
IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 4, AUGUST 2019 6325

MC-SDN: Supporting Mixed-Criticality Real-Time
Communication Using Software-Defined

Networking
Kilho Lee , Minsu Kim, Taejune Park, Hoon Sung Chwa, Member, IEEE, Jinkyu Lee , Member, IEEE,

Seungwon Shin , and Insik Shin, Member, IEEE

Abstract—Despite recent advances, there still remain many
problems to design reliable cyber-physical systems. One of the
typical problems is to achieve a seemingly conflicting goal, which
is to support timely delivery of real-time flows while improv-
ing resource efficiency. Recently, the concept of mixed-criticality
(MC) has been widely accepted as useful in addressing the goal
for real-time resource management. However, it has not been
yet studied well for real-time communication. In this paper,
we present the first approach to support MC flow scheduling
on switched Ethernet networks leveraging an emerging network
architecture, software-defined networking (SDN). Though SDN
provides flexible and programmatic ways to control packet for-
warding and scheduling, it yet raises several challenges to enable
real-time MC flow scheduling on SDN, including: 1) how to
handle (i.e., drop or re-prioritize) out-of-mode packets in the
middle of the network when the criticality mode changes and
2) how the mode change affects end-to-end transmission delays.
Addressing such challenges, we develop MC-SDN that supports
real-time MC flow scheduling by extending SDN-enabled switches
and OpenFlow protocols. It manages and schedules MC pack-
ets in different ways depending on the system criticality mode.
To this end, we carefully design the mode change protocol that
provides analytic mode change delay bound, and then resolve
implementation issues for system architecture. For evaluation,
we implement a prototype of MC-SDN on top of Open vSwitch,
and integrate it into a real world network testbed as well as a 1/10
autonomous vehicle. Our extensive evaluations with the network
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testbed and vehicle deployment show that MC-SDN supports MC
flow scheduling with minimal delays on forwarding rule updates
and it brings a significant improvement in safety in a real-world
application scenario.

Index Terms—Cyber-physical systems (CPSs), mixed-criticality
(MC) scheduling, real-time communication, software-defined
networking (SDN).

I. INTRODUCTION

AS individual systems (things) get larger and connected
with each other, there is a growing demand for design-

ing reliable cyber-physical systems (CPSs), which needs to
achieve not only functional correctness, but also temporal
one. Recent advances in embedded systems and communica-
tion technologies have led to the following two critical trends
regarding designing reliable CPSs. First, CPSs generally rely
on networks that interconnect sensors, controllers, and actua-
tors to achieve the function of real-time sensing and dynamic
control, such as vision-based simultaneous localization and
mapping (SLAM) in self-driving cars. These networks often
face new challenges with increased demands on bandwidth
and latency requirements that go beyond the capacity of the
standard networks. To address such challenges, many CPS
industries, such as automotive and avionics, seek to develop
next-generation networks using switched Ethernet [1], [2].

The second important trend is toward mixed-criticality (MC)
systems that integrate application components with different
levels of criticality onto common hardware platforms in order
to reduce cost, which is essential in automotive and avion-
ics industries. The scheduling problem of MC systems has
been intensively studied in recent years, commonly addressing
two seemingly conflicting goals: 1) logical separation between
applications with different criticality levels and 2) efficient
scheduling of shared resources. A key principle in balancing
such conflicting goals is to employ mode-based MC scheduling
such that the system provides different levels of schedulability
guarantee for different system modes. The majority of studies
in the literature proposed various scheduling algorithms and
analyses (see [3] for a survey), indicating that mode-based MC
scheduling helps improve schedulability in the case of proces-
sor scheduling. Following this implication, a few studies inves-
tigated the scheduling issue of MC flows on various networks
including controller area network (CAN) [4] and network-on-
chip (NoC) [5]–[8], and the criticality-level management issue
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on clock-synchronized switches [9]. However, no solutions are
yet presented that enable mode-based different scheduling for
MC flows in switched Ethernet networks.

In this paper, motivated by the above trends, we aim to sup-
port MC flows on switched Ethernet networks. In particular,
we seek to develop mode-based in-network MC flow schedul-
ing, in order to enforce MC scheduling more effectively and
to accommodate even legacy flows. However, it is not fea-
sible to achieve it with traditional switches since their static
nature cannot support the dynamic behavior of mode-based
MC scheduling. As mentioned before, MC scheduling requires
a dynamic scheduling policy which takes different actions in
different modes. However, traditional switches should use only
static scheduling behavior that is determined at design time.
One can update the firmware on switches in order to enable
new scheduling behavior, but firmware updates typically take
long and require reboots. Thereby, it cannot change scheduling
behavior at runtime. Recently, IEEE Time Sensitive Network
(TSN) standards [10]–[16] have been proposed to support var-
ious classes of time-sensitive traffics on Ethernet with bounded
latency, low packet delay variation, and low packet loss. Yet,
TSN relies on static scheduling and thereby cannot support
mode-based dynamic MC flow scheduling.1

Here, we propose to leverage software-defined networking
(SDN) for supporting MC flows on switched Ethernet, tak-
ing advantage of its flexible nature. SDN is an emerging
network architecture toward a novel control paradigm by sep-
arating the roles of network control (i.e., control plane) and
packet forwarding function (i.e., data plane). The control func-
tion, formerly tightly bounded in individual network devices,
is migrated into external software, becoming directly pro-
grammable. This new programmatic way of controlling the
forwarding function allows network managers to easily update
forwarding policies while the network is running. To this end,
a software-based SDN controller exchanges control messages
with SDN-enabled switches through a standard protocol such
as OpenFlow [17], to collect network information or manage
forwarding rules in each switch.

Despite the SDN opportunity, leveraging SDN for MC
scheduling raises several issues to explore, including detect-
ing and handling mode change. The system mode relies on
the behavior of each flow, such as a release interval and the
size of each periodic message, but SDN switches cannot be
aware of the behavior. In addition, it may impose long and
unpredictable delays in conducting mode changes based on
the OpenFlow, the de-facto standard SDN protocol. Our moti-
vational benchmark shows that the delay is up to 86 ms with
a large variation. Such a delay can be added to the end-to-
end delays of high-criticality flows and compromise real-time
guarantees for the flows. For instance, an obstacle-detecting
camera operating at 60 frames/s in high-criticality mode may
miss its end-to-end deadline due to the mode change delay,
and such a deadline miss could cause a car crash.

This paper presents a novel SDN-based network system,
named MC-SDN, which effectively supports flow monitoring
and mode change for MC scheduling. We first perform an

1More detailed explanation will be given in Section XII-A.

empirical analysis of mode change delays and identify three
major delay factors: 1) mode change arrangement; 2) new rule
update; and 3) out-of-mode packet handling. Leveraging such
findings, MC-SDN is designed to completely change the way
of mode change, a shift from a controller-driven centralized
to a switch-driven distributed approach. MC-SDN switches
perform flow behavior monitoring and conduct mode changes
with minimal delays. Each switch carries out an efficient
update of packet forwarding rules within SDN data plane and
rearranges packet queues according to the updated rules. This
way, MC-SDN eliminates the causes of major delay factors,
including OpenFlow communication with the SDN controller,
intraswitch communication, and out-of-mode packet transmis-
sion. Thus, MC-SDN not only significantly reduces the mode
change delay, but also strictly limits its variation to derive a
close upper bound.

In addition to the fast, predictable mode change mechanism,
we also present a new mode management protocol that: 1) sup-
ports sustainable mode changes not only from a low-criticality
mode to a high-criticality one but also in the opposite direction
and 2) preserves the system consistency such that every switch
operates in the same system mode. Also, we discuss how to
extend MC-SDN toward more than two criticality levels.

To evaluate the performance of MC-SDN, we first have
derived a worst-case delay bound for a mode change under
MC-SDN. We then have implemented a prototype of MC-
SDN on top of Open vSwitch (OVS) [18] and evaluated
it on a real-world network testbed composed of 29 single
board computers. Our extensive evaluation shows that MC-
SDN effectively reduces the mode change delay by two orders
of magnitude compared to the standard SDN and that the delay
stays strictly lower than its upper bound. In addition, we con-
ducted a case study on autonomous driving, where MC-SDN
is deployed in a 1/10 scale autonomous car.2 It shows that
MC scheduling powered by MC-SDN helps to improve the
safety of the driving car in the real world. Also, we demon-
strate a key application of MC-SDN, a fault-recovery system.
We made several changes to MC-SDN for the application, and
demonstrate that MC-SDN for the application is effective in
recovering a link fault in the 1/10 scale autonomous car.

The contributions of this paper are summarized as follows.
1) We analyze the limitations of the standard SDN interface

(i.e., OpenFlow) when supporting mode change and
identify major delay factors, which is the basis for the
design of MC-SDN (Section III).

2) We propose MC-SDN that presents a novel mechanism
and addresses its implementation issues to support MC
scheduling in switched Ethernet (Sections IV and V).
To the best of our knowledge, this is the first work
that develops mode-based MC scheduling mechanisms
on SDN/OpenFlow networks.

3) We derive a worst-case delay bound for a mode change
under MC-SDN (Section VI).

2See our demo video illustrating how MC-SDN supports real-time MC
flows for Autonomous Emergency Braking (AEB). [Online]. Available:
http://cps.kaist.ac.kr/mcsdn
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4) We propose a new mode management protocol for
MC-SDN, for sustainable mode changes and system
consistency (Section VII).

5) We implement a prototype of MC-SDN and reveal
orders of magnitude improvement by MC-SDN in mode
change delays (Section VIII).

6) We conduct a case study of a scaled autonomous car and
demonstrate the effectiveness of MC-SDN in supporting
MC flows (Section IX).

7) We demonstrate a target application of MC-SDN,
as well as its effectiveness for link fault resiliency
(Section X).

8) We discuss a possible extension of MC-SDN toward
multicriticality levels (Section XI).

II. SYSTEM MODEL AND BACKGROUND

A. System Model

1) Flow Model: We consider an MC system composed of a
set of periodic real-time flows on switched Ethernet network.
A flow is a set of potentially unbounded series of periodic
messages. The message can be divided into multiple packets,
depending on the maximum transmission unit (MTU) of the
link (e.g., 1500 bytes on Ethernet). Each flow has a set of
properties and requirements specified by a set of attributes,
<T , C, D, L, src, dst, route>: T is a minimum separation
time between two consecutive messages (i.e., period). C is
a maximum byte size of each message. D specifies a rela-
tive end-to-end deadline of each message (note that D ≤ T).
L denotes a criticality level. Src and dst specify a source
node and a destination node (with IP addresses and port num-
bers), respectively. Route is a sequence of nodes that connects
src to dst.

