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ABSTRACT In a traditional real-time system, the major requirement is to finish every real-time task within
its predefined time. However, as a modern real-time system is connected to external networks and its
subsystems are developed by different vendors, it becomes an important requirement to address the problem
of information leakage on resources shared by different real-time tasks. This triggers studies that incorporate
security mechanisms into the real-time scheduling. While it is one of the most well-known approaches to
add the flush task (FT) mechanism and analyze its effect on timing guarantees, the existing FT approaches
have been limited to a real-time system that employs at most one resource shared by real-time tasks executed
on a uniprocessor platform. In this paper, we propose a flush task incorporated priority-inheritance protocol
(FT-PIP) for global fixed-priority multiprocessor scheduling and develop its schedulability analysis, which
is the first attempt that not only (a) supports timing guarantees but also (b) satisfies security constraints for
(c) a multiprocessor platform with multiple shared resources. Via simulations, we demonstrate that FT-PIP
and its schedulability analysis are effective in achieving both (a) and (b) for (c).

INDEX TERMS Real-time scheduling, multiprocessor systems, flush task incorporated priority-inheritance
protocol, information leakage.

I. INTRODUCTION
A system is referred to as a real-time system, if it is
required to be correct in terms of both functionality and
timing [1]. An unmanned reconnaissance aerial vehicle is
a compelling example of a real-time system; it periodically
conducts designated tasks such as receiving commands from
a ground station, observing the target terrain, and sending
the observation result back to the ground station [2]. Such
real-time tasks should be not only performed in a function-
ally correct manner, but also completed until a predefined
time instant called deadline. The latter is referred to as a
real-time constraint, and it is a fundamental issue in designing
real-time systems to satisfy the real-time constraints with
limited computing resources (e.g., CPU, cache, DRAM, I/O
interconnections, etc.). To satisfy the timing constraints for
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various domains of real-time systems, the real-time sys-
tem community has tried to develop a methodology how
to effectively assign computing resources to real-time tasks
(called real-time scheduling algorithm) and a mathematical
method to guaranteewhether every real-time task can be com-
pleted in its corresponding deadline (called schedulability
analysis) [3].

While conventional studies on real-time systems have
mostly focused on the real-time constraints only, recent
studies are trying to incorporate a security constraint into
real-time scheduling algorithms and schedulability analy-
ses [4]–[9]. Information leakage of the traditional real-time
systems was not considered as an important issue compared
to general purpose systems because traditional real-time sys-
tems normally operated in a restricted environment (isolated
from the outside world) with specialized network protocols.
However, there is an increasing security attacks on modern
real-time systems whose subsystems developed by different
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vendors are integrated and/or connected with insecure net-
works. The information leakage problem can often arise in
such integrated systems as some different subsystems share
the same computing resources on which sensitive data (e.g.,
private keys) are gleaned by adversaries via security attacks
(e.g., side-channel attacks) [4].

Among several existing approaches to address the secu-
rity problem for real-time systems, the flush task (FT) is
a well-known mechanism to prevent the information leak-
age on shared resources by conditionally initiating the state
of shared resources before each task is scheduled [5]–[7].
Since such a security mechanism inevitably causes addi-
tional timing overhead, real-time scheduling algorithms and
their schedulability analysis should be adapted. To cope
with this issue, Mohan et al. first proposed a fixed-priority
(FP) non-preemptive scheduling algorithm that incorpo-
rates the FT mechanism and developed its corresponding
schedulability analysis on a uniprocessor platform, which
is based on the task model that enables each task to have
a different security level [6]. The key technique is to
upper-bound the total timing cost of the invoked flush tasks
and incorporate it into the proposed schedulability analy-
sis method. This work was extended by Pellizzoni et al.
to a preemptive scheduling algorithm and a more general
task model referred to as the noleak model [5]. The main
shortage of these methods is limited practicality. This is
because, they are only applicable to a uniprocessor plat-
form for a single type of shared computing resources with-
out considering mutual exclusion in a critical section of
shared resources although modern real-time systems are
normally equipped with multiple processors and shared
resources.

It is well-known that write-operations in a critical section
of a stateful shared resource (e.g., DRAM) conducted by
concurrent accesses of different tasks can cause an undesired
result called data inconsistency. Thus, synchronized mech-
anisms such as semaphore should be effectively utilized to
prevent the data inconsistency. However, such synchronized
mechanisms cause the priority-inversion problem that leads
to the unexpected further waiting time for higher-priority
tasks [10], [11].

As a solution to address such a priority inversion problem,
resource-locking protocols (also known as resource-sharing
protocols) have been extensively studied; the studies dynam-
ically reallocate the priority of tasks to effectively uti-
lize limited computing resources [10], [12], [13]. The
priority-inheritance protocol (PIP) and priority ceiling pro-
tocol (PCP) [10] are the most popular ones, which promote
the priority of tasks to the predefined level to avoid the
priority inversion problem on a uniprocessor platform. The
multiprocessor priority-inheritance protocol (MPIP) [12] and
the distributed priority ceiling protocol (DPCP) [13] are vari-
ants for a multiprocessor platform. However, these protocols
do not consider the security-related constraints although the
information leakage problem should be considered for mod-
ern real-time systems.

In this paper, we aim at satisfying both (i) real-time and
(ii) security constraints for multiprocessor platforms with
(iii) mutual exclusion in every critical section for multiple
shared resources. To this end, we propose the flush task
incorporated priority-inheritance protocol (FT-PIP) for global
FP multiprocessor scheduling, and the new response-time
analysis (RTA) [15] for the FP scheduling under FT-PIP.
Then, we achieve (i) as the proposed RTA guarantees the
schedulability of our scheduling framework. Also, (ii) is real-
ized by incorporating FT into FP scheduling where multiple
types of resources are conditionally flushed in accordance
with the predefined noleak model. We then guarantee (iii) by
additionally applying PIP to the proposed framework for
both (i) and (ii). Among a number of security threats for
real-time systems, we focus on information leakage caused
by the cache-based side channel attack that will be detailed
in Section II-A.

