
6310 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 4, AUGUST 2019

JMC: Jitter-Based Mixed-Criticality Scheduling
for Distributed Real-Time Systems

Kilho Lee , Minsu Kim, Hayeon Kim, Hoon Sung Chwa, Member, IEEE, Jaewoo Lee,

Jinkyu Lee , Member, IEEE, and Insik Shin, Member, IEEE

Abstract—These days, the term of Internet of Things (IoT)
becomes popular to interact and cooperate with individual smart
objects, and one of the most critical challenges for IoT is
to achieve efficient resource sharing as well as ensure safety-
stringent timing constraints. To design such reliable real-time
IoT, this paper focuses on the concept of mixed-criticality (MC)
introduced to address the low processor utilization on traditional
real-time systems. Although different worst-case execution time
estimates depending on criticality are proven effective on proces-
sor scheduling, the MC concept is not yet mature on distributed
systems (such as IoT), especially with end-to-end deadline guar-
antee. To the best of our knowledge, this paper presents the
first attempt to apply the MC concept into interference (or jit-
ter), which is a complicated source of pessimism when analyzing
the schedulability of distributed systems. Our goal is to guarantee
the end-to-end deadlines of high-criticality flows and minimize the
deadline miss ratio of low-criticality flows in distributed systems.
To achieve this goal, we introduce a jitter-based MC (JMC)
scheduling framework, which supports node-level mode changes
in distributed systems. We present an optimal feasibility condi-
tion (subject to given schedulability analysis) and two policies to
determine jitter-threshold values to achieve the goal in different
conditions. Via simulation results for randomly generated work-
loads, JMC outperforms an existing criticality-monotonic scheme
in terms of achieving higher schedulability and fewer deadline
misses.

Index Terms—Distributed real-time systems, end-to-end dead-
line guarantee, jitter-based mixed-criticality (JMC) scheduling,
worst-case response time.

Manuscript received August 29, 2018; revised March 7, 2019; accepted
April 24, 2019. Date of publication May 9, 2019; date of current version
July 31, 2019. This work was supported in part by the Basic Science
Research Program under Grant NRF-2015R1D1A1A01058713, in part by
the Engineering Research Center under Grant NRF-2018R1A5A1059921,
in part by the Institute for Information & Communications Technology
Planning & Evaluation (Resilient Cyber-Physical Systems Research) under
Grant 2014-0-00065, and in part by the National Research Foundation
under Grant 2015M3A9A7067220, Grant 2019R1A2B5B02001794,
Grant 2017H1D8A2031628, Grant 2017M3A9G8084463, and Grant
2018R1C1B5083050. (Corresponding author: Jinkyu Lee.)

K. Lee, M. Kim, H. Kim, and I. Shin are with the School of Computing,
KAIST, Daejeon 34141, South Korea (e-mail: khlee.cs@kaist.ac.kr;
minsu@kaist.ac.kr; hayeon0126@kaist.ac.kr; insik.shin@cs.kaist.ac.kr).

H. S. Chwa is with the Department of Information and
Communication Engineering, DGIST, Daegu 42988, South Korea (e-mail:
chwahs@dgist.ac.kr).

J. Lee is with the Department of Industrial Security, Chung-Ang University,
Seoul 06974, South Korea (e-mail: jaewoolee@cau.ac.kr).

J. Lee is with the Department of Computer Science and Engineering,
Sungkyunkwan University, Suwon 16419, South Korea (e-mail:
jinkyu.lee@skku.edu).

Digital Object Identifier 10.1109/JIOT.2019.2915790

I. INTRODUCTION

NOWADAYS, we have witnessed significant growth in
a number of smart objects (or “things”) connected

to the Internet to interact and cooperate with each
other, called the Internet of Things (IoT). Such a trend
poses a significant challenge in achieving efficient shar-
ing of computational/communication resources while ensuring
safety-stringent timing constraints, primarily to achieve fault
isolation/containment, which is also a key to design a reli-
able cyber-physical system, an emerging system of systems
often considered as real-time IoT. To provide end-to-end tim-
ing guarantees, resource utilization estimates are required
for applications; however, conservative worst-case execution
time (WCET) estimates have conventionally been used for
safety-critical applications, leading to a severely under-utilized
system in practice. For example, a task typically exhibits a cer-
tain variation of execution times depending on the input data
and different behavior of the environment. The exact value of
WCET is usually unknown and can be overly estimated [1]. A
task can also experience a large variation of interference from
others depending on scheduling policies and execution scenar-
ios. Though it is feasible to estimate the amount of interference
tightly in some environments, it is difficult (often computation-
ally intractable) to calculate it accurately in many complex
environments such as distributed systems [2], [3].

