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Abstract
Although many studies have attempted to detect the hand postures of a mobile device to utilize these postures as a user
interface, they either require additional hardware or can differentiate a limited number of grips only if there is a touch event
on the mobile device’s screen. In this paper, we propose a novel grip sensing system, called SmartGrip, which allows a
mobile device to detect different hand postures without any additional hardware and a screen touch event. SmartGrip emits
carefully designed sound signals and differentiates the propagated signals distorted by different user grips. To achieve this,
we analyze how a sound signal propagates from the speaker to the microphone of a mobile device and then address three key
challenges: sound structure design, volume control, and feature extraction and classification. We implement and evaluate
SmartGrip on three Android mobile devices. With six representative grips, SmartGrip exhibits 93.1% average accuracy for
ten users in an office environment. We also demonstrate that SmartGrip operates with 83.5 to 98.3% accuracy in six different
(noisy) locations. Further demonstrating the feasibility of SmartGrip as a user interface, we develop an Android application
that exploits SmartGrip, validating its practical usage.

Keywords Grip sensing system · Mobile device · Sound signals · Sound structure design

1 Introduction

A hand grasping for an object usually indicates its distinct
intent [1, 2]; such intent is more noticeable when the object
is a mobile device. For example, Fig. 1 depicts six different
mobile device user grips. If the user wishes to take a photo,
the user positions the mobile device horizontally and holds
the top and bottom as indicated in Fig. 1a. Similarly, hand
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postures in Fig. 1 b, c, d, and e and f match game playing,
calling, typing, and web surfing, respectively. Because users
have their own distinct styles of grasping, utilizing hand
postures as a user interface necessitates the detection of
different user-defined hand postures. Although there have
been many studies addressing the grip sensing problem, they
either require additional hardware [3–8] or differentiate a
limited number of grips (e.g., grasps with either the left,
right, or both hands only) and operate only if there is a touch
event on the mobile device’s screen [9–11].

To overcome the limitations of the existing studies,
this paper proposes a novel grip sensing system, called
SmartGrip whose goal is as follows.

SmartGrip senses a number of different user grips of
a mobile device without (i) requiring any additional
hardware and (ii) triggering a touch event on the screen.

To achieve this, SmartGrip utilizes sound signals.
SmartGrip emits a series of sound signals from the speaker,
records the signals using the microphone, and captures the
change of the recorded signals based on different user grips.
For example, Fig. 2 displays the changed recorded sound
signals from two different user grips; the sound signals used
for the figure are detailed in Section 3.2.
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Fig. 1 Mobile device grips with
different intentions
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To design SmartGrip, the first step is to understand
how a sound signal propagates from the speaker to the
microphone of a mobile device. The emitted sound can be
divided into two types: (i) direct sound and (ii) reflected
sound. As the name indicates, direct sound passes directly
from the speaker to the microphone. Although direct
sound is independent of the mobile device location, it
is affected by the shape and strength of the individual
grasping hands due to their different acoustic absorption
and damping/boundary conditions. This property has an
important role in differentiating individual user grips.
Reflected sound, on the other hand, is reflected by
the surrounding environment, and thus highly dependent
on the location. Therefore, the following requirements
are necessary for accurate detection of individual grips
regardless of locations:

R1. SmartGrip captures sufficient features from the the
direct sound.
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Fig. 2 Recorded sound signals for two different grasping hands

R2. SmartGrip reduces the effect of the reflected sound to
the maximum possible.

Further, because SmartGrip creates sound, it must
respect the following requirement for user comfort.

R3. SmartGrip must not disturb users with its sound
signals.

In this paper, we attempt to achieve R1–R3 by designing
and controlling the sound signals emitted by SmartGrip.
In detail, we pose and address the following issues for
SmartGrip’s sound signals:

Q1. How to design the structures of the sound signals?
Q2. How to control the volume of the sound signals?

