
electronics

Article

Analysis of the K2 Scheduler for a Real-Time System with
an SSD

Sanghyeok Park and Jinkyu Lee *

����������
�������

Citation: Park, S.; Lee, J. Analysis of

the K2 Scheduler for a Real-Time

System with an SSD. Electronics 2021,

10, 865. https://doi.org/10.3390/

electronics10070865

Academic Editor: Paolo Torroni

Received: 15 March 2021

Accepted: 2 April 2021

Published: 6 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea;
tkdgur5273@skku.edu
* Correspondence: jinkyu.lee@skku.edu; Tel.: +82-31-290-7691

Abstract: While an SSD (Solid State Drive) has been widely used for storage in many computing
systems due to its small average latency, how to provide timing guarantees of a delay-sensitive
(real-time) task on a real-time system equipped with an SSD has not been fully explored. A recent
study has proposed a work-constraining I/O scheduler, called K2, which has succeeded in reducing
the tail latency of a real-time task at the expense of compromising the total bandwidth for real-time
and non-real-time tasks. Although the queue length bound parameter of the K2 scheduler is a key
to regulate the tradeoff between a decrease in the tail latency of a real-time task and an increase
in penalty of the total bandwidth, the parameter’s impact on the tradeoff has not been thoroughly
investigated. In particular, no studies have addressed how the case of a fully occupied SSD that
incurs garbage collection changes the performance of the K2 scheduler in terms of the tail latency of
the real-time task and the total bandwidth. In this paper, we systematically analyze the performance
of the K2 scheduler for different I/O operation types, based on experiments on Linux. We investigate
how the performance is changed on a fully occupied SSD due to garbage collection. Utilizing the
investigation, we draw general guidelines on how to select a proper setting of the queue length
bound for better performance. Finally, we propose how to apply the guidelines to achieve target
objectives that optimize the tail latency of the real-time task and the total bandwidth at the same
time, which has not been achieved by previous studies.

Keywords: SSD (Solid State Drive); I/O scheduler in Linux Kernel; the K2 scheduler; timing guaran-
tees; real-time systems; experiments

1. Introduction

Nowadays, an SSD (Solid State Drive) is widely deployed in computing systems
from small embedded devices to large-scale high-performance servers. In particular, many
computing systems in which the operating system is Linux are also equipped with an SSD
as the main storage instead of an HDD (Hard Disk Drive). While most existing studies
for an SSD have been confined to improving the average performance [1–13], only a few
studies have aimed at addressing timing guarantees on an SSD [14–19]. Timing guarantees
of real-time tasks are essential for a real-time system in which the system’s validity depends
not only on the functional correctness, but also on the temporal correctness (i.e., whether
a given task is finished before its predefined deadline). The existing studies that support
a real-time task on an SSD have focused on the latency of internal I/O operations and
modified mechanisms of the FTL (Flash Translation Layer); however, modifying the FTL is
usually not applicable to commercial SSDs.

A recent study has focused on the I/O scheduler in Linux Kernel and developed a
work-constraining I/O scheduler, called K2 [20]. Compared to modifying the FTL, modify-
ing the I/O scheduler in Linux Kernel is more effective in terms of ease of implementation
and wide applicability to most (if not all) SSDs. The core mechanism of the K2 scheduler
is to restrict the queue length bound, which is the maximum number of I/O requests in
flight processed at the same time in the NVMe (Non-Volatile Memory Express) storage

Electronics 2021, 10, 865. https://doi.org/10.3390/electronics10070865 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2332-1996
https://doi.org/10.3390/electronics10070865
https://doi.org/10.3390/electronics10070865
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10070865
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10070865?type=check_update&version=1


Electronics 2021, 10, 865 2 of 15

device. Targeting the situation where an SSD is not fully occupied, the mechanism enables
a real-time task to reduce its tail latency significantly at the expense of compromising the
total bandwidth of the real-time task and non-real-time tasks. Although the queue length
bound parameter of the K2 scheduler is a key to regulate the tradeoff between a decrease
in the tail latency of a real-time task and an increase in penalty of the total bandwidth, the
parameter’s impact on the tradeoff has not been thoroughly investigated. Especially, it has
not been addressed how K2’s performance is changed on a fully occupied SSD in which
garbage collection occurs.

In this paper, we perform various experiments on a computing system equipped with
an SSD in which the operating system is Linux. Based on the experiments, we systematically
analyze the performance of the K2 scheduler for different settings of the queue length
bound, different I/O operation types and even different SSD occupancy (i.e., whether
an SSD is partially or fully occupied). To this end, we first analyze the performance
on a partially occupied SSD and then investigate how the performance is changed on
a fully occupied SSD due to garbage collection. Based on the investigation, we draw
general guidelines on how to select a proper setting of the queue length bound for better
performance. Finally, we propose how to exploit the guidelines to achieving the typical
objectives: to maximize the total bandwidth while guaranteeing a target tail latency of the
real-time task, and to minimize the tail latency of the real-time task while guaranteeing a
target total bandwidth.

In summary, this paper makes the following contributions.

C1. We systematically analyze the queue length bound parameter of the K2 scheduler in
affecting the tail latency of a real-time task and the total bandwidth, based on real
experiments on Linux Kernel.

C2. We investigate how the performance for the tail latency and the total bandwidth is
changed on a fully occupied SSD in which garbage collection occurs.

C3. We develop general guidelines on how to tune the queue length bound parameter to
improve the performance of the K2 scheduler.

C4. Utilizing the guidelines, we achieve target objectives that optimize the tail latency
of the real-time task and the total bandwidth simultaneously, which has not been
achieved by any existing studies. This is accomplished based on C2 and C3 in con-
junction with C1, which also differentiates our study from existing studies.

The rest of the paper is organized as follows. Section 2 explains the basics of an SSD,
including related work that addresses timing guarantees of real-time tasks on an SSD.
Section 3 analyzes how different settings of the queue length bound affect the performance
of the K2 scheduler for different types of the SSD operation, and Section 4 applies the
analysis to the case of a fully occupied SSD that invokes garbage collection. Based on the
analysis, Section 5 develops guidelines on how to set the queue length bound parameter to
optimize the performance of the K2 scheduler. Finally, Section 6 concludes the paper.

