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Abstract: In real-time distributed systems, it is important to provide offline guarantee for an upper-bound
of each real-time task’s end-to-end delay, which has been achieved by assigning proper intermediate
deadlines of individual real-time tasks at each node. Although existing studies have succeeded to
utilize mathematical theories of distributed computation/control for intermediate deadline assignment,
they have assumed that every task operates in a cooperative manner, which does not always hold
for real-worlds. In addition, existing studies have not addressed how to exploit a trade-off between
end-to-end delay fairness among real-time tasks and performance for minimizing aggregate end-to-end
delays. In this paper, we recapitulate an existing cooperative distributed framework, and propose a
non-cooperate distributed framework that can operate even with selfish tasks, each of which is only
interested in minimizing its own end-to-end delay regardless of achieving the system goal. We then
propose how to design utility functions that allow the real-time distributed system to exploit the trade-off.
Finally, we demonstrate the validity of the cooperative and non-cooperative frameworks along with the
designed utility functions, via simulations.

Keywords: real-time distributed systems; intermediate deadline assignment; non-cooperative tasks;
utility function design; EDF (Earliest Deadline First)

1. Introduction

In real-time distributed systems, each real-time task executes on several nodes in a sequential
manner subject to timing constraints. Therefore, it is important to provide predictable performance for the
end-to-end delay of each real-time task, which implies that an upper-bound of the end-to-end delay should
be provided before the system starts [1]. An example of such a real-time distributed system is an LCD
video player [2]. In the system, multiple media applications compete for processing units, and each media
processing application is executed in the processing units in a sequential manner; also, QoS (Quality of
Service) of each media processing application is dependent on end-to-end delays. Since each application’s
QoS can be expressed as time-sensitive utility functions, the goal of the system is maximizing the collective
utilities of individual applications in the worst-case. With this utility, the system can provide QoS at least
as much as the collective utilities. More examples of real-time distributed systems can be found in some
scenarios in cloud data center [3] and mobile crowdsourcing [4]; a delay-sensitive application is executed
in a series of virtual machines and mobile devices, respectively for the former and latter, and QoS of the
application is a function of its response time.
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The end-to-end delay predictability required by a real-time distributed system has been achieved
by assigning proper intermediate deadlines of individual real-time tasks executed on each node [1,5–17].
However, although existing studies for the intermediate deadline assignment have succeeded to utilize
mathematical theories (including convex optimization [18–20]) of distributed computation/control for
intermediate deadline assignment, they have assumed that every task operates in a cooperative manner,
which does not always hold in real-world situations. In addition, existing studies have not addressed
how to exploit a trade-off between end-to-end delay fairness among real-time tasks and performance for
minimizing total end-to-end delays of the entire real-time distributed system.

In this paper, we address two important issues for the intermediate deadline assignment problem
for real-time distributed systems, which are related to non-cooperative tasks and utility function design.
First, after recapitulating an existing cooperative distributed framework, we propose a non-cooperative
distributed framework that operates even with selfish tasks, each of which is only interested in minimizing
its own end-to-end delay regardless of achieving the system goal. To this end, we propose a penalty
function that makes each task spontaneously restrain itself from behaving in a selfish manner, and present
how to apply the penalty function to each task. Second, we propose a design principle for utility functions
that enable the real-time distributed system to exploit a trade-off between end-to-end delay fairness among
individual tasks and performance for minimizing total end-to-end delays of the entire system. This can
be achieved by adjusting a parameter α to be detailed in Section 4. Then, our simulation results show
the validity of the cooperative and non-cooperative frameworks in conjunction with the designed utility
functions.

In summary, this paper makes the following contributions.

• We develop the first non-cooperative distributed framework for intermediate deadline assignment in
real-time distributed systems.

• We design the first utility function that regulates a trade-off between delay fairness and performance
for intermediate deadline assignment in real-time distributed systems.

• We demonstrate the validity of the existing cooperative framework and the proposed non-cooperative
framework associated with the designed utility function.

The remainder of this paper is structured as follows. Section 2 presents our target problem and
related work. Section 3 recapitulates an existing cooperative distributed framework and proposes a
non-cooperative one with its deployment issues. Section 4 proposes a utility function design. Section 5
demonstrates the validity of the proposed techniques. Section 6 concludes the paper.