Regarding Q1, we carefully design the sound structure
including the frequency range and amplitude, and its
duration, which is intended to not only addressing R1 and
R2 but also removing unusual sounds (addressing R3); this
is detailed in Section 3.2. For Q2, we explore a tradeoff
between achieving R1 and R2 (by higher volume) and
achieving R3 (by lower volume), and then compromise
the volume, as detailed in Section 3.3. By addressing
Q1 and Q2, SmartGrip can extract sufficient features that
distinguish different user grips. The remaining issue is as
follows.

Q3. How to extract and classify features to distinguish
different user grips?

For Q3, we apply a matched filter and fast Fourier
transform (FFT) with hamming window technique, and
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then classify 172 resulting features using a support vector
machine (SVM) as detailed in Section 3.4.

Based on the design, we implement SmartGrip as an
Android application and validate it on three different mobile
devices: Samsung Galaxy Note 5, Samsung Galaxy S8, and
Google Pixel. With the six representative grips displayed
in Fig. 1, SmartGrip exhibits 93.1% average accuracy for
ten users in an office environment. We further demonstrate
that SmartGrip operates with 83.5 to 98.3% accuracy in six
different (noisy) locations.

Even though the experiments demonstrate the feasibility
of SmartGrip as a user interface, we further develop a
practical Android application that exploits SmartGrip; this
automatically launches the target application mapped to the
corresponding user grip. Please see our demo video for the
application.1

In summary, this paper makes the following contribu-
tions.

– We propose the first grip sensing system through sound
signals, which senses different hand postures of a
commodity mobile device without additional hardware
and touch event on the mobile device’s screen.

– Based on the analysis of the sound signal propagation,
we address the three technical challenges: sound
structure design, volume control, and extraction and
classification of features.

– We implement and evaluate SmartGrip, and demon-
strate its effectiveness in detecting various hand pos-
tures with different users and environments.

– We develop an application that exploits SmartGrip,
demonstrating the practical usage of SmartGrip.

The remainder of the paper is organized as follows.
Section 2 discusses the related work. Section 3, the
main section, presents design and implementation of
SmartGrip with three technical issues: sound structure
design, volume control, and extraction and classification of
features. Section 4 evaluates SmartGrip via experiments.
Section 5 proposes a practical application that enables
SmartGrip to operate as a user interface. Section 6 discusses
the limitations of SmartGrip. The paper concludes with
Section 7.

2 Related work

As mobile devices have become more popular, considerable
research issues regarding mobile devices have appeared. A

1https://www.youtube.com/watch?v=FvQ87wmS6kk

significant research issue is to offer improved interaction
between users and mobile devices; grip sensing is represen-
tative of the interaction challenges. Studies on grip sensing
have been performed not only for mobile devices but also
for other mobile devices. We can classify the studies into
two categories as follows.

First, many researches have detected hand postures
utilizing additional hardware. Yoon et al. [3] studied micro-
mobility based on detection of hand postures on a tablet
using a capacitive sensor. Hand Sense [4] distinguished
grips by attaching a capacitive sensor to mobile or
tangible devices. Hand Sense can distinguish six grips
such as hold left/right, pick up left/right, and pick up
top/bottom. Graspables [5] also used a capacitive sensor and
pattern recognition software to sense the grips; Graspables
detects the grips by applying the system to objects and
suggests applications using it. iGrasp [6] used grip sensing
technology to automatically change the keyboard depending
on the user of the tablet. iGrasp also attached a capacitive
sensor to the back of the tablet to detect the user’s grip.
Touch & Active [7] used acoustic signals to recognize
touches and grips of target objects; a vibration speaker and
piezo-electric microphone must be attached to the objects.
Touch & Active has applied their system to different objects
including a ceramic bowl, plastic toy, and mobile device.
It has been demonstrated that they can detect touches
and grips on those objects. iRotate Grasp [8] proposed an
interface that changes the orientation of the mobile device
automatically according to the viewing orientation of the
mobile device user. To accomplish this, 32 light sensors
were attached to the back of the mobile device. Although
successful in differentiating individual grips, the studies
belonging to the first category require additional hardware,
making it impossible to utilize the studies for commodity
mobile devices as they are.

