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ABSTRACT Recently, deep reinforcement learning (RL) technologies have been considered as a feasible
solution for tackling combinatorial problems in various research and engineering areas. Motivated by this
recent success of RL-based approaches, in this paper, we focus on how to utilize RL technologies in
the context of real-time system research. Specifically, we first formulate the problem of fixed-priority
assignments for multi-processor real-time scheduling, which has long been considered challenging in the
real-time system community, as a combinatorial problem.We then propose the RL-based priority assignment
model Panda that employs (i) a taskset embedding mechanism driven by attention-based encoder-decoder
deep neural networks, hence enabling to efficiently extract useful features from the dynamic relation of
periodic tasks. We also present two optimization schemes tailored to adopt RL for real-time task scheduling
problems: (ii) the response time analysis (RTA)-based policy gradient RL and guided learning schemes,
which facilitate the training processes of the Panda model. To the best of our knowledge, our approach is
the first to employ RL for real-time task scheduling. Through various experiments, we show that Panda is
competitive with well-known heuristic algorithms for real-time task scheduling upon a multi-processor
platform, and it often outperforms them in large-scale non-trivial settings, e.g., achieving an average 7.7%
enhancement in schedulability ratio for a testing system configuration of 64-sized tasksets and an 8-processor
platform.

INDEX TERMS Priority assignment, global fixed priority scheduling, encoder-decoder neural network,
reinforcement learning, real-time system.

I. INTRODUCTION
Recently, exploiting advanced machine learning techniques
to learn heuristics for combinatorial problems has yielded
positive results. For example, in [1], an end-to-end deep
neural network (DNN) model using a unique output structure
confined within a given input, namely the Pointer network,
was presented to be applicable in the field of solving
combinatorial problems, with several example cases such as
the traveling salesman problem (TSP). The Pointer network
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structure facilitates the choice of permutations of input
sequences in a supervised learning manner, thereby requiring
data samples labeled by another reliable solution. In [2],
reinforcement learning (RL) enabled this model structure to
learn heuristics by interacting with an environment instead
of requiring samples of supervised learning. In particular,
the work in [3] exploited the Transformer model [4] as
well as a greedy rollout baseline, and achieved competitive
performance. It can minimize cost and execution time,
compared to state-of-the-art heuristics for TSP with many
points. This RL-based heuristic learner for combinatorial
problems was adopted for task scheduling and resource
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management in computing systems, e.g., cloud computing
and server cluster operations [5]–[7].

In this paper, focusing on real-time task scheduling, we for-
mulate priority assignments for global fixed-priority schedul-
ing (GFPS) on a multi-processor platform as a combinatorial
problem. We then adapt the RL-based learner with several
optimization schemes custom-tailored for the problem, hence
demonstrating the applicability of the RL-based learner
for problems similar to real-time scheduling. The priority
assignment problem for GFPS can be described as as follows.
For a set of n-periodic tasks each of which has its own
time constraint (simply, an n-sized taskset), we aim to find
a schedulable priority assignment where each task in the
taskset is assigned a priority (an integer from 1 to n); that
is, GFPS with the priority assignment is able to schedule the
m highest-priority tasks in each time slot upon a platform
comprised of m homogeneous processors without incurring
any deadline violation of the periodic tasks over time.

Since the notion of a schedulability test in real-time
systems is a typical tool used to determine whether a
target taskset is schedulable by GFPS with a given priority
assignment, we exploit existing schedulability tests for
GFPS [8]–[11]. Our target problem is to find a priority
assignment for an n-sized taskset, which is deemed schedu-
lable by an existing schedulability test for GFPS. We view
this problem as a combinatorial optimization process in
the n! search space, i.e., all the permutations of n unique
integers ranging from 1 to n. In the research domain
of real-time scheduling, the priority assignment problem
for GFPS has been considered challenging, especially for
large-scale tasksets upon a multi-processor platforms. This
is because, while existing heuristic priority assignments
have been unable to cover schedulable priority assignments
for a number of tasksets [12], it becomes computationally
intractable to exhaustively apply n! priority assignments for a
given taskset to a schedulability test for GFPS if n is large.
In adapting the RL-based learner for the priority assign-

ment problem, we formulate a taskset partition as an RL state
in which two dynamic sets of priority-assigned tasks and
priority-unassigned tasks are maintained over time. We then
adopt RL actions by which a task with the next highest
priority is recurrently selected and the taskset partition
is updated. In doing so, we employ the encoder-decoder
neural network structure enriched by several attention
mechanisms. The structure enables to systematically extract
the contextual information about the relation of tasks and their
priority assignments from the taskset partition. Furthermore,
we present two optimization schemes, the response time
analysis (RTA)-based policy gradient RL and guided learning
schemes which facilitate our model training processes.
Our model performs comparably to well-known heuristic
algorithms, and outperforms them in large-scale non-trivial
settings; for example, it shows 7.7∼13% improvement with
respect to the ratio of schedulable priority assignments for tar-
get tasksets (schedulability ratio) over the best-performance
heuristic algorithm. Furthermore, our model achieves the

comparable performance to the union of all the heuristic
algorithms.

The main contributions of this paper are as follows:

• We present an RL-based priority assignment model
for GFPS on a multi-processor real-time system,
namely Panda (priority assignment network with deep
attention).

• We also present RL training optimization in Panda for
multi-processor real-time scheduling such as response
time analysis (RTA)-based policy gradient learning and
deadline monotonic (DM)-based guided learning.

• We then conduct various experiments, and demonstrate
the robust schedulability performance and scalability
of Panda which can handle large tasksets of up to 64
tasks, in comparison with several well-known heuristic
algorithms and their union approach.

The rest of the paper is organised as follows. Section II
briefly describes our RL-based approach to the problem
of priority assignments for multi-processor real-time task
scheduling. Section III presents the structure of the priority
assignment model Panda, and Section IV describes the
model training optimization. Section V and Section VI
provide the experiment results and the review on related
research works. Finally, Section VII concludes the study.

II. OVERALL SYSTEM
In this section, we first describe the problem of multi-
processor real-time scheduling and then present our
RL-based approach to the problem.