2. Target Problem and Related Work

In this section, we first explain our system model and then our target problem, which is the
intermediate deadline assignment problem for real-time distributed systems. We next summarize existing
studies related to the target problem.

2.1. Intermediate Deadline Assignment Problem

We target the intermediate deadline assignment problem for real-time distributed systems, which is
defined in [14,15] as follows. We consider a real-time distributed system with a set of tasks τi ∈ τ and a set
of nodesNn ∈ N . Let |A| denote the size of A; therefore |τ| and |N | denote the number of tasks and nodes,
respectively. Each task τi ∈ τ consists of a series of mi subtasks (numbered from 1 to mi), each of which is
executed on exactly one node in a sequential manner. Let J(i,k,n) denote the kth subtask of τi executed on
node Nn; we may omit n in J(i,k,n) if n is irrelevant. Also, we use C(i,k) as the worst-case execution time of
J(i,k). Then, adjacent subtasks of τi (e.g., J(i,k) and J(i,k+1)) execute in a sequential manner; that is, J(i,k+1)
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is ready to execute only after J(i,k) completes its execution. Each task τi is a sporadic task, meaning that its
first subtask is released repeatedly with a minimum separation of Ti time units.

Once we calculate the reponse time (i.e., the maximum local delay) that each subtask J(i,k) undergoes
in its node (denoted by d(i,k)), then we can calculate the maximum end-to-end delay by di = ∑mi

k=1 d(i,k).
Each task has its own delay-sensitive utility function Ui(di) that characterizes QoS (Quality-of-Service)
level, and then the system utility Usys is defined as follows:

Usys = ∑
τi∈τ

Ui(di). (1)

Since it is difficult to calculate the maximum end-to-end delay di before the system starts (i.e., offline as
opposed to online), existing studies assign D(i,k), the intermediate deadline for each task τi on each node
Nn (i.e., J(i,k,x) : x = n). Then, as long as the following schedulability condition holds for all nodes,
the local delay for each task executed on each node is guaranteed to be upper-bounded by the intermediate
deadline, i.e., d(i,k) ≤ D(i,k) [21–23].

∑
J(i,k,x) :x=n

C(i,k)

D(i,k)
≤ UBn, (2)

where UBn denotes the utilization bound for node Nn. It is known that UBn = 1.0, UBn = 0.69
and UBn = 1.0 − maxJ(i,k,x) :x=n

C(i,k)
D(i,k)

, if subtasks in node Nn are scheduled by preemptive

EDF (Earliest Deadline) First [21], preemptive DM (Deadline Monotonic) [22], and non-preemptive
EDF [23], respectively.

Then, considering that di = ∑mi
k=1 d(i,k) ≤ ∑mi

k=1 D(i,k) holds for all τi ∈ τ, the intermediate deadline
assignment problem that we target is to maximize the system utility subject to the node schedulability
conditions, which is formally stated in the following primal problem [14,15].

(Primal problem)

max
∀D(j,l)≥C(j,l)

∑
τi∈τ

Ui

( mi

∑
k=1

D(i,k)

)
, (3)

Subject to:

∑
J(i0,k0,x) :x=n

C(i0,k0)

D(i0,k0)
≤ UBn, ∀Nn ∈ N . (4)

Note that it is straightforward that every intermediate deadline should be no smaller than the
corresponding worst-case execution time (i.e., D(j,l) ≥ C(j,l) for every pair of (j, l)) to satisfy the node
schedulability conditions in Equation (4).

2.2. Related Work

In the literature, several studies regarding the intermediate deadline assignment problem have also
been proposed for real-time distributed systems. Several existing studies have addressed the intermediate
deadline assignment problem; for example, straightforward deadline distribution technique [7], the critical
scaling factor technique [6], and the excess of response time technique [5] have been proposed. In addition,
there have been a few studies that focus on parallel subtasks; they usually aims at addressing how to
handle interference between subtasks [9,10]. On the other hand, there have been some studies that handle
pipelined tasks using end-to-end delay analysis techniques [12,13], and the end-to-end deadline guarantee
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has also been applied to utilizing optional (i.e., non-mandatory) execution parts [11]. A study has achieved
improvement of the schedulability condition for the intermediate assignment problem [16]. Recently,
a study has tried to solve the intermediate deadline assignment problem using the machine learning
techniques [17]. While the above studies are well summarized in [1], they assumed that a centralized
computing unit can control all tasks, and did not consider a distributed framework.