Since a message may consist of multiple packets, we con-
sider a network system where end nodes annotate message
information between the transport layer and the application
layer as a shim-header; the header contains message id,
message size, and sequence number. The shim-header struc-
ture is commonly used for message transmission libraries,
such as UDPROS in the robot operating system (ROS) [19],
a widely used framework for robot and autonomous
driving systems.

2) Priority-Based Flow Scheduling: Each switch in the
network stores and forwards messages according to the prior-
ity of each flow. We consider switches that use a strict priority
queue [20], [21], which ensures that high priority packets are
forwarded ahead of low priority packets. The priority of each
flow is specified by forwarding rules of the switch; it is fixed
unless the forwarding rules are changed.

3) Mixed-Criticality System: This paper considers MC
systems supporting real-time flows which come with multiple
requirements according to the criticality levels; the higher the
criticality level is, the more conservative the requirement esti-
mation is. For instance, a flow generated by a camera sensor
may change its behavior (i.e., frame rate or size) according to
the situations, and it has multiple requirement estimations in
each system mode. Hence, the period (or the minimum sep-
aration) T and the message size C are now defined as T(L)

and C(L), respectively, with the following constraints:

L1 exhibiting a higher criticality than L2

⇒ T(L1) ≤ T(L2) and C(L1) ≥ C(L2)

for any two criticality levels L1 and L2 [4].
For simplicity, we focus on dual-criticality systems [4], [6],

[7] that have two criticality levels, HI (high) and LO (low),
where HI exhibits a higher criticality than LO. The correct-
ness of the dual-criticality system is defined as follows: it
should satisfy the LO requirement of all flows when the system
is in LO mode, and the HI requirement of every HI flow
when the system is in HI mode, which is a typical require-
ment of MC real-time systems [3]. The system starts in LO
mode. If all flows behave with satisfying the LO require-
ment, the system stays in LO mode. However, if any flow
violates the mode-specific requirements (i.e., mode violation)
by generating messages more frequently or larger than its LO
requirement, the system then changes its mode into HI mode
(i.e., mode change) and each switch should update its forward-
ing table with HI mode rules to favor HI flows; it may drop
LO flows or promote the priority of HI flows.

Beyond the dual-criticality systems, MC-SDN also applica-
ble to the systems having more than two criticality levels, to
be discussed in Section XI.

4) Priority Assignment: We assume that the system utilizes
rate monotonic (RM) [22] priority assignment. The shorter the
period, the higher the priority. In HI mode, LO flows could
be dropped or changed to have lower priority. Although we
consider RM in this paper, thanks to the generality of the
proposed system, it also supports any kind of fixed-priority
scheduling policy.

B. SDN Background and Opportunity

SDN is a recently devised networking technology; thanks to
its flexibility and cost-efficiency, now it is widely adopted in
real-world networking environments. Unlike legacy network
devices, it decouples its control plane, determining/handling
network policies, from the data plane, in charge of carrying
network packets, to enable dynamic and flexible network con-
trol [23]. The decoupled control plane becomes a software
component running on a separate device; therefore, the data
plane requires and receives network policies from the remote
control plane. In addition, it standardizes an interface between
the control plane and the data plane; thus it helps network
administrators to focus on managing network policies. The
most popular network interface between the control plane and
the data plane is OpenFlow [17]. It handles traffic by a flow
entry determined by match-action tuple. Match contains a set
of match fields, such as source/destination IP addresses, to
match flow entries with incoming packets, and action con-
tains a set of instructions how to handle the matched packets.
Each switch has a forwarding table which holds flow entries,
and handles packets according to the flow entries in the table.
Note that we will refer flow entry as rule in this paper, to
avoid confusion.
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(a) (b) (c)

Fig. 1. System architecture and mode change protocol overview. (a) MC networking system overview. (b) Std-SDN: existing controller-driven mode change.
(c) MC-SDN: switch-driven mode change.

The decoupled structure of SDN brings high flexibility to
network management, and it has a great opportunity to sup-
port an MC scheduling which requires highly dynamic packet
handling [see Fig. 1(a)]. The main idea of MC scheduling
is to apply a differentiated scheduling policy depending on
the system mode. For example, a packet should be forwarded
in LO mode but dropped in HI mode. Despite the demand
for an MC scheduling, a traditional network system, includ-
ing switched Ethernet, is impossible to support that due to
the static nature. Traditional switches only use static schedul-
ing policies determined at design time. To change the policy,
a network administrator should update the firmware of the
switch by hand. It may take a long delay and require reboots,
thus it is impossible to change the policy at runtime. On
the other hand, the decoupled structure and the OpenFlow
interface of SDN enable switches to dynamically change
the policy, even at runtime. The flexibility of SDN could
become a key basis to support MC scheduling in switched
Ethernet.

III. CHALLENGES OF MC SCHEDULING ON SDN

Despite the opportunity from the flexible nature of SDN, it
yet raises several challenges to enable real-time MC schedul-
ing on SDN. SDN lacks proper mechanisms for mode-based
scheduling, such as mode violation detection and mode change
protocols. Furthermore, SDN is originally designed without
considering real-time support. In particular, its centralized con-
trol paradigm may yield long and unpredictable delays during
mode change, which is the most important feature of MC
scheduling. Thereby, this section examines significant delay
factors in mode change that will be the basis of the MC-SDN
design to be proposed.

A. Motivation Experiment: Controller-Driven Mode Change

We conducted benchmark experiments on a real-world
network testbed (refer to Section VIII for the testbed details),
in order to estimate how long it takes to complete a mode
change. For the experiment, we developed a basic controller-
driven mode change approach in accordance with the principle
of the standard request-response SDN protocol, as follows [see
Fig. 1(b)]. A switch sends a mode change request to the SDN
controller upon seeing a predefined flag in a packet (i.e., note
that we used the flag since a default SDN switch has no way

TABLE I
BREAKDOWN OF MODE CHANGE DELAY

Fig. 2. Empirical CDF of mode change delay.

to detect any mode violation), as if it observes a mode viola-
tion. Upon receiving the request, the controller deploys new
rules to all switches. During the experiments, we measured
mode change delay as an elapsed time between the time to
send a mode change request and the time all the switches are
ready to handle packets according to the new HI mode rules.
The experiments were performed on a small network, where
a switch and end nodes are connected in a star topology. An
SDN controller is connected to the switches, and it deploys 30
HI rules in a mode change. Fig. 2 depicts an empirical cumu-
lative distribution function (CDF) of the mode change delay
of 100 trials. The figure shows that the mode change delay
fluctuates widely and takes as long as 86 ms in the worst
case. Such a long delay could damage real-time guarantee of
the HI flow. For instance, an obstacle detecting camera which
operates at 60 frames/s in HI mode (i.e., period of 16.7 ms)
may miss a deadline due to the delay.

B. Breakdown of Mode Change Delay

The controller-oriented principle of SDN causes long mode
change delays. As shown in Table I, we break the delays down
into three parts to closely investigate delay factors: 1) mode
change arrangement; 2) new rule update; and 3) out-of-mode
packet handling [see Fig. 1(b)]. The remainder of this section
elaborates delay factors in each step.
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1) Mode Change Arrangement: The mode change arrange-
ment step involves OpenFlow communication between the
controller and switches, which is the root cause of the mode
switch delay. The mode switch starts when a switch detects
HI mode flow behavior and sends a mode change request to
the controller. In response to the request, the remote con-
troller sends HI mode rules enclosed in OpenFlow messages
to every switch. With the messages, each switch: 1) recognizes
a mode change and 2) receives new rules for HI mode. Such
controller-switch communication typically causes a significant
delay. According to a measurement study [24], OpenFlow
communication throughput and latency widely vary depend-
ing on the controller’s setup and load; for instance, the latency
varies from 100 μs to 1268 ms. As shown in Table I, we also
observe that the OpenFlow communication delay is long and
fluctuated (up to 50 ms) despite our simple benchmark setup.
It is very difficult to reduce and bound the delay, since the
controller consists of complicated software layers such as an
OS network stack, an SDN controller framework, and an SDN
controller application. An OpenFlow message passes through
those layers and could be delayed by a scheduling policy or
an optimization technique (e.g., batching) in each layer.

2) New Rule Update: The rule update step includes com-
munication between switch internals, which incurs significant
delays. This step starts when a switch receives new HI rules
from the controller and finishes when the switch updates its
forwarding table with the new rules received. The main cause
of delay in this step lies in the design structure of SDN
switch. An SDN switch typically comprises a number of inde-
pendent modules that follow the principle of modular design
for performance and management. For example, the switch
manager module receives forwarding rules from the SDN con-
troller through OpenFlow communication, and the forwarding
rules are transferred to the datapath module that conducts
packet forwarding according to the rules, which causes non-
negligible internal communication delays. Our benchmark
experiment results show that it can take up to 14 ms in OVS,
which is the de facto standard software switch, for the datapath
module (a kernel module) to bring forwarding rules from the
switch manager (a user process). It is worthwhile to note that
this step can partially overlap with the mode change arrange-
ment step [see Fig. 1(b)]. Yet, the delay of this step is too
long to hide in the overlap; our benchmark experiment shows
that the average overlap is 2.35 ms and the standard deviation
is 0.18 ms. It is very difficult to reduce and bound the delay
because the internal communication channel is highly compli-
cated due to optimization techniques, such as asynchronous
I/O and batching.

3) Out-of-Mode Packet Handling: The out-of-mode packet
handling step also incurs a long delay. When the rule update
step has been done, the packets that were enqueued according
to LO mode rules could remain in the queue (note that we call
them out-of-mode packets), and they may delay HI flows. In
our benchmark, we observed up to 240 out-of-mode packets
(1442 bytes each) when two LO flows and one HI flow share
a link; it takes up to 27 ms to transmit them at 100 Mb/s. This
delay is very hard to reduce since the link speed depends on
the physical constraints.

Fig. 3. MC-SDN system architecture.

IV. MC-SDN: SYSTEM DESIGN

We propose MC-SDN that supports real-time MC schedul-
ing on SDN, addressing the challenges raised to enable mode
change properly. It completely shifts the way of conducting
mode changes from controller-driven to switch-driven [i.e.,
from Fig. 1(b) and (c)] with careful design of data plane
components. This new approach not only significantly reduces
mode change delays but also strictly limits the delays to pre-
dictable upper bounds. Note that, for ease of presentation, we
first describe our system design based on the situation of a
mode change from LO to HI. We then present our mode man-
agement protocol, including a mode change from HI to LO,
in Section VII.