In order to narrow such a gap in resource utilization,
the concept of mixed-criticality (MC) has been the focus of
research in real-time processor(s) scheduling. A key insight [4]
is that it provides different levels of timing guarantees to tasks
with different criticality levels based on different assurance-
levels of parameter estimation. For example, in dual-criticality
systems, a substantial number of studies [4], [5] introduce
a paradigm where it guarantees the schedulability of both
high-criticality (HI) and low-criticality (LO) tasks when the
estimation of WCET with low-level assurance is valid. On
the other hand, it only guarantees the schedulability of HI

tasks when the low assurance-level estimation is violated.
In addition to WCET, such a paradigm has been extended
toward other parameters, such as period and deadline [6]–[8].
While early studies focused on satisfying the deadlines of
HI tasks efficiently, from a practical point of view, there is
a growing interest in improving the performance of low-
criticality tasks by satisfying their deadlines selectively even
in HI mode [6]–[10].

While the concept of MC associated with WCET is proven
effective for processor scheduling (in both providing different

2327-4662 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3651-0427
https://orcid.org/0000-0002-2332-1996

LEE et al.: JMC 6311

levels of timing guarantees and achieving high processor
utilization), the MC concept has not matured to support dis-
tributed systems, which entails more complicated scheduling
with more pessimistic sources. For example, the amount of
interference depends on the jitters of higher-priority flows in
a distributed system (as opposed to tasks in a processor), and
the pessimism associated with the calculation of worst-case
interference for each node is accumulated in the entire system.
In this paper, we aim to apply the concept of MC to distributed
systems, achieving the following goals for HI and LO flows
each of which invokes a series of jobs.
G1: It guarantees that all jobs of HI flows meet end-to-end

deadlines.
G2: It maximizes the number of jobs of LO flows that meet

end-to-end deadlines.
It entails the following issues to achieve the goals.

I1: What is a key parameter that can be used to capture
the pessimistic estimate of interference in distributed
systems, while WCET is an effective parameter in
processor scheduling?

I2: How should the system react upon detecting the viola-
tion of low-level assurance in distributed systems, while
the system-wide mode change is typically performed in
processor scheduling? For instance, what is the mini-
mum range of nodes to be influenced and how long
should such influence last?

I3: How can we estimate interference parameter of low-
level assurance in distributed systems, while WCET
estimate used as low-level assurance is typically given
in processor scheduling?

To address I1, we take advantage of the fact that a dis-
tributed system consists of multiple nodes (or stages). End-
to-end response time of a flow is calculated as the sum of
worst-case response times at each node. Which means, even
if a flow experiences more interference than the estimation on
some nodes, the overall estimation can still be valid if the other
nodes can compensate the exceeded response times. Therefore,
it would be reasonable to estimate the interference individu-
ally and check its validity at each node upon the completion
of execution. To this end, we define jitter as the time for indi-
vidual jobs to reach each node. The jitter at one node directly
represents the overall response times up to the previous node;
hence it can be used as an indicator for the pessimism con-
tained in the interference estimate at runtime. In this paper, we
use jitter to capture the pessimistic estimate of interference in
distributed systems.