To solve the intermediate deadline assignment problem in a distributed manner, convex optimization
has been utilized in some studies. That is, they applied a Lagrange dual function, and then found a sequence
that converges to the optimal solution by utilizing the decomposition techniques with descent algorithms.
Such decomposition has been applied to the intermediate assignment problem for real-time distributed
systems [14,15]. However, all existing studies assume that all tasks are cooperative in achieving the system
goal, which does not always hold for real-worlds. In addition, there has been no study about how to
exploit a trade-off between delay fairness between individual tasks and performance of achievement of
the system goal.

Different from existing studies, this paper (i) proposes the first non-cooperative distributed framework
and (ii) designs a utility function that exploits a trade-off between delay fairness and system performance,
both for the intermediate deadline assignment problem in real-time distributed systems.

3. Distributed Framework for Intermediate Deadline Assignment

In this section, we present how to solve the primal problem (defined in Section 2.1) in a distributed
manner, assuming that the utility function Ui for each task is given. To this end, we recapitulate the existing
cooperative framework in which every task spontaneously collaborates on achieving the system goal
(i.e., solving the primal problem). We then propose a non-cooperative framework, which can operate even
when every task tries to maximize its own utility regardless of achieving the system goal. Finally, we discuss
deployment issues for the cooperative and non-cooperative frameworks.

3.1. Existing Cooperative Distributed Framework

The primal problem in Section 2.1 can be solved using various techniques (e.g., Shor’s r-algorithm [24]),
if a centralized computing unit has capability of controlling all tasks. However, in many real environments,
a centralized computing/control is impossible or requires non-negligible overhead, which necessitates a
framework with distributed computing/control. For the distributed framework, existing studies [14,15]
utilize Lagrange Duality; the primal problem in Section 2.1 is transformed by its dual problem using
Lagrange multipliers [25] as follows:

(Dual problem)

min
∀pn≥0

max
∀D(j,l)≥C(j,l)

∑
τi∈τ

Ui

( mi

∑
k=1

D(i,k)

)
+ ∑
Nn∈N

pn ·

UBn − ∑
J(i0,k0,x) :x=n

C(i0,k0)

D(i0,k0)

 . (5)

In the above dual problem, a node price pn is a Lagrange multiplier for the schedulability condition
of a node n. If the primal problem is a convex optimization problem, strong duality is guaranteed by
making node prices pn non-negative [25]. This means that the solution by the primal problem is equivalent
to that by the dual problem. To make the primal problem in Section 2.1 convex, the utility functions



Mathematics 2020, 8, 1579 5 of 13

and the schedulability constraints should be concave. Since D(j,l) ≥ C(j,l) holds for every pair of (j, l),
the schedulability constraints in (4) are concave as follows [14,15]:

∂2

∂D2
(j,l)

UBn − ∑
J(i0,k0,x) :x=n

C(i0,k0)

D(i0,k0)

 ≤ 0. (6)

Therefore, if the utility functions are concave, we can solve the dual problem using the distributed
computation/control without any loss of performance. That is, by applying the gradient projection
algorithm [26,27], we can find the optimal solution iteratively. Node prices pn can be also calculated in an
iterative manner, as follows [14,15]:

pn(t + 1) =
[

pn(t)− γn ·
(
UBn − ∑

J(i0,k0,x) :x=n

C(i0,k0)

D(i0,k0)

)]+
, (7)

where [x]+ denotes max(0, x).
The constants γn are step sizes, which determine the rate of convergence of the iteration. If they are

sufficiently small to satisfy Lipschitz continuity [26], they are able to guarantee the convergence. We can
calculate the intermediate deadline D(i,k)(t + 1) of subtask J(i,k,n), by solving the following differential
equation in which D(i,x) = D(i,x)(t) for all x ∈ [1, mi] [14,15]:

∂Ui(D(i,1), . . . , D(i,k−1), D(i,k)(t + 1), D(i,k+1), . . . , D(i,mi)
)

∂D(i,k)(t + 1)
+ pn(t) ·

C(i,k)[
D(i,k)(t + 1)

]2 = 0. (8)

The condition for the iteration to halt is to satisfy the following inequalities for all D(i,k):

|D(i,k)(t + 1)− D(i,k)(t)| < ε, (9)

where ε is a sufficiently small positive number; also it regulates a trade-off between the solution’s accuracy
and the rate of convergence. The condition for the iteration to halt has been widely used in gradient
algorithms [26].

Then, as long as every task follows Equation (8), the cooperative distributed framework
operates correctly.

3.2. Proposed Non-Cooperative Distributed Framework

The dual problem presented in Section 3.1 assumes that all tasks are cooperative and collaborate on
achieving the system goal (i.e., solving the primal problem). However, in many distributed systems, it is
possible for each task to be only interested in maximizing its own utility regardless of achieving the system
goal. In this case, the optimization goal for each task τi is as follows:

(Individual-level optimization problem without penalty)

Maximize Ui

(
mi

∑
k=1

D(i,k)

)
. (10)

If each task tries to achieve the above optimization goal, each task no longer follows the distributed
computing process explained in Section 3.1. Therefore, the node schedulability conditions in Equation (4)
tend to be violated, as each task tries to monopolize the utilization (i.e., the left-hand-side of the node
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schedulability conditions in Equation (4)) by decreasing the intermediate deadline as much as possible.
This means, the local delay for each task on each node cannot be upper-bounded by the intermediate
deadline due to the violation of the node schedulability conditions; therefore, each task actually cannot
have any guaranteed utility. To avoid the violation of the node schedulability conditions, we impose a
penalty for each task in contributing the utilization to the node schedulablity conditions. Once we apply a
penalty function to each task, the optimization problem for each task τi is as follows:

(Individual-level optimization problem with penalty)

Maximize Ui

(
mi

∑
k=1

D(i,k)

)
− Pi

({
D(i,k)

}mi

k=1

)
. (11)

Then, the most important design guideline for the penalty function is to make each task meet
the node schedulability conditions in Equation (4) when each task simply maximizes Equation (11)
without considering the node schedulability conditions. Therefore, we apply the two following principles
for designing the penalty function. First, the penalty increases as the remaining budget of the node

schedulability (i.e., UBn −∑J(i0,k0,x) :x=n
C(i0,k0)
D(i0,k0)

) becomes close to zero; in addition, if the remaining budget

converges to zero, the penalty increases infinitely, which can avoid the violation of the node schedulability
conditions. Second, the penalty increases as the budget of the node schedulability used by each task

(i.e.,
C(i,k)
D(i,k)

) gets larger. Using the two principles, we design the penalty function for each task τi as follows:

Pi

({
D(i,k)

}mi

k=1

)
= ∑
J(i,k,n) :1≤k≤mi

C(i,k)/D(i,k)

UBn −∑J(i0,k0,x) :x=n C(i0,k0)/D(i0,k0)
. (12)

Note that it is trivial that the above penalty function satisfies the first and second principles for
designing the penalty function.

Then, instead of maximizing the system utility, each task can achieve Equation (11) with Equation (12).
The advantage of this framework is to guarantee a certain amount of the system utility even if each task
is non-cooperative in achieving the system utility. However, this framework cannot achieve the system
utility as much as the one by the cooperative framework in Section 3.1, which is inevitable in applying the
penalty functions. The next subsection will show how to impose the penalty to each task, and Section 5 will
demonstrate the difference between the system utility achieved by the cooperative distributed framework
explained in Section 3.1 and that by the non-cooperative one proposed in Section 3.2

3.3. Deployment of Distributed Framework

In this subsection, we first discuss an important deployment issue for the non-cooperative distributed
framework, which is, how to apply the penalty function to each task. We then explain which information
should be exchanged and how the information is exchanged for the cooperative distributed framework
and then non-cooperative one.