Unlike the studies belonging to the first category, there
have been a few studies that address grip sensing without
any additional hardware. GripSense [9] and a study by
Park and Ogawa [10] detected hand postures using only
the built-in sensors (such as accelerometer and gyroscope)
of the mobile devices. ContextType [11], a subsequent
study of GripSense proposed an adaptive text entry system
based on grip sensing. Although the studies in the second
category succeeded in differentiating a limited number of
grips without additional hardware, they required a touch
event on the mobile device’s screen for grip sensing. On
the other hand, the grip sensing system proposed in this
paper, SmartGrip, does not require additional hardware and
touch event. In addition, SmartGrip is differentiated from
the existing studies in that it is the first grip sensing system
utilizing sound signals.
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3 Design and implementation of SmartGrip

In this section, we design a new grip sensing system,
SmartGrip, which enables mobile devices to detect different
hand postures without additional hardware and screen
touch events by satisfying R1–R3 mentioned in Section 1.
To achieve this, we first analyze how a sound signal
propagates from the speaker to the microphone of a
mobile device. Based on the sound propagation analysis,
we address technical issues by answering Q1–Q3, which
correspond to sound structure design, volume control, and
feature extraction and classification, respectively. Finally,
we describe the implementation of SmartGrip.

3.1 Sound propagation analysis

To distinguish different grips using sound signals, this
subsection first analyzes how a sound signal propagates,
and then summarizes technical issues for the SmartGrip
design. Figure 3 illustrates how a sound signal emitted by
the mobile device speaker reaches the microphone. The
emitted sound can be divided into two types: direct sound
and reflected sound.

Directed sound (as the name indicates) goes directly from
the speaker to the microphone; its sound spectrum change
is depicted in Fig. 4. As indicated in the figure, the main
reasons for a spectrum change are (a) hardware imperfection
and (b) the resonant property of each mobile device and
acoustic absorption of each user grip, which are detailed as
follows.

First, when a mobile device attempts to emit a sound
signal and then record it, the actual signal emitted by the
speaker and recorded by the microphone is slightly different
from the original signal. This is because the speaker and
microphone are imperfect in terms of hardware design;
when the sound is emitted by the speaker and recorded
by the microphone, a loss of amplitude occurs at certain
frequencies [12].

The emitted direct sound propagates through the mobile
device body and air. The direct sound propagated through
air is affected by the skin of the hand. Because the human

Direct Sound

Fig. 3 Propagation of a sound signal on a mobile device

hand has different acoustic absorption coefficients for each
frequency [13], the directed sound propagated through air is
attenuated in certain frequency ranges, which depend on the
user’s grip.

Similarly, the direct sound propagated through the body
of the mobile device is changed based on the user’s
grip, which is related to the damping and the boundary
conditions [14, 15]. Because the change of the damping and
boundary conditions depends on the shape and strength of
the grasping hand, the recorded directed sound propagated
through mobile device’s body with a specific user grip is
different from that with another grip, even if the same sound
signal is emitted from the speaker. This interesting property
has been recently used in the mobile systems’ area owing to
its effectiveness in generating a unique sound spectrum [7,
16]; the property was originally studied in the architecture
field.

Unlike direct sound, reflected sound is reflected by the
surrounding environment. This can be an opportunity in
specific situations. For example, Tung and Shin [17] created
an acoustic signature that identifies the location of the
mobile device using the reflected sound, resulting in fine-
grained indoor localization. However, reflected sound leads
to uneven attenuation in certain frequency ranges depending
on the surrounding environment, and can result in a different
sound spectrum even with the same grip, which makes it
difficult to detect individual user grips.

Therefore, designing SmartGrip using sound signals
entails utilizing the direct sound (i.e., achieving R1) and
removing the effect of the reflected sound (i.e., achieving
R2). In the next subsections, we explain how to satisfy R1
and R2 for grip sensing accuracy and R3 for user comfort
by addressing Q1–Q3.

3.2 Sound structure design

To distinguish different grips, we must carefully design
the sound signals to achieve both accuracy of grip sensing
and user comfort (meeting Q1–Q3). To accomplish this,
we determine the frequency range and structure of the
generated sound signals, as explained in the following.