As shown in Fig. 1(c), MC-SDN adopts a paradigm of
switch-driven mode change, where switches detect mode vio-
lation and enable mode change without the controller being
involved. To this end, MC-SDN extends SDN data planes with
four additional components (see blue components in Fig. 3).
Flow behavior monitor carries out a new monitoring function
to detect flow behavior that violates mode-specific require-
ments. When a switch detects any mode violation (i.e., HI
mode behavior), the switch (called starter) triggers a mode
change such that its mode change arranger notifies this event
to all other switches (called followers) to enable the system-
wide mode change, which reduces communication delays
substantially bypassing the SDN controller. After sending a
mode switch signal or receiving the signal, MC rule manager
updates a forwarding table with its own new mode rules stored
locally (proactively received HI rules) while minimizing delays
in rule updates. The MC rule manager does not only com-
pletely eliminate OpenFlow communication, which is a main
cause of the mode change delay, but also minimize intraswitch
communication, which is another major delay factor. When the
forwarding table update is finished, MC queue controller rear-
ranges queues based on the new rules to significantly reduce
additional delays caused by out-of-mode packets. The rest of
this section describes the design principles for each component
and how to address the challenges.

A. Flow Behavior Monitor

Beyond a simple byte counter of the current SDN switches,
flow behavior monitor provides additional monitoring capa-
bility of flow behavior such as message sizes and arrival
intervals. Even though switches are capable of monitoring such
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Algorithm 1 Flow Behavior Monitor
When the message k of the flow τ arrives at Eτ,k,

1: Gτ,k(LO)← max{Gτ,k−1(LO), Eτ,k−1 − Jτ } + Tτ (LO)
2: if Eτ,k < Gτ,k(LO) or Cτ,k > Cτ (LO) then
3: if current mode is LO then
4: mode change to HI
5: end if
6: end if

advanced features, yet it is not straightforward to determine
whether or not flows behave according to per-mode require-
ments. As an example, suppose several messages of a flow
arrive at a switch more frequently than the LO mode period
of the flow. This can happen because the flow actually trans-
mits messages at a faster rate, or because those messages
arrive close together due to irregular network congestion. In
the former case, it is necessary to change to HI mode. So
it is important to understand the situation accurately. To this
end, we perform traffic pattern analysis based on the spo-
radic invariant with a guide time [4]. Algorithm 1 presents the
mechanism of the flow behavior monitor. For each message k
in a flow τ , the monitor checks Cτ,k and Eτ,k, where Cτ,k

and Eτ,k represent the size and the arrival time of message k,
respectively. The monitor also calculates a guide time, Gτ,k,
which is a bound of an arrival time, Eτ,k. Two consecutive
messages could be as close as either: 1) LO period—release
jitter [i.e., Tτ (LO)− Jτ ], if the last message arrived later than
its guide time or 2) LO period [i.e., Tτ (LO)], if messages
are arriving at the maximum rate. Thereby, the guide time is
calculated as [4]

Gτ,k
(
LO

) = max
{
Gτ,k−1

(
LO

)
, Eτ,k−1 − Jτ

}+ Tτ

(
LO

)
.

For each message k of flow τ , if Eτ,k ≥ Gτ,k(LO), the
message k’s behavior is valid for LO mode. Otherwise if
Eτ,k < Gτ,k(LO), the message k is no longer valid in LO
mode (i.e., it shows HI mode behavior). In addition to this
inequality [4], if Cτ,k ≤ Cτ (LO), where Cτ (LO) is a LO mode
message size requirement of flow τ , the message k’s behavior
is valid for LO mode. Otherwise if Cτ,k > Cτ (LO), the mes-
sage k shows HI mode behavior. Once the monitor observes
HI mode behavior, it initiates a mode change by utilizing other
MC-SDN components presented in the following sections.

B. Mode Change Arrangement

MC-SDN uses switch-driven mode change to effectively
reduce and bound the delay of the mode change arrangement.
It completely eliminates OpenFlow communication between
the controller and switches, which is the root cause of the
delay. Instead, it employs the minimal communication between
switches, which imposes only a little delay.

When a switch detects a mode violation, its mode change
arranger requests all other switches to change to the new mode
by sending the highest-priority signal packets to all ports (i.e.,
signal flooding). Once the signal reaches another switch, the
switch becomes aware of the mode change and propagates
it again. Such signal propagation takes only a short delay to

transmit small packets and even can be hidden by overlapping
with the transmission of the mode-violating packets.

In the controller-driven mode change paradigm, the key role
of the SDN controller is to distribute the packet forwarding
rules of a new mode to all switches, which incurs a significant
delay in the mode change arrangement. For instance, it can
take up to 50 ms in our preliminary experiment shown in
Section III-A. In order to exclude such a delay completely in
a mode change, MC-SDN caches new mode rules in advance.
When the system starts or a new flow joins the system, the
controller deploys not only LO mode rules but also HI mode
rules to each switch. As a default, each switch then equips its
forwarding table with LO mode rules and stores HI mode rules
into a separate place, called shadow table. When the switch
changes to HI mode, it no longer downloads HI mode rules
from the remote controller since it can use the HI rules cached
in the shadow table.

This way, it effectively reduces the delay of this step to
the signal propagation latency, which is much shorter, since
it completely eliminates communication with the controller.
As shown in Fig. 1(c), switches are able to immediately pro-
ceed to the next step as soon as propagating signal packets.
Furthermore, it makes the delay in this step much more pre-
dictable, since it goes through only data planes, which is
much simpler than the complicated software layers of the SDN
controller.

C. New Rule Update

The idea of storing HI mode rules proactively in a shadow
table allows to eliminate delays in external OpenFlow com-
munication with the controller. Yet, it can incur a significant
delay to update a forwarding table with the HI rules stored in
the shadow table due to the internal structure of a switch. The
switch often has a multilayered architecture to effectively sup-
port multiple protocols and standards. It typically places SDN
protocol processing (i.e., OpenFlow processing) on one layer
and packet forwarding on another (with a forwarding table).
If the shadow table is placed on a different layer from the one
where packet forwarding is actually performed, it needs to go
through cross-layer internal communication within a switch,
which causes non-negligible delays. Furthermore, such delays
increase when the forwarding table is updated on demand.
Thus, MC-SDN places the shadow table into where packet
forwarding is actually performed (e.g., the datapath of OVS),
and updates the forwarding table without any cross-layer com-
munication. With this design principle, the delay of the rule
update step is reduced to the data copy cost between two
tables, which is much faster and easy to bound.

D. Out-of-Mode Packet Handling

MC-SDN proposes an advanced queueing feature to reduce
the delay in the out-of-mode packet handling step. MC queue
controller enables to apply HI mode rules to out-of-mode
packets, and thereby each switch no longer requires to wait
until all out-of-mode packets have been transmitted. To do
this, it extends the priority queue; it enables a switch to hook
enqueued packets before transmitting them. After all HI rules
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Fig. 4. MC-SDN implementation on OVS.

have been updated, the MC queue controller hooks all packets
in the priority queue, and applies new (HI) rules to those pack-
ets. Those packets could be discarded or requeued, according
to the HI rules. Note that a flow has a differentiated policy
according to the mode; a flow could be forwarded in the LO
mode but dropped (or assigned a lower priority) in HI mode.
The MC queue controller allows to handle out-of-mode pack-
ets with a much shorter delay. In particular, it would be much
effective for the system which uses a low bandwidth network
link.

V. IMPLEMENTATION

This section discusses implementation issues for MC-SDN,
in particular, for OVS [18], [25], which is the de facto standard
software switch for OpenFlow implementation.

Target System: We have implemented MC-SDN on top
of OVS version 2.4.90, the POX network controller [26],
and Linux version 3.10.107. It is worthwhile to describe the
internal structure of OVS for ease of understanding this sec-
tion. As shown in Fig. 4, OVS consists of two components,
vswitchd and kernel datapath. The vswitchd is a user process
in charge of switch management, and it contains a forward-
ing table, OpenFlow Handler (ofproto) for communication
with the remote controller, and datapath interface (dpif ) for
communication with the kernel datapath. The kernel datapath
is a Linux kernel module responsible for packet forwarding.
In order to maximize packet forwarding throughput, it has a
cached forwarding table which holds a subset of rules in the
forwarding table. Those OVS internals closely interact with
each other.

A. Shadow Table for New Rule Update

The shadow table is a key component in reducing mode
change delays, and it is one of the most challenging parts
to implement due to the complicated structure of forwarding
tables. Upon receiving an incoming packet, the kernel datapath
first looks up its cached forwarding table; if it cannot find a
matching rule, it notifies a cache-miss (i.e., MISS_UPCALL)
to vswitchd and brings the matching rule from it (see Fig. 4).
According to the design principle of the shadow table, it should
be located in the kernel datapath and be able to directly update
the cached forwarding table. Therefore, as shown in Fig. 4, we
have implemented the shadow table and the cached shadow
table on the vswitchd and the kernel datapath, respectively.

Then, it raises an issue of how to update the cached shadow
table in the kernel datapath. A naive approach is to sim-
ply invalidate the rules in the cached shadow table and to
update them upon cache misses. However, this introduces
non-negligible delays, which cannot overlap with other delay
factors. Thus, we updated the cached shadow table proac-
tively, by directly injecting (or removing) rules into the cached
shadow table with no cache miss/update protocol. To this end,
we extended dpif, Linux netlink interfaces, and datapath call-
back functions. Since the vanilla datapath has a unique cached
forwarding table, all dpif have been designed for a single
table. We extended all dpif to have a designator to distinguish
which table (e.g., cached forwarding or cached shadow tables)
to be accessed. In addition, since dpif communicate with
the kernel datapath through Linux netlink interfaces, we also
extended netlink interfaces with new messages containing the
table designator field. And, when the kernel datapath receives
a netlink message, it executes a callback function that corre-
sponds to the message. We also extended the callback func-
tions to process the table designator; the extended functions
can access (e.g., add/modify/remove entries) to the cached
shadow table.

Furthermore, we also implemented new OpenFlow com-
mands, OFPFC_ADD_SHADOW, OFPFC_MOD_SHADOW, and
OFPFC_DEL_SHADOW, which support to add, modify, and
remove a rule entry in the shadow table, respectively. With
those extensions, the cached shadow table can hold HI mode
rules within the kernel datapath in advance of a mode change.