To address I2, we use the “separation of concerns” principle
to efficiently address the complexity of large-scale distributed
systems. In distributed systems, there is a ripple effect in
which a HI behavior at one node directly (or indirectly) affects
interference estimation of other nodes. For example, when a
flow receives a larger amount of interference than its estimate
at one node, it will reach the next node with a larger jitter value
and impose a potentially larger interference on other lower-
priority flows on the same node. Since such an interference
chain can be long and complicated, it is important to control
the ripple effect to the limited region such that it does not
spread through the entire distributed system. To this end, we

propose jitter-based MC (JMC), an efficient MC scheduling
framework for distributed systems, which uses jitters to build
the boundary of the ripple effect and control the dependency
between nodes. Upon detecting a violation of interference esti-
mate, JMC leverages jitters to enable a mode change on a
per-node basis rather than on a system basis. Thereby, JMC

minimizes the range of penalized LO flows and also the time
duration of HI mode.

While JMC offers an efficient interface for providing dif-
ferent levels of timing guarantees as well as achieving high
system utilization, the framework itself does not achieve G1
and G2 without assigning a proper jitter-threshold, a crite-
rion of triggering a node-level mode change. As to I3, we
first derive a feasibility condition for the jitter-threshold to
accomplish G1 that is optimal subject to given schedulabil-
ity analysis (e.g., response-time analysis). We then develop
two different jitter-threshold assignment policies: the Lazy and
Proactive policies. While both satisfy G1 using the feasibility
condition, performance of Lazy and Proactive policies depends
on the pessimism involved in the analysis.

Note that JMC also follows the essential principle of MC
scheduling (i.e., supporting MC tasks in a cost-effective man-
ner); however, the main difference between classic MC and
JMC comes from the target system. That is, most existing MC
scheduling studies consider a “single” computing node with a
system-wide mode change according to WCET estimates, but
JMC considers “multiple” resources with a stage-level mode
change according to jitter values, by answering I1–I3. More
detailed explanation of the difference will be presented at the
end of Section IV.

To evaluate the effectiveness of our JMC scheme com-
pared to existing approaches such as criticality-aware policies
[e.g., criticality-aware deadline monotonic (CA-DM)], we con-
duct simulations with randomly generated flows. Simulation
results show that JMC outperforms existing criticality-aware
scheduling in terms of achieving both G1 and G2.

In summary, this paper makes the following contributions.
1) We present the first study to apply the MC concept

to address the pessimism in the worst-case interference
analysis of distributed systems, enabling mode changes
on a per-node basis to minimize penalty of LO flows.

2) We propose JMC, a framework that offers an efficient
jitter-based interface for providing different levels of
timing guarantees as well as achieving high system
utilization.

3) We develop jitter-threshold assignment policies that JMC

leverages to achieve G1 and G2.
4) Our simulation results show that JMC is effective in

achieving higher schedulability and lower deadline miss
ratio of LO flows.

The rest of this paper is structured as follows. We present
our system model in Section II, and explain the motiva-
tion of this paper in Section III—why jitter-based mode
change is needed. Following Sections IV and V, we develop
a JMC scheduling framework for distributed systems. In
Section VI, we propose two jitter-threshold assignment poli-
cies that achieve G1 and G2. Evaluation of JMC associated
with the jitter-threshold assignment policies is presented in

6312 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 4, AUGUST 2019

Section VII, and we discuss a possible extension of JMC

in Section VIII. Section IX summarizes related work, and
Section X ends this paper with a conclusion.

II. SYSTEM MODEL

A. Target System

We consider an MC distributed system which consists of
multiple computing nodes connected via network links. In a
computing node, tasks are executed, whereas in a network link,
messages are transmitted. An end-to-end flow (flow in short)1

is a set of tasks that need to be executed in the same or differ-
ent computing nodes, while transmitting messages in between.
As system complexity increases, many IoT systems have been
designed in this distributed architecture. For instance, a smart
factory system may generate an end-to-end flow (consisting
of a series of tasks) which collects raw data from sensors,
processes the data with some filters, determines control inputs
based on the data, and feeds the control inputs to actuators.
Each task runs on different nodes and forwards its result to
the next node via network links. In addition, for simplicity, we
restrict our attention to dual-criticality systems where there
are two criticality levels: 1) HI (high-criticality) and 2) LO

(low-criticality), as in many mixed-critical scheduling stud-
ies [5]–[10], [12]–[14]. Flows are given different criticality
according to the severity of a deadline miss: HI and LO given
to more and less significant flows, respectively.