A. PRIORITY ASSIGNMENT PROBLEM FOR GFPS
In this paper, we focus on GFPS of n tasks with time
constraints in a real-time system of m homogeneous multi-
processors. Here, formulation of global fixed-priority assign-
ments or scheduling states that consecutive invocations (jobs)
of a periodic task have the same priority, and each job can be
assigned on any processor without predetermined partitions
of processors. This is consistent with common category
definitions in real-time scheduling [12].

Given an n-sized taskset, each task τi is specified by
its period Ti, worst-case execution time Ci, and relative
deadline Di. In the global fixed-priority assignment, each
task is statically assigned a unique priority i ∈ {1, . . . , n}.
With this periodic task model, we can consider several
variants of multi-processor real-time scheduling, such as
implicit or constrained deadline tasks, and preemptive or
non-preemptive tasks. A deadline is said to be implicit if
Di = Ti, while it is said to be constrained if Di ≤ Ti. A job
can be either preemptive or non-preemptive. Unless stated
otherwise, we focus on periodic, implicit, and preemptive
tasks in our GFPS problem.

For a pair consisting of an n-sized taskset {τ } and a priority
assignment π , a schedulability test Test(π, {τ }) indicates if
{τ } can be scheduled on a target platform with the π -priority
scheduling policy, by performing schedulability analysis on
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whether or not there exists such a task (in {τ }) whose job
misses its deadline. π corresponds to a permutation of task
indexes of {τ }.
In general, this test processes every task τi to check if

interference of tasks with higher priority than τi cannot be
larger than its deadline [9]. Interference of τi quantifies the
time period when jobs of τi cannot be executed due to other
tasks’ jobs in execution. A test for task τi ∈ {τ } can be defined
upon an m-processor platform as

Di − Ci ≥
⌊
1
m

∑
τj∈H(τi)

Intf(τj, τi)
⌋
, (1)

where H(τi) denotes a set of higher priority tasks than τi,
and Intf(τj, τi) denotes the upper bound of the amount of
interference of task τi caused by task τj, calculated via
schedulability analysis. Then, if the inequality Eq. (1) holds
for all tasks in {τ }, {τ } is deemed to be schedulable. This
can be further formulated as a schedulability test Test(π, {τ })
where a system configuration such as m-processors is
presumed for the respective π -priority scheduling policy.
Accordingly, Test(π, {τ }) = 1 ensures that the taskset {τ }
with the priority assignment π is deemed schedulable, while
Test(π, {τ }) = 0 does not. For example, suppose we have
a taskset {τ } = {τ1, τ2, τ3} and its priority assignment π =
[2, 3, 1]; then, Test([2, 3, 1], {τ1, τ2, τ3}) = 1 indicates that
the scheduling policy with the fixed task priority assignment
such as 2 for τ1, 3 for τ2, and 1 for τ3 (simply, π -priority
scheduling) is deemed schedulable.

Existing studies have addressed the priority assignment
problem for GFPS, by (i) developing improved schedulability
tests and (ii) applying heuristic priority assignments to the
tests. For (i), several studies have developed schedulability
tests that reduce pessimism of calculating the right-hand-side
of Eq. (1) [8]–[11]. For (ii), there have been several heuristic
priority assignments: deadline monotonic (DM: the smaller
is Di, the higher is the priority), DkC (the smaller is
Di − k · Ci, the higher is the priority, where k depends on the
number of processors) [13], and DM-DS (the heavier is the
utilization or the smaller is the slack time, the higher is the
priority) [14], [15].

Existing schedulability tests for multi-processor real-time
systems are inherently pessimistic in upper-bounding the
right-hand-side of Eq. (1), and are not able to identify
necessarily all schedulable priority assignments of tasksets.
However, it has been considered that the capability limit of the
schedulability tests is insignificant in practice, compared to
the loose bound of traditional heuristic algorithms for priority
assignments in real-time task scheduling [16]. In that sense,
we focus on schedulability ratio as the performance metric
of our Panda model to represent the fraction of priority
assignments yielded by Panda that successfully pass our
target schedulability test in [8]. We then compare the schedu-
lability ratio of the target schedulability test associated with
existing heuristics priority assignments. There have been a
few schedulability tests [11], [17] that allow application of the

optimal priority assignment (OPA) technique [18], [19] only
with O(n2) time-complexity. Such OPA-compatible schedu-
lability tests exhibit low schedulability performance com-
pared to the state-of-the-art OPA-incompatible tests [8]–[11]
for a given priority assignment. On the other hand, the tests
once incorporated into the OPA technique may have higher
schedulability performance by exploiting the OPA under the
tests. Therefore, we also compare the schedulability ratio
of the low-schedulability-performance OPA-compatible tests
associated with the OPA technique.

FIGURE 1. Overall model structure of Panda: Panda({τ }) 7→ π , where
Panda yields a priority assignment π for an input taskset {τ } via the
encoder-decoder neural networks.

B. A SCHEDULER WITH ENCODER-DECODER
Figure 1 depicts the model structure of Panda where an
n-sized taskset {τ } is given as input and its priority assignment
π of the same size is generated as output. That is,

Panda({τ }) 7→ π, e.g.,

Panda({τ1, τ2, τ3}) 7→ [2, 3, 1],

where τ1, τ2, and τ3 are assigned priorities 1, 3, and
2 respectively. We set π to be a permutation of task
indexes of {τ } in that π = [π1, π2, . . . , πn] can specify
a priority-ordered taskset [τπ1 , τπ2 , . . . , τπn ] where πi =
1, . . . , n and πi 6= πj, provided all priorities are distinct.
Thus, without loss of generality, we simply call this priority
assignment π , permutation. As shown in Figure 1, the model
consists of encoder and decoder networks. The encoder
network transforms the raw features of {τ } to vector
representation H (N ), and the decoder network iteratively
makes inferences using the vector representation to render
a priority assignment π .
As explained, the model generates a permutation of a

given taskset. In doing so, the decoder network internally
maintains a partition of the taskset (O,L). Our model first
initializes O to be empty and L = {1, 2, . . . , n}. Then the
decoder completes O by iteratively selecting a task in L
and moving it to the tail of O. It continues to update the
ordered set O of priority-assigned tasks and the other set L
of priority-unassigned tasks by

Ot+1 = Ot + [πt ] , Lt+1 = Lt − {πt }, (2)
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over discrete time-steps t . Note that Ot and Lt represent O and
L at step t respectively, and this decoding process recurs for
n-steps until L becomes empty. Accordingly, for an n-sized
taskset, Ot ∪ Lt = {1, 2, . . . , n} holds for all t = 1, . . . , n,
and the initial carnality of L is n. For achieving a schedulable
policy, the model makes use of such a time-varying partition
in the decoder network. According to RL formation, we also
notate (Ot ,Lt ) as state st .