B. OpenFlow Extensions for Mode Change Arrangement

We implemented the features of flow behavior monitoring
and mode change arrangement as new functions in the kernel
datapath with well-defined interfaces for high performance and
ease of management. To this end, we implemented them as
OpenFlow actions through OpenFlow experimenter extension.
This demands a great deal of effort since it requires to extend
all SDN layers, including new POX APIs, extended message
encoders/decoders/handlers in ofproto and dpif, and the logic
for the new actions themselves. To this end, we: 1) defined the
new commands with proper headers and fields; 2) implemented
encoders and decoders for the new commands in ofproto;
3) extended dpif to deliver the new commands to the kernel
datapath; and 4) implemented the logic for actions themselves
into the kernel datapath. In addition, we also extended the
OpenFlow handler logic in POX to define new commands and
implement encoders/decoders for them. To achieve this, our
implementation added around 4000 and 2000 lines of code
into OVS and POX, respectively.

Flow behavior monitoring was implemented as an
OpenFlow action, named OFPAT_FLOW_MONITOR. This
action can be combined with a forwarding action such as
OFPAT_ENQUEUE; thereby, it can check packets before
forwarding them. When the first packet of each message
arrives, the action executes the monitoring logic presented in
Algorithm 1. Note that the monitor action is running in the
kernel interrupt context, it can fully utilize Linux socket buffer
structures and libraries; it can get a packet arrival time through
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the socket buffer time stamp, and directly access to the shim-
header through the socket buffer. Executing the monitor would
impose a delay, but this delay is small enough to be hidden
between packet transmissions (see Section VIII-D for more
details).

Mode change arrangement was implemented as another
OpenFlow action, named OFPAT_MODE_ARRANGE. Upon
detecting a mode violation (or receiving a mode change
signal), the arranger starts a mode change. The arranger propa-
gates a mode change signal packet containing a predefined L2
header (i.e., 0x0F00 in EtherType field); each switch dis-
tinguishes the signal with that field. It also includes switch-id
field to avoid broadcast storms by examining redundant sig-
nals. The arranger is also running in the kernel interrupt con-
text; it can generate a signal packet through new socket buffer
allocation API. After the signal propagation, the arranger tra-
verses the cached shadow table and copies each entry into the
cached forwarding table.

C. MC Queue Controller for Out-of-Mode Packet Handling

During a mode change, MC-SDN rearranges queues to drop
out of mode packets or demote their priorities. MC-SDN
utilizes the PRIO Linux queuing discipline (TC-PRIO) [21],
which has a number of child queues and ensures to trans-
mit packets only if all higher priority child queues have been
empty. Extending the queueing discipline is not trivial, since
small changes can yield serious side effects such as throughput
degradation. We placed a hooking routine between dequeueing
and transmitting packets; after the rule update is done, MC-
SDN dequeues and hooks packets in the queue, and applies
new rules to those hooked packets. They could be requeued
or discarded depending on the new rules. Since each child
queue in the PRIO queueing discipline is nothing but a sim-
ple first-input, first-output (FIFO) queue, dequeueing packets
only imposes a very small overhead. In addition, it also incurs
very little overhead to requeue and discard packets, since they
are implemented as lightweight pointer copy and memory
free operations, respectively (see Section VI-B for overhead
details).

To avoid side effects on normal packet forwarding
performance, we never modified the queueing logic itself, and
carefully maintained the consistency of internal data such as
packet counters. Section VIII-D presents experimental results
that indicate the MC queue controller imposes a negligible
effect on the network performance (i.e., normal packet for-
warding throughput) even together with the flow behavior
monitor.

VI. MODE CHANGE DELAY ANALYSIS

In this section, we derive an upper bound of the mode
change delay of MC-SDN.

A. Analytic Bound

As we explained in Section III-B, the mode change delay
of MC-SDN consists of three components, and therefore we
can express the worst-case mode change delay of MC-SDN

(denoted by Dmc) as follows:

Dmc = Darrange + Dupdate + Dq−handle (1)

where Darrange, Dupdate, and Dq−handle denote the worst-case
delays of mode change arrangement, new rule update, and
out-of-mode packet handling, respectively. We now investigate
individual delay components.

Since mode change arrangement delay is the time to prop-
agate signal packets to all switches in the network, its upper
bound Darrange can be calculated by the worst-case delay on
each hop, multiplied by the maximum hop distance to propa-
gate the mode change signal (denoted by Nlink). Considering
the worst-case delay on each hop can be expressed as the sum
of the worst-case delay of transmission, propagation, queueing,
processing, and packet flooding overhead (denoted by dtrans,
dprop, dqueue, dproc, and dflood, respectively), Darrange can be
computed as follows:

Darrange =
(
dtrans + dprop + dqueue + dproc + dflood

) · Nlink.

(2)

Here, dtrans, dprop, and dqueue are determined by physical prop-
erties of the network system such as link bandwidth, physical
link length, link propagation speed, and the number of non-
preemptible packets. Other delay components dproc and dflood
are dependent on switch architecture.

With the MC-SDN design principles, the new rule update
and the out-of-mode packet handling steps become nothing
but iterations of simple operations; Dupdate and Dq−handle can
be expressed as a function of the number of rules to update
(Nrule) and out-of-mode packets (Npacket), respectively,

Dupdate = dcopy · Nrule + du−misc (3)

Dq−handle = dq−handle · Npacket + dq−misc (4)

where dcopy is the maximum required time to copy each rule
from the shadow table to the forwarding table; du−misc is an
additional rule-update overhead regardless of Nrule; dq−handle
is the maximum required time to handle each out-of-mode
packet; and dq−misc is an additional overhead regardless of
Npacket. The additional overheads du−misc and dq−misc include
execution costs to initialize and finalize the iterations, for
example, referring internal data structures to get the accesses
of the tables and the queue.

We calculate the worst-case mode change delay of MC-
SDN (denoted by Dmc) by decomposing it into the three
components, each of which also consists of several computable
subcomponents. Once we calculate an upper bound on each
component, we can derive an upper bound on Dmc by summing
each term. We can then incorporate Dmc into target schedu-
lability tests, by adding Dmc to the transmission time of HI
flows.

B. Upper Bound of Delay Components

In this section, we detail how to calculate each delay com-
ponent in the delay bound, using the real network testbed.
The testbed consists of several Odroid-XU4 [27] boards
equipped with Realtek r8152 [28] USB Ethernet interfaces (see
Section VIII for details). Note that some delay bounds (e.g.,
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TABLE II
UPPER BOUNDS OF MODE CHANGE ARRANGEMENT

DELAY COMPONENTS

TABLE III
UPPER BOUNDS OF NEW RULE UPDATE AND OUT-OF-MODE

PACKET HANDLING DELAY COMPONENTS

dtrans, dprop, and dqueue) are analytically derived based on the
physical properties (e.g., link bandwidth, physical link length,
and link propagation speed) shown in the testbed. Other delay
bounds are empirically derived at the 99.5% confidence level
based on execution samples in the testbed.

1) Mode Change Arrangement: Mode change arrange-
ment delay Darrange consists of five components as presented
in Table II, which can be modeled as a typical end-
to-end network delay. The link propagation delay dprop
is known as 530 ns at 100 m of Cat.5e UTP Ethernet
Cable [29]. We use this value as a safe upper bound, since
our system only uses an up to two meters long Ethernet
cable. The link transmission delay dtrans is calculated as
(packet length/allocated bandwidth). Since a signal packet
has the fixed length of 58 bytes and utilizes full network band-
width of 100 Mb/s (note that it has the highest priority), dtrans
can be calculated as (58 ∗ 8 bits/100 Mb/s) = 4.6 μs. The
queueing delay dqueue can be upper bounded by the transmis-
sion time of nonpreemptible packets. Once some packets are
sent out from the priority queue (by Linux TC-PRIO queue-
ing discipline), they are delivered to the device driver buffer
and finally transmitted to the NIC hardware in an FIFO order.
Although the mode change signal packet has the highest pri-
ority, it may be blocked by the packets already placed in
either the device driver or the NIC hardware (i.e., r8152 [28])
ahead of the signal packet. Considering that the device driver
and the NIC hardware can store packets up to 5460 and
2048 bytes, respectively [30], dqueue can be calculated as
[((5460 + 2048) ∗ 8 bits)/(100 Mb/s)] = 600.64 μs. The
processing delay dproc and the packet flooding overhead dflood
are estimated as the maximum values in the 99.5% confidence
intervals based on empirically obtained samples. In addition,
Nlink can be upper bounded by the maximum value among the
hop distances between any two switch nodes.

2) New Rule Update and Out-of-Mode Packet Handling:
The delay components of new rule update and out-of-mode
packet handling delays are also estimated as the maximum
values in the 99.5% confidence intervals. In order to obtain the

Fig. 5. System-wide mode management protocol supporting HI to LO mode
change.

execution samples, we measured the time at which each execu-
tion starts and finishes within the datapath module by using the
getnstimeofday() kernel function. Table III describes the
statistics of the measured samples and the corresponding delay
bounds. Note that in out-of-mode packet handling, the discard
operation takes much longer time than the requeue operation
does, since the former requires to free some memory space
while the later only needs a simple pointer copy operation.
Therefore, dq−handle is upper bounded by the discard operation
instead of the requeue operation. In addition, Nrule and Npacket
can be upper bounded by the maximum number of rules and
the maximum queue length in each switch, respectively.

The proposed upper bound has the 99.5% confidence level
under the assumption that the population has a normal dis-
tribution. For a higher assurance, we can apply static WCET
analysis techniques [31].

VII. MODE MANAGEMENT PROTOCOL DESIGN

While Section IV provides the core system design necessary
for mode changes, we need a detailed protocol design how
mode changes operate using the system, in particular, when
the mode is changed not only LO to HI but also HI to LO.
The former (i.e., LO to HI mode change) is already presented
in Section IV; that is, a switch immediately triggers the mode
change upon any mode violation detection. However, the latter
(i.e., HI to LO mode change) raises several research questions,
including: 1) when to change the system mode from HI to
LO and 2) how to manage the system mode to preserve the
system consistency. In this section, we propose system-wide
mode manager and the mode management protocols to address
those issues.