2. Background and Related Work

In this section, we explain the basics of an SSD and recapitulate how existing studies
utilized the characteristics of an SSD to provide timing guarantees of real-time tasks on
an SSD. Next, focusing on the I/O scheduler in Linux Kernel for an SSD, we summarize
the existing schedulers (including I/O schedulers that are oblivious to real-time tasks) and
present details of our target I/O scheduler in Linux Kernel for an SSD (i.e., K2), which is
designed to shorten the tail latency of a real-time task.

2.1. Basics of SSD

In this subsection, we explain architectures of an SSD as well as operations in an SSD.
We then summarize existing studies for a real-time system equipped with an SSD.



Electronics 2021, 10, 865 3 of 15

2.1.1. Architectures of SSD

Different from an HDD that uses a mechanical spinning platter, an SSD uses NAND
flash memory that operates electrically. As shown in Figure 1, the NAND flash memory
area consists of a lot of pages, and a page is the smallest unit for a read/write operation. A
block is a unit for an erase operation, which is comprised of 128 to 512 pages. Several blocks
compose a die, which is the smallest unit for executing operations in a parallel manner.
Likewise, several dies compose a chip, and several chips compose a channel.

In addition to the NAND flash memory area, an SSD has its own DRAM and an SSD
controller that manages all SSD functions. The SSD controller consists of hardware and
software components. The former is a processor to process operations, and the latter is a
FTL (Flash Translation Layer) that takes charge of internal algorithms. The FTL has several
functionalities. First, the FTL has an address mapping table to translate a logical block
address of an I/O request to a physical block address in the SSD. Second, the FTL controls
executions of garbage collection and wear-leveling for even lifespan of NAND flash cells
in the SSD.

A storage device communicates with a driver via a host controller interface. Since
HDDs use SATA (Serial-ATA) interface, SSDs in the early stage use it for compatibility. To
achieve the potential for low latency, recent SSDs employ NVMe interface that allows to
exploit internal SSD parallelism.

Host 

Interface

SSD Controller

DRAM

Nand

Flash

Memory

Flash 

Controller
Processor

SSD Architecture

DRAM 

Controller

Channel 0

Channel N

Chip Chip

Die

Die

Block

Pages

Figure 1. SSD architecture.

2.1.2. Operations in SSD

An SSD has the following basic operations: read, write and erase. As we mentioned in
Section 2.1.1 the smallest unit for a read/write operation and that for an erase operation
are a page and a block, respectively. Unlike an HDD, an SSD does not allow to overwrite
data. To solve this problem, an SSD needs to perform garbage collection, which consists of
the following three steps: (i) find blocks to be erased, (ii) write valid data from the selected
blocks to be erased to other blocks, and (iii) erase the selected blocks and delete data from
the address mapping table in the FTL.

In (i), the SSD controller finds proper blocks to be erased using its own selection
algorithm which varies with SSD vendors. For example, a simple algorithm chooses blocks
with the smallest number of valid pages, which can minimize overhead of copying valid
pages to other blocks. While (ii) can be omitted in case of no valid page for all the selected
blocks, most cases need to perform (ii). After (ii), the SSD controller erases the selected
blocks, which necessitates deletion of address data from those blocks in (iii). Therefore, the
FTL that takes charge of the address mapping table removes address data of the selected
blocks. Due to (i)–(iii), garbage collection requires much more time than a read/write



Electronics 2021, 10, 865 4 of 15

operation. The time taken for garbage collection gets longer if a user updates data frequently,
which can be partially solved by the TRIM command.

The TRIM command enables an SSD to efficiently handle garbage collection, which
is a function for the operating system to inform the SSD of the pages that include invalid
data. For example, when a file is erased, an SSD marks the NAND flash area for the file as
invalid, instead of actually erasing the file data. This can minimize the latency of the erase
operation, and the invalid pages are erased later when an SSD is idle.

Also, there exists a way to improve write performance, which is to add a write buffer
to an SSD. Write buffering is also called SLC caching and Turbowrite. Using write buffering,
write performance can be improved as long as the write buffer is not completely full,
and the degree of the performance improvement depends on the write buffer capacity.
Therefore, if an SSD executes write operations whose data size is larger than the write
buffer capacity, the write operations return to exhibit normal write performance as if there
is no write buffer. Table 1 shows an example of write performance improvement.

Table 1. Write performance in Samsung SSD 970 EVO Plus 250 GB [21].

Specification Write Buffering Enabled Write Buffering Disabled

250 GB sequential write 2300 MB/s 400 MB/s
250 GB random write (QD32 Thread 4) 550 K IOPS 100 K IOPS
500 GB sequential write 3200 MB/s 900 MB/s
500 GB random write (QD32 Thread 4) 550 K IOPS 200 K IOPS
1 TB sequential write 3300 MB/s 1700 MB/s
1 TB random write (QD32 Thread 4) 550 K IOPS 400 K IOPS
2 TB sequential write 3300 MB/s 1750 MB/s
2 TB random write (QD32 Thread 4) 560 K IOPS 420 K IOPS

2.1.3. Existing Studies for Real-Time System with SSD

While most existing studies for an SSD have focused on improving average perfor-
mance [1–13], there exist only a few studies that aim at addressing timing guarantees on
an SSD [14–19]. Chang et al. developed mechanisms that support timing guarantees of
a real-time system with an SSD, by limiting the number of periodic read/write opera-
tions [14]. In detail, the study develops a predictable block recycling policy and a free-page
replenishment mechanism to provide timing guarantees of real-time tasks. Also, the study
employs an additional mechanism that considers the performance of non-real-time tasks.

The RFTL (Real-Time Flash Translation Layer) paper improves the worst-case perfor-
mance when garbage collection is performed [15]. While the traditional garbage collection
selects victim blocks, reads their valid data pages, writes them in other blocks and fi-
nally erases the victim blocks, RFTL splits the garbage collection process into several
sub-processes and performs each process at the end of normal read/write operations that
do not trigger garbage collection. To this end, the study develops a new FTL called RFTL,
which enables a distributed garbage collection at the expense of reserving a large storage
volume. RFTL is an improved version of the study that reduces the latency of garbage
collection by utilizing a write buffer and developing a partial block cleaning policy [16].