C. MODEL TRAINING WITH REINFORCE
To train the encoder-decoder model, we exploit the REIN-
FORCE algorithm [20] that maximizes expected cumulative
rewards of the actions by gradient ascent. Regarding RL
formulation, each action selects a task in Lt and moves it to
Ot , while observing the state st = (Ot ,Lt ). Then, reward
values can be determined according to the schedulability
evaluation of whether an input taskset {τ } is deemed
schedulable with the output priority π , i.e., the reward is
defined as Test(π, {τ }).
This reward design based on a schedulability test seems

natural but incurs a severe problem of sparse rewards [21].
Consider an n-sized taskset. There exist n! priority assign-
ments for the taskset. Only a few could be feasible
permutations (schedulable priority assignments) especially
when we have non-trivial samples of n-sized tasksets and
m-processor system configurations that together render a low
chance of schedulable priority assignments, i.e., when having
high taskset utilization

∑
τi∈{τ }

Ci/Ti. This poses a sparsity of
reward signals, which in turn produces calculated gradients of
zero in most cases.

TABLE 1. Ratio of schedulable priority assignments with respect to the
size of tasksets (n).

In Table 1, we show the ratio of schedulable priority
assignments with respect to the size of tasksets n =

4, 6, . . . , 14, 16. The table column ‘‘All Perm.’’ denotes the
cases where all possible permutations for each taskset are
exhaustively tested. The column ‘‘Random Perm.’’ denotes
the cases where up to 10K permutations randomly selected
for each taskset are tested. The column ‘‘Sched. by DM’’
denotes the ratio of priority assignments deemed schedulable
by the deadline monotonic (DM). Note that for small n ≤ 8,
we test all the permutations, but for large n ≥ 10, we test
only up to 10K permutations, considering the required testing
time. As observed, the former two cases commonly show
rapid decrements, as the size of tasksets increases, while
the schedulable priority assignment ratio by DM shows slow
decrements. The test results in Table 1 clarify the cause of

sparse rewards such that for large n, only a small fraction of
samples in RL training can be useful.

To tackle this issue, we make use of the response time
analysis (RTA) [9] for individual tasks, so that we obtainmore
frequent reward signals in model training. It is possible to
calculate the response time of partially priority-assigned tasks
and the upper bound of interference caused by those tasks,
as a task can be interfered with only higher priority tasks.
This calculation can be incorporated into our RL formulation
as a reward, allowing the model to learn quickly with
useful reward signals more frequently generated. We call this
training scheme, progressive RTA-reward.
In addition, we exploit the notion of importance sam-

pling [22] to data-efficiently guide a model at the initial
training phase by leveraging an existing heuristic method.
We empirically observe that it is effective to guide our
model to learn with samples generated by the DM (deadline
monotonic) heuristic policy especially when the model rarely
learns to gather sufficient positive rewards. We call this
training scheme, DM-based guided learning.

III. ATTENTION-BASED SCHEDULER MODEL
In this section, we describe our model structure, an attention-
based deep neural model that consists of encoder and
decoder networks. For representingmodel parameters, we use
superscript θ . For example, we denote the affine transform as

Affv(x) = W (θ )
v x + b(θ )v (3)

where v is a name by which its implementation should be
distinguished from others. In the following, we often omit
v, assuming that the model parameters (e.g., W (θ ), b(θ )) are
properly defined for each transform.

A. TASK ENCODER
According to the GFPS problem, we structure the model
to use a taskset specification as input and yield its priority
assignment. We presume that an underlying platform con-
figuration such as the number of processors is confined in
a training environment. Our training environment system is
implemented to support configurable m-processor platform
settings.

In task encoding, a set of raw level representation of input
tasks are first transformed to the vector representation that can
be further processed for extracting their relational features.
For each task τi, its specification parameters such as period Ti,
worst execution time Ci, deadline Di, and additional features
in Table 2 are re-scaled and contained in the respective raw
representation.

TABLE 2. Raw features for a task.
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FIGURE 2. Task encoder network where N attention-based embedding layers are stacked and relational features of tasks
are extracted.

Figure 2 illustrates the detailed structure of the task
encoder network that yields a matrix representation in which
each column individually corresponds to a task embedding
vector. Each task τi in a given n-sized taskset has its raw vec-
tor representation xi combining the input features in Table 2.
In our implementation, xi is a 12-dimensional vector. The first
embedding layer (Task Embedding) individually transforms
xi into a vector h

(0)
i via

h(0)i = Aff(tanh(Aff(xi)) (4)

where tanh(·) is applied element-wisely. In Aff(·) (defined
in Eq. (3)), W (θ ) is a d × 12 matrix where d is the size of
hidden layers and embedding data; we set d = 128 in our
implementation. For all τi, we obtain the matrix

H (0)
= [h(0)1 , h

(0)
2 , . . . , h

(0)
n ]. (5)

To implement the task encoder network, we adapt Trans-
former [4] where multiple attention layers are stacked. Each
attention layer is formulated as a composite function for k =
0, 1, . . . ,N − 1.

H (k+1)
= Norm(E + FFN(E))

where E = Norm(H (k)
+MHA(H (k))) (6)

Here Norm(·) represents a normalization layer, e.g., batch
normalization [23], and layer normalization [24]; and FFN(·)
denotes a multi-layer perceptron with ReLU activation. Note
that H (0) (in Eq. (5)) is the input of the first attention layer.
With N -attention layers, the output H (k+1) of the k-th layer
is fed to the (k + 1)-th layer. The N -step processing upon
the attention layers generates the matrix representation H (N )

which contains the relational features in a given taskset.
To embed tasks into vector representation with respect to
their relationship, we specifically exploit self-attention SA(·)
which is a variant of scaled dot-product attention Att(·) [4].
These mechanisms are defined as

SA(X ) = Att(W (θ )
Q X ,W (θ )

K X ,W (θ )
V X ),

Att(Q,K ,V ) = V Softmax(
1
√
d
KTQ). (7)

Self-attention is effective for embedding data of multiple
tasks when embedding each individual task represents the
relation with the other tasks from a scheduling perspective.