A. Challenges to Return to LO Mode

The system can return to the LO mode, if all flows no
longer show HI behavior. The first challenge is a safe HI
to LO mode change, to guarantee real-time requirements of
HI flows despite the mode change to LO. Recall the system
mode definition shown in Section II as follows. The system
should change the mode to HI, when at least one flow shows
HI behavior; thereby, a switch should immediately trigger a
mode change to HI once it sees any HI behavior. In contrast,
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Algorithm 2 Flow Behavior Monitor With Tag
1: function behavior(E, G, C, C(LO))
2: if E < G or C > C(LO) then
3: return HI
4: else
5: return LO
6: end if
7: end function
When the message k of the flow τ arrives at Eτ,k,
8: Gτ,k(LO)← max{Gτ,k−1(LO), Eτ,k−1 − Jτ } + Tτ (LO)
9: if στ /∈ � and
behavior(Eτ,k, Gτ,k(LO), Cτ,k, Cτ (LO)) = HI then

10: propagate an add_tag(στ )
11: else if στ ∈ � and

behavior(Eτ,k, Gτ,k(LO), Cτ,k, Cτ (LO)) = LO then
12: report LO behavior to the controller with στ

13: upon receiving the response, propagate an pop_tag(στ )
14: end if

the system can return to LO mode only if all flows show LO
behavior; the system must make sure that no messages show
HI behavior before triggering a mode change to LO (i.e., safe
mode change), which is the first challenge.

The second challenge is that the system should preserve
the system-wide mode consistency against conflicting mode
change signals. Let us assume that two distinct flows simulta-
neously change their behavior to LO and HI, respectively. The
system should be in HI mode by the system mode definition.
However, each switch receives two distinct mode change sig-
nals (to HI and LO, respectively); it then determines the mode
by the signal received later. The arrival times of two signals
could be different on each switch because of the signal prop-
agation delay. As a result, the mode of each switch could be
different with each other; this inconsistent system mode may
result in a severe penalty on highly critical flows.

B. Safe HI to LO Mode Change Protocol

MC-SDN supports a safe HI to LO mode change protocol
by using an additional component, named flow stats collector,
which gathers flow statistics and helps to ensure that all flows
show LO behavior. As shown in Fig. 5, the HI to LO mode
change protocol is as follows.

1) Report, when the flow f1 changes its behavior from HI
to LO at the ith message Mi, the flow behavior monitor
reports it to the controller.

2) Flow Stats Collecting, upon receiving the report, the
flow stats collector gathers statistics of the flow (i.e.,
packet/byte counters) from the switches along its route.
With the statistics, the controller can check whether all
messages until Mi−1 have already gone outside of the
network.

3) Response, if the flow stats collector confirms that f1 is
valid in LO mode (i.e., no more HI messages in the
network), the controller responses it to the switch.

4) Propagate, once receiving the response, the mode
change arranger of the switch starts to propagate the
HI to LO mode change signal.

This protocol takes a short delay and defers triggering the HI
to LO mode change. Due to the protocol delay, flows could be

Algorithm 3 Mode Change Arranger With Tag
Upon receiving the signal with a tag στ ,

1: if the signal is add_tag then
2: �← � ∪ {στ }
3: if |�| > 0 and current mode is LO then
4: mode change to HI
5: end if
6: else if the signal is pop_tag then
7: �← � \ {στ }
8: if � = ∅ and current mode is HI then
9: mode change to LO

10: end if
11: end if

scheduled by HI mode rules although they show LO behav-
ior. However, despite this delay, timing requirements of HI
flows are always guaranteed (note that LO behavior utilizes
less resources than HI behavior).

C. Preserving Mode Consistency

For system-wide mode consistency, each switch should
maintain the context of flow behavior changes; MC-SDN
introduces flow behavior tag, which contains the behavior con-
text of each flow, and a mode management protocol exploiting
the tag. The flow behavior tag consists of the changed behav-
ior; it also contains the flow and message IDs that show the
behavior change. Algorithms 2 and 3 present how the flow
behavior monitor and the mode change arranger work with
the tag, respectively.

As shown in Algorithm 2, when a switch detects a behavior
change of a flow τ , it then generates a flow behavior tag στ and
propagates the signal with the tag to other switches. Switches
and the controller maintain the flow behavior tag list � that
keeps the tag for flows showing HI behavior. The monitor
can determine changed behavior according to the tag list and
flow behavior. When it sees HI behavior of a flow τ without
a tag στ in the list, it then propagates an add_tag signal
to all switches (lines 9 and 10 in Algorithm 2). In contrast,
when it sees LO behavior of a flow τ with a tag στ in the
list, it follows the safe HI to LO mode change protocol and
propagates a pop_tag signal (lines 11–13 in Algorithm 2).

Algorithm 3 presents the mode change arranger; it changes
the mode according to the received signal and the tag list.
When the arranger receives an add_tag signal, it first adds
the tag στ into the list; if the mode is LO and the list has at
least one tag, it then changes (or stay) into HI mode (lines 1–4
in Algorithm 3). On the other hand, when the arranger receives
a pop_tag signal, it first removes the tag στ from the list;
it then checks whether the list is empty. An empty tag list
implies that all flows show LO behavior. Thereby, if the mode
is HI and the tag list is empty, it changes the mode to LO
(lines 6–9 in Algorithm 3).

This protocol allows to preserve system-wide mode con-
sistency by eliminating any confusion from concurrent flow
behavior changes. Let us assume that a system tries to return to
LO mode upon the behavior change of the flow f1. Right after
propagating the LO mode change signal, suppose another flow
f2 shows HI behavior. In this case, the system should stay in
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Fig. 6. Network testbed and various topology. (a) Testbed photograph. (b) Star topology. (c) Grid topology. (d) Linear topology.

HI mode. However, the LO mode change request could arrive
at a switch after the decision (i.e., stay in HI mode) has taken
place, due to arbitrary network delays. If the switch does not
apply the tag list, it has no way to distinguish whether the LO
mode change signal is valid or not. Then, it changes the mode
to LO, and f2 may miss its deadline. The tag list eliminates
this situation. Since HI and LO mode changes are conducted
according to the existing tags in the list, the system ensures
that the mode is HI if any flow shows HI behavior. In the
above case, the system will stay in HI mode regardless of the
arrival time of LO mode change signal made by f1, because
the tag list has the context which indicates that f2 shows HI
behavior.

D. OpenFlow Extensions for Mode Management Protocol

We implemented the system-wide mode manager as an
OpenFlow extension, and realized the proposed protocol. The
OVS and POX are extended with new OpenFlow commands
OFPT_MC_REPORT and OFPT_MC_RESPONSE that carry
the flow behavior tag for the HI to LO mode change. The
flow behavior tag list is simply implemented as an internal data
structure of OVS and POX. In addition, the flow stats collector
is implemented as a POX module, which periodically gath-
ers designated flow statistics through the STATS_REQUEST
OpenFlow command.

VIII. EVALUATION

In this section, we evaluate MC-SDN by answering the
following questions.

1) How much delay does MC-SDN incur during mode
change? (Section VIII-A).

2) How does the mode change affect end-to-end transmis-
sion time under MC-SDN? (Section VIII-B).

3) How does the mode management protocol improve
resource efficiency? (Section VIII-C).

4) How much overhead does MC-SDN impose for packet
forwarding? (Section VIII-D).

Experimental Setup: Experiments were performed on a
network testbed [see Fig. 6(a)], which consists of 20 end
nodes (Beaglebone-Black [32] boards), nine software switches
(Odroid-XU4, [27] boards), and an SDN controller (a desktop
with Intel i5-3750 and 32-GB RAM). To increase the connec-
tivity of switch nodes, we equipped each switch node with
additional four USB Ethernet interfaces (Realtek r8152 [28])
with a USB2.0 hub (Belkin F4U040kr). Switch nodes and
end nodes were connected via 100 Mb/s Ethernet, and each

switch had a dedicated Ethernet interface for the remote SDN
controller.

Metric: We measured mode change delay as an elapsed time
from the instant at which a switch detects mode violation to
the instant at which all switches finish their forwarding tables
with new mode rules and penalize out-of-mode packets. We
also measured end-to-end transmission time as the time taken
to transmit a message from its source to a destination. For
measurement, all switches and end nodes were synchronized
by network time protocol (NTP) with an accuracy of less
than 1 ms.

Mode-Based Scheduling: Unless stated otherwise, each
switch prioritizes packets according to RM while schedul-
ing both HI and LO flows in LO mode but dropping LO
flows in HI mode. Note that in LO mode, LO flows could
be assigned higher-priorities than HI flows depending on their
periods. For comparison, Std-SDN indicates the controller-
driven mode change approach based on the standard SDN
protocol, as described in Section III-A. MC-Agnostic indi-
cates a non-MC approach that does not conduct mode change;
it keeps using RM scheduling without dropping any LO flows
even though a HI flow shows HI behavior.

Network Topology: Experiments were performed on vari-
ous network topologies: star, grid, and linear as shown in
Fig. 6(b)–(d), respectively,

A. Mode Change Delay

We ran various experiments to examine how well MC-SDN
addresses several delay factors of a mode change. During the
experiments, we ran a single HI flow that transmits a message
of up to 180 kB in LO mode with a period of 100 ms. After
a few seconds of each experiment, the HI flow doubled its
message size, and the system conducts a mode change to HI
mode.

Fig. 7(a) and (b) shows the mode change delays of Std-SDN
and MC-SDN over different network topologies, while the HI
flow went through all switches in each network topology. In
the figures, the labels of 1, 50, and 100 on the x-axis indicate
how many new rules to update in the forwarding table, respec-
tively; note that 100+ on the x-axis implies 100 rules to update
with additional out-of-mode packets, to be detailed in the last
paragraph of this section. The figures show 20 measurements
while each gray box covers the 25th–75th percentiles with the
line inside indicating the 50th percentile, and the error bar rep-
resents the minimum and maximum delays. In every scenario,
the figures show that Std-SDN incurs significantly larger and
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(a) (b)

Fig. 7. Mode change delays with varying the topology, the number of rules to update, and the presence of out-of-mode packets. (a) Std-SDN. (b) MC-SDN.

highly fluctuating mode change delays than MC-SDN does
(note the different scales on the y-axis).

Fig. 7(b) also depicts the delay bound as a dotted-
line; we calculated the bound with the values presented in
Section VI-B. To calculate the bound, we used Nlink of 0, 4,
and 8 according to the topology, Npacket of 1000 based on the
maximum queue length of network interfaces, and Nrule iden-
tical to the number of flows to update. The figure shows that
MC-SDN not only effectively reduces the mode change delay,
but also strictly limits the delay to the upper bound.