There also exists a different study that modifies the FTL, called WAO-GC [17], which
also aims at reducing the latency caused by garbage collection. WAO-GC postpones garbage
collection; this minimizes valid data pages of victim blocks, which in turn reduces the effect
of garbage collection on the latency. In addition, WAO-GC employs a page-level mapping
table, which allows a partial page copy for garbage collection. Although reducing the
worst-case latency, this approach incurs high memory overhead due to usage of the page-
level mapping table. In addition, another study tries to guarantee the worst-case latency by
limiting the number of log block merges for hybrid-level mapping on the FTL [18].

Missimer and West utilize SSD internal parallelism to minimize the effect of garbage
collection [19]. Focusing on read/write operations, the study proposes a partitioned FTL,



Electronics 2021, 10, 865 5 of 15

which divides the internal NAND flash into two chips (for read and write operations);
then both chips can execute their designated operations in a parallel manner. Since chips
for read operations and those for write operations are separated, a read operation cannot
be blocked by a write operation. In particular, while a write operation may incur a long
latency due to garbage collection under vanilla FTL, the study can eliminate the effect
of garbage collection triggered by a write operation on a read operation, which yields a
lower latency.

2.2. I/O Schedulers in Linux Kernel for an SSD

As we explained in Section 2.1, there are interesting characteristics in different com-
ponents for an SSD. To support real-time tasks, we target the I/O scheduler in Linux
Kernel for an SSD as a component to be modified, which allows to utilize the following
two advantages. First, it is convenient to modify the I/O scheduler in Linux Kernel, and
second, the modification is collectively applied to most (if not all) SSDs regardless of their
manufacturers. This is different from modifying components within a target SSD; for exam-
ple, if we need to modify the internal scheduling algorithm of a target SSD, we should (i)
disclose details of the algorithm used in the SSD, which is usually unreleased to the public
and (ii) find a way to modify internals of the SSD, which varies with SSD manufacturers
(or is not permitted). In this section, we first outline the block layer in Linux Kernel, which
manages I/O schedulers. We then explain existing I/O schedulers in Linux Kernel for an
SSD, designed for maximizing average performance of general-purpose tasks.

2.2.1. Block Layer in Linux Kernel

The block layer is a part of Linux Kernel, which is an interface that allows userspace
applications to access various storage devices. In the block layer, there exists I/O schedulers
that have their own algorithms to manage I/O requests. In the single-queue block layer,
the I/O scheduler usually has a single staging queue to control the order of I/O requests to
be processed; I/O requests in the staging queue can be merged to improve performance.
The single-queue block layer is used in existing Linux systems for processing I/O requests
from userspace to HDDs and SATA SSDs. However, with advent of an NVMe SSD which
exhibits much lower latency than conventional storage devices, the single-queue block
layer with only one queue and one lock becomes a bottleneck. Thus, the multi-queue block
layer, which has multiple queues and multiple locks, was developed to solve the bottleneck
problem of the single-queue block layer. Since our target storage is an NVMe SSD, we
assume to use the multi-queue block layer, which is shown in Figure 2.

Userspace

Kernel

Process Process

Storage

Run I/O

Queue Staging

I/O Scheduling

Block Layer

Device Driver

libaio

Software 

Queues

Hardware 

Queues

NVMe

Queues

Submit I/O

Figure 2. Multi-queue block layer in Linux Kernel.



Electronics 2021, 10, 865 6 of 15

2.2.2. I/O Schedulers for General-Purpose Tasks

In Linux Kernel, there exist several I/O schedulers for an SSD, which are developed for
improving average performance of general-purpose tasks. Now, we explain the following
I/O schedulers: the none [20], BFQ (Budget Fair Queuing) [22], MQ-Deadline (Multi-Queue
Deadline) [23], and Kyber [24] schedulers.

The none scheduler [20], as the name indicates, implies there is no specific I/O
scheduler that regulates the mechanism of block layers. That is, the none scheduler passes
I/O requests to the NVMe queue in the FIFO (First-In-First-Out) manner. Since a latency
in an SSD is much smaller than that in an HDD, even a simple operation in Linux Kernel
could result in significant overhead. Therefore, to maximize the performance by avoiding
unnecessary overhead as much as possible, the none scheduler has been widely employed.

The BFQ scheduler [22] tailors the CFQ (Completely Fair Queuing) scheduler in the
single-queue block layer, to the multi-queue block layer. Although the BFQ scheduler
fairly divides storage device resources using weight, it requires complex operations. This
incurs large overhead, and in turns makes it difficult to employ the BFQ scheduler in
practical systems.

The MQ-Deadline scheduler [23] targets the Deadline scheduler for the single-queue
block layer, and modifies it for the multi-queue block layer. Note that the Deadline scheduler
reduces HDD seek time by storing I/O requests in multiple software queues. In the MQ-
Deadline scheduler, if an I/O request is not performed within its deadline, it will be
promoted to the highest priority; otherwise, each I/O request is performed according to
the order of each sector number.

The Kyber scheduler [24] uses token-bucket algorithms and assigns a different target
latency for each operation. By default, the target latency is 2 ms for read requests and
10ms for write requests. To complete each I/O request within its target latency, the number
of tokens limits the number of I/O requests in flight in NVMe queues. Also, there exist
sixteen latency buckets for each core, consisting of eight buckets to track read latency and
other eight buckets to track write latency. Each latency bucket has its own range of latency
between 1/4 and 8/4 of its target latency value. The number of tokens is adjusted by the
scheduler, according to the bucket index of the 99th percentile sample latency. In other
words, if the 99th percentile sample latency exceeds the target latency value, the scheduler
allocates more tokens. Although the latency of each operation is controlled by the scheduler,
the latency of each application cannot be directly controlled.