The key challenge to achieve (i), (ii) and (iii) simultane-
ously is as follows. First, the scheduling pattern is highly
sophisticated due to conditionally-invoked FTs (regard-
ing (ii)) for multiple resources and dynamically-changing
task priorities as well as waiting time to enter a critical
section (regarding (iii)). Second, the proposed RTA should
be able to judge whether there is no deadline miss for every
task on the scheduling pattern (regarding (i)). To address the
challenge, we upper-bound the number of FTs invoked during
the execution of each task by transforming it to the problem
of max-flow for each resource type. We then develop the new
RTA that derives upper bounds of timing overhead stemming
from all factors of (ii) and (iii).

This paper makes the following contributions.
• We propose a new noleak model that considers multiple
types of shared resources to satisfy security constraints.

• We propose FT-PIP that incorporates the FT mecha-
nism in accordance with the new noleak model into
the multiprocessor real-time scheduling in which mutual
execution with multiple types of shared resources is
guaranteed under PIP.

• We develop a new RTA to guarantee the schedulability
of real-time tasks under the proposed scheduling frame-
work.

II. ADVERSARY AND SYSTEM MODEL
In this section, we first present our adversary model that
describes assumptions for the considered attacker’s capability
and attack scenario. Then, we present our system model.

A. ADVERSARY MODEL
As we follow the common assumptions of the existing stud-
ies for real-time systems that consider the timing-inference
attacks to induce information leakage on shared resources [4],
[6], [29], [31], we also assume that an adversary knows the
task parameters of a target task (called victim task) for his
security attack and aims at gleaning the sensitive data on
the resources shared by different tasks. This assumption is
based on the fact that many critical functions of a real-time
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control systems are normally conducted periodically, and its
operation period can be deducted by observing its physical
behavior [4], [29]. Also, the attacker will investigate the
design and system details before attacking the target systems.

Among a number of timing-inference attacks exploiting
the deterministic schedules of real-time systems, we take the
cache-based side channel attack for an example described as
follows [32], [33]. In the considered environment, cache sets
are associated with the main memory, a task (called attacker
task denoted by τA ∈ τ ) consecutively executed with a victim
task (denoted by τB ∈ τ ) is hijacked by the attacker. That
is, the execution pattern of τA → τB → τA is exhibited
repetitively, and τB runs a crypto algorithm with sensitive
data such as a private key stored in the main memory. The
attacker tries to infer the address in themainmemory at which
the private key is located by repeating the following three
operations:
• PRIME: τA fills some (or all) cache sets with its own
data before τB performs its execution;

• IDLE: after τA yields (or completes) its execution,
it waits for a certain time while τB executes; and

• PROBE: τA conducts the same operation as PRIME and
measures the time to load its data for all cache sets.

During the PROBE operation, if τB accessed some cache sets,
the cache sets will be replaced by the τB’s data, and then τA
observes the access time larger (due to cache misses) than
that of the other cache sets inducing cache hits. τA repetitively
collects such the timing information and infers the location of
the private key in the main memory.

The success of the above attack is dependent on which
task can be hijacked by the attacker and how narrow the time
range τB can appear. To this end, the attacker first obtains
the exact schedule by observing busy periods deduced by the
idle task when tasks are scheduled by the FP scheduling [28].
When τA executes frequently and its priority is higher than
that of τB, it is more advantageous for the attacker to collect
more information within a short period of time. Our interest
is to prevent such a timing inference attack by conditionally
initiating the status of shared resources when such initiation
is needed according to the associated noleak table for the
considered real-time tasks.

B. SYSTEM MODEL
We consider a set of n sporadic tasks τ = {τ1, · · · , τn},
each of whose characteristic is specified by the minimum
inter-arrival time (also called period) Ti, the worst-case exe-
cution time Ci, and the relative deadline Di [1], [16]. This
indicates that a task τi in a task set τ infinitely invokes a series
of jobs of τi, which satisfy as follows: the time to declare
the completion of execution for any job of τi is at most Ci
time units; the time instants at which two consecutive jobs of
τi are invoked are separated at least Ti time units; and each
job invoked by τi should be completed within Di time units
as a real-time constraint. We also assume that every τi has
a constrained deadline, meaning Di ≤ Ti. A task set τ is
scheduled by a given global, preemptive, work-conserving

scheduling algorithm1 on a platform of identical m ≥ 2
processors.We consider FP scheduling under which a priority
is assigned to each task rather than each job, meaning that
all jobs invoked by a higher-priority task have equally higher
priorities than those invoked by a lower-priority task. Let
LP(τk ) andHP(τk ) denote a set of tasks each of whose priority
is lower and higher than τk , respectively. Without loss of
generality, we assume that a smaller task index i indicates a
higher priority in FP scheduling; we also assume that one time
unit indicates a single quantum.

The q-th job of τi (denoted by Jqi ) is released at rqi and
finished at f qi ; we use the notation Ji if it indicates an arbitrary
job of a task τi. J

q
i has an absolute deadline dqi = rqi + Di,

meaning that Jqi should complete its execution before or at dqi
as a timing constraint. Jqi is said to be schedulable if Jqi can
finish its execution before or at dqi ; τi is said to be schedulable
if every job Jqi invoked by τi is schedulable; and a task set τ is
said to be schedulable if every task τi ∈ τ is schedulable. The
response time Ri of a task τi is defined as max

∀Jqi
(f qi − rqi ),

and J∗i is the job whose (f qi − r
q
i ) is the largest among all jobs

Jqi invoked by τi. Thus, a task set τ is schedulable, by the
definition of the response time, if Ri ≤ Di holds.

We assume that there are g different kinds of resources
λ = {λ1, · · · , λg} shared by different tasks. A lower-priority
task holding a resource λx (1 ≤ x ≤ g ) can be preempted
by a higher-priority task, but a lower-priority task still holds
λx until it explicitly releases λx . We consider non-nested
shared resources, meaning that a job does not request for a
shared resource while holding another one. Also, a resource
λx cannot be used simultaneously by multiple tasks at a time
instant. A task requests for multiple resources multiple times
during its execution. Ni,x denotes the maximum number of
requests made by a single job Ji of τi for λx . For each request
made by a job of τi for λx , let Ci,x denote the maximum (or
worst-case) duration for a job of τi to use resource λx by a
single request; also, letCsum

i,x denotes the maximum (or worst-
case) cumulative duration for a job of τi to use resource λx by
all requests. λ(τi) represents the set of all resources used by
jobs of τi. FT-PIP effectively promotes the priority of a job
Jqi during the job’s execution to prevent the priority-inversion
problem. Such a temporally-promoted priority is referred to
as the effective priority compared to the base priority initially
assigned by the FP scheduler in design time. dλxe denotes
the index of the highest base-priority task among all tasks that
use λx .Cx

ft represents the time required to initiate the status of
resource λx . Table 1 presents notations and their descriptions
used throughout this paper.