1) Mode Change Arrangement: Fig. 7 shows that the dis-
tributed way of mode change arrangement of MC-SDN yields
much shorter delays than the centralized way of Std-SDN. In
particular, even though it needs to update the minimal number
of rules (i.e., only one rule), the figures show that MC-SDN
effectively reduces delays by an order of magnitude in the
mode change arrangement step while eliminating OpenFlow
communication. We note that the delay of MC-SDN includes
delays in mode change propagation along with switches. In
the grid and linear topologies, it should propagate up to 4 and
8 hops, and the delay increases as its propagation distance
grows.3

2) New Rule Update: Fig. 7 shows that the delay generally
increases when each switch has a larger number of rules to
update, but in a different order of magnitude between Std-
SDN and MC-SDN. When updating 50 and 100 rules in the
mode change, Std-SDN imposes additional long delays (up
to 92 ms) that vary significantly, while MC-SDN adds only
0.2–0.3 ms. This is because MC-SDN updates the forward-
ing table with the information stored in the shadow table by
eliminating external communication with the remote SDN con-
troller and minimizing intraswitch cross-layer communication.

3) Out-of-Mode Packet Handling: In order to evaluate the
out-of-mode packet handling, we ran experiments with two
additional LO flows that share the links with the HI flow, where
100 rules are updated in mode change. Each LO flow has the
period of 100 ms and the size of 490 kB. Fig. 7 shows the
results on the x-axis labeled 100+; note that 100+ represents
the case with 100 rules to update and additional out-of-mode
packets generated by the additional LO flows. It shows that
while Std-SDN adds high fluctuations in the order of tens of
millisecond (up to 24 ms), MC-SDN increases the delay only

3We note that the propagation delay is slightly high (i.e., about 0.7 ms per
hop) due to the poor performance of USB Ethernet in our setup; it could be
significantly lowered when just using PCI or on-board Ethernet cards.

(a) (b)

Fig. 8. End-to-end transmission time of each message with the mode change.
(a) Std-SDN. (b) MC-SDN.

TABLE IV
SPECIFICATIONS OF THE TWO MC FLOWS

in microseconds (up to 310 μs) by dropping LO flows out of
the queue.

B. End-to-End Transmission Time

In this section, we evaluate the effect of mode change delay
on end-to-end transmission time over various experimental
scenarios.

1) Two Contending Flows: This experiment illustrates how
the mode change delay affects the end-to-end transmission
times of HI and LO flows that are contending with each other.
We generated two flows as described in Table IV, on the lin-
ear topology network shown in Fig. 6(d); their routes were
overlapped so that the LO flow interfered the HI flow. The
deadline of each flow was identical to the period of that. Fig. 8
depicts the end-to-end transmission time of each message of
two flows with a mode change. Note that the HI flow doubled
the message size from the message of ID 5 until the last one.

Fig. 8(a) shows that the HI flow, especially the message
of ID 5, suffers from an unintended increase of the end-to-
end transmission time. The mode change delay of Std-SDN
causes this increase; although the switch can be aware of the
LO mode violation from the message of ID 5, it takes a while
to complete the mode change. During the mode change delay,
the LO flow’s message of ID 5, which must be dropped, inter-
feres the HI flow. This interference incurs a deadline miss
of the HI flow. Besides, since the interference caused by the
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Fig. 9. End-to-end transmission times of the messages that show HI behavior
at the first time.

mode change delay is unpredictable, it is impossible to guar-
antee the end-to-end transmission times of HI flows which are
critical to the system safety. In contrast, Fig. 8(b) shows that
MC-SDN properly handles the HI flow with subtle, almost
zero interference during the mode change. Thanks to the MC-
SDN design, the switch timely completes the mode change
and drops the LO flow’s messages including ID 5; thus the
HI flow does not suffer from an unintended interference. In
addition, since MC-SDN not only reduces the delay but also
strictly bounds it, the end-to-end transmission time could be
predictable even if a mode change happens. Consequently, this
predictability can help to guarantee real-time requirements of
MC flows.

2) Synthetic Flow Set: To show the effectiveness of MC-
SDN for general cases, we conducted the experiment with
randomly synthesized flow set; on each experiment, we gen-
erated a set of up to 16 real-time flows on the grid topology
[shown in Fig. 6(c)] as follows. For each flow, we selected
its period randomly between 10 and 200 ms, a message size
that can be transmitted randomly between 10% and 40% of
the period on a 100-Mb/s link, and its criticality to be HI with
the probability of 33%. In addition, we randomly determined
its source and destination nodes, and a route was determined
as a shortest path inbetween. During each experiment, one
HI flow was assigned to trigger a mode change by sending a
message M twice as big, and Fig. 9 plots the end-to-end trans-
mission times of the message M on MC-SDN, Std-SDN, and
MC-Agnostic, respectively, in increasing order of MC-SDN’s
measurements for the ease of presentation.

As shown in Fig. 9, MC-SDN always results in end-to-end
transmission times that are smaller than or equal to the ones
of MC-Agnostic and Std-SDN. On average, MC-Agnostic
and Std-SDN incur 46 and 20 ms longer end-to-end trans-
mission times than MC-SDN, respectively; in the worst case,
they show 211 and 102 ms longer results than MC-SDN,
respectively. The main reason of the longer transmission time
is the unintended interference by LO flows which should
be dropped in the HI mode. Although Std-SDN supports a
mode change, it is impossible to bound the interference due
to the unpredictability of the mode change delay; note that the
transmission time difference between Std-SDN and MC-SDN
widely varies in Fig. 9. In some cases (34 out of 300 cases), we
observe that all systems result in identical transmission times;
this is because there are no LO flows which have higher pri-
ority than the message M. Consequently, Fig. 9 implies that

(a) (b)

Fig. 10. End-to-end transmission time of each message with or without
return to LO mode. (a) Without the return to LO mode; all LO messages
after ID 3 are dropped. (b) With the return to LO mode; LO messages (IDs
3–7) are dropped.

Fig. 11. Delay of the flow stats collecting step with varying the number of
flows to collect statistics.

MC-SDN effectively reduces the mode change delay and then
improves schedulability of MC flows, in general cases.

C. Mode Management Protocol

This section shows the effectiveness of the MC-SDN mode
management protocol with the following aspects: how the HI
to LO mode change enhances the system resource efficiency,
how long the LO mode change takes, and how well MC-SDN
preserves the system-wide mode consistency.

1) Benefit of the Return to LO Mode: To show the benefit
of HI to LO mode change, we ran an experiment with two
flows that have identical specifications used in Section VIII-B
(refer to Table IV). In this experiment, the HI flow doubled the
size of messages of IDs 3–6; thereby the system could return
to LO mode after transmitting the HI message of ID 6.

Fig. 10(a) shows the system only supporting LO to HI mode
change. Since the system stays in HI mode once it observes
HI behavior, all LO messages after ID 3 are dropped even
though the HI messages after ID 6 become valid in LO mode.
Consequently, the system wastes the available resources. In
contrast, Fig. 10(b) shows the system also supporting HI to
LO mode change. The system returns to LO mode and trans-
mits the LO flow again, after the HI flow shows LO behavior
(from ID 7). As a result, the system can efficiently utilize the
resources; it can transmit more LO messages.

It is worth noting that the LO mode change takes a while to
complete from the LO behavior detection (see the messages of
IDs 7 and 8). This is because the flow stats collecting step is
required to trigger the LO mode change (see Fig. 5); Fig. 11
shows this delay in detail.

2) Delay of Collecting Flow Stats: We measured the delay
in the flow stats collecting step with varying the number of
flows to collect statistics. Fig. 11 shows that this step only
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Fig. 12. Number of trials that successfully preserve the system-wide mode
consistency.

takes hundreds of milliseconds even in an extreme case (i.e.,
100 flows simultaneously return to LO mode). Note that the
figure represents 20 trials, where each gray box covers the
25th–75th percentiles with the line inside indicating the 50th
percentile, and the error bar represents the minimum and max-
imum delays. This delay is affordable because it never incurs
any interference to HI messages; it only penalizes few LO
messages. Once the HI to LO mode change is triggered after
this step, the mode change itself only takes as short as the LO
to HI mode change. With this step, MC-SDN ensures a safe
mode change from HI to LO with an affordable delay.

3) System-Wide Mode Consistency: To show how well the
MC-SDN mode management protocol preserves the system-
wide mode consistency, we made two conflicting flow behavior
changes simultaneously. In each experiment, two HI flows f1
and f2 were generated. At the starting time of each experiment,
f1 doubled its message size; thus the system changed to HI
mode. After each experiment started, at a time instant t1, f1
reduced the message size to be valid in LO mode. In addition,
at t2, f2 changed its behavior to HI. We examined the system
mode, while varying the time difference of t2 − t1; since f2
showed HI behavior after t2, all switches should be HI mode
after t2.

Fig. 12 depicts the number of successful trials which pre-
serve the mode consistency (i.e., all switches are HI mode)
out of 20 trials. We compare two MC-SDN systems, with
and without flow behavior tag list; MC-SDN with the tag list
follows the protocol presented in Section VII, and MC-SDN
without the tag list changes the mode whenever it receives any
mode change signal.

The figure shows that MC-SDN without the tag list cannot
preserve the mode consistency, when t2 − t1 is short. This is
because the LO mode change signal could arrive later than the
HI mode change signal, but switches without the tag list have
no way to determine whether the delayed LO mode change
signal is valid or not. On the other hand, MC-SDN with the tag
list always shows a consistent system mode. This is because
the tag list allows to effectively validate the mode change
signal regardless of the arrival times; it keeps the system
in HI mode according to the information that f2 shows HI
behavior.

D. Packet Forwarding Overhead

MC-SDN incurs some overhead in packet forwarding, since
each switch applies the flow behavior monitor as an OpenFlow

(a) (b)

Fig. 13. Packet forwarding throughput of MC-SDN. With varying the
(a) sending rate and (b) message size.

action to each packet. In this section, we measured the over-
head of MC-SDN with the star topology testbed shown in
Fig. 6(b). An end node generated messages with varying the
sending rate and message size; the MC-SDN switch moni-
tored the flow behavior, and another end node measured the
forwarding throughput. In Fig. 13, each bar plot and error bar
represent the average and the standard deviation of 20 trials,
respectively, and each trial ran for 5 s. We compare the result
with vanilla OVS, an unmodified version of OVS. Note that
we used 1G USB Ethernet interfaces (Realtek r8153 [33]) for
more intensive evaluations with heavy traffic (up to 300 Mb/s,
which is the physical limit of our testbed).