In summary, there exist different I/O schedulers in Linux Kernel for an SSD, designed
for maximizing average performance of general-purpose tasks. Although some of the
explained schedulers have features to control I/O requests, it is not clear how to utilize the
features for timing guarantees of real-time tasks. In Section 3.1, we will explain our target
I/O scheduler, called K2, specialized for reducing the latency of a real-time task.

3. Analysis of the K2 Scheduler for Partially Occupied SSD

In this section, we investigate how different settings for the queue length bound
affect the performance of the K2 scheduler with different I/O operations, when the SSD is
not fully occupied. To this end, we first explain our target I/O scheduler, called K2. We
next explain experiment settings for the K2 scheduler. Finally, we analyze the tradeoff
between a decrease in the tail latency of a real-time task and an increase in penalty of the
total bandwidth.

3.1. K2 Scheduler

As we mentioned in Section 2.1.3, existing studies that support real-time tasks on an
SSD focused on the latency of internal I/O operations and modified mechanisms of the
FTL. However, modifying the FTL is usually not applicable to commercial SSDs, because
the mechanisms of the FTL developed by the manufacturers of SSDs themselves or those of
their controllers are usually neither (i) open to the public nor (ii) modifiable. On the other



Electronics 2021, 10, 865 7 of 15

hand, the K2 scheduler [20] supports timing guarantees of a real-time task, by modifying
the I/O scheduler in Linux Kernel, which satisfies both (i) and (ii).

The K2 scheduler targets the situation where an SSD is not fully occupied; in the target
situation, benchmark results are affected by the write buffer, but not by garbage collection.
Also, the K2 scheduler targets an NVMe SSD, and therefore it is developed by considering
the Linux multi-queue block layer. The core mechanism of the K2 scheduler is to limit the
queue length bound, which is the maximum number of I/O requests in flight processed at
the same time in the NVMe storage device; the queue length bound is a tunable parameter.

The K2 scheduler has nine staging queues: eight for existing Linux real-time I/O
priorities and one for all non-real-time I/O requests. Whenever a userspace application
generates I/O requests, the requests are sent to the Linux Kernel block layer and enqueued
to proper staging queues based on their metadata. When the current number of requests
in flight is less than the queue length bound, the real-time staging queue which has the
highest priority starts to pass its I/O requests to NVMe queues. If all real-time staging
queues have no I/O request, the non-real-time staging queue sends its I/O requests to
the NVMe queues. However, when the current number of requests in flight is the same
as the queue length bound, the K2 scheduler prevents I/O requests from spreading to
NVMe queues. When the NVMe driver sends a completion signal to the scheduler, the
scheduler decreases the current number of requests in flight and resumes to propagate
I/O requests in their staging queues to NVMe queues. This mechanism allows to prioritize
I/O requests in real-time staging queues, yielding a reduced tail latency of a real-time
task at the expense of limiting the overall bandwidth. Due to the queue length bound that
controls the overall bandwidth performance of an SSD, the K2 scheduler is also called
a work-constraining scheduler. As expected, tuning the queue length bound is a key to
regulate the tradeoff between a decrease in the tail latency of a real-time task and an
increase in penalty of the total bandwidth; however, the effect of the tuning on the tradeoff
has not been thoroughly investigated, especially for the situation where an SSD is fully
occupied. In Sections 3.3 and 4.2, we will analyze the performance of the K2 scheduler on
a partially occupied SSD and fully occupied SSD, respectively, in terms of the effect.

3.2. Experiment Settings for Partially Occupied SSD

To analyze the performance of the K2 scheduler, we use the source kernel and the
scheduler provided by the K2 scheduler paper [20]. The target operating system is Ubuntu
18.04, but the source kernel includes LTTng, an open source program that allows to trace
I/O latency in Linux Kernel. We utilize LTTng tracepoints to measure SSD I/O latency,
which aims at recording request submission, request propagation between queues, and
request completion. Our target computing system is equipped with Intel(R) Core(TM)
i5-9400 CPU @ 2.90Hz, 16GB memory and Samsung SSD 970 EVO Plus 250GB. We enable
the option of blk-mq, which maximizes the performance of an NVMe SSD in Linux. We
summarize our experimental environments in Table 2.

Table 2. Experiment environments.

Specification Software and Hardware Environments

CPU Intel(R) Core(TM) i5-9400 CPU@2.90Hz
Memory 16 GB
SSD Samsung SSD 970 EVO Plus 250 GB
SSD interface NVM express
Operating system Ubuntu 18.04.2 LTS
Kernel version 4.15.0 tracepoint modified version
Kernel Blk-mq option Enabled

When it comes to benchmark, we target the FIO benchmark with 3.25 version. For the
FIO benchmark, we execute three non-real-time tasks and one real-time task, and measure



Electronics 2021, 10, 865 8 of 15

the latency of the real-time task and the total bandwidth. Also, the non-real-time tasks and
the real-time task are distinguished by assigning different priorities. For the non-real-time
tasks, we execute three asynchronous processes so as to obtain their maximum bandwidth.
For the real-time task, we execute a synchronous process, and its consecutive requests are
separated with a 2-ms-long issuing term. To accurately measure the latency on an SSD, we
use the direct I/O mode, which eliminates the effect of the buffer cache in Linux. We fill
about half of the blocks in the target SSD, which is different from the settings to be applied
in Section 4.

The above benchmark settings are the same as those in the K2 scheduler paper [20] ex-
cept the followings. First, we did not establish the target bandwidth since we are interested
in the maximum performance. Second, we set the experiment time of our benchmark as
100 s, which is different from 10 s in the K2 scheduler paper. This is because, the experiment
time less than 20 s can result in unstable bandwidth and IOPS (I/O Per Second) due to the
effect of write buffering, as shown in Figure 3.

(a) The total bandwidth (b) IOPS

Figure 3. The total bandwidth and IOPS for random write operations on a partially occupied SSD.

Under the above experimental environments, the SSD is exercised with (i) a sequential
read, (ii) a random read, (iii) a sequential write and (iv) a random write, all with 4 KB block
size. To avoid unexpected outlier values, we repeat five experiments for each operation
under the same experimental environments and show the average of the results for the five
experiments, which will be presented in the next subsection.