Softmax(·) of a matrix performs the softmax [25] operation
over each column. In self-attention, queries Q, keys K , and
values V are represented by the respective projection on the
same input X , e.g.,W (θ )

Q X ,W (θ )
K X , andW (θ )

V X . For achieving
stable embedding quality, we use multiple self-attention
modules in parallel, similar to the method in [4].

MHA(X ) = W (θ ) Concat(SA1(X ),SA2(X ), . . . ) (8)

We represent the task encoding procedure for priority
assignments in the first part of Algorithm 1, where a taskset is
converted into a matrix representation by the TaskEmbedding
function in Eq. (4), and the computation of N -attention layers
in Eq. (6) with several self-attentions is abstracted through the
AttentionLayer function.

B. PRIORITY DECODER
The priority decoder is used to make sequential inferences on
priorities. It selects π1 first indicating the index of the task of
which priority is highest, and then selects the index of the task
with the second-highest priority π2. This procedure continues
until every task has been assigned its priority, comprising n-
iterative operations between the Ot and Lt sets in Eq. (2).
Specifically, the priority decoder takes a taskset partition as a
state

st = (Ot , Lt ) (9)

and uses its respective embedding data as input at
(time)-step t . Then the priority decoder infers a probability
distribution in which πt is mapped with each element in Lt ,
i.e., a set of unassigned task indexes. Figure 3 depicts
the recurrent structure of the priority decoder network.
The second part of Algorithm 1 represents the decoder
network implementation with taskset partition embedding,
context vector calculation, and probability calculation steps
for a next priority-assigned task. The complexity of the
n-iterative process with this 3-steps decoding procedure
is O(n2d2) for an n-sized taskset where d is the size
of embedding data. In the following, the procedure will
be explained in detail, where the 3-steps correspond to
Eq. (10), (11), and (12) respectively.
In applying deep neural networks to a combinato-

rial optimization problem, it is essential to have proper
representation of contextual information relevant to the
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FIGURE 3. Priority decoder network where recurrent task selection upon the time-varying taskset partition is made over discrete
steps t for n-sized taskset: each Aff with its model parameters is distinctively represented by its subscript that is omitted in
Eq. (10)-(11).

problem structure [3]. In the GFPS problem structure,
we view the recurrent relation in the taskset partition (Ot ,Lt )
as the most important context. Maintaining the partition
over time-steps allows the priority decoder to continuously
make use of the schedulability-related features during model
training. It is obvious that Lt manages the contextual
information of valid RL actions, since at step t , it continues
to strictly confine the RL actions (i.e., selecting one from Lt )
within Lt . Similarly, Ot manages the contextual information
of RL states. Consider τπt+1 selected at step t+1. Obviously,
it is assigned a priority t + 1. Only such task as τi ∈ Ot can
interfere and preempt τπt+1 since each has a priority higher
than t + 1. We leverage this contextual information.
The embedding output of the task encoder network that was

previously explained (i.e., H (N )
= [h(N )

1 , . . . , h(N )
n ] where

each h(N ) denotes task embedding data) is fed to the priority
decoder network.

e(O)t = tanh
(
Aff

(∑
j∈Ot

tanh
(
Aff(hj)

)))
,

e(L)t = tanh
(
Aff

(∑
j∈Lt

tanh
(
Aff

(
hj
))))

(10)

The vectors e(O)t and e(L)t represent the embedding data for
each set in the time-varying partition (Ot ,Lt ). From an
RL formulation perspective, the vectors can be seen as the
embeddings for complex RL states.

The priority decoder follows the structure of attention-
based networks by which tasks are successively selected and
the taskset partition is updated. It is commonly observed that
fixed-priority assignment heuristics assign similar priorities
to tasks of similar task parameter values in most cases.
Thus, we also conjecture that successively selected tasks
by the priority decoder share similar properties, and exploit
this relation when making successive selections. Specifically,
we utilize the previously selected task h(N )

πt−1 , and combine it
with the vectors for the time-varying partition in Eq. (10) to
acquire a context vector ct ,

ct = Aff(e(O)t + e
(L)
t + e

(tail)
t )

where e(tail)t = tanh(Aff(h(N )
πt−1

)). (11)

Algorithm 1Model Interference of Panda
// (i) Task encoding for n-sized taskset data X

H (0)
= TaskEmbedding(X ) using Eq. (4)

for k ← 1 to N do

H (k)
= AttentionLayeri(H (k−1)) using Eq. (6)

end for

// (ii) Priority decoding using the taskset partition (O, L)

O← [], L ← {1, 2, . . . , n}

for t ← 1 to n do

HL = {hj|j ∈ L} for hj ∈ H (N )

Calculate the embedding e(C)t , e(O)t using Eq. (10)

Calculate the context ct using Eq. (11)

Calculate the probability pθ (πt |st ) using Eq. (12)

Sample πt from pθ (πt |st )

O.append(πt ), L.remove(πt )

end for

// Return priority assignment inferred

return O

The context vector is calculated based on the taskset partition
at the current step t and a previously selected task at t − 1,
which are considered most relevant to successive priority
assignments for GFPS.