First, we must determine the frequency range. It is well
known that the maximum frequency people can hear is
between 19 and 20kHz [18]. Therefore, it would be better
to use a frequency higher than 20kHz to prevent the user
from hearing the sound. However, through our experiments,
we determined that a higher frequency sound yields reduced
amplitude compared with a lower frequency sound when the
sound is recorded by a microphone. The reduced amplitude
makes it difficult to capture the change of sound signals for
each user grip. Therefore, we inevitably include some lower
frequency range to capture the grip features more clearly.
Considering that Android supports up to 48kHz sampling
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Fig. 4 Spectrum change of
direct sound on a mobile device
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(b) Resonant property of each mobile device & acoustic absorption of each user grip
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rate, meaning that the maximum recordable frequency
is 48kHz/2=24kHz, we select a frequency range from
16 to 24kHz, where we maximize the use of the high
frequency while securing a sufficient number of features for
recognizing the change of our sound signals by different
user grips. Although we use a frequency range that a user
could hear, sound set to a proper volume does not interfere
with the user, which is discussed in Section 3.3.

Further, we must determine the structure of the sound
signals. Because we have previously determined the
frequency range, the simplest structure of the sound signals
to be generated is a single linear chirp signal sweeping from
16 to 24kHz. However, such a unified chirp signal presents
problems. The most significant problem is regarding the
length of the overlapped reflected sound; as the sound signal
becomes longer, the length of the overlapped reflected
sound also becomes longer, meaning that SmartGrip is more
affected by the surrounding environment. To solve this
problem, we divide the single long chirp signal into four
short chirp signals and set each chirp signal’s length as
200 samples. Further, we remove the interference between
different chirps by setting the distance to 500 samples
between two consecutive chirps. When we extract features
from the recorded sound signals, we use only “200 samples”
of each recorded chirp signal. Because the speed of sound
is approximately 340m/s, we can completely block the
reflected sound farther than 1.4m. Moreover, fade in & fade
out must be applied to each chirp signal to eliminate the
phenomenon that generates unusual sounds due to abrupt
energy changes [19].

Note that we empirically determined the number of
samples for each chirp signal as 200 samples. If the
number is overly small, the signal is not sufficient for
extracting features for grip classification. Conversely, with
a greater number of samples, the effect of the reflected
sound becomes larger, making it difficult to differentiate
individual grips.

To summarize, we generate sound signals as indicated in
Fig. 5. We use four sound signals to sense a single grip.
Each of the sound signal is a linear chirp signal sweeping
from 16 to 18kHz, from 18 to 20kHz, from 20 to 22kHz,
and from 22 to 24kHz. The length of each chirp signal is
200 samples and the interval between each chirp is 500
samples. Therefore, the total time to sense a single grip is
approximately (200×4+500×3)×48kHz=47.9ms. Further,
the fade in & fade out was applied to each chirp as indicated
in the lower subfigure of Fig. 5.

3.3 Volume control

The proposed sound structure design allows SmartGrip
to not only collect sufficient features from direct sound
but also block reflected sound from the environment
within 1.4m of the mobile device. However, despite
its effectiveness, the sound structure design does not
completely address R1–R3, omitting following issues. First,
it is possible for the reflected sound of a chirp to overlap
with the observed “200 samples” for the chirp. Second,
people can hear the sound signals based on the proposed
sound structure design owing to the use of frequencies

Fig. 5 Sound structure design
for SmartGrip

2000 700 900 1400 1600 2100 2300

16kHz 18kHz 18kHz 20kHz 22kHz20kHz 22kHz 24kHz

e
d

util
p

m
A

-1
1

Samples

e
d

util
p

m
A

-1
1

0 200

647Pers Ubiquit Comput (2020) 24:643–654



lower than 20kHz. To address these two issues, we should
carefully control absolute volume of the sound signals.

For the first issue, we performed experiments as follows.
We emitted and recorded sound signals with different
volumes and measured the amplitude of the direct sound
and reflected sound through a band-pass filter and matched
filter. We observed that the ratio between amplitude of the
direct sound and that of the reflected sound increased as the
volumes increased. For example, the ratio was 4:1 with 20%
volume, while the ratio changed to 10:1 with 50% volume.
Therefore, we can reduce the effect of reflected sound using
a high volume.

