parallel
real-time scheduling ofDAGs,’’ IEEETrans. Parallel Distrib. Syst., vol. 25,
no. 12, pp. 3242–3252, Dec. 2014.

[15] S. Chilukuri and D. Pesch, ‘‘RECCE: Deep reinforcement learning for
joint routing and scheduling in time-constrained wireless networks,’’ IEEE
Access, vol. 9, pp. 132053–132063, 2021.

[16] S. Sheng, P. Chen, Z. Chen, L. Wu, and Y. Yao, ‘‘Deep reinforcement
learning-based task scheduling in IoT edge computing,’’ Sensors, vol. 21,
no. 5, p. 1666, Feb. 2021.

[17] L. Zhou, L. Zhang, and B. K. P. Horn, ‘‘Deep reinforcement learning-
based dynamic scheduling in smart manufacturing,’’ Proc. CIRP, vol. 93,
pp. 383–388, Jan. 2020.

[18] J. Park, J. Chun, S. Kim, Y. Kim, and J. Park, ‘‘Learning to schedule
job-shop problems: Representation and policy learning using graph neural
network and reinforcement learning,’’ Int. J. Prod. Res., vol. 59, pp. 1–18,
Jan. 2021.

[19] O. Vinyals, M. Fortunato, and N. Jaitly, ‘‘Pointer networks,’’ in Proc. Conf.
Neural Inf. Process. Syst. (NeurIPS), 2015, pp. 2692–2700.

[20] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, ‘‘Neural combina-
torial optimization with reinforcement learning,’’ 2016, arXiv:1611.09940.

[21] W. Kool, H. van Hoof, and M. Welling, ‘‘Attention, learn to solve routing
problems,’’ in Proc. Int. Conf. Learn. Represent. (ICLR), 2019.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Conf.
Neural Inf. Process. Syst., 2017, pp. 5998–6008.

[23] J. Fonseca, G. Nelissen, and V. Nélis, ‘‘Schedulability analysis of DAG
tasks with arbitrary deadlines under global fixed-priority scheduling,’’
Real-Time Syst., vol. 55, no. 2, pp. 387–432, Apr. 2019.

[24] R. J. Williams, ‘‘Simple statistical gradient-following algorithms for
connectionist reinforcement learning,’’ Mach. Learn., vol. 8, nos. 3–4,
pp. 229–256, 1992.

[25] N. C. Audsley, ‘‘On priority assignment in fixed priority scheduling,’’ Inf.
Process. Lett., vol. 79, no. 1, pp. 39–44, May 2001.

[26] W. L. Hamilton, ‘‘Graph representation learning,’’ in Synthesis Lectures
on Artificial Intelligence and Machine Learning. San Rafael, CA, USA:
Morgan & Claypool, 2020.

[27] D. Bahdanau, K. Cho, and Y. Bengio, ‘‘Neural machine translation by
jointly learning to align and translate,’’ inProc. Int. Conf. Learn. Represent.
(ICLR), 2015, pp. 1–15.

[28] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio,
‘‘Graph attention networks,’’ in Proc. Int. Conf. Learn. Represent. (ICLR),
2018, pp. 1–12.

[29] D. Clevert, T. Unterthiner, and S. Hochreiter, ‘‘Fast and accurate deep
network learning by exponential linear units (ELUs),’’ in Proc. Int. Conf.
Learn. Represent. (ICLR), 2016, pp. 1–14.

[30] S. J. Russell and P. Norvig, Artificial Intelligence—A Modern Approach,
2nd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 2003.

[31] V. Steinbiss, B. Tran, and H. Ney, ‘‘Improvements in beam search,’’ in
Proc. Conf. Spoken Lang. Process., 1994, pp. 1–4.

[32] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning.
Cambridge, MA, USA: MIT Press, 1998.

158560 VOLUME 9, 2021

H. Lee et al.: Global DAG Task Scheduler Using Deep Reinforcement Learning and Graph Convolution Network

[33] L. Nyman and M. Laakso, ‘‘Notes on the history of fork and join,’’ IEEE
Ann. Hist. Comput., vol. 38, no. 3, pp. 84–87, Jul. 2016.

[34] B. Peng, N. Fisher, and M. Bertogna, ‘‘Explicit preemption placement
for real-time conditional code,’’ in Proc. 26th Euromicro Conf. Real-Time
Syst., Jul. 2014, pp. 177–188.