Based on the context vector, the priority decoder then
computes the probability distribution pθ (·|st ) that the task τπt
(which is not yet assigned a priority) will be assigned priority
t for state st (in Eq. (9)). This distribution is formulated as

pθ (πt |st ) = Softmax(C · tanh(hi W (θ )
u qt )) for i ∈ Lt

where qt = HL Softmax(HL W (θ )
q ct ). (12)

Here, HL represents the matrix of priority-unassigned tasks,
which is extracted from H (N ). Thus, qt corresponds to the
aligned context for the priority-unassigned tasks. By qt ,
the distribution becomes confined within the valid indexes
for those priority-unassigned tasks. Note that C yields
soft-clipping where C = 5.0 is found empirically. As a
result, using the probability calculated in Eq. (12), the priority
decoder is able to select one from (n−t+1) unassigned tasks
at step t .
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IV. MODEL TRAINING SCHEMES
In model training, we update the model parameters θ by
employing a gradient ascent method, and specifically, we use
the REINFORCE algorithm [20] to estimate the gradient. For
describing the procedure of model training, we introduce a
notion of trajectory

ω = [s(ω)1 , π
(ω)
1 , s(ω)2 , π

(ω)
2 , . . . , s(ω)n , π (ω)

n ], (13)

which is a finite sequence of states st and actions πt governed
by a policy that is used to generate the trajectory. Unlike a
general RL formulation where state transitions are stochastic,
under our target policy, state transitions are deterministic in
that st+1 is completely determined by st and πt (i.e., selecting
an individual task, as in Eq. (2) and (9)). Therefore, for our
target policy pθ and a given taskset {τ }, we can represent
the probability of trajectory ωpθ , pθ [π = ωpθ |{τ }] that is
governed by policy pθ as

pθ [π = ωpθ |{τ }] =
n∏
i=1

pθ [πt = π
(ωpθ )
t |s

(ωpθ )
t ]. (14)

Then, the estimated gradient of the expected reward of
trajectories by pθ can be calculated as

∇θJ = Eωpθ∼pθ

[
n∑
t=1

(
Rt ∇θ log pθ [πt = π

(ωpθ )
t |s(ωpθ )]

)]
(15)

where Rt =
∑n

j=t γ
j−trj and γ ∈ (0, 1] denotes a

discount factor. Since the return Rt should be consistent
with the evaluation metric of scheduling, we employ the
reward scheme based on a schedulability test that determines
whether a given taskset {τ } is deemed schedulable with
priority assignment π . In general, a schedulability test can be
performed only when all tasks are assigned a priority; thus,
it allows formulation of reward rj as

rj =

{
Test(π, {τ }) if j = n
0 otherwise.

(16)

Each task selection is considered to contribute equally to the
schedulability of a permutation (a priority assignment π ).
Thus, we set the discount factor γ = 1. The γ and Eq. (16)
together render the same Rt for all t . Thus, we denote Rt as
R, and rewrite Eq. (15) as

∇θJ = Eωpθ∼pθ
[
R ∇θ log pθ [π = ωpθ |{τ }]

]
≈

1
|B|

B∑
{τ }′∈B

(
R ∇θ log pθ [π = ωpθ |{τ }

′]
)

(17)

where ωpθ is the trajectory of policy pθ upon taskset {τ }
′, and

B is a batch of training taskset samples. We then obtain the
model update θ ← θ + λ ∇θJ , with learning rate λ.

A. PROGRESSIVE RTA-REWARD SCHEME
As described above, it is natural to leverage a schedulability
test for training a model that intends to solve the priority
assignment problem for GFPS. However, we encountered
the issue of sparse rewards [21] such that achievable reward
values were minimal for most priority assignments, severely
inhibiting model training. It is because there exist only a
few schedulable priority assignments, particularly for large
tasksets, as explained in Table 1. It turns out that ∇θJ = 0
holds in most cases, and model parameters can be barely
updated. This often renders our model unable to learn a stable
policy.

To tackle this issue of sparse rewards, we calculate the
response times of individual tasks whenever a task is assigned
its priority, and incorporate them into our RL formulation as
auxiliary rewards. We refer to this RL scheme as progressive
RTA-reward, formulated based on Eq. (1) as

rauxi =
1
n
I

Di − Ci ≥
 1
m

∑
τj∈H(τi)

Intf(τj, τi)

 (18)

where the indicator I(·) yields 1 if a given input is evaluated
as true, but 0, otherwise. Recall that H(τi) denotes a set of
higher priority tasks than τi. Similar to Eq. (15), we set the
discount factor γ = 1, and obtain Rauxt =

∑n
j=t r

aux
j with

which we can replace the return in the gradient estimate as

∇θJaux

= Eωpθ∼pθ

[
n∑
t=1

(
Rauxt ∇θ log pθ [πt = π

(ωpθ )
t |s(ωpθ )]

)]
.

(19)

By incorporating the auxiliary rewards into the training
objective, therefore, we reformulate the gradient of the
objective function as

∇θJtot = ∇θJ + ∇θJaux. (20)

Notice that this objective function is augmented by the
progressive RTA-reward that renders frequent reward signals.

We also adopt the baseline reduction scheme [26], and
incorporate the respective baselines into Eq. (17) and (19)
to decrease the variance of estimated gradients. Specifically,
we have

∇θJtot = ∇θJ + ∇θJaux

≈
1
|B|

∑
{τ }′∈B

(
(R− B)∇θ log pθ [π = ωpθ |{τ }

′]
)

+
1
|B|

∑
{τ }′∈B

n∑
t=1

(
(Rauxt − B

aux
t )

∇θ log pθ [πt = π
(ωpθ )
t |s(ωpθ )]

)
(21)

where B and Bauxt are baselines. These baselines are
calculated by another policy, say a β-parameterized baseline
policy, which is similar to the target policy but with a different
set of parameters β. It is gradually improved by iterative

185576 VOLUME 8, 2020



H. Lee et al.: Panda: RL-Based Priority Assignment for Multi-Processor Real-Time Scheduling

Algorithm 2Model Training of Panda
Initialize the target model parameters θ

// (i) Guided Learning using the DM heuristic algorithm

for i← 1, . . . ,Nguide do

1θ ← 0, Sample batch B from training data set D
for taskset {τ } in B do

Sample a trajectory ωq using the DM policy q

Calculate R for ωq using Eq. (16)

Calculate pθ [πt = π
(q)
t |s

(q)
t ] for all t

1θ ← 1θ + R ∇θ log pθ [π = ωq|{τ }] using Eq. (26)

end for

θ ← θ + λ
|B|1θ

end for

// (ii) Normal Learning using the target policy pθ
Initialize the baseline model parameters β by β ← θ

for i← 1, . . . ,Ntrain do

1θ ← 0, Sample batch B from training data set D
for taskset {τ } in B do

Sample trajectory ωpθ using pθ with stochastic sampling

Calculate R, Rauxt for ωpθ using Eq. (16), (18)