When it comes to the second issue, we performed a
usability study. We exposed ten participants to sound signals
with different volumes and asked them if they were audible.
Their age ranges from 20 to 32 years. When the volume was
greater than 50%, eight out of ten participants could hear
the sound signal. However, at 50% volume, eight out of ten
participants could not recognize the sound signal, and the
other two participants stated that the sound was negligible.

Therefore, we chose to use 50% volume (for Samsung
Galaxy Note 5).2 With 50% volume, SmartGrip not only
reduced the effect of the reflected sound to 1/10th of the
direct sound but also exhibited no or minimal disturbance to
the users.

3.4 Feature extraction and classification

Although a buffer for the recorded sound signals has useful
information regarding the current grasping hand, the signals
not only have noise but also are expressed as a time domain,
which must be transformed into a frequency domain. Thus,
SmartGrip must extract the features from the recorded sound
signal buffer and make the sound signals a feature set to
define the current grip. To accomplish this, we first apply a
matched filter. The matched filter removes the noise from
the recorded sound buffer and searches for the starting
point where the sound signal is recorded. After applying
the matched filter, we set the sample index with the peak
value as the starting point of the sound signal. Then, FFT is
performed based on the starting point of the sound signal.
A hamming window is used for FFT where the window
size is 1024. We fill the first 200 samples of the window
with the actual data of the chirp signal, and the remaining
824(=1024–200) samples with zeros to prevent unnecessary
reflected sound from being transformed together. Because
the sound signal is composed of four chirps, the matched
filter and FFT are performed four times, once for each chirp.
After eliminating the unnecessary parts from FFT results

2Note that the criterion volume depends on mobile devices. For
Samsung Galaxy S8 and Google Pixel, the criterion volume
corresponds to 60%. It is not difficult to calibrate the criterion volume
for target mobile devices.

of each chirp, we combine them as one. Consequently,
we extract 172 features3 in total, which are defined as an
individual grip.

Using the extracted 172 features, we classify the grips
into six predefined classes via SVM [20], which is a well-
known machine learning method for the classification task.
We build personalized classification models, where the
data from a user is applicable to the user only. This is
because different users exhibit different characteristics of
grasping hands (e.g., size, the amount of hair, thickness of
skin); therefore, the same grip from different users yields
different extracted features. We trained the SVM using 4800
samples and tested the classification performance on 1200
samples (we collected 6000 samples for each user). To
tune the parameters for the SVM, we used 5-fold cross
validation and selected the parameters that yielded the
highest accuracy. (Hence, we used the linear kernel and set
the penalty parameter c = 0.5 for SVM.)

3.5 Implementation

We implemented SmartGrip as an Android application.
Except for certain libraries such as LIBSVM and FFT,
we used Android APIs only. Because SmartGrip requires
neither any kernel modification nor Android-specific APIs,
the system can be easily extended to other mobile operating
systems, e.g., iOS or Windows.

4 Evaluation

For evaluation, we experimented three different mobile
devices: Samsung Galaxy S8, Samsung Note 5, and
Google Pixel. The evaluation consists of three parts.
First, we present grip sensing accuracy of SmartGrip. We
then demonstrate that SmartGrip operates within various
environments in terms of noise level and the size of the
location. Finally, we evaluate the effect of the concurrent
use of multiple mobile devices employing SmartGrip.

4.1 Accuracy

In this subsection, we measured the accuracy of SmartGrip
for different people. We included ten participants (P1–
P10), eight males and two females; their ages range from
20 to 32 years. The characteristics of their hands were
considerably different. For example, a male participant had
hard, thick leathery hands, whereas a female participant had

3After applying FFT, we have 512 features with 0–24kHZ. We remove
features with 0–16kHZ as well as additional features related to fade in
& fade out, yielding 172 features.
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soft, smooth hands. Another participant had significant hair
on his hands, considerably more than the other participants.