B. Task Model

We consider a sporadic distributed task model �, where
each flow �i ∈ � can be released aperiodically with a min-
imum interarrival time Ti. A flow �i consists of a series of
ni steps (tasks or messages) that are either executed or trans-
mitted on stages (nodes or links) [15]. The first step of each
flow is released by a sporadic external event on the first stage.
Then, every following step is released after the correspond-
ing preceding step is completed. The kth step of a flow �i

is denoted as τi,k. While a step τi,k denotes a task or mes-
sage, we refer a resource (a node or link) as a stage, si,k or
sm; the former indicates the kth stage of �i (i.e., the link or
node on which τi,k is executed or transmitted) and the latter
represents the stage with the global index m. Also, we denote
the set of stages of flow �i as Si = {si,1, . . . , si,ni}. We call
an instance of a flow as a job. We define �

j
i and τ

j
i,k as the

jth job of �i and τi,k, respectively. The relative deadline of a
flow �i is represented by Di. Here, we assume the deadline
is not larger than Ti (i.e., Di ≤ Ti). Also, Li is a criticality
level of �i (i.e., HI or LO). Note that the criticality level is
an inherent attribute of each flow; it is determined and fixed
at design time, according to the severity of a deadline miss.
With the criticality level, we use �(HI) to denote a set of HI

flows, and �(LO) a set of LO flows. For each step τi,j, we
define Ci,j as the maximum required time spent on stage si,j,
that is, the WCET on si,j when it is a computing node, or the
worst-case transmission time on si,j when it is a network link.
Note that while the transmission time at each link may also

1We follow the definition of MARTE [11], the OMG standard specification
widely used in distributed real-time systems.

Fig. 1. System model overview: the flow �i goes through three stages,
composed of two computing nodes and one communication links.

vary depending on the data size sent by its preceding node,
we consider the worst-case transmission time as in the WCET.

Fig. 1 depicts an example of a flow �i that goes through two
computation nodes and one network link. An external event
instantiates �i, producing the first job in the system. Then, a
series of steps (τ 1

i,1, τ 1
i,2, and τ 1

i,3) is released sequentially, each
on corresponding stages (si,1, si,2, and si,3). On si,1 and si,3,
which are computing nodes, tasks τ 1

i,1 and τ 1
i,3 are executed,

respectively. On si,2, which is a network link, a message τ 1
i,2

is transmitted.
We assume the values of Ti, Ci,k, and Di for each flow are

given, which remain unchanged while the system is running.
We would like to emphasize that this paper newly proposes
MC scheduling based on the threshold for jitter, not that for the
WCET. Therefore, the task model considers a single parameter
of Ci,k, rather than both Ci,k(LO) and Ci,k(HI). After addressing
the JMC scheduling clearly, we will discuss how to incorporate
both thresholds for jitter and the WCET into MC scheduling
in Section VIII.

C. Network Model

We consider point-to-point network links between com-
puting nodes. On each link, a message can be divided into
multiple packets, depending on the maximum transmission
unit (MTU) of the link (e.g., 1500 bytes on Ethernet). Each
link forwards packets based on the assigned priorities of
packets; the higher priority packets are forwarded ahead of
the lower priority ones. In addition, since each packet is
nonpreemptive, messages can be blocked by at most one
nonpreemptible lower-priority packet.

D. Scheduling Algorithm

We consider fixed-priority scheduling for each stage, and
assume flow priorities are distinct. We consider two pri-
ority assignment schemes: 1) deadline-monotonic (DM) and
2) CA-DM. Under DM, all HI and LO flow priorities are ordered
according to relative end-to-end deadlines (i.e., Di) with-
out distinction; the shorter relative end-to-end deadline gets
assigned with the higher priority. Under CA-DM, flows are first
sorted according to the criticality, and then priority is assigned
depending on relative end-to-end deadlines, such that all HI

flows get higher priorities than all LO flows.