Calculate pθ [πt = π
(ωpθ )
t |s(pθ )t ] for all t

Sample trajectory ωpβ using pβ with greedy sampling

Calculate B,Bauxt using Eq. (22)

1θ ← 1θ + (R− B) ∇θ log pθ
[
π = ωpθ |{τ }

]
+∑

t

(
(Rauxt − Bauxt )∇θ log pθ [πt = π

(ωpθ )
t |s(ωpθ )]

)
using

Eq. (21)

end for

θ ← θ + λ
|B|1θ

if paired-T Test on R 6= B then

β ← θ

end if

end for

updates of β ← θ according to the paired-T test on (R 6= B),
similar to [3]. Then, we obtain the baselines from the β-
parameterized model, i.e.,

B = Test(πpβ |{τ }), Bauxt =

n∑
j=t

rauxj (22)

where πpβ is a priority assignment by the pβ policy of the
β-parameterized model.

B. GUIDED LEARNING BASED ON DM
When adopting our RL-based learner for large n-sized
tasksets (i.e., n ≥ 48), especially during the early stage of
training, we frequently experienced rare updates of model
parameters, which contribute to nonconverged models.

To tackle this challenge, we leverage the importance
sampling and guided learning scheme [22], [26]. Specifi-
cally, we employ off-policy learning at the initial training
phase, making use of samples generated by a heuristic
method or a base policy. We empirically observe that
deadline monotonic (DM) fits well as a base policy for

guided learning. This is because the DM heuristic method
can be structured as a scheduling policy that sequentially
performs priority assignments, starting from the highest,
similar to our Panda model. Suppose we have such a base
policy q using DM, and a trajectory generated by q such as
ωq = [s

(ωq)
1 , π

(ωq)
1 , s

(ωq)
2 , π

(ωq)
2 , . . . , s

(ωq)
n , π

(ωq)
n ]. To exploit

trajectory data by q in model training, we incorporate the
importance ratio [26] into estimated gradients as

∇θJ=Eωq∼q

[
R

n∑
t=1

(
ρt∇θ log pθ [πt = π

(ωq)
t |s(q)]

)]
. (23)

Here, ρt is the importance ratio that represents the ratio
of probabilities of sample trajectories by base policy q
and our target policy pθ . Then, it is possible to simplify
the equation further using the below Eq. (24). Because
we use a deterministic policy using DM as base policy q,
we necessarily have q[πt ′ = π

(ωq)
t ′ |s

(q)
t ′ ] = 1.

ρt =

t∏
t ′=1

pθ [πt ′ = π
(ωq)
t ′ |st ′ ]

q[πt ′ = π
(ωq)
t ′ |st ′ ]

=

t∏
t ′=1

pθ [πt ′

= π
(ωq)
t ′ |s

(q)
t ′ ] (24)

During the early stage of model training, we estimate the
target policy as a uniform distribution on valid actions, i.e.,
pθ [πt = τ |st ] ≈ 1

n−t+1 . As a result, we can revise the
gradient estimate as

∇θJ = Eωq∼q

[
R

n∑
t=1

(
(n− t)!
n!
∇θ log pθ [πt ′ = π

(ωq)
t ′ |s

(q)]
)]

(25)

In Eq. (25), we observe that the estimated gradient ∇θJ is a
weighted sum of the gradients (Rt∇θ log pθ [πt ′ = π

(ωq)
t ′ |s

(q)])
over steps t with varying weights (n− t)!/n!. The weight
decreases as t increases to n. That is, for low-priority tasks
that are selected at large t , the gradient is likely to vanish.
To prevent the vanishing gradient problem, we cap the weight
by max( (n−t)!n! , 1). Capping is effective for reducing variances
and stabilizing the gradient estimate [27]. We thus rewrite the
above Eq. (25) with capping as

∇θJ = Eωq∼q

[
R

n∑
t=1

(
∇θ log pθ [πt = π

(ωq)
t |s(q)]

)]
= Eωq∼q

[
R ∇θ log pθ

[
π = ωq|{τ }

]]
≈

1
|B|

∑
{τ }′∈B

(
R ∇θ log pθ

[
π = ωq|{τ }

′
])
. (26)

Notice that the gradient estimate above is equivalent to
Eq. (17) except that samples are obtained from the base policy
q using DM, not by pθ which we aim to train.
In Algorithm 2, we compile our RL training schemes

introduced for the GFPS problem, and present them as one
integrated solution. To facilitate training of our model at
the early stage, we conduct a two-step training process:
(i) in the first part, we perform DM-based guided learning,
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which utilizes the gradient estimate driven by base policy q
for training target policy pθ (through gradient estimates in
Eq. (25) and (26)). Recall that q employs DM to generate
trajectory data used for learning. (ii) In the second part,
we transit to normal learning by target policy pθ . As explained
in Section IV-A, we employ progressive RTA-reward in
Eq. (18) and baseline reduction in Eq. (21). For each taskset
{τ }, pθ samples its trajectory to calculate returns (R, Rauxt
using Eq. (16), (18)) and gradient estimates (in Eq. (20)).
Baseline policy pβ samples its trajectory in the same way
except that it exploits greedy sampling. Unlike stochastic
sampling that is generally used for model training, greedy
sampling selects such a task with the largest pβ [πt |st ] value
for each t . The calculation outputs are all combined in
Eq. (26), and are used for updating the model parameters θ .
Regarding the transition time from guided learning to normal
learning, we empirically set it to be after training with
100 batches, since the model is ready to infer schedulable
priority assignments at that time. The algorithm complexity is
O( |D|
|B| n

2 d2) where |D| and |B| denote the size of a batch and
a training data set respectively, and d is the size of embedding
data.

V. EVALUATION
In this section, for evaluating Panda, we present the
experiment result with respect to the following questions.

• RQ1. Can the RL-based priority assignment model
Panda perform comparatively to (or outperform) exist-
ing algorithms for GFPS in terms of schedulability
performance?

• RQ2. If so, to what extent do the RL training schemes
of Panda affect its performance?

• RQ3.Does Panda operate in a reasonable amount time?