3.3. Investigation of Latency and Bandwidth on Partially Occupied SSD

As we mentioned in Section 3.1, the K2 scheduler can significantly reduce the worst-
case latency (99.9th percentile) of a real-time task. In addition to the capability of the K2
scheduler in achieving a low latency for a target task, we systematically analyze key factors
that affect the latency of the real-time task and the total bandwidth of the real-time task
and non-real-time tasks. To this end, we target the K2 scheduler with different settings
for the queue length bound (and the none scheduler as a reference), and do experiments
that show the performance according to different operation types (i.e., random/sequential
read/write operations). To express the K2 scheduler with different settings for the queue
length bound, let K2-x denote the K2 scheduler with the queue length bound of x. For
example, K2-8 implies the K2 scheduler which sets the queue length bound to 8.

Figure 4a,b show the worst-case latency (99.9th percentile) of the real-time task and
the total bandwidth of the real-time and non-real-time tasks, when the target operation is
sequential read and random read, respectively. If we focus on a sequential read operation
shown in Figure 4a, the none scheduler yields 1237 µs for the worst-case latency of the
real-time task. The worst-case latency decreases as the queue length bound of the K2
scheduler decreases; if the queue length bound is 1 (i.e., K2-1), the latency reduces to 370 µs,
resulting in 3.3x latency reduction compared to the none scheduler. On the other hand, the



Electronics 2021, 10, 865 9 of 15

total bandwidth is reduced from 720 MB/s (for the none scheduler) to 70 MB/s (for the
K2-1 scheduler). This implies that reducing the latency of the real-time task incurs much
overhead, yielding a significant drop of the total bandwidth.

(a) Sequential read (b) Random read

Figure 4. Performance of sequential/random read operations on a partially occupied SSD.

The performance trend of the worst-case latency of the real-time task and the total
bandwidth of the real-time and non-real-time tasks for random read operations is similar to
that for random read operations, as shown in Figure 4b. That is, by minimizing the queue
length bound, the K2-1 scheduler yields 217 µs for the worst-case latency of the real-time
task, which is 15.0x reduction compared to the none scheduler (that yields 3251 µs). On
the other hand, minimizing the queue length bound makes the K2 scheduler limit its
total bandwidth significantly from 566 MB/s (the none scheduler) to 44 MB/s (the K2-1
scheduler), which is 12.9x performance loss.

We would like to mention that there is an interesting result for the random read
operation. If we compare the worst-case latency of the real-time task under K2-1 and that
under K2-2, the former (i.e., 217 µs) does not yield a lower latency than the latter (i.e.,
197 µs). As the queue length bound decreases, the time to process the read operation in an
SSD gets shorter. Hence, the time is eventually smaller than the time to pass the operation
from the staging queue to the SSD under a small value of the queue length bound. Under
K2-1, the overhead of the I/O scheduler dominates the advantage of the I/O scheduler
in processing the real-time task, yielding a longer worst-case latency of the real-time task
than K2-2. Note that this phenomenon cannot be observed when the target operation is
sequential read, as shown in Figure 4a. This is because sequential read requests in the
staging queue tend to be merged with high probability, which reduces the I/O scheduler
overhead by reducing the number of actual requests to be passed from the staging queue
to the SSD.

Now, we analyze the write operation case. Figure 5a,b show the worst-case latency
(99.9th percentile) of the real-time task and the total bandwidth of the real-time and non-
real-time tasks, when the target operation is sequential write and random write, respectively.
As shown in Figure 5a that represents the sequential write operation case, the bandwidth
drop according to reduction of the queue length is not as significant as the sequential
read operation case. That is, while the none scheduler exhibits 430 MB/s total bandwidth,
the K2-1 scheduler exhibits 303 MB/s total bandwidth, resulting in only 1.42x decrease
compared with the none scheduler; in addition, the K2 scheduler with other settings for the
queue length bound does not yield a meaningful bandwidth drop. Since a write operation
takes longer than a read operation, write operations are not much affected by decreasing
the queue length bound as long as the bound is no smaller than the threshold (which
is two in this case). On the other hand, the worst-case latency of the real-time task is
3131 µs, 960 µs, 471 µs, respectively for the none, K2-2 and K2-1 schedulers; K2-2 and K2-1
yield 3.3x and 6.6x latency reduction, compared to the none scheduler. This means, the



Electronics 2021, 10, 865 10 of 15

K2 scheduler with the queue length bound larger than one (e.g., K2-2) yields a significant
latency reduction of the real-time task with negligible total bandwidth loss. Therefore, for
sequential write operations, it is possible to support timing guarantees of the real-time task
without compromising the total bandwidth.

(a) Sequential write (b) Random write

Figure 5. Performance of sequential/random write operations on a partially occupied SSD.

The results for the random write operation case are similar to those for the sequential
write operation case, as shown in Figure 5b. The worst-case latency decreases as the queue
length bound decreases: from 3848 µs under the none scheduler and 3471 µs under K2-64
to 1732 µs under K2-1, which is 2.2x latency reduction compared to the none scheduler.
The total bandwidth of K2 with the queue length bound larger than 1 (i.e., 297–302 MB/s)
is similar to that of the none scheduler (i.e., 299 MB/s), while that of K2-1 is slightly smaller
(i.e., 277 MB/s).

4. Analysis of the K2 Scheduler for Fully Occupied SSD

While the K2 scheduler paper [20] targets a partially occupied SSD, a fully occupied
SSD is expected to yield a longer latency of the real-time task due to garbage collection. In
this section, we analyze the performance of the K2 scheduler on a fully occupied SSD.