E. Parameters

Ji,k is the release jitter of τi,k on stage si,k, which is defined
as the time duration between the release of τi,1 (initial release)

LEE et al.: JMC 6313

and the arrival of τi,k; by definition, Ji,1 = 0. Ji,k is deter-
mined at runtime depending on how much interference the
job experiences by other higher priority flows. We introduce
an additional parameter J∗i,k that is the upper-bound of Ji,k.2

III. BACKGROUND AND MOTIVATION

As mentioned in the introduction, our goal is to provide
end-to-end timing guarantees for every HI flows (i.e., achiev-
ing G1) and as many LO flows as possible (i.e., achieving G2).
One of the typical ways to achieve G1 and G2 is to calculate
the worst-case response-time (WCRT); as long as WCRT for
a target flow �i is not larger than its relative deadline, any
job of the flow never misses its deadline. Although the con-
cept of WCRT provides an intuitive interface for end-to-end
timing guarantees, its efficiency completely depends on how
pessimistically WCRT is calculated. In this section, we first
present a typical WCRT analysis method. We then investigate
the reason and source of the pessimism in the analysis, which
is the main obstacle for achieving G1 and G2 at the same time.

A. Response Time Analysis

To provide end-to-end timing guarantees, there have been
many analysis methods that deal with end-to-end response
time for distributed systems, including holistic analysis [16],
real-time calculus (RTC) [17], offset-based approach [18],
and compositional performance analysis [19]. For the sake
of clarity, we focus on the holistic analysis on fixed-priority
scheduling, throughout this paper.

Holistic analysis is developed to find the worst-case
response time (WCRT) of a distributed flow set under fixed-
priority preemptive scheduling. Let R∗i,k denote the WCRT of
step τi,k, and R∗i denote the end-to-end WCRT of �i. In other
words, R∗i,k is an upper-bound of the duration of every job
of �i between its arrival and completion on τi,k, and R∗i is
an upper-bound of the duration of every job of �i between
its release on the first step τi,1 and its completion on the last
step τi,ni .

R∗i,k occurs after a critical instant, when: 1) �i and all higher-
priority flows �j arrive at si,k at the same time while 2) the
jobs of each �j arrive at the minimum interarrival time after
experiencing the maximum possible jitter [20]. R∗i,k can be
calculated by the following fixed-point iteration [16], [21]:

R∗i,k
(n+1) = Ci,k + Bi,k +

∑

τj,k′ ∈hp(i,k)

⌈
R∗i,k

(n) + J∗j,k′
Tj

⌉
Cj,k′ (1)

where hp(i, k) denotes a set of steps of higher-priority flows
�j that execute on stage si,k while sharing the resource; recall
that τj,k′ represents the k′th step of the flow �j. Bi,k denotes
the longest time that τi,k is blocked by a lower priority flow.
Considering a stage for a computing node and that for a
communication link employ preemptive and nonpreemptive
scheduling, respectively, Bi,k for the former is zero and the
latter is the transmission time of a single packet having the
size of MTU.

2In this paper, we put “*” to distinguish the actual value of the parameter
at runtime (i.e., Ji,k) and an upper-bound on the value (i.e., J∗i,k).

Fig. 2. Pessimism in calculating interference in the worst-case response time
analysis: the graph represents distribution of actual response times and R∗i is
a worst-case analytical bound calculated as 447 from the holistic analysis.

The iteration starts with R∗i,k
(0) = Ci,k, and ends when

R∗i,k
(n) = R∗i,k

(n+1) or R∗i,k
(n) > Di (deemed unschedulable).

The maximum possible jitter J∗j,k′ then can be computed as
follows:

J∗j,k′ =
k′−1∑

m=1

R∗j,m. (2)

Also, R∗i can be computed as the sum of R∗i,k as follows:

R∗i =
∑

si,k∈Si

R∗i,k. (3)

Thus, it is guaranteed that �i meets all end-to-end deadlines
if R∗i ≤ Di.