[35] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and
G. C. Buttazzo, ‘‘Response-time analysis of conditional DAG tasks in
multiprocessor systems,’’ in Proc. 27th Euromicro Conf. Real-Time Syst.,
Jul. 2015, pp. 211–221.

[36] A. Paszke, S. Gross, F.Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, and A. Desmaison, ‘‘PyTorch: An
imperative style, high-performance deep learning library,’’ in Proc. Conf.
Neural Inf. Process. Syst. (NeurIPS), 2019, pp. 8024–8035.

[37] M. Fey and J. E. Lenssen, ‘‘Fast graph representation learning with
PyTorch geometric,’’ 2019, arXiv:1903.02428.

[38] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and K. Smith,
‘‘Cython: The best of both worlds,’’ Comput. Sci. Eng., vol. 13, no. 2,
pp. 31–39, 2011, doi: 10.1109/MCSE.2010.118.

[39] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, ‘‘Improving neural networks by preventing co-
adaptation of feature detectors,’’ 2012, arXiv:1207.0580.

[40] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
in Proc. Int. Conf. Learn. Represent. (ICLR), 2015, pp. 1–15.

[41] M. Blondel, O. Teboul, Q. Berthet, and J. Djolonga, ‘‘Fast differentiable
sorting and ranking,’’ in Proc. Int. Conf. Mach. Learn. (ICML), 2020,
pp. 950–959.

[42] A. Grover, E. Wang, A. Zweig, and S. Ermon, ‘‘Stochastic optimization
of sorting networks via continuous relaxations,’’ in Proc. Int. Conf. Learn.
Represent. (ICLR), 2019.

[43] R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analy-
sis. London, U.K.: Pearson, 2002.

[44] C. M. Bishop, ‘‘Pattern recognition and machine learning,’’ in Information
Science and Statistics, 5th ed. New York, NY, USA: Springer, 2007.

HYUNSUNG LEE was born in Seoul, South
Korea. He received the B.S. degree in com-
puter engineering fromSungkyunkwanUniversity,
Suwon, in 2019, where he is currently pursuing
the master’s degree in electrical and computer
engineering. His research interests include rec-
ommendation systems, cluster orchestration, and
reinforcement learning.

SANGWOO CHO is currently pursuing the bache-
lor’s degree with the Department of Mathematics,
Sungkyunkwan University, Suwon, South Korea.
His research interests include multi armed ban-
dit, theoretical machine learning, and differential
programming.

YEONGJAE JANG received the B.S. degree
in mathematics from Sungkyunkwan University,
Suwon, South Korea, in 2017, where he is cur-
rently pursuing the degree with the Department
of Mathematics. Since April 2021, he has been
working as a Data Engineer. His research interests
include theoretical machine learning and service
optimization.

JINKYU LEE (Senior Member, IEEE) received
the B.S., M.S., and Ph.D. degrees in computer
science from the Korea Advanced Institute of
Science and Technology (KAIST), Republic of
Korea, in 2004, 2006, and 2011, respectively.
In 2014, he joined the Department of Computer
Science and Engineering, Sungkyunkwan Univer-
sity (SKKU), Republic of Korea, where he is
currently an Associate Professor. He has been a
Visiting Scholar/Research Fellow with the Depart-

ment of Electrical Engineering and Computer Science, University of Michi-
gan, Ann Arbor, MI, USA, from 2011 to 2014. His research interests
include system design and analysis with timing guarantees, QoS support, and
resource management in real-time embedded systems, mobile systems, and
cyber-physical systems. He won the Best Student Paper Award from the 17th
IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), in 2011, and the Best Paper Award from the 33rd IEEE Real-Time
Systems Symposium (RTSS), in 2012.

HONGUK WOO (Member, IEEE) was born in
Seoul, South Korea. He received the B.S. degree
in computer science from Korea University, Seoul,
in 1995, and the M.S. and Ph.D. degrees in com-
puter sciences from The University of Texas at
Austin, Austin, TX, USA, in 2002 and 2008,
respectively.

From 2008 to 2018, he worked at Samsung
Research, Samsung Electronics, as a Principal
Engineer and the Vice President. Since 2018,

he has been an Assistant Professor with the Department of Computer Sci-
ence and Engineering, Sungkyunkwan University, Suwon, South Korea. His
research interests include intelligent application, data-driven monitoring,
cloud computing, and networked cyber-physical systems.

VOLUME 9, 2021 158561

http://dx.doi.org/10.1109/MCSE.2010.118