We also assume that it is possible for some tasks to execute
without any shared resource. For a resource locking protocol,
we consider PIP [10], [17] for FP scheduling. Section III-B
will detail how PIP operates.

1A scheduling algorithm is said to be global, preemptive and work-
conserving, if the followings holds: each job can migrate from one core to
another (global), each job can be preempted by a higher-priority jobs at any
time (preemptive), and each processor is always kept busy as long as there is
an unfinished, ready job (work-conserving).
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TABLE 1. Notations and their descriptions.

III. FT-PIP
In this section, we introduce the flush task mechanism to pre-
vent information leakage between two tasks associated with
noleak relation by initiating the status of resources shared
by the two tasks. Then, we propose FT-PIP that effectively
incorporates the flush task mechanism into PIP.

A. FLUSH TASK WITH NOLEAK MODEL
For the security model, we adopt the noleak model designed
for real-time systems in the previous study [5], which was
derived from actual examples such as an aircraft system
designed by theDO-178B standard [18] and the ‘‘RePLACE’’
system of Northrup Grumman [19]–[21].

To illustrate the underlying idea of the security model,
we take an antenna controller software (ACSW) [22], [23]
embedded in reconnaissance aerial vehicles as an exam-
ple, which aims at obtaining the signal image of the tar-
get terrain; it transmits and receives radio frequency by
controlling the reconnaissance antenna even when an opti-
cal image cannot be obtained in cloudy whether. ACSW
mainly consists of five real-time tasks that are sched-
uled on a space-specific RTOS (Real-Time Operating Sys-
tem) such as real-time executive for multiprocessor systems
(RTEMS) [24]. The network task (denoted by tNet) period-
ically receives a macro command (MCMD) from a ground
station via the MIL-STD-1553B protocol [25] and inserts it
into a MCMD queue after an integrity test. Then, the plan-
ning task (denoted by tPlan) retrieves each MCMD from
the MCMD queue in a periodic manner and delivers proper
information to other tasks corresponding to the MCMD. The
mode task (denoted by tMode) conducts multiple operations
regarding the internal-mode transition (e.g., high-resolution
or wide-range mode) of the reconnaissance aerial vehicle,
which is performed according to the MCMD. The utility
task (denoted by tUtil) executes multiple work such as FDIR
(fault detection, isolation and recovery) and formats network

TABLE 2. The task parameters of ACSW in milliseconds.

packets containing information of operation results and the
current status of the system that will be transmitted to the
ground station. The preparation task (denoted by tPre) is
performed for the operation preparation whenever the other
tasks are not performed. Table 2 presents task parameters
of ACSW: Ti and Di are determined by a system designer,
and WCET (i.e., Ci) is measured in various actual operation
scenarios on the target system with 256MB SDRAM and a
multi-processor platform based on FT Leon3 CPU architec-
ture (80Mhz clock speed). As shown in Table 2, periods of
tPlan, tNet, tMode and tUtil are harmonic,2 and that of tPlan
is∞ because it executes whenever no other tasks are active.
The relative deadline andWCET of each task are smaller than
its period. The characteristic of tFT(cache) will be explained
later.

The noleakmodel is inspired by the fact that the embedded
software such as ACSW is normally composed of multiple
subsystems developed by different vendors, and the infor-
mation leakage from a security-sensitive task of one vendor
to another task of a different vendor should be prohibited.
For example, tNet could have a higher security level since
it receives a MCMD containing sensitive mission-relevant
information from a ground station, and it is undesirable
for the other tasks such as tPlan to gain the unintended

2Periods are called harmonic if one is a divisor or multiple of another
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FIGURE 1. An example schedule under the FT incorporated priority-inheritance protocol for m = 2.

TABLE 3. An example of noleak relations associated with ACSW.

information. Such a constraint for a resource λx is
presented by the noleak relation that is denoted by
noleak(tNet, tPlan, λx). Table 3 shows noleak relations asso-
ciated with the five tasks of ACSW. ‘‘T’’ in Table 3means that
information leakage from the corresponding task in the same
row to the task in the same column should be prevented, while
‘‘F’’ means the opposite case.

The main idea of FT is to conditionally initialize the
resources shared by the multiple tasks, which can satisfy
the security constraints. The FT mechanism incurs a timing
penalty for such initialization, and the operation and dura-
tion for each FT are determined by which shared resource
is utilized for the considered situation. To illustrate the
above example, we consider shared cache (32KB for data
and instruction caches, respectively) of FT Leon3 CPU. As
described, tNet and tPlan inserts and retrieves MCMDs
in the MCMD queue in every 125 and 62.5 milliseconds,
respectively, and thus related instructions and data are peri-
odically stored in the shared cache. That is, the location of
the MCMD queue is assessed periodically, and it can be
inferred by the carefully designed cache-based side-channel
attack illustrated in Section II-A. Therefore, such information
that remains in the shared cache is needed to be initiated
by the cache-related FT (denoted by tFT(cache)) after a job

of tNet or tPlan completes its execution; note that Table 3
presents such constraints. The cache-related FT overwrites
cache sets regarding the information of the MCMD queue
with zero data, or it just supplies null voltage to the cache
for a short duration. Table 2 also includes the task parameters
of tFT(cache) whose WCET is 0.5 milliseconds. tFT(cache)
executes non-preemptively until it completes its execution
without a notion of deadline.

B. PROTOCOL
PIP effectively promotes the priority of a job Jk of a task τk
holding a shared resource λx so that Jk can finish its execution
without yielding λx before its completion. The mechanism
of PIP guarantees mutual execution for a critical section that
exists during usage of a share resource λx .
The priority-inheritance under PIP occurs when Jk is

holding a shared resource λx for its execution, and another
higher-priority job Ji of a task τi requests λx ; in this case,
the priority of Jk is promoted to i.We assume that the effective
priority of a task is initially equal to the base priority of the
task, and a temporally-promoted effective priority of a task is
set back to the base priority of the task at the next job release
time of the task.