Our experiments were conducted in an office environ-
ment displayed in Fig. 6a. For each participant, we collected
the data for the evaluation as follows. They were required
to view and grasp the six different grips indicated in Fig. 1.
For each grip, we recorded 100 measurements. However, if
each participant grasped the mobile device 100 times in the
same position and location, the accuracy would be expected
to be high because of the constant reflected sound and con-
stant sound delivery. For more realistic scenarios, we had
each participant repeat the following process 20 times for
each grip. First, each participant grasped the mobile device
with the target grip, and we measured the grip five times.
Then, s/he set down the mobile device and changed its loca-
tion. We collected 20×5× 6 =600 grip data of the six grips
from each participant. This data collecting procedure was
independently repeated on the Samsung Galaxy S8, Galaxy
Note 5, and Google Pixel mobile devices.

SmartGrip used the personalized classification model for
each participant and each mobile device. We applied 5-
fold cross validation to measure the accuracy of SmartGrip.
Figure 7 a displays the accuracy of classifying the six grips
according to the participants. Among the ten participants
P1–P10, P1 exhibited the highest accuracy, an average of
96.5% for the three mobile devices; the person with the
lowest accuracy was P6, an average of 86.7% for the three
mobile devices.

Figure 7 b indicates the accuracy for the different mobile
devices. In Fig. 7b, we display the average accuracy of
the ten participants with the corresponding mobile device.
The average accuracy was 95.7% for Galaxy S8, 91.5%
for Pixel, and 92.2% for Galaxy Note 5 in an office
environment. The standard deviation was 4.5, 2.4, and 3.5
for Galaxy S8, Pixel, and Galaxy Note 5, respectively.
The reason for the low accuracy at the Pixel is that the

microphone of the Pixel did not thoroughly record the
high frequency range (22–24kHz), compared with the other
mobile devices. In total, the average accuracy of the three
mobile devices was 93.1%.

Figure 8 displays the confusion matrices of the six
grips of participant P3, whose accuracy is the closest
to the average accuracy. The y-axis represents the actual
grip assumed by the participant; the x-axis indicates the
predicted grip by SmartGrip. Thus, denser diagonal blocks
indicate improved prediction performances. We can observe
that SmartGrip with the Galaxy Note 5 evenly differentiated
the six grips accurately, whereas the lowest accuracy was
with Pixel. In particular, among the six grips, SmartGrip
with Pixel had difficulty in distinguishing between Grip #1
and #2, corresponding to Fig. 1 a and b, respectively.

4.2 Noise and environmental disturbances

In this subsection, we evaluated SmartGrip in different loca-
tions to demonstrate how accurately SmartGrip operated.
We performed experiments using SmartGrip in the six loca-
tions in Fig. 6 to measure the effect of the reflection sound
and external noise of everyday life. Note that we did not
intentionally control the environments of the locations. For
example, there were six people working on their own stud-
ies and some running equipment in the laboratory in Fig. 6a,
where the degree of noise was 63dB. At the cafe in Fig. 6b,
there were approximately 20 people talking or studying,
with an average of 76dB noise. At the mall in Fig. 6d, a
number of people were enjoying the shopping with music
playing; the average noise was approximately 85dB.

Note that the previous subsection indicates that the
standard deviation of the ten participants was an average
3.5, which means the accuracy for SmartGrip does not
depend highly on participants. Therefore, we performed
experiments for a single user in the six different places

Fig. 6 Locations for evaluation
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Fig. 7 Accuracy depending on
different participants and mobile
devices
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and observed the accuracy according to the variation in the
locations and noise levels.

Figure 9 a shows the average accuracy of the three mobile
devices in different locations. While the average accuracy
in the six locations was 91.6%, the home and the road
exhibited the highest and lowest accuracy of 98.3% and
83.5%, respectively. As indicated in the figure, external
noise is inversely proportional to accuracy, and the accuracy
difference between the highest and lowest noise level was
about 14.8%(=98.3–83.5). Figure 9 b demonstrates that the
accuracy of the different locations did not significantly rely
on the target mobile devices. Of the three mobile devices,
the Galaxy Note 5 and Pixel exhibited the highest and lowest
overall accuracy, respectively, which agrees with the results
of the previous subsection.