4.1. Experiment Settings for Fully Occupied SSD

The experiment settings for a fully occupied SSD are similar to that for a partially
occupied SSD explained in Section 3.2. The differences are to enable to perform garbage
collection by occupying all blocks of the SSD and to execute the benchmark for a sufficiently
long duration (i.e., 1000 s); the latter makes it possible to observe the effect of garbage
collection more accurately. To check whether the experiment settings successfully incur
garbage collection, we plot the total bandwidth and IOPS of the none scheduler on a fully
occupied SSD in Figure 6; note that those of the K2 scheduler on a fully occupied SSD
exhibit similar behaviors. It is confirmed that the total bandwidth and IOPS of random write
operations decrease sharply at 50 s after the start of the target benchmark, which is different
from the partially occupied SSD case in Figure 3. That is, while the total bandwidth and
IOPS under a partially occupied SSD (shown in Figure 3) are respectively about 300 MB/s
and 70,000, those under a fully occupied SSD (shown in Figure 6) are much smaller, which
indicates that garbage collection occurs in our experiment settings on a fully occupied SSD.



Electronics 2021, 10, 865 11 of 15

(a) The total bandwidth (b) IOPS

Figure 6. The total bandwidth and IOPS for random write operations on a fully occupied SSD.

4.2. Investigation of Latency and Bandwidth on Fully Occupied SSD

We observe that the performance of read operations on a fully occupied SSD shown in
Figure 7 is almost the same as that on a partially occupied SSD shown in Figure 4. This is
because, read operations do not trigger garbage collection even if the SSD is fully occupied.
Therefore, there is no meaningful difference between Figures 4 and 7 for both sequential
and random read operations.

On the other hand, we make the following observations for the performance of write
operations in Figure 8. First, the total bandwidth does not significantly vary with different
values of the queue length bound for both sequential and random write operations. For
example, while there is a gap between the total bandwidth for K2-1 and that for K2 with
other queue length bounds for sequential write operations under a partially occupied
SSD (i.e., 303 MB/s versus 419–438 MB/s shown in Figure 5a), the same cannot be said
true under a fully occupied SSD in that the total bandwidth under K2 with any queue
length bounds (as well as that of the none scheduler) is between 256 MB/s and 288 MB/s
shown in Figure 8a. A similar trend also holds for the random write operation; while
there is about 10% difference between the total bandwidth for K2-1 and that for K2 with
other queue length bounds under a partially occupied SSD (see Figure 5b), there is no
meaningful difference under a fully occupied SSD (see Figure 8b). This implies that garbage
collection lowers the usable bandwidth, yielding a less bandwidth change for different
queue length bounds. The difference between the sequential write case and the random
write case comes from the difference between the processing time for sequential write
operations and that for random write operations. That is, sequential write operations incur
more request merges, which yields a shorter processing time and makes it possible to be
affected by the queue length bound setting more significantly. We observe that random
write operations under garbage collection yield the lowest processing time, which results
in little bandwidth change according to different settings for the queue length bound as
shown in Figure 8b.

Second, the worst-case latency of the real-time task decreases as the queue length
bound decreases; in addition, the degree of the latency reduction for the sequential write
case is similar to that for the random write case, which is different from the results for
the corresponding sequential/random write cases under a partially occupied SSD. For
example, the worst-case latency for the none scheduler for sequential write operations is
3247 µs, which is reduced to 1485 µs for K2-1; for random write operations, the worst-case
latency for the none scheduler is 3259 µs, which is reduced to 1689 µs for K2-1. This is
because, garbage collection makes it difficult to reduce the tail latency of the real-time task
as much as the situation where an SSD is partially occupied without garbage collection.



Electronics 2021, 10, 865 12 of 15

(a) Sequential read (b) Random read

Figure 7. Performance of sequential/random read operations on a fully occupied SSD.

(a) Sequential write (b) Random write

Figure 8. Performance of sequential/random write operations on a fully occupied SSD.

5. Optimizing the K2 Scheduler: Queue Length Bound Selection

Through Sections 3 and 4, we observe that the queue length bound parameter regulates
the tradeoff between a decrease in the tail latency of the real-time task and an increase in
penalty of the total bandwidth, and the tradeoff varies with the I/O operation type (i.e.,
sequential/random read/write) and the SSD occupancy (partially or fully occupied). In
this section, we draw general guidelines on how to select a proper setting for the queue
length bound that optimizes the performance of the K2 scheduler. Also, we propose how
to apply the guidelines to the following typical objectives:

O1. For given 0 < α ≤ 100, to maximize the total bandwidth while guaranteeing at most
α% of the tail latency of the real-time task under the none scheduler.

O2. For given 0 < β ≤ 100, to minimize the tail latency of the real-time task while
guaranteeing at least β% of the total bandwidth under the none scheduler.

We now focus on the read operation case and summarize its characteristics explained
in Sections 3 and 4 as follows.

R1. The SSD occupancy does not affect the tail latency of the real-time task and the
total bandwidth.

R2. The total bandwidth decreases as the queue length bound decreases.
R3. The tail latency of the real-time task and the total bandwidth mostly decrease as the

queue length bound decreases, but this does not hold for random read operations
under K2-1.



Electronics 2021, 10, 865 13 of 15

Considering R1–R3, general guidelines for the queue length bound selection are
presented as follows. First, we do not need to distinguish whether the SSD is partially
or fully occupied, according to R1. Second, to increase the total bandwidth, we should
increase the queue length bound, according to R2. Third, to decrease the tail latency of
the real-time task, we should decrease the queue length bound, but no more decrement is
needed for random read operations if the queue length bound is 2, which comes from R3.

The general guidelines can be applied to achieving O1 and O2 as follows. To achieve
O1, we first find a set of candidates for the queue length bound setting, which guarantee at
most α% of the tail latency of the real-time task under the none scheduler; the set depends
on the operation type (i.e., sequential read or random read), but not on the SSD occupancy
(i.e., partially or fully occupied SSD). Second, we choose the largest queue length bound
among the candidates. For example, if α = 50%, the candidates for the queue length bound
setting that satisfy the condition for the tail latency are {1, 2, 4, 8} and {1, 2, 4, 8, 16, 32},
respectively for the sequential and random read operation cases regardless of the SSD
occupancy. Then, we choose the largest queue length bound, which is 8 and 32, respectively
for the sequential and random read operation cases. The way of achieving O2 is similar
to that of achieving O1. For example, if β = 50%, we find that the queue length bound
of {16, 32, 64} and {8, 16, 32, 64} can achieve at least 50% total bandwidth under the none
scheduler, respectively for the sequential and random read operation cases regardless of
the SSD occupancy. Then, we choose the smallest queue length bound, which is 16 and 8,
respectively for the sequential and random read operation cases.