Hence, the execution of Ji can be also hindered by other
lower-priority jobs under PIP because the effective priority
(promoted from the base priority by the priority-inheritance
policy) of a lower-priority job can be higher than τi.
Figure 1 presents an example schedule of τ = {τ1, · · · , τ5}

with their base-priorities represented by task indexes
1–5 under PIP for m = 2. The example assumes that τ2, τ5
and τ6 share λ1. Also, τ3, τ4 and τ7 share λ2, and τ1 executes
without any shared resource. The table of noleak relations
is constructed for each resource, λ1 and λ2, respectively;
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noleak(τ5, τ2, λ1) = T and noleak(τ4, τ3, λ2) = T are hold,
and the other relations are all F. Note that each task may
request multiple types of shared resources multiple times in
our system model, but each task in the example requests a
single shared resource during its execution for simplicity.

At the beginning, τ5 and τ4 perform their executions with
λ1 and λ2. Then, τ2 arrives and requests λ1 at t1, at which the
effective priority of τ5 is promoted to 2 because τ5 is holding
λ1. At t2, τ1 and τ3 arrive, and τ3 requests λ2, which induces
that the effective priority of τ4 is promoted to 3; this is because
τ4 is holding λ2, and τ4 is preempted by τ1 due to its effective
priority lower than that of both τ1 and τ5. At t3, τ5 completes
its execution, and a FT is invoked to initiate the status of λ1
before τ2 begins its execution by holding λ1. At t4, τ1 and a
FT finish their executions, and τ2 with λ1 and τ4 with λ2 start
their executions. Then, their executions are completed at t5
and t6, respectively. Also, τ6 starts its execution with λ1 at t5,
and a FT is not invoked according to the predefined noleak
relations. At t6, τ1 and τ2 with λ1 start their executions and
complete them at t7. Thereafter, τ4 with λ2, a FT and τ3 with
λ2 begin their execution at t7, t8 and t9, respectively. At t9,
τ7 arrives and requests λ2, but its execution begins after τ3
finishes its execution at t10.

IV. RTA FRAMEWORK FOR FT-PIP
In this section, we first review the existing RTA framework
for FP scheduling on a multiprocessor platform that does not
consider shared resources and FTs. We then propose a new
RTA framework for the FP scheduling under FT-PIP to judge
schedulability of a set of real-time tasks.

A. EXISTING RTA FRAMEWORK
The underlying principle of the RTA framework is to find an
upper bound of the interval length between the release time
and the finishing time of every job of a task τk . Suppose that
we focus on a job of τk , called J

q
k , whose release time is rqk .

For Jqk not to execute at a time slot in an interval of [rqk , r
q
k+`),

m other jobs should be executed. To express such interference,
let I ik (r

q
k , r

q
k + `) denote the amount of interference of τi on

τk in an interval [rqk , r
q
k + `), which is defined as the length

of cumulative intervals in [rqk , r
q
k + `) such that Jqk cannot

execute but jobs of τi execute. Considering that m other
higher-priority jobs are needed for Jqk not to be executed at a
time slot, the length of cumulative intervals in [rqk , r

q
k+`) such

that Jqk cannot execute owing to the executions of other jobs

can be represented by
(∑

τi∈τ\{τk }
I ik (r

q
k , r

q
k + `)

)
/m. Also,

out of ` time slots in [rqk , r
q
k +`), we focus on the (`−Ck+1)

time slots. If Jqk cannot be executed in the (`− Ck + 1) time
slots, it can execute at most for (Ck − 1) time units, which
means Jqk cannot finish its execution until rqk + `. Since we
focus on the (`−Ck + 1) time slots, the amount of execution
of jobs of τi at those slots is upper-bounded by (`− Ck + 1).
This reduces the amount of calculated interference from(∑

τi∈τ\{τk }
I ik (r

q
k , r

q
k+`)

)
/m to

(∑
τi∈τ\{τk }

min
(
I ik (r

q
k , r

q
k+

`), ` − Ck + 1
))
/m [3], [26]. Therefore, if the sum of the

WCET of Jqk itself and its interference at the (` − Ck + 1)
time slots in [rqk , r

q
k + `) is no larger than `, Jqk finishes its

execution before rqk + `, which is recorded in the following
lemma.
Lemma 1 (From [3], [26]): A task τk ∈ τ is schedulable,

if every job Jqk satisfies the following inequality for at least
one Ck ≤ ` ≤ Dk .

Ck +
⌊
1
m

∑
τi∈τ\{τk }

min
(
I ik (r

q
k , r

q
k + `), `− Ck + 1

)⌋
≤ `.

(1)

Since the exact calculation of I ik (r
q
k , r

q
k + `) is impossible

before run-time, existing studies developed an upper bound
of I ik (r

q
k , r

q
k + `). The upper bound is a function of the task

parameters of τi, those of τk and the interval length ` only,
and it should be calculated without requiring any run-time
information. Then, the RTA framework finds ` that satisfies
Eq. (1) as follows. At the beginning, ` is set to Ck , and the
task is deemed schedulable if the inequality (i.e., Eq. (1))
holds. Otherwise, ` is set to the previous value of the LHS
of the inequality, and it tests the inequality again; it repeats
the procedure until the inequality holds or ` becomes larger
than Dk . During such iterations, it judges that τk is deemed
schedulable if it finds a value of ` in [Ck ,Dk ] that satisfies
the inequality, and deemed unschedulable if ` becomes larger
than Dk . Then, the value of ` in the former (if any) is denoted
by Rubk , which is an upper-bound of Rk (i.e., the response time
of τk ).