A. IMPLEMENTATION AND EXPERIMENT SETTING
Here, we describe our implementation and experiment
settings, including taskset data generation, evaluation metric,
heuristic algorithms, and our model implementation with
hyperparameters and optimizers.

TABLE 3. The generation rules for task parameters.

1) TASKSET GENERATION
To generate taskset data samples, we exploit the Rand-
fixedsum algorithm [28], which has been used widely in
research of scheduling problems [29]–[31]. For each taskset
{τ }, we configure the number of tasks n and (total) taskset
utilization u. The Randfixedsum algorithm randomly selects
utilization of Ui for each task τi ∈ {τ }, i.e., u =

∑n
i=1Ui.

For each task τi, the algorithm then generates a set of task
parameter samples each of which follows the rules in Table 3,

yielding values for Ti, Ci, and Di under the predetermined
utilization Ui. These parameters are all given non-negative
integers by the floor function, as shown in the table.

2) EVALUATION METRIC
We use the schedulability ratio as our performance metric,
which represents the ratio between the number of schedulable
tasksets and the number of tested tasksets. Recall that
a schedulable taskset indicates that a priority assignment
returned by an algorithm passes the given schedulability test.
Specifically, we have

Schedulability Ratio =
∑
{τ }∈D

Test(π, {τ }) / |D| (27)

where π denotes the priority assignment by a specific
algorithm or model for {τ } (e.g., π = Panda({τ }) in case
of evaluating Panda), andD denotes a set of taskset samples.
Note that a higher schedulability ratio explicitly leads to more
coverage on real-time tasksets to be successfully scheduled in
practice.

3) HEURISTIC ALGORITHMS IN COMPARISON
For comparison, we need to choose a schedulability test
for GFPS, that determines whether a taskset is deemed
schedulable by GFPS with a priority assignment. We target
a schedulability test called RTA-LC [8], [11], which has been
known to perform superior than the others in terms of cov-
ering schedulable tasksets. For heuristic priority assignment
policies, we consider and implement DM, DkC [13], and
DM-DS [14], [15], as explained in Section II-A. We then
compare RTA-LC associated with the priority assigned
by Panda, with that assigned by the heuristic priority
assignment policies. Also, we compare the former with
another type of studies mentioned in Section II-A, which is
the optimal priority assignment (OPA) technique [18], [19]
associated with the state-of-the-art OPA-compatible test,
DA-LC [11].

TABLE 4. Hyperparameter setting.

4) MODEL IMPLEMENTATION
Our Panda model implementation is based on Python
v3.6 and PyTorch v1.2 [32]. Table 4 lists the hyperparameter
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FIGURE 4. Schedulability ratio with respect to different taskset utilization settings for implicit deadlines: m denotes the number
of processors and n denotes the number of tasks. For example, in (c), when the system configuration of 48-sized tasksets (n) and
a 6-processor platform (m) is given, Panda finds schedulable priority assignments for 96.2% of test tasksets of utilization 4.5 (u)
while the best-performance algorithm in comparison, OPA finds 74%.

settings for model training, where the Adam optimizer [33]
is used. We train and test the models on a system of an
Intel(R) Core(TM) i9-9940X processor with an NVIDIA
RTX 2080 GPU. In addition, we implement the heuristic
algorithms and schedulability tests using Cython [34]. We
empirically observe that model training with specific taskset
samples of the same (taskset) utilization range shows rapid
convergence and stable inference performance. Therefore,
we combine multiple models as an integrated solution, where
each model is responsible for a specific utilization range, e.g.,
one model for utilization range [0, 0.9], another for (0.9, 1.9],
and so on. This ensemble-like structure works in a real testing
environment because all the task parameters including the
utilization are explicitly given for the GFPS problem. Thus,
a taskset can be properly redirected toward a specific model
according to its utilization.

B. PERFORMANCE COMPARISON WITH
HEURISTICS [RQ1]
Figure 4 represents the overall performance of our model and
the other algorithms for an implicit deadline platform, where
the X-axis denotes the utilization of a taskset and the Y-axis
denotes the schedulability ratio.

• DM, DM-DS, DkC are the heuristic priority assignment
algorithms with the high-performance RTA-LC schedu-
lability test.

• OPA is the optimal priority assignment technique with
the OPA-compatible DA-LC test.

• PANDA is our RL-based priority assignment model.
In these tests, the number of testing taskset samples is

5K for each test configuration of m-processors and n-sized
tasksets with the utilization u (e.g., 8-processors and 64-sized
tasksets with utilization 6.4), and the schedulability ratio in
Eq. (27) for 5K samples is measured for our model and
each compared algorithm. The graphs in Figure 4 shows
specific test scale configurations, i.e., m-processors and
n-sized tasksets where m = 2, 4, 6, 8 and n = 16, 32, 48, 64.

As shown, our model demonstrates competitive perfor-
mance with the other algorithms for all test configurations.
Our model often outperforms the other algorithms for
cases of large n-sized tasksets. For example, our model
achieves improvements of 13% and 7.7% on average for
configurations of m = 6 and n = 48 (in Figure 4(c)) and
m = 8 and n = 64 (in Figure 4(d)) respectively, compared
to the best-performance algorithm, OPA (specifically, OPA
with DA-LC). In this comparison, we focus on the non-trivial
utilization ranges where the schedulability ratio of the
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heuristic algorithms in the comparison is not 1; e.g., for
configurations of m = 6 and n = 48, the utilization range
[3, 6) is given for comparison purposes.

This result demonstrates that our model is capable of
scalingwell by exploiting the ability of anRL-based approach
that is able to efficiently search on a large-scale problem
space. The configuration of large-scale tasksets produces
complicated GFPS problems, providing opportunity to
our model and other machine learning-based scheduling
approaches for improving schedulability performance.

FIGURE 5. Panda vs the union of the heuristic algorithms in comparison.

In Figure 5, we compare our model performance with
the union performance (Union Bound in the figure) of all
the algorithms compared in Figure 4. In measuring the
union performance, we classify a taskset to be scheduled
if it is schedulable by at least one of the algorithms in
the comparison, and calculate the average schedulability
ratio in the non-trivial utilization range. As observed,
Panda performs comparatively to the union of all algorithms
in most cases, and in particular, shows its superiority to cases
of large-scale GFPS settings, e.g., large tasksets of n =
48, 64, with up to 2∼6% improvement over the approach
that collectively uses all the other algorithms.