Fig. 13(a) shows the throughput with varying the sending
rate. Each message was generated with the size of 1514 bytes
(i.e., MTU including the Ethernet header). The figure shows
that throughput of MC-SDN is comparable to that of vanilla
OVS regardless of the sending rate. This is because the packet
monitoring action only incurs very small overhead (i.e., the
average of 760 ns per packet) that can be effectively hidden in
between packet transmissions. Fig. 13(b) depicts the through-
put with varying the message size. The sending rate was fixed
at 300 Mb/s. Similar to Fig. 13(a), MC-SDN results in com-
parable performance to vanilla OVS regardless of the message
size. Note that the switch cannot forward traffic as fast as the
sending rate of 300 Mb/s when the message size is small,
due to its low packet processing capability. Despite the heavy
workload with the small messages, MC-SDN still hides the
overhead effectively.

Besides, other components of MC-SDN except the flow
behavior monitor (e.g., MC queue controller) do not affect
packet forwarding performance, since they are not involved
for normal packet processing. Consequently, the overhead for
packet forwarding is negligible.

IX. CASE STUDY: AUTONOMOUS VEHICLE

In order to show how real world systems benefit from MC-
SDN, we conducted a case study, supporting the AEB system,
on a 1/10 scaled autonomous vehicle.

A. Autonomous Emergency Braking

AEB is a system that brakes the car in emergency situations
by predicting the risk of collisions with detecting obstacles
through various sensors. For instance, Jaguar F-PACE provides
the AEB feature based on stereo cameras [34]. Since AEB
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Fig. 14. 1/10 scale autonomous vehicle.

TABLE V
FLOW SET SPECIFICATION IN THE CAR SYSTEM

effectively lowers the risk of car accidents, automakers have
agreed to equip it as a standard feature [35].

B. Experimental Setup

We have implemented a 1/10 scaled autonomous car,
as shown in Fig. 14, which is extended from the F1/10
autonomous racing platform [36]. The car consisted of the
Traxxas Rally 1/10 body with actuators (i.e., motors) [37], sen-
sors including a LIDAR (Hokuyo UST-10LX [38]) and a depth
camera (Intel Realsense R200 [39]), Jetson TK1 [40] and
Raspberry PI3 [41] boards for end nodes, Odroid-XU4 [27]
boards for switch nodes, and an additional Raspberry PI3 for
an SDN controller. As shown in Fig. 15(a), each node was
connected with each other via 100 Mb/s-Ethernet. And, sen-
sors and actuators were connected to the s1 and d1 nodes,
respectively, via USB or dedicated interfaces. The car drove
itself along the given trajectory, by using the LIDAR-based
SLAM [42] and the PID controller for motors. They were
implemented as components of the ROSs [19] framework.

As shown in Table V, the car system generated three real-
time flows.

1) LIDAR for the LIDAR sensor data used for SLAM.
2) STREAM for video frames of a user entertainment.
3) CAM for image frames from the depth camera used for

AEB.
Note that the period of the CAM flow had multiple require-
ments according to the mode. When the car sees obstacles
while moving at high speed, AEB requires a high sensing rate
for responsive braking. In contrast, when the car moves on the
clear road at low speed, a low sensing rate could be acceptable
for AEB. To consider this characteristic, the s1 node skimmed
through depth camera images and adjusted the period; the
period had a default value of 200 ms (i.e., LO mode behav-
ior), but it decreased to 22 ms (i.e., HI mode behavior) when
depth images contain some obstacles in front of the car. In the
LO mode, the car system handled all flows according to the
assigned priorities as shown in Table V; on the other hand, in
the HI mode, the system dropped the STREAM flow (i.e., a

LO flow) to prioritize the LIDAR and the CAM flows (i.e.,
HI flows).

C. Experimental Scenario

Fig. 15(b) illustrates the experimental scenario. The car was
placed 7 m ahead of a wall, and it drove itself toward the wall
at the top speed of 2.1 m/s. We restricted the camera’s field
of view to 2 m, to fix the point where the car can detect
the wall. We evaluated the braking performance by observing
several points as follows: the detecting point where the wall
could be detected by the camera, the braking point where AEB
sought to brake the car, and the stopping point where the car
completely stopped. We define perception and reaction, brak-
ing, and total stopping distances, respectively, as depicted in
Fig. 15(b) and use them as performance metrics. To show the
effectiveness of MC-SDN, we used two baselines: 1) LO Only
and 2) HI Only. They are static systems which cannot change
the forwarding rules. In LO Only, all flows always generated
messages according to the LO mode requirement, and thereby
all of them were handled with priorities of the LO mode as
presented in Table V. On the other hand, in HI Only, all flows
operated as the HI mode requirement, and thus the STREAM
flow was dropped according to the priority policy of the HI
mode.

D. Implication

Fig. 15(c) depicts the braking performance of the car with
varying the underlying systems. Each box plot and error bar
represent the average and the standard deviation of 30 trials,
respectively. In addition, the line graph represents the worst
result among the 30 trials. The main factor of the performance
is the perception and reaction distance; it depends on how
quickly the depth images which contain obstacles could be
delivered to the control node (i.e., the d1 node).

The figure shows that LO Only results in a long stopping
distance; due to the long period of the CAM flow, the control
node (d1) cannot be quickly aware of the wall. Although LO
Only can efficiently utilize the resource (note that it always
serves the STREAM flow), it may hurt the safety of the car
system. In contrast, HI Only results in a short stopping dis-
tance compared to LO Only. It helps to provide better safety
of the car, but it may waste the resource; it cannot serve the
STREAM flow. On the other hand, MC-SDN effectively sup-
ports MC flows which have multiple requirements. The CAM
flow changes its period (from 200 to 22 ms) at the detecting
point. MC-SDN timely changes the mode and properly prior-
itizes the CAM flow while dropping the STREAM flow. As a
result, MC-SDN shows a similar stopping distance compared
to HI Only. In addition, it can accommodate the STREAM
flow before the CAM flow shows HI mode behavior.

This case study implies that MC-SDN effectively realizes
MC flow scheduling onto the real world system such as the
autonomous car. It enables to balance between two conflicting
objectives: 1) efficient resource sharing and 2) safety-critical
real-time requirements guarantee.
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(a) (b) (c)

Fig. 15. Evaluation with the 1/10 scale autonomous vehicle. (a) System architecture and topology. (b) Evaluation overview. (c) Stopping distances.

X. NEW APPLICATION WITH EXTENSION: FAULT

RESILIENT AUTONOMOUS VEHICLE

Beyond the mode-based scheduling for MC systems, MC-
SDN is also applicable to other systems which require
time-sensitive forwarding rule management. A fault resilient
networking system is a suitable application of MC-SDN. The
system requires a fault recovery scheme to be done within a
short and bounded delay; MC-SDN can support this require-
ment with a mode-based fault recovery. In this section, we
extend MC-SDN and evaluate the control performance against
a link fault, in the autonomous lane keeping (ALK) scenario.

A. Mode-Based Fault Resilient System

To support a link fault recovery, we made several changes
to MC-SDN as follows. We define two system modes, nor-
mal and emergency, according to the link connectivity. The
system starts with the normal mode, and it changes into the
emergency mode when a link fault occurs. Each switch has
backup rules for the emergency mode in its shadow table. In
addition, flow behavior monitor is replaced by link fault mon-
itor, which monitors connectivity of each link and detects a
link fault. When it sees any link fault, it immediately triggers
a mode change to the emergency mode. It follows the MC-
SDN mode change protocol (i.e., LO to HI); thereby, it can
be done within a short and bounded delay.

B. Autonomous Lane Keeping

The ALK system automatically steers the car to keep it
inside the lane. It is considered as a major step toward
autonomous driving, as it enables driving without human input.
For example, Cadillac’s Super Cruise [43] system is a hands-
free system that supports ALK with large LIDAR mapping
data.

C. Experimental Setup

We evaluate MC-SDN with the ALK system implemented
on top of our 1/10 scaled autonomous car presented in
Section IX. We implemented the ALK system based on a PID
controller which relies on a LIDAR sensor; it senses the sur-
rounding structures and feeds the proper control to keep the
car inside the lane.

Fig. 16(a) describes the network topology used in the exper-
iment. We generated two flows: 1) LIDAR and 2) STREAM,
which have the same specification described in Table V. When

the link l1 and l2 were alive (i.e., normal mode), the LIDAR
and STREAM flows passed through the link l1 and l2, respec-
tively. In the middle of each experiment, we made a fault at the
link l1 through the interface down command (i.e., ifdown).
Upon detecting the link fault, each switch changed to the emer-
gency mode with new forwarding rules, so that the LIDAR
flow was rerouted to go through l2 and the STREAM flow
was dropped to make room for the LIDAR flow. In order to
reflect more complex systems that have tens of flows, each
switch has 60 forwarding rules for dummy background flows;
upon a mode change, each switch updated all forwarding rules.

D. Experimental Scenario

As shown in Fig. 16(b), the ALK system drove the car while
maintaining 0.7 m away from the circular shape wall; we con-
sider this path as the reference lane. We measured the driving
trajectory and errors from the lane until the vehicle completes
one lap. Note that the car drove itself with an average velocity
of 1 m/s, and it takes about 9 s to finish one lap. We made a
link fault at 4 s after each experiment started, and evaluated
the effectiveness of the fault recovery system. We compare
MC-SDN with two baselines: 1) Std-SDN which follows the
standard request-response SDN protocol to recover a fault and
2) No-Fault that does not suffer from any link fault and shows
the ideal case.

E. Implication

Fig. 16(b) depicts the representative driving trajectory with
varying the underlying network system. When the link fault
occurs, Std-SDN loses the control and cannot follow the lane,
while MC-SDN keeps the control. This difference mainly
comes from the expeditious mode change (i.e., fault recov-
ery), by taking advantage of MC-SDN design. Until the fault
recovery done, the switch sw1 transmits the LIDAR flow to
the faulted link l1. Due to the long recovery delay, Std-SDN
loses a lot of LIDAR messages. Therefore, the car cannot
feed the proper control signal and results in this severe con-
trol performance degradation. In contrast, MC-SDN quickly
finishes the fault recovery with very few data losses and
successfully controls the car inside the lane. Note that the
trajectory of MC-SDN is comparable to that of No-Fault.