B. NEW RTA FRAMEWORK FOR FT-PIP
In this subsection, we propose a new RTA framework for
FT-PIP by extending the existing RTA framework introduced
in the previous subsection. To this end, we need to investigate
how the target resources shared by multiple tasks and the FT
mechanism that conditionally initiates the status of shared
resources affect the value of Rubk under our system model
described in Section II. The upper-bounded response timeRubk
under FT-PIP is determined by the following five factors:
(i) the worst-case execution Ck ,
(ii) the total amount of time units in which Jqk waits to get all

resources λx ∈ λ(τk ),
(iii) the total amount of time units in which Jqk ’s execution

is interfered because of FTs to initiate the status of all
resources λx ∈ λ(τk ),

(iv) the total amount of time units in which Jqk ’s execution
is hindered due to either other jobs that request their
required resources λy ∈ λ\λ(τk ) or other jobs that do not
require any resource, whose effective or base priorities
are higher than Jqk ’s one, and

(v) the total amount of time units in which Jqk ’s execution is
interfered due to FTs to initiate the status of λy ∈ λ \
λ(τk ).

While (i) is given by our system model, (ii) is
upper-bounded by the following two terms:
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FIGURE 2. The worst-case scenario in which the amount of execution of
jobs of τi performed in an interval of length ` is maximized.

• ILk : the upper-bounded total amount of time that a job
Jqk waits to get its required resource λx while λx is used
by lower base-priority (whose effective priority may be
higher than or equal to k) jobs, and

• IHk (`): the upper-bounded total amount of time that Jqk
waits to get its required resource λx while λx is used by
higher base-priority jobs in an interval of length `.

Next, (iii) is upper-bounded by the following term:
• FTk (`): the upper-bounded total amount of time inwhich
Jqk ’s execution is interfered due to FTs to initiate the
status of all resources λx ∈ λ(τk ) in an interval of
length `.

Also, (iv) can be upper-bounded by the following three
terms:
• IL ′k (`): the upper-bounded total amount of time that
lower base-priority jobs (but with higher effective-
priority) Jqi execute with their required resources λy ∈
λ(τi ∈ LP(τk )) in an interval of length `,

• IH ′k (`): the upper-bounded total amount of time that
higher base-priority jobs Jqi execute with their required
resources λy ∈ λ(τi ∈ HP(τk )) in an interval of length `,
and

• IH ′′k (`): the upper-bounded total amount of time that
higher base-priority jobs Jqi execute without any
resource in an interval of length `.

Finally, (v) is upper-bounded by the following term:
• FT ′k (`): the upper-bounded total amount of time units in
which Jqk ’s execution is interfered due to FTs to initiate
the status of λy ∈ λ \ λ(τk ) in an interval of length `.

To upper-bound the execution performed in an interval
of length `, we use the notion of workload for each task
τi proposed in [3]. As shown in Figure 2, in the scenario
in which the amount of execution of τi is maximized in
an interval of length `, the first job begins its execution at
the left-most of the interval of length `, and finishes at its
absolute deadline dqi ; thereafter, the successive jobs start its
execution as early as possible. The amount of execution of
jobs of τi in an interval of length ` under the scenario is called
workload Wi(`). To express the upper-bound of execution
during holding a resource λx ∈ λ(τi), we generalize the notion
of workload as follows. As shown in Figure 3, the portion
z of Ci of each task is maximally included in an interval of
length ` such that the execution for z is performed as late
as possible for the left-most job in the interval, and succes-
sive jobs begin their executions for z as early as possible.

FIGURE 3. The worst-case scenario in which the amount of execution of
jobs of τi for the portion z performed in an interval of length ` is
maximized.

Let Ni(`, z) is the number of jobs whose execution for the
portion z is fully performed in an interval of length `, and
Wi(`, z) is cumulative execution performed for z included in
jobs of a task τi. Ni(`, z) and Wi(`, z) can be upper-bounded
as follows:

Ni(`, z) =
⌊
`− z+ Di

Ti

⌋
, (2)

Wi(`, z) = z · Ni(`, z)+ min
(
z, `− z+ Di − Ti · Ni(`, z)

)
.

(3)

The execution of Jqk with its required resources λx is hin-
dered when λx is used by other jobs or the status of λx is
initiated by a FT, even if there are multiple idle processors.
On the other hand, m jobs (or FTs) are needed to hinder Jqk ’s
execution when such jobs (or FTs) do not use λx . Based on
the reasoning, we derive the following theorem.
Theorem 1: A task τk scheduled by FP scheduling with

FT-PIP can be schedulable, if every job Jqk of τk satisfies the
following inequality for at least one Ck ≤ ` ≤ Dk .

Ck + ILk + IHk (`)+ FTk (`)

+

⌊
IH ′k (`)+ IL

′
k (`)+ IH

′′
k (`)+ FT

′
k (`)

m

⌋
≤ `. (4)

Then, how to find ` for the theorem is the same as the
procedure explained in Section IV-A.

We now derive each term in Eq. (4) as follows; note that
Ck is given from our system model. During execution of Jk ,
a resource λx ∈ λ(τk ) is requested Nk,x times. If multiple
jobs of tasks τi in LP(τk ) request λx during their execution,
the waiting time to get a resource λx for Jk is upper-bounded
by themaximum value amongCi,x of tasks τi in LP(τk ). Thus,
ILk is calculated as

ILk =
∑

λx∈λ(τk )

Nk,x · max(
τi∈LP(τk )

)
∧

(
λx∈λ(τk )∩λ(τi)

)Ci,x . (5)

While ILk is determined by how many times Jk requests a
resource λx ∈ λ(τk ) during its execution, IHk (`) is dependent
on how long a job Ji of a task τi ∈ HP(τk ) executes with λx ∈
λ(τk ) in an interval of length `. This is because usage of λx ∈
λ(τk ) for Jk is guaranteed after the lower-priority job execut-
ing with λx releases λx , while it is not if a higher-priority job
is holding λx and another higher-priority job is waiting to get
λx . Using Csum

i,x that represents the maximum (or worst-case)
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cumulative duration for a job of τi to use resource λx by all
requests, we derive IHk (`) as follows:

IHk (`) =
∑

τi∈HP(τk )

Wi

(
`,

∑
λx∈λ(τi)∩λ(τk )

Csum
i,x

)
. (6)

We will define function maxflow(τk , `, λx) that upper-
bounds the number of FTs invoked in [rk , rk+`) to initiate the
status of a resource λx in the next section. Using the function,
FTk (`) is calculated as

FTk (`) =
∑

λx∈λ(τk )

maxflow(τk , `, λx) · Cx
ft . (7)

Suppose that a job of a lower-priority task τi ∈ LP(τk ) uses
a resource (that is not used by τk ) λy ∈ λ(τi)\λ(τk ), and there
is at least one task τj that uses λy and has a priority higher than
τk (i.e., τj ∈ HP(τk )). Then, τi’s priority can be promoted
to a priority higher than τk due to the priority-inheritance
policy of FT-PIP, thereby contributing to the interference on
τk . Thus, IL ′k (`) is calculated by

IL ′k (`) =
∑

τi∈LP(τk )

Wi

(
`,

∑(
λy∈λ(τi)\λ(τk )

)
∧

(
dλye<k

)Csum
i,y

)
. (8)

The execution of τk can be hindered in a time slot when
there are m jobs of higher-priority tasks τi ∈ HP(τk ) that use
λy ∈ λ(τi)\λ(τk ) in the time slot. Hence, the following derive
IH ′k (`) and IH

′′
k (`).