As to the proposed non-cooperative distributed framework, we need to address an important issue
for its deployment, which is how to apply the penalty function to each task. To this end, we appoint the
node on which each task is executed in the latest, to an arbitrator node. The role of the arbitrator node is
to impose a penalty to each task τi as much as the one in Equation (12). Since a utility for each task is a
function of the end-to-end delay, the only way for each arbitrator node to impose a penalty is to add an
artificial delay. To this end, the arbitrator node calculate D′i that satisfies as follows.
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Ui
(

D′i
)
= Ui

(
mi

∑
k=1

D(i,k)

)
− Pi

({
D(i,k)

}mi

k=1

)
, (13)

where Pi

({
D(i,k)

}mi

k=1

)
is given in Equation (12).

Once the last subtask of a task τi (i.e., J(i,mi ,x) : x = n) is scheduled with other subtasks on a node Nn,
the node (as an arbitrator node for τi) intentionally delays the execution of J(i,mi)

such that the total delay
for τi is close to D′i (but not larger than D′i). By this postponement, the arbitrator node can impose a penalty
as much as Equation (12), which in turn, makes each task to voluntarily operate without monopolizing the
node utilization.

We now explain the information exchange issue for the cooperative distributed framework. As shown
in Equation (7), each node Nn needs to know the current intermediate deadline of all tasks which are
executed on the node, i.e., D(i,k) for all J(i,k,x) : x = n. In addition, as shown in Equation (8), each task τi
needs to know the node price pn for all nodes Nn that the task is executed on. The information needed for
each node and each task can be piggybacked by each task itself or its control message [28,29].

When it comes to the non-cooperative distributed framework, the information exchange issue is
similar to that of the cooperative one. That is, each arbitrator node Nn needs to know all the intermediate
deadlines of tasks, which are executed on the node in the latest, i.e., all τi satisfying J(i,mi ,x) : x = n,
as shown in Equation (12). Also, each task τi needs to know (i) the current intermediate deadline of
all subtasks for τi and (ii) the utilization for all nodes that τi is executed on. Similar to the cooperative
distributed framework, this information can be piggybacked.

4. Utility Function Design

In Section 3, we explained that the cooperative and non-cooperative distributed frameworks can
successfully work if a concave utility function for each task is given. Then, what if a system designer has
a chance to determine utility functions for a real-time distributed system? Now, we propose a guideline
in determining utility functions for a distributed real-time system, in order to help the system designer
to exploit a trade-off between performance (i.e., the system utility) and fairness between the end-to-end
delays of individual tasks. To this end, we define the following utility functions:

Ui(Di) = −
D1−α

i
1− α

, (14)

where α ≤ 0, and Di = ∑mi
k=1 D(i,k).

Figure 1 illustrates the utility functions. With α = 0, the system goal is maximizing the sum of
the utilities ∑i Ui(Di) = −∑i Di (that is equivalent to minimizing ∑i Di). Therefore, this system goal is
interpreted as minimizing the total sum of assigned deadlines, and does not pay attention to end-to-end
delay upper-bound fairness among individual tasks. On the other hand, as α becomes smaller, the system
tries to achieve a higher degree of end-to-end delay fairness. Finally, with α converging to −∞, the system
goal is equivalent to minimizing the longest end-to-end delay of a task (i.e., min maxi Di), which achieves
the highest degree of min-max fairness among end-to-end delay upper-bounds of individual tasks.
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Delay

U
ti

li
ty

alpha = 0 

Min-max fairness
alpha → - ∞

Total delay min.

Figure 1. The proposed utility functions with varying α.