Fig. 16(c) shows the distributions of the errors, where an
error is defined as the distance between the lane and the vehi-
cle position at each control cycle. Note that the car ran the
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Fig. 16. Link fault recovery performance evaluation with the 1/10 scale autonomous vehicle. (a) Topology: a fault happened at the link l1. (b) Driving
trajectories. (c) Error distributions.

PID control with a frequency of 40 Hz. It shows all mea-
sured errors from 20 trials while each gray box covers the
25th–75th percentiles with the line inside indicating the 50th
percentile, and the error bar represents the minimum and max-
imum errors. The smaller the error, the better the control
performance. Since No-Fault shows the case without any fault,
we refer to No-Fault as an ideal control performance.

In the figure, Std-SDN shows large error values up to
0.78 m, while MC-SDN and No-Fault show the errors up
to 0.40 and 0.28 m, respectively. The large error values
(up to 0.5 m larger than No-Fault) imply the poor control
performance of Std-SDN due to the long fault recovery delay.
Note that the errors increase until the fault recovery done. In
contrast, MC-SDN results in small errors (up to 0.12 m larger
than No-Fault), thanks to the expeditious fault recovery. Note
that MC-SDN results in few meters larger errors compared to
No-Fault; this is because it takes few milliseconds to detect
the link fault. It could be improved by using the well-tuned
link fault detection scheme; however, it is out of scope of this
paper. Once the link fault is detected, MC-SDN finishes the
recovery within less than 1 ms. This fast recovery helps to
keep the vehicle under control and results in better control
performance.

The evaluation with the new application implies that MC-
SDN can be applicable to various systems which require the
time-sensitive network rule management. Thanks to the gener-
ality of MC-SDN, we believe that it will be a key technology
for next-generation cyber-physical networking systems.

XI. DISCUSSION: SUPPORTING MORE THAN TWO

CRITICALITY LEVELS

So far in this paper, we have focused on the dual-criticality
systems. Thanks to the generality of MC-SDN, it can support
systems having more than two criticality levels through some
extensions of the internal structure. In this section, we dis-
cuss how to extend MC-SDN toward N (>2) criticality levels
L0 · · · LN−1, where L0 and LN−1 denote the lowest and highest
criticality levels, respectively.

A. Flow Behavior Monitor With Multiple Requirements

The flow behavior monitor can determine whether a flow
is valid in a specific criticality level, based on the multiple
requirements for each level. For each message k in a flow τ ,

the monitor checks the arrival interval and the size of message
k with the guide time Gτ,k and the size requirement Cτ,k,
respectively. Since the flow τ has multiple period requirements
Tτ (Li), the guide time can be generalized as

Gτ,k(Li) = max
{
Gτ,k−1(Li), Eτ,k−1 − Jτ

}+ Tτ (Li)

where 0 ≤ i < N. With the generalized guide time Gτ,k(Li)

and multiple size requirements Cτ (Li), the monitor can deter-
mine the minimum required level of τ Lτ,req, as follows:

Lτ,req = max

{
min

{
Li|Eτ,k ≥ Gτ,k(Li), 0 ≤ i < N

}
,

min
{
Lj|Cτ,k ≤ Cτ

(
Lj

)
, 0 ≤ j < N

}
}

where Eτ,k and Cτ,k denote the arrival time and size of the
message k, respectively. The monitor determines whether
the flow τ violates the system mode by comparison between
the required level Lτ,req and the system mode level Lsys.

B. Mode Change Protocol

If the monitor sees Lτ,req > Lsys, it determines that the flow
τ violates the system mode; the system should change the
mode into Lτ,req. When the monitor sees any mode violation,
it immediately triggers a mode change toward the higher level.
The LO to HI mode change protocol can be directly applicable
to this mode change. On the other hand, when the monitor sees
Lτ,req < Lsys, it should ensure that all flows in the system are
valid in the mode level Lτ,req for a mode change. The HI to LO
mode change protocol is useful for the mode change toward
the lower level (refer to Section VII); the flow stats collecting
step of the protocol helps to ensure that validity of all other
flows in the mode level Lτ,req.

In addition, in order to preserve the system-wide mode level
consistency, the mode arranger put the Lτ,req information into
the flow behavior tag when it propagates the mode change
signal. According to the mode management principle with the
flow behavior tag list, each switch maintains the mode level
Lsys with the following constraint:

∀τ∈FS, Lsys ≥ Lτ,req

where FS denotes the set of flows in the system. Note that
MC-SDN can be aware of Lτ,req information from the flow
behavior tag list.
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C. MC Rule Manager With Multiple Shadow Tables

The MC rule manager in each switch has multiple shadow
tables indexed by the criticality level, and each shadow table
contains forwarding rules for the corresponding level. When
the system starts, all switches are in L0 mode level; they use
the rules in the shadow table with the index L0 as their for-
warding rules. If a switch is about to change the mode, it
refers to the Lτ,req information in the mode change signal
and retrieves new rules from the shadow table indexed as
Lτ,req. With this approach, MC-SDN can effectively support
N-criticality systems.

XII. RELATED WORK

In this section, we present related works and what differen-
tiates MC-SDN from them.

A. IEEE Time Sensitive Networking

TSN is an Ethernet-based standard suite under development
by the IEEE 802.1 TSN Working Group. Since the current
bus-based industrial network standards (i.e., CAN [44] and
FlexRay [45]) suffer from the bandwidth limitation, there has
been an increasing interest in Ethernet as a next-generation
standard. TSN defines primitive Ethernet mechanisms to
support time-sensitive traffic including: 1) time synchroniza-
tion [10]; 2) path control and reservation [11]; 3) packet
scheduling for various traffic classes [12]–[15]; and 4) packet
replication [16]. With these primitives, it supports various
classes of time-sensitive (i.e., cyclic/periodic and sporadic)
and best-effort traffics in a converged network. Based on
the time synchronization [10], TSN provides temporal isola-
tion to time-sensitive traffics by dividing a time interval into
multiple time slots and assigning each flow into a dedicated
time slot [12], [13].

The nature in packet scheduling is different for TSN and
MC-SDN; the former employs only static scheduling, while
the latter allows dynamic scheduling as well. For each time-
sensitive flow, TSN reserves a fixed amount of network
resources statically at design time according to their timing
requirement (e.g., a reserved time slot in each cycle), and it is
very difficult to change the reservation at runtime. Thus, TSN
enforces each flow to make a reservation according to its max-
imum resource requirements (i.e., its worst case behavior). As
an example, let us consider the case of Section IX, where the
camera sensor data (HI flow) and streaming (LO flow), respec-
tively, occupy 58% and 88% of bandwidth in the worst case.
In this case, TSN cannot make a reservation to guarantee both
flows at the same time. One may then think that it is sufficient
to make reservation only for HI flows and leave LO flows as
best-effort traffics; however, it cannot provide LO flows with
any timing guarantees. Note that LO flows (e.g., streaming)
are not best-effort, but they are also-time sensitive and require
timing guarantee. In contrast, MC-SDN employs mode-based
scheduling, which provides strict timing guarantee for HI flows
and conditional guarantee (as long as in the LO mode) for LO
flows. In case of Section IX, MC-SDN guarantees the timing
of all HI and LO flows (i.e., camera sensor and streaming)
in the LO mode. In the HI mode, MC-SDN provides timing

guarantee for the HI flow while dropping LO flows. Note that
although we dropped all LO flows since message loss and
delayed delivery are equivalent in terms of real-time commu-
nication (i.e., in terms of missing deadlines), MC-SDN also
can support LO flows as best-effort (with the lowest prior-
ity) in the HI mode. MC-SDN mainly focuses on enabling
the mode-based scheduling on Ethernet; it helps to guarantee
the timing of MC flows (even LO flows), while demanding
significantly less resources than static scheduling.

TSN is orthogonal to MC-SDN. Advanced features of TSN
(e.g., time slot reservation) can help to make a more tighter
bound of a mode change delay. And, the TSN working group is
recently trying to standardize a runtime network management
architecture in the P802.1Qcc work-in-progress project [46].
We believe that the fast and predictable network management
way proposed by MC-SDN can give a great insight into the
upcoming TSN standard, P802.1Qcc.

B. Mixed-Criticality Network Scheduling

Several pieces of research have been studied to support
MC flow management (see [3] for a survey) for various
networks, including a NoC [5]–[8], CAN [4], and time-
triggered Ethernet [9]. It is worthwhile to elaborate the latter
work since it considers clock-synchronized switched Ethernet
for real-time industrial networks, as we consider switched
Ethernet in this paper. The latter work proposes an extension
to the IEEE 1588 precision time protocol (PTP) to broadcast
a criticality level to all nodes in the network, without consid-
ering how to change forwarding rules to drop or re-prioritize
packets when the system mode changes. On the other hand,
MC-SDN employs in-network MC flow scheduling (through
SDN-enabled switches), allowing to handle packets in transit
in different ways upon mode changes.

C. SDN for Real-Time Networking

Recently, some studies have proposed SDN approaches for
supporting real-time flow scheduling. Qian et al. [47] proposed
a static routing algorithm to guarantee the timing requirements
of real-time messages. Kumar et al. [48] proposed a path find-
ing algorithm subject to latency and bandwidth requirement of
real-time flows. TSSDN [49] proposes a path finding and time
slot allocation algorithm to provides temporal and spatial iso-
lation of real-time flows. MIDAS [50] proposes an admission
control based on schedulability test of real-time flows. While
the previous studies focus on the control plane algorithms,
MC-SDN provides a novel data plane design which enables
dynamic network management for MC scheduling.

XIII. CONCLUSION

This paper presents the design and implementation of
MC-SDN that supports MC real-time flows on SDN-based
switched Ethernet. It not only presents the first approach to
enable a criticality mode change with minimal and bounded
delays, based on a deep understanding of SDN, but also pro-
vides a sustainable/consistent mechanism supporting LO to HI
as well as HI to LO mode changes. We have developed the
prototype of MC-SDN not only to examine the performance
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closely from various factors, but also to evaluate its effective-
ness in a real world system such as a 1/10 scaled autonomous
vehicle. The extensive evaluation and case study prove that
MC-SDN effectively improves the safety of CPSs.

In this paper, we have implemented MC-SDN on top of a
software switch (OVS), to explore the feasibility of support-
ing real-time MC scheduling on SDN. However, we believe
that the design principles of MC-SDN are applicable to gen-
eral SDN devices, including hardware switches. We leave it
future work to optimize the hardware implementation of MC-
SDN design with field-programmable gate array-based SDN
switches [51].
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