One may wonder why SmartGrip works effectively with
Samsung Galaxy Note 5, compared with Samsung Galaxy
S8 and Google Pixel. Such performance difference comes
from many factors, and it is difficult to figure out which
factors and how much the factors affect the performance
of SmartGrip. We conjecture that the major factors are (i)
the quality and placement of the speaker and microphone,
and (ii) the material and structure of the mobile device body
through which the sound propagates. In the future, it would

be interesting to figure out the factors and the degree of
effect thereof.

4.3 Disturbances betweenmultiple users

SmartGrip records and analyzes sound signals in the
frequency range from 16 to 24kHz. Therefore, if there
is another user using SmartGrip at the same time in the
same location, there could be interference between the
two. We conducted the following experiment to identify
the separation distance required to prevent interference.
We let one mobile device emit the sound signal designed
for SmartGrip with 50% volume (irregularly) four or
five times per second, while a second mobile device
measured the accuracy of SmartGrip with different distances
between the two mobile devices (30cm, 60cm, 90cm,
150cm, 180cm, and 210cm) as illustrated in Fig. 10a.
As shown in Fig. 10b, the accuracy increased as the
distance between the two mobile devices increased. With
a distance of 180cm, we can achieve similar accuracy to
the accuracy with a single user, implying that multiple
users can use SmartGrip simultaneously assuming their
distance is no closer than 180cm. Note that the distance
of 180cm is a safe, pessimistic bound for concurrent

Fig. 8 Confusion matrix of P3
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Fig. 9 Accuracy depending on
locations
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execution of SmartGrip. In reality, multiple mobile devices
employing SmartGrip do not continuously generate sound
signals, yielding minimal opportunity of interference even
within a 180-cm placement; we present an example in
Section 5.

5 Application of SmartGrip: AppLauncher

In this section, we propose an application called
AppLauncher to demonstrate the practical use of SmartGrip
as a user interface. As an Android background service,
AppLauncher detects and differentiates a user grip (by the
feature of SmartGrip), and launches the target application
matched with the grip. Figure 11 presents the setup and
operation of AppLauncher. First, a user is required to grasp
the mobile device five times to register a user grip. Note
that SmartGrip uses a personalized classification, and there-
fore this registration process is necessary. For each grasp,
AppLauncher emits a predefined sound signal, and records
the sound signal using the microphone (by the feature of
SmartGrip). Then, the user selects the application to be

triggered by the corresponding grip. Finally, whenever
the user shakes the mobile device with the preregistered
grip, AppLauncher automatically launches the mapped
application. Because a user can initiate the target applica-
tion simply by grasping and shaking the mobile device,
AppLauncher delays a short time to launch the target
application. Further, because the user continues using the
grasping hand for the target application, we can signifi-
cantly reduce the number of screen touches for running the
target application. See our demo video for the application:
https://www.youtube.com/watch?v=FvQ87wmS6kk.

Figure 12 displays the overall system architecture for
AppLauncher, consisting of three parts: initialization, shake
detection, and grip estimation. In the initialization step,
AppLauncher generates a series of sound signals that
are carefully designed for detecting different grips. For
reducing the effect of reflected sound, it controls volume
by the feature of SmartGrip. We store the generated
signals in a buffer, which enables AppLauncher to emit
the generated signals quickly upon a user’s grip sensing
request (by the shake event). After the initialization step,
the shake detection step initiates as a background service

Fig. 10 Accuracy according to
distances between two mobile
devices using SmartGrip at the
same time

(a) Experiment setting (b) Accuracy
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Fig. 11 Setup and operation of
AppLauncher

(a) Register grip (b) Select application (c) Launch applicationt

for performance optimization, which operates as a trigger.
Without any sign for detecting the current grip, we
could periodically generate sound signals for the detection,
which could waste mobile device’s power and computing
resources; using this trigger, it is probabilistically safe
for multiple users within 180cm to use AppLauncher.
To achieve this, we use a mobile device built-in sensor,
the accelerometer; if the current acceleration exceeds a
predefined threshold, AppLauncher regards this situation
as a shake event and allows the speaker to generate the
predefined sound signals. To avoid multiple triggers within
a single shake event, AppLauncher pauses the shake event
detection for a predefined duration once it generates sound
signals. We empirically determine two thresholds: 2.7 m/s2

for shake event outbreak and 2 s for pausing the detection
process, both of which are easily adjusted for reflecting user
behaviors. After the shake event is detected, AppLauncher
emits and records sound signals, and then enters the grip
estimation process (according to SmartGrip). Once the
user grip is identified, AppLauncher executes the mapped
application.