Next, when it comes to the write operation case, the characteristics analyzed in
Sections 3 and 4 can be summarized as follows.

W1. The SSD occupancy has an impact on the tail latency of the real-time task and the total
bandwidth.

W2. The tail latency of the real-time task mostly decreases as the queue length decreases.
W3. While the queue length bound does not affect the total bandwidth in most cases, K2-1

yields a drop of the total bandwidth under some settings.

According to W1, we need to draw different guidelines of the queue length bound
selection for W2 and W3, according to the SSD occupancy. If we want to maximize the total
bandwidth on a partially occupied SSD, we choose any queue length bound (i.e., K2-2,
K2-4, ..., K2-64) except one (i.e., K2-1); on a fully occupied SSD, while the same holds for
the sequential write case, we can choose any queue length bound (including one) for the
random write case. To decrease the tail latency of the real-time task, we need to decrease
the queue length bound regardless of the SSD occupancy; however, we should consider
some odd points which do not yield a smaller tail latency than that with a larger queue
length bound, which vary with the operation type and the SSD occupancy.

The guidelines for the write operation can be applied to achieving O1 and O2 as
follows. For O1, we find a set of settings for the queue length bound that yield at most α%
of the tail latency of the real-time task under the none scheduler, and then choose one of the
settings other than 1 (note that for the random write case on a fully occupied SSD, we can
choose any setting). For example, for the sequential write case on a partially occupied SSD,
{1, 2, 4, 8} is a set of settings for the queue length bound that guarantee at most α = 50%
of the tail latency of the real-time task under the none scheduler. Among the settings, we
can choose any of {2, 4, 8} to maximize the total bandwidth. For O2, if the total bandwidth
under K2-1 is more than β% of the total bandwidth under the none scheduler, we choose
K2-1; otherwise, we choose K2-2. For example, if β = 50% for the sequential write case on
a partially occupied SSD, we choose K2-1; if β = 80%, we choose K2-2.

Note that different experimental environments may yield different specific points in
the guidelines; for example, in R3 and W3, the K2 scheduler with the queue length bound of
“one” exhibits a different behavior from that with other settings. However, the guidelines
of R1–R3 and W1–W3 are generally applicable to different experimental environments, as
long as we tailor the guidelines to a specific experimental environment.



Electronics 2021, 10, 865 14 of 15

6. Conclusions and Discussion

In this paper, we performed various experiments on a computing system equipped
with an SSD under different experimental environments in order to demonstrate impor-
tance of tuning a proper queue length bound for the K2 scheduler. Based on the experiments,
we systematically analyzed the tail latency of the real-time task and the total bandwidth
not only on a partially occupied SSD, but also on a fully occupied SSD in which garbage
collection occurs. We drew general guidelines on how to select a proper setting of the queue
length bound for better performance, and succeeded to achieve the typical objectives that
optimize the tail latency of the real-time task and the total bandwidth at the same time.

Despite the advantages explained so far, the proposed approaches have the following
limitations. First, we need to perform new experiments if we do not have any experimental
results for a target situation. This makes it difficult to use our approaches in a situation
where a target SSD or a target application is unknown in advance. Second, our approaches
are confined to a tail latency of a real-time task executed on an SSD, but they cannot
consider a total latency of a real-time task executed on a computing unit (e.g., CPU) and a
storage (e.g., SSD).

Those limitations suggest a direction for future work as follows. First, we would
like to develop a method that adaptively adjusts the queue length bound at runtime
without relying on previous experiment results. Second, it is interesting to utilize the
analysis developed in this paper for end-to-end timing guarantees of a real-time task, which
necessitate consideration of delays not only in an SSD, but also in CPU and networks.

Author Contributions: Conceptualization, S.P. and J.L.; software, S.P.; experiments, S.P.; data cu-
ration, S.P. and J.L.; writing—original draft preparation, S.P. and J.L.; writing—review and editing,
J.L.; supervision, J.L.; project administration, J.L.; funding acquisition J.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIT) (2021R1A2B5B02001758, 2019R1A2B5B02001794,
2017H1D8A2031628).

Data Availability Statement: The data presented in this study are available on request from the
first author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gupta, A.; Kim, Y.; Urgaonkar, B. DFTL: A flash translation layer employing demand-based selective caching of page-level

address mappings. In Proceedings of the 14th International Conference on Architectural Support for Programming Languages
and Operating Systems, Washington, DC, USA, 7–11 March 2009.

2. Kim, J.; Oh, Y.; Kim, E.; Choi, J.; Lee, D.; Noh, S.H. Disk schedulers for solid state drivers. In Proceedings of the ACM & IEEE
International Conference on Embedded Software, Grenoble, France, 12–16 October 2009.

3. Wu, C.-H.; Kuo, T.-W. An adaptive two-level management for the flash translation layer in embedded systems. In Proceedings of
the 2006 IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA, USA, 5–9 November 2006.

4. Qin, Z.; Wang, Y.; Liu, D.; Shao, Z.; Guan, Y. MNFTL: An efficient flash translation layer for MLC NAND flash memory storage
systems. In Proceedings of the Design Automation Conference (DAC), San Diego, CA, USA, 5–9 June 2011.

5. Jung, M.; Wilson, E.H.; Kandemir, M. Physically addressed queueing (PAQ): Improving parallelism in solid state disks. In
Proceedings of the Annual International Symposium on Computer Architecture (ISCA), Portland, OR, USA, 9–13 June 2012

6. Jung, D.; Kang, J.; Jo, H.; Kim, J.S.; Lee, J. Superblock FTL: A superblock-based flash translation layer with a hybrid address
translation scheme. ACM Trans. Embed. Comput. Syst. 2010, 9, 1–29. [CrossRef]

7. Jung, M.; Choi, W.; Srikantaiah, S.; Yoo, J.; Kandemir, M.T. HIOS: A host interface I/O scheduler for Solid State Disks. In
Proceedings of the Annual International Symposium on Computer Architecture (ISCA), Minneapolis, MN, USA, 14–18 June 2014.