IH ′k (`) =
∑

τi∈HP(τk )

Wi

(
`,

∑
λy∈λ(τi)\λ(τk )

Csum
i,y

)
(9)

IH ′′k (`) =
∑

τi∈HP(τk )

Wi

(
`,Ci −

∑
λy∈λ(τi)\λ(τk )

Csum
i,y

)
(10)

Using the function maxflow(τk , `, λy), we calculate FT ′k as
follows.

FT ′k (`) =
∑

τi∈τ\τk

∑
λy∈λ(τi)\λ(τk )

maxflow(τk , `, λy) · C
y
ft (11)

V. FT BOUNDS
In the previous section, we upper-bound the amount of exe-
cutions of higher effective- or base-priority jobs performed
in an interval of length ` to develop a new RTA for FT-
PIP. The remaining issue is to derive the maxflow(τk , `, λx)
function for calculating FTk (`) and FT ′k (`). In this section,
we transform the problem of bounding the number of FTs to
initiate the status of λx and λy invoked during the execution
of a job Jk of a task τk under FT-PIP, to the max-flow problem
to calculate FTk (`) and FT ′k (`). Focusing on the previous
study [6] initially proposed for non-preemptive scheduling
that considers a single resource without mutual exclusion on
uniprocessor platforms, we extend its approach to FT-PIP that
considers multiple types of resources with mutual exclusion
on multiprocessor platforms.

We have the following observation regarding FT invoca-
tion under PIP.

Observation 1: A FT for λx is invoked, only when a
job Ji completes the usage for λx , a successive job Jj
begins the usage for λx , and there is a noleak relation
noleak(τi, τj, λx) = T .
Between the start and completion of execution of Jqi that

holds a resource λx ∈ λ(τi), only two types of schedule
events can be made: preemption and priority-inheritance. Jqi
can be preempted by a higher effective- or base-priority job,
but it does not yield λx until J

q
i completes its execution (e.g.,

between t2 and t4 in Figure 1). Also, Jqi ’s effective priority
can be promoted by the policy of PIP when another job Jpj
has a higher priority and requests the same resource λx ∈
λ(τi), but it continues its execution by holding λx (e.g., t1
in Figure 1). Thus, a FT is invoked to initiate the status of
λx only when a job J

q
i completes its usage for λx and another

job Jqj begins its usage for λx in accordance with its noleak
relation, i.e., noleak(τi, τj, λx) = T .
Observation 1 implies that the number of FTs invoked to

initiate the status of λx ∈ λ(τk ) in an interval of length `
depends on (i) the number of resource requests for λx of each
job, (ii) execution sequence and (iii) noleak relations of them.
For example, Figure 4 illustrates the execution patterns of
four tasks from τ1 to τ4 with a shared resource in an interval
of length `. As shown in Figure 4, each job of τ1, τ2, τ3, and
τ4, requests λ1 one, two, one, and three times, respectively.
Then, a FT can be invoked when a job starts its execution with
λ1. Thus, the number of invoked FTs for λ1 in the interval of
length ` in Figure 4 cannot be greater than eight because λ1
is used nine times if we restrict the scope of interest to the
interval of length `.

FIGURE 4. An example of invoked jobs and their resource request
patterns in an interval of length `.

To simplify the problem, we address (ii) by finding a
resource-usage sequence producing the maximum number of
FTs invoked among possible permutations of the sequences
in an interval of length `. To this end, we transform our
problem to the max-flow problem by utilizing a notion of
noleak graph.
The followings are the construction rules of the noleak

graph for λx in the interval of length `.
• For a task τi and the number of requests for λx in
the interval of length ` (denoted by Ni,x(`)), send-
ing and receiving nodes (denoted by sendαi and recvαi ,
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TABLE 4. An example of noleak relations for the example in Figure 4.

for 1 ≤ α ≤ Ni,x(`), respectively) are created. Ni,x(`) is
obtained by multiplying Ni,x and the number of τi’s jobs
in `.

• A directed edge from sendαi to recvβj is created if
noleak(τi, τj, λx) = T , for 1 ≤ β ≤ Ni,x(`).

The followings are the constraints of directed and FT edges
of a noleak graph.
• A sending node sendαi has at most one FT edge.
• A receiving node recvβj has at most one FT edge.

FIGURE 5. An example of the noleak graph for the example in Figure 4.

Then, maxflow(τk , `, λx) upper-bounds the number of
invoked FTs for λx in an interval of length ` (e.g., [r∗k , r

∗
k +`))

as described in Figure 5, which illustrates an example of the
noleak graph generated for λx shared by four tasks in an
interval of length ` in Figure 4. In Figure 5, a circle drawn
with a solid line represents a sending node, and that with
a dotted line represents a receiving node. Also, the number
in a circle represents the task index of the corresponding
job. A directed dotted line from a sending node sendαi to
a receiving node recvβj represents a directed edge, which
indicates that there is a noleak relation noleak(τi, τj, λx) = T .
A directed solid line from a sending node sendαi to a receiving
node recvβj represents a FT edge, which implies that a FT is
invoked between Ji and Jj.