6 Discussion and limitations

While we demonstrated the feasibility of SmartGrip in
sensing smartphone grips, the technology proposed in this

paper can be potentially utilized to other applications. First,
it is possible for SmartGrip to help user authentication
for mobile devices. That is, after registering a series of
grips, a user can be authenticated by matching the series of
grips with a predefined order. Considering SmartGrip does
not match a grip with a hand, with the same grip with a
different hand, SmartGrip is useful for user authentication.
Second, it is impossible or very costly to add a new interface
(such as a button) to COTS-based (commercial off-the-
shelf-based) devices. SmartGrip allows users to implement
a new interface to COTS-based devices such as AI speakers
and smart watches, as long as the devices are equipped with
a speaker and microphone. The abovementioned potential
applications need to tailor the technology used in SmartGrip,
which is our future work.

Now, we discuss limitations of SmartGrip as follows.
First, although we have reduced the impact of reflected
sound through sound structure design and volume control,
we cannot completely eliminate the impact, yielding an
opportunity for further improvement. Second, the accuracy
of SmartGrip is influenced by external noise. Third,
SmartGrip cannot distinguish a grip covering the speaker.
This is because the grip that directly covers the speaker
produces a strong and unpredictable reflection sound by
the hand. Finally, it is possible for multiple users using
SmartGrip to interfere with each other if their distance is
closer to 180cm.

Fig. 12 System overview of
AppLauncher
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We may address the abovementioned limitations at the
expense of some inconvenience. That is, we can block the
microphone pinhole as indicated in Fig. 13. By blocking the
microphone pinhole, we can prevent reflected sound from
recording through the microphone. The sound recorded
by the microphone is primarily direct sound propagated
through the mobile device body. Consequently, SmartGrip
with a blocked microphone pinhole is resilient to reflection
sound and external noise. Based on our experiments,
this adaptation yields at least 96% accuracy of all six
locations displayed in Fig. 6. Further, it is possible to
distinguish a grip that directly covers the speaker, and
multiple users can use SmartGrip even within a distance of
30cm. One may think that it is not user-friendly to block
the microphone pinhole. In this case, we may improve
the accuracy of SmartGrip by applying adaptive parameter
settings tailored to (i) each user and/or (ii) noise and
environmental disturbances. As future work, we would
develop personalized and/or noise-specific sound signal
generation and volume control.

In addition to the above limitations, SmartGrip has one
more limitation. That is, since SmartGrip relies on emitting
and recording sounds, it is inevitably affected by other
applications that use sounds on the target mobile device.
If one of the applications emits sounds at the same time
as SmartGrip emits sounds, SmartGrip may not distinguish
grips due to the sound interference. As of now, a simple
solution is to disable SmartGrip when other applications use
sounds. In the future, it would be interesting to develop
solutions on how to make SmartGrip work with those
applications.

Fig. 13 Method of blocking microphone pinhole

7 Conclusion

In this paper, we presented a novel grip sensing sys-
tem SmartGrip, which detects different hand postures of a
mobile device through sound signals, without any additional
hardware and screen touch event. By analyzing how a grasp-
ing hand on a mobile device influences the sound signal
delivered from the speaker to the microphone, we addressed
the technical issues of SmartGrip design, which are sound
structure design, volume control, and feature extraction and
classification. Our evaluation results confirmed that Smart-
Grip classified six widely used grips with 93.1% average
accuracy for ten different users in an office environment,
and 83.5–98.3% accuracy in six different (noisy) locations.
Further, we proposed a practical application that utilizes
SmartGrip. This sufficiently demonstrated the feasibility of
utilizing hand postures as a user interface.
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