8. Jung, M.; Prabhakar, R.; Kandemir, M.T. Taking garbage collection overheads off the critical path in SSDs. In Proceedings of the
13th International Middleware Conference, Montreal, QC, Canada, 3–7 December 2012.

9. Jung, S.; Song, Y.H. Garbage Collection for Low Performance Variation in NAND Flash Storage Systems. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 2015, 34, 16–28. [CrossRef]

10. Lee, J.; Kim, Y.; Shipman, G.M.; Oral, S.; Kim, J. Preemptible I/O Scheduling of Garbage Collection for Solid State Drives. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 2013, 32, 247–260. [CrossRef]

http://doi.org/10.1145/1721695.1721706
http://dx.doi.org/10.1109/TCAD.2014.2369501
http://dx.doi.org/10.1109/TCAD.2012.2227479


Electronics 2021, 10, 865 15 of 15

11. Zhang, J.; Shu, J.; Lu, Y. ParaFS: A Log-Structured File System to Exploit the Internal Parallelism of Flash Devices. In Proceedings
of the USENIX Annual Technical Conference (ATC), Denver, CO, USA, 22–24 June 2016.

12. Chen, T.Y.; Chang, Y.H.; Ho, C.C.; Chen, S.H. Enabling sub-blocks erase management to boost the performance of 3D NAND
flash memory. In Proceedings of the Design Automation Conference (DAC), Austin, TX, USA, 5–9 June 2016.

13. Liu, C.Y.; Kotra, J.; Jung, M.; Kandemir, M. PEN: Design and evaluation of partial-erase for 3D NAND-based high density SSDs.
In Proceedings of the USENIX Conference on File and Storage Technologies (FAST), Oakland, CA, USA, 12–15 February 2018.

14. Chang, L.P.; Kuo, T.W.; Lo, S. Real-time garbage collection for flash-memory storage systems of real-time embedded systems.
ACM Trans. Embed. Comput. Syst. 2004, 3, 661–863. [CrossRef]

15. Qin, Z.; Wang, Y.; Liu, D.; Shao, Z. Real-Time Flash Translation Layer for NAND Flash Memory Storage Systems. In Proceedings
of the IEEE Real-Time Technology and Applications Symposium (RTAS), Beijing, China, 16–19 April 2012.

16. Choudhuri, S.; Givargis, T.D. Deterministic service guarantees for nand flash using partial block cleaning. In Proceedings of the
6th IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, Atlanta, GA, USA, 19–24
October 2008.

17. Zhang, Q.; Li, X.; Wang, L.; Zhang, T.; Wang, Y.; Shao, Z. Optimizing Deterministic Garbage Collection in NAND Flash Storage
Systems. In Proceedings of the IEEE Real-Time Technology and Applications Symposium (RTAS), Seattle, WA, USA, 13–16 April
2015.

18. Cho, H.; Shin, D.; Eom, Y.I. KAST: K-associative sector translation for NAND flash memory in real-time systems. In Proceedings
of the Design, Automation and Test in Europe Conference and Exhibition, Nice, France, 20–24 April 2009.

19. Missimer, K.; West, R. Partitioned Real-Time NAND Flash Storage. In Proceedings of the IEEE Real-Time Systems Symposium
(RTSS), Nashville, TN, USA, 11–14 December 2018.

20. Miemietz, T.; Weisbach, H.; Roitzsch, M.; Härtig, H. K2: Work-Constraining Scheduling of NVMe-Attached Storage. In Proceedings
of the IEEE Real-Time Systems Symposium (RTSS), Hong Kong, China, 3–6 December 2019.

21. Samsung. Samsung V-NAND SSD 970 EVO Plus Data Sheet. 2019. Available online: https://s3.ap-northeast-2.amazonaws.com/
global.semi.static/Samsung_NVMe_SSD_970_EVO_Plus_Data_Sheet_Rev-2-0.pdf (accessed on 9 March 2021 ).

22. Valente, P.; Andreolini, M. Improving application responsiveness with the BFQ disk I/O scheduler. In Proceedings of the 5th
Annual International Systems and Storage Conference, Haifa, Israel, 4–6 June 2012.

23. Axboe, J. mq-Deadline: Add blk-mq Adaptation of the Deadline IO Scheduler, Commit Message for the Linux Kernel. Available
online: https://lore.kernel.org/patchwork/patch/750212/ (accessed on 9 March 2021).

24. Sandoval, O. blk-mq: Introduce Kyber Multiqueue I/O Scheduler, Commit Message for the Linux Kernel. Available online:
https://patchwork.kernel.org/patch/9672023 (accessed on 9 March 2021).

http://dx.doi.org/10.1145/1027794.1027801
https://s3.ap-northeast-2.amazonaws.com/global.semi.static/Samsung_NVMe_SSD_970_EVO_Plus_Data_Sheet_Rev-2-0.pdf
https://s3.ap-northeast-2.amazonaws.com/global.semi.static/Samsung_NVMe_SSD_970_EVO_Plus_Data_Sheet_Rev-2-0.pdf
https://lore.kernel.org/patchwork/patch/750212/
https://patchwork.kernel.org/patch/9672023

	Introduction
	Background and Related Work
	Basics of SSD
	Architectures of SSD
	Operations in SSD
	Existing Studies for Real-Time System with SSD

	I/O Schedulers in Linux Kernel for blackan SSD
	Block Layer in Linux Kernel
	I/O Schedulers for General-Purpose Tasks


	Analysis of the K2 Scheduler for Partially Occupied SSD
	K2 Scheduler
	Experiment Settings for Partially Occupied SSD
	Investigation of Latency and Bandwidth on Partially Occupied SSD

	Analysis of the K2 Scheduler for Fully Occupied SSD
	Experiment Settings for Fully Occupied SSD
	Investigation of Latency and Bandwidth on Fully Occupied SSD

	Optimizing the K2 Scheduler: Queue Length Bound Selection
	blackConclusions and Discussion
	References