5. Experiments

In this section, we show how the cooperative distributed framework in Section 3.1 and the
non-cooperative one in Section 3.2 operate with the utility function designed in Section 4. To this end,
we target a typical real-time distributed system shown in Figure 2. The system consists of a set of 9 nodes
N = {Na,Nb,Nc,Nd,Ne,N f ,Ng,Nh,Ni} and a set of 6 tasks τ = {τ1, τ2, τ3, τ4, τ5, τ6}. Each task executes
on three different nodes sequentially; for example, τ1 is executed onNa,Nb andNc in a sequential manner,
and τ4 is executed on Na, Nd and Ng in a sequential manner, as shown in Figure 2. We set C(1,a), C(1,b),
C(1,c), C(2,d), C(2,e), C(2, f ), C(3,g), C(3,h), C(3,i), C(4,a), C(4,d), C(4,g), C(5,b), C(5,e), C(5,h), C(6,c), C(6, f ) and C(6,i)
to 10, 10, 10, 15, 15, 15, 20, 20, 20, 10, 10, 10, 15, 15, 15, 20, 20 and 20, respectively. We set the period of each
task is 40. We apply each node employs preemptive EDF (Earliest Deadline First) scheduling, meaning that
UBn = 1 holds for all nodes. We plug in Ui(x) = − x1−α

1−α in Equation (14) into Equations (3), (5) and (11),
respectively for the primal problem, the dual problem, and the individual-level optimization problem with
penalty, where x means Di = ∑mi

k=1 D(i,k). We consider four options for α: 0,−1,−2 and −3, which means
the utility functions are Ui(x) = −x, − 1

2 x2, − 1
3 x3, and − 1

4 x4, respectively. For distributed computing,
we use MATLAB [30] for the cooperative and non-cooperative frameworks as well as solving the primal
problem directly.

Tables 1–3 show the system utility, the sum of the assigned intermediate deadlines (i.e., total delay
upper-bound) and standard deviation among individual tasks’ end-to-end delay upper-bounds,
respectively, by solving the primal problem directly (denoted by Primal), by the cooperative framework in
Section 3.1 (denoted by Coop), and by the non-cooperative framework in Section 3.2 (denoted by Non-Coop).
Then, Tables 1–3 show the results by the centralized framework, the distributed framework for cooperative
tasks, and the distributed framework for non-cooperative tasks, respectively. We have three observations
for the experimental results in the three tables.
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Na Nc

Nd

Ng

Ne

Ni

Nf

Nb

Nh

τ1

τ2

τ3

τ4 τ5 τ6

Figure 2. A typical real-time distributed system.

First, for every utility function, the system utility achieved by Primal and that by Coop are exactly the
same. For example, the system utility with Ui(x) = −x under primal and that under Coop are −5.348 × 102;
the intermediate deadlines under both are 20.0, 22.2, 24.1, 27.2, 30.0, 32.3, 34.1, 37.3, 40.0, 20.0, 22.2, 24.1,
27.2, 30.0, 32.3, 34.1, 37.3, and 40.0, respectively for D(1,a), D(1,b), D(1,c), D(2,d), D(2,e), D(2, f ), D(3,g), D(3,h),
D(3,i), D(4,a), D(4,d), D(4,g), D(5,b), D(5,e), D(5,h), D(6,c), D(6, f ), and D(6,i). This comes from the fact that the
primal problem in Section 2.1 is convex as long as the utility functions are concave, as we mentioned in
Section 3.1. On the other hand, the system utility achieved by Coop is different from that by Non-Coop.
For example, the system utility with Ui(x) = −x under Coop and that under Non-Coop are −5.348 × 102

and −5.601 × 102, respectively. The difference is a cost to make the real-time distributed system operate
correctly in the presence of selfish tasks.

Table 1. The system utility, assigned intermediate deadline sum (i.e., total delay upper-bound) and standard
deviation, with different utility functions, by solving the primal problem in Section 2.1.

Ui(x) System Utility Sum of Delay Upper-Bounds Standard Deviation

−x −5.348 × 102 534.8 20.1
− 1

2 x2 −1.960 × 104 536.7 16.2
− 1

3 x3 −1.539 × 106 539.8 13.5
− 1

4 x4 −9.101 × 107 543.0 11.6

Table 2. The system utility, assigned intermediate deadline sum (i.e., total delay upper-bound) and standard
deviation, with different utility functions, by the cooperative framework in Section 3.1.

Ui(x) System Utility Sum of Delay Upper-Bounds Standard Deviation

−x −5.348 × 102 534.8 20.1
− 1

2 x2 −1.960 × 104 536.7 16.2
− 1

3 x3 −1.539 × 106 539.8 13.5
− 1

4 x4 −9.101 × 107 543.0 11.6
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Table 3. The system utility, assigned intermediate deadline sum (i.e., total delay upper-bound) and standard
deviation, with different utility functions, by the non-cooperative framework in Section 3.2.