C. EVALUATION OF TRAINING OPTIMIZATION
SCHEMES [RQ2]
Our model Panda is based on encoder-decoder neural
networks and its training is driven by RL with two
optimization schemes, progressive RTA-rewards and guided
learning, which are custom-tailored for the GFPS problem.
In Figure 6, we show the utility of these optimization
schemes by comparing the learning curves of the variants of
Panda over time, where the X-axis denotes the number of
training samples, and the Y-axis denotes the schedulability
ratio.
• BASIC is the plain encoder-decoder network model.
• RTA is the model with the progressive RTA-rewards
scheme.

• GUIDE is the model with the guided learning scheme.
• PANDA is our model with both schemes.

Indeed, it is difficult for us to train the BASIC model
successfully (due to sparse rewards, as explained previously),

FIGURE 6. Learning curves of Panda variants: m = 6, n = 48, and
utilization range [4,4.9].

and its learning curve remains around zero. It is interesting
to compare the learning curves of the GUIDE and RTA
models. As shown, the GUIDE model shows relatively better
performance than theRTAmodel at the early stage of training,
while the RTA model shows relatively better performance
than the GUIDEmodel as more samples are used for training.
This is because the guided learning scheme is explicitly
related to the early stage of training, but the effect of the
progressive RTA-reward scheme spans the entire training
timeline.

As expected, both GUIDE and RTA perform worse than
Panda; however, the gap between Panda and RTA decreases
as more samples are used for training. From this observation,
one might think that the guided learning becomes less
effective with large sample numbers. However, in the absence
of the guided learning support, we also observed that our
model training often failed to learn at all. Note that the
learning curve ofRTA that we have here was found after many
trials.

D. INFERENCE TIME WITH RESPECT TO SAMPLING
SIZE [RQ3]
In terms of model inferences, our model generates k-multiple
priority assignments for each taskset. It can be done by
sampling different tasks from the probability distributions
that the model iteratively produces during the priority
decoding process. There exists a trade-off between achieved
schedulability ratio and required inference time depending
on the size of k . Figure 7 illustrates such a trade-off where
the X-axis represents the sampling size k as well as the
inference time (e.g., the bar on 32 and 0.28s indicates the
case of sampling size k = 32 and average inference time
0.28s) and the Y-axis represents the schedulability ratio.
In the figure, PANDA-G denotes a variant of Panda that
yields only a single priority assignment by the greedy
strategy, and PANDA denotes our model with different k
settings. Note that the cases of PANDA with k = 1 and
PANDA-G are different. Although both yield a single priority
assignment, the former conducts sampling according to the
distributions given by the priority decoder, while the latter
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performs greedy selection. Obviously, we achieve improved
performance along with larger k , by trading-off the inference
time. For example, by increasing sampling size k from 2 to
128, the schedulability ratio of our model improves from 53%
to 58% and the inference time increases from 0.08s to 1.01s,
as in Figure 7.

FIGURE 7. Trade-off of the size of sampling and inference time: m = 4,
n = 32, and utilization 3.0.

It is possible for our model running on an ordinary
PC system to maintain the inference time around 1s with
k = 128. Thus, we normally set k = 128 in our
tests. This inference time required for processing a single
taskset by our model is evaluated to be sufficient because
GFPS is considered an offline problem. It is also feasible to
apply parallel processing on the model inferences, thereby
increasing k and the performance.

VI. RELATED WORKS
Many efforts have been made to solve combinatorial opti-
mization problems using neural networks. In [35], the Hop-
field neural network was introduced to address TSP with
a small number of points. The Hopfield network was later
adopted for job-shop scheduling [36], [37]. Until recently,
however, this approach was considered not-fully-investigated
in that it requires reconstruction of a model for every new
instance and it might have difficulty in solving large instance
problems.

Recently, the Pointer network was presented as a
well-structured method to adopt deep neural networks and
several application examples in [1]. The Pointer network
model was trained in a supervised manner with input-output
samples, producing a permutation as output for a given input
sequence. The work in [2] extended the Pointer network
to adopt an RL algorithm, i.e., policy gradient Actor-
Critic. While we also use the policy gradient algorithm for
training, we employ the attention mechanism with several
optimization schemes on a Pointer network variant for the
GFPS problem.

The recent advance of RL has expedited automation
of system operations in many areas. They include energy
optimization in data centers [38], [39], cluster resource
management [5]–[7], job placement in cloud networks [40],
network slicing [41], and compiler optimization [42]. In this

paper, we adopt RL for the GFPS problem, which is
considered challenging in the area of real-time systems. Liu
and Layland [43] showed that ratemonotonic (RM) is optimal
for single processor fixed-priority scheduling. Unlike the case
of a single processor, however, no optimal solution for GFPS
has been known for a multi-processor platform [12].

Several heuristic algorithms have been introduced for
GFPS upon a multi-processor. As explained in Section II-A,
they can be categorized into heuristic algorithms with
a high-performance schedulability test and OPA with
an OPA-compatible low-performance schedulability test.
We summarize those algorithms and schedulability tests
in Table 5, and refer to the survey paper [12] for more related
information. We evaluate our RL-based model through
comparison with those heuristic algorithms in terms of
schedulability ratio.

TABLE 5. Summary of related studies on GFPS.

To the best of our knowledge, our work is the first to
adopt RL for the GFPS problem (or any real-time scheduling
problem).

VII. CONCLUSION
In this paper, we presented Panda, the RL-based priority
assignment model for multi-processor real-time scheduling
(i.e., GFPS). The model is based on encoder-decoder neural
networks with attention, and its training is driven by RL.
In doing so, we presented training optimization schemes,
progressive RTA-reward and DM-based guided learning,
which are tailored for the GFPS problem. Our model
shows robust performance in terms of schedulability ratio,
compared to the existing heuristics and their integrated
approach (i.e., union). This result illustrates the applicability
of RL-based approaches to GFPS or other similar task
scheduling problems.

Our future work will aim to develop a cost-efficient
neural network model for complex combinatorial problems.
In addition, we are interested in applying Panda to other
scheduling problems in addition to real-time systems.
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