VI. DISCUSSION
For an identical multi-processor platform, constrained-
deadline tasks (i.e., Di ≤ Ti), and a real-time constraint, it
is well-known that the problem of finding a feasible (i.e.,
schedulable) schedule (resulted from any scheduling algo-
rithm) is NP-hard in a strong sense [34]. As we consider
timing, security constraints, and mutual exclusion simulta-
neously, it should be NP-hard when it comes to finding a
scheduling algorithm that always yields a feasible schedule
if it exists. Thus, we consider a heuristic approach such as
the fixed-priority scheduling as a number of existing studies
did. That is, FT-PIP is heuristic for the problem of real-time
scheduling algorithm that is NP-hard. When it comes to the
problem of schedulability analysis, to find the exact response
time is NP-hard in a strong sense as well even for the
uni-processor case [35], and thus it is naturally NP-hard for
our multi-processor case. To address the problem, we adopt
RTAwhose time complexity isO(n2 ·maxT ) (which is pseudo
polynomial) where n is the number of tasks in a task set τ
and maxT is the maximum among all tasks’ periods in τ .
Then, the max-flow problem to upper-bound the number of
invoked flush tasks in each iteration of RTA is solved inO(n3)
(e.g., Ford-Fulkerson algorithm), thereby resulting in the time
complexity O(n5 · maxT ) for our proposed schedulability
analysis.

There are a number of other defense methods such as
schedule randomization protocol for real-time systems. For
example, TaskShuffler [29] is a well-developed schedule
randomization protocol, and it would be very interesting if
we can compare the performance of TaskShuffler and our
proposed method with the same performance metric. The
underlying idea of TaskShuffler is to randomize the schedul-
ing pattern of the given scheduling algorithm without any
deadline miss, and the degree of randomness is measured by
a notion of schedule entropy. To express the schedule entropy
of our proposed method and justify it would be potential
following work of our study.

VII. EVALUATION
In this section, we evaluate the effectiveness of FT-PIP under
varying system parameters in our experiment environment.
To this end, we randomly generate a number of task sets
according to the well-known task-set generation method
referred to as UUnifast-discard [27]. To generate a task
set, UUnifast-discard basically has three input parameters:
(i) the number of processors m (4 and 8), (ii) the num-
ber of tasks n (m + 1, 1.5m, 2m, 2.5m, 3m, 3.5m, and 4m)
in each task set, and (iii) the task set utilization
U (0.1m, 0.2m, 0.3m, 0.4m, 0.5m, and 0.6m) that is defined
as
∑
τi∈τ

Ci/Ti. For a given task utilization for τi (denoted
by ui) assigned by UUnifast-discard with given choices for
(i), (ii) and (iii), Ti is randomly selected in [1, 1000], Ci
is computed as ui · Ti, and Di is set to Ti. We additionally
consider an input parameter for our resource model: (iv) the
number of considered resources γ (1/4m, 1/2m, and m).
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Then, Ni,x , Csum
i,x , and Cmax

i,x are determined as follows. Ni,x is
uniformly selected in {1, 2, 3}; Csum

i,x is determined by a ran-
dom real value in [0.1, 1]·Ci/γ ; andCmax

i,x is set toCsum
i,x /Ni,x .

Also, we consider (v) the flush cost Cx
ft (2, 3, 4, · · · , 19, 20),

defined as the time required to initiate the status of the
shared resource. For a given value Cx

ft , we assume that every
considered resource in a task set requires the same Cx

ft to
cleanse its information. Next, each element of the n-by-n
noleak table for each resource λx ∈ λ is randomly set
to either 0 or 1. Thereafter, the element intersected by the
two tasks τi and τj in the noleak table for λx is set to 0 if
they do not share the resource λx . For each combination of
input parameters (i)–(v), we generate 1,000 task sets, thereby
resulting in 2 · 7 · 6 · 3 · 19 = 4, 788, 000 task sets in total. As
a performance metric, we measure the number of task sets
deemed schedulable by the proposed schedulability test in
Theorem 1.

To investigate the performance of our proposed framework
in varying parameter settings, we consider the following three
RTA tests for the RM (Rate-Monotonic) scheduling algo-
rithm, under which a task with a smaller period has a higher
priority than a task with a larger period.

• PIP: RTA in [15] for PIP incorporated RM without con-
sidering a security constraint.

• FT-PIP-ob: RTA in Theorem 1 for FP-PIP incorporated
RM considering a security constraint, using a naive
upper-bound forFTk (`) andFT ′k (`), which is the number
of jobs executed before Jk of τk completes its execution
in an interval of length `, i.e.,

∑
τi∈HP(τk )

⌈
`
Ti

⌉
.

• FT-PIP-mf: RTA in Theorem 1 for FT-PIP incorporated
RM considering a security constraint, using Eqs. (7) and
(11) for FTk (`) and FT ′k (`), respectively.

Figures 6(a)-(h) show the experiment results for m = 4
with various input parameter settings. In particular, the figure
plots the number of tasks deemed schedulable by the cor-
responding schedulability tests over varying task set utiliza-
tion U (in Figures 6(a) and (b)), different number of tasks n
(in Figures 6(c) and (d)), varying number of resources γ
(in Figures 6(e) and (f)), and different flush cost Cx

ft (in
Figures 6(g) and (h)). The caption of each figure represents
the input parameter settings other than the considered one
shown in the x-axis of each figure. For example, the input
parameter settings for Figure 6(a) are m = 4, n = 6, γ = 1
and Cx

ft = 2, and the figure’s x-axis represents varying U
(i.e., the task set utilization). Note that, as mentioned earlier,
we generate 1,000 task sets for each input parameter setting,
and thus each point in each figure in Figure 6 represents the
number of tasks deemed schedulable among 1,000 generated
tasks; it does not indicate the average value of multiple
tries.

We have the following observations from Figure 6.

O1. There is a larger performance gap between PIP and
FT-PIP-ob while FT-PIP-mf moderately narrows down
the gap under every input parameter setting, as shown in
all figures in Figure 6.

O2. The performance of FT-PIP-mf and FT-PIP-ob
decreases by increasing values of U , n, γ , and Cx

ft , as
shown in all figures in Figure 6.