Ui(x) System Utility Sum of Delay Upper-Bounds Standard Deviation

−x −5.601 × 102 560.1 25.3
− 1

2 x2 −3.167 × 104 604.8 37.0
− 1

3 x3 −2.854 × 106 611.2 39.0
− 1

4 x4 −2.713 × 108 611.4 39.1

Second, as α in Equation (14) decreases, the sum of delay upper-bounds also increases and the
standard deviation of individual task’s delay upper-bounds decreases under Primal and Coop. For example,
under Primal and Coop, the sum of delay upper-bounds is 534.8 with Ui(x) = −x (i.e., α = 0), and increases
up to 543.0 with Ui(x) = −1/4 · x4 (i.e., α = −3). At the same time, the standard deviation of individual
task’s delay upper-bounds is 20.1 with Ui(x) = −x (i.e., α = 0), and decreases down to 11.6 with
Ui(x) = −1/4 · x4 (i.e., α = −3). This demonstrates that the proposed utility function succeeds to exploit
a trade-off between increasing the fairness of individual tasks’ end-to-end delay upper-bounds and
decreasing the total end-to-end delay for all tasks.

Third, as α in Equation (14) decreases, the sum of delay upper-bounds also increases under Non-Coop
while the standard deviation of individual task’s delay upper-bounds does not decrease. For example,
under Non-Coop, the sum of delay upper-bounds is 560.1 with Ui(x) = −x (i.e., α = 0), and increases up
to 611.4 with Ui(x) = −1/4 · x4 (i.e., α = −3). The reason why the standard deviation of individual task’s
delay upper-bounds does not decrease as α decreases is due to the penalty function. According to the
observation, we suggest that the system designer does not decrease α in the proposed utility function in
order to achieve the fairness of end-to-end delays of individual tasks, for the non-cooperative framework.
Therefore, it is better for the system designer to reduce the sum of delay upper-bounds as much as possible
by assigning α = 0 when the target real-time distributed system operates in a non-cooperative manner.

While we already presented the experimental results in terms of performance and fairness for delay
upper-bounds, one may wonder the convergence issue for the distributed framework. Now, we present a
representative case of how each assigned end-to-end deadline converges. In the case of the cooperative
framework with Ui(x) = − 1

2 x2 (i.e., the second case in Table 2), Figure 3 shows the assigned end-to-end
deadline for τ1, τ2 and τ3 (i.e., D1, D2 and D3) according to the number of iterations (1 to 301 in the X-axis).
Note that the results for D4, D5 and D6 are the same as D1, D2 and D3, respectively, due to the topology
symmetry. The initial values for D1, D2 and D3 are set to 120.0, and γn for everyNn ∈ N in Equation (7) is
set to 1.0. As shown in the figure, the assigned end-to-end deadlines D1, D2 and D3 rapidly converge to
71.13, 89.83 and 107.36, respectively. The difference between the final converged deadline and the assigned
deadline with 64 iterations is smaller than 1.0 for every Di, and that with 110 iterations is smaller than
0.1 for every Di. This demonstrates the convergence rate for the distributed framework with the proposed
utility function is high in the representative case, which can be observed in other cases.
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Figure 3. The convergence of the assigned end-to-end deadline for τ1, τ2 and τ3 (i.e., D1, D2 and D3).

6. Conclusions

In this paper, we focused on the intermediate deadline assignment problem in real-time distributed
systems, and addressed two important issues. First, we developed a non-cooperative distributed
framework that can operate with selfish tasks, each of which is only interested in maximizing its own utility.
Second, we proposed a principle to design utility functions that can exploit a trade-off between minimizing
the aggregate end-to-end delays of the entire system and maximizing fairness among end-to-end delays
of individual tasks. In addition, we demonstrated the validity of the two techniques via simulations.
By addressing the two important issues, we (i) enable real-time distributed systems to operate even in
the presence of selfish nodes, and (ii) offer guidelines on how to design real-time distributed systems in
consideration of a trade-off between performance and fairness.
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