O3. The performance of PIP is not affected by the value of
Cx
ft (as shown Figures 6(a)-(f)), but it is affected by the

value of γ (as shown Figures 6(g)-(h)).
O1 demonstrates FT-PIP-mf’s superior performance in

upper-bounding the number of FTs invoked during a job Jqk ’s
execution by translating it to the max-flow problem. On the
other hand, FT-PIP-ob derives it by counting the number
of jobs executed before Jqk completes its execution, which
worsens the performance of PIP significantly. For example,
for U = 0.4 in Figure 6(a), the number of schedulable
task sets under PIP, FT-PIP-mf and FT-PIP-ob are 842, 816,
and 145, respectively, out of 1000; thus, FT-PIP-ob obtains
only 145/842 = 17.2% of the performance of PIP while
FT-PIP-mf does 816/842 = 96.9%.

Increasing values ofU , n, γ , and Cx
ft result inO2 with their

own different reasons. As the value ofU (with the fixed value
of n) increases, the utilization (Ci/Ti) of each task in a task
set may increase, and this increases the worst-case execution
time Ci and the worst-case interference from higher-priority
tasks for each task. Thus, the worst-case response time of
each job tends to increase with a high probability. The larger
value of n (with the fixed value of U ) also produces a smaller
number of task sets deemed schedulable under the corre-
sponding schedulability tests. This is because the correspond-
ing schedulability tests are based on the notion of workload
Wi(`) and Wi(`, z) in an interval of length ` (as illustrated
in Figures 2 and 3). The notion of workload is used to derive
the worst-case interference from higher-priority tasks, and it
calculates the upper-bounded (not exact) amount of execution
of a higher-priority task in an interval of length `. Thus,
as the number of tasks in a task set increases, the pessimistic
calculation of the interference stands out more. A larger
value of γ results in the decreased performance of the cor-
responding schedulability tests owing to a similar reason.
FT-PIP-mf and FT-PIP-ob derive the worst-case waiting time
to obtain a certain shared resource even though the worst-case
scenario may not always happen. Also, a noleak table is
required for each resource, implying that the number of
FTs invoked during the execution of a job may increase.
These two factors inevitably decrease the performance of the
corresponding schedulability analysis. Finally, the increased
value of Cx

ft degrades the possibility of timely execution
because it surely increases the worst-case response time of
each job when the upper-bounded number of FTs is not
changed.
O3 holds due to the property of PIP. That is, PIP does not

consider the security constraint, and thus its performance is
not affected by the value of Cx

ft as shown in Figures 6(g)
and (h). On the other hand, it uses the same techniques
as those used by FT-PIP-mf and FT-PIP-ob to derive the
worst-case response time for each job. Therefore its perfor-
mance decreases with increasing value of U , n, and γ due to
the same reasons explained so far.
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FIGURE 6. Experiment results for m = 4.
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VIII. RELATED WORK
In literature, many studies considering security for real-time
systems were conducted. In [28], Volp et al. proposed a
modified FP real-time scheduler to prevent information leaks
by investigating how much time is required for attackers to
access sensitive data on shared resources. They effectively
utilized an idle task for preventing attackers from having
enough time to examine the resourced shared by real-time
tasks. Yoon et al. [29] proposed a scheduling randomization
protocol for a set of tasks scheduled according to the FP
scheduler, which provides obfuscation against timing infer-
ence attacks. At each scheduling decision, a budget of allow-
ing priority inversion is calculated, and a job is randomly
selected instead of selecting the job with the highest priority.
Then, executing such a randomly-selected job is switched to
executing the highest-priority job when the budget becomes
zero without violating any job deadline.

A notion of FT was first incorporated into the FP
non-preemptive scheduler for uniprocessor platforms in [6].
Mohan et al. [6] considered a task model that each task
has a different security level, and information leakage can
happen from a high security-level task to a low security-level
one. To judge schedulability of a set of tasks, they trans-
form the problem of bounding the number of invoked FTs
during each job’s execution to the problem of max-flow.
Pellizzoni et al. [5] extended this work to preemptive schedul-
ing and a more general task model referred to as the noleak
model for uniprocessor platforms. Baek et al. [7] incorpo-
rated the notion of FT into mixed-criticality systems where
tasks can have different level of assurance according to its
criticality level. However, these studies targeted a uniproces-
sor platform without considering resource-locking protocols.

The resource-locking protocol has been extensively
studied to address the priority inversion problem; by dynam-
ically changing the priority of tasks, the protocol is capa-
ble of effectively utilizing limited computing resources [10],
[12], [13]. PIP and PCP [10] are the most well-known ones,
which promote the priority of tasks to the predefined level
to avoid the priority inversion problem on a uniprocessor
platform. MPIP [12] and DPCP [13] are variants for a mul-
tiprocessor platform, which have been also proposed for
various multiprocessor scheduling algorithms such as Pfair
scheduling [14], partitioned scheduling [30] and global EDF
scheduling [1]. Although the information leakage problem
should be addressed for the state-of-the-art real-time systems,
these protocols, however, did not consider the security-related
constraints.

The scheduling problem for the mixture of dependent tasks
and independent tasks has been addressed in various domains.
In [36], the non-preemptive scheduling problem of periodic
tasks with data dependency for heterogeneous multiprocessor
platforms is considered. Data dependency is presented by a
notion of directed acyclic graph, and the proposed method
exploits linear programming to determine the task schedu-
lability by considering constraints of space, time and prece-
dence relationship. In [37], task partitioning algorithm and

schedulability analysis are proposed to determine a strictly
periodic task’s valid start time and the number of processors
required for the given tasks to run without any collision.
In [38], mixed integer linear programming is applied to solve
the coverage path planning problem that aims at minimizing
the completion time of coverage tasks for autonomous het-
erogeneous unmanned aerial vehicles. However, few of them
have addressed security issues.

IX. CONCLUSION
In this paper, we proposed FT-PIP, which incorporates the
FT mechanism into multiprocessor real-time scheduling in
which mutual exclusion with multiple types of resources
is guaranteed under PIP. To this end, we identify a group
of delays necessary to enable the FT mechanism, derive
their upper bounds, and complete the schedulability analysis
for FT-PIP by utilizing the upper bounds. Via simulations,
we demonstrated that FT-PIP is effective in satisfying both
real-time constraints and security ones on a multiproces-
sor platform with multiple shared resources. In the future,
we would like to extend this work for a more general sys-
tem model such as mixed-criticality systems. As stated in
Section VII, our simulation environment includes a few
assumptions such as no preemption or migration cost. It can
be a direction of future work to incorporate such cost.
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