B. Pessimism in WCRT Analysis

1) Motivational Simulation: The holistic WCRT analysis
(presented in Section III-A) is useful to investigate whether
each individual flow �i can satisfy all timing constraints.
However, such WCRT analysis is often pessimistic, in par-
ticular, for distributed task models. As an example, Fig. 2
illustrates a typical pessimism involved in the WCRT calcu-
lation. For a given flow �i, the figure shows an analytical
WCRT bound (i.e., R∗i) that is calculated according to the
holistic analysis and distribution of actual response time mea-
surements that are obtained through simulation.3 The figure
indicates a substantially large gap between the actual response
times and its analytic upper-bound (i.e., WCRT); the former
ranges between 60 and 250 while the latter is 447, which is
too much large. Such a pessimistic analysis inevitably leads
to low resource utilization and becomes a critical reason for
performance degradation.

2) Sources of Pessimism: One may wonder how often
such pessimism can happen and how serious it can be. To
answer them, it is necessary to understand the root causes of
pessimism in the holistic WCRT analysis.

3We generated �i that goes through three computing nodes and two com-
munication links with Ti of 500 and Ci,k of 10 (for all k). In each computing
node, �i was interfered by six higher priority flows �j which have Tj and Cj,k
randomly drawn from [10, 100] and [0.05 ∗ Tj/nj, 0.15 ∗ Tj/nj], respectively,
where nj denotes the number of steps of �j. Note that in each node, three out
of six higher priority flows went through one stage; other three flows went
through five stages, so that they showed fluctuating interarrival time between
their jobs.

6314 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 4, AUGUST 2019

Note that the response time of a flow �i is simply the sum of
the execution time of �i and the total amount of interference
imposed by other higher-priority flows. When Ci,k is given,
pessimism in the WCRT analysis mainly arises from overes-
timation of interference, due to the extreme assumptions that
the analysis inherently possesses for strict timing guarantees.
As explained in Section III-A, R∗i,k is computed under certain
assumptions, where: a) the jobs of each higher-priority flows
�j arrive at the minimum interarrival time after experiencing
the maximum possible jitter; b) �i and all higher-priority flows
�j arrive at si,k at the same time; and then c) R∗i is computed
as the sum of R∗i,k. We identify each source in more detail.

3) Per-Flow Minimum Interarrival Time: The first pes-
simism in the calculation of R∗i,k is associated with the analysis
of minimum interarrival time. One of the necessary condi-
tions for the maximum interference of a higher-priority flow
�j imposed to a lower-priority flow �i is that the consecu-
tive jobs of �j arrive with the minimum possible interarrival
time. This happens when: a) the first job of �j arrives with
the maximum possible jitter, after experiencing a worst-case
interference on every previous stage [see (2)] and b) the second
and subsequent jobs of �j arrive with the minimum possi-
ble jitters. However, such condition occurs with a very low
probability resulting in an overestimation of the interference.

4) Per-Stage Critical Instant: Another pessimism in the
calculation R∗i,k is due to the assumption on the critical instant.
For stage si,k, R∗i,k is computed assuming that all higher pri-
ority jobs arrive at si,k simultaneously after experiencing their
own maximum jitters. However, such condition is only a small
fraction of large arrival combinations that higher-priority flows
can create collectively. The probability of a critical instant
exponentially decreases in accordance with the number of
nonharmonic period flows.

5) End-to-End Delays: The calculation of the end-to-end
R∗i involves additional pessimism that all the per-flow and
per-stage pessimism mentioned in the above occurs on every
stage. According to (3), R∗i is computed as the sum of R∗i,k,
which accumulates above mentioned pessimism throughout the
passing stages.

IV. APPROACH OVERVIEW FOR JMC

Motivated by the pessimism of WCRT explained in
Section III, this section presents an approach overview of
JMC, an efficient JMC scheduling framework that achieves G1
and G2 in distributed systems. To this end, we design the
concept of stage-level mode change based on introducing a
new jitter-threshold parameter. We then show an example that
demonstrates the effectiveness of the new design in achiev-
ing G1 and G2. Finally, we define new notions necessary for
realizing the design to be used for Section V.

Pessimistic WCRT analysis inherently hinders our goal
of maximizing the number of LO jobs that meet deadlines
subject to satisfying the deadlines of all HI jobs. We can
consider two approaches to address the pessimism involved
in the analysis. One is to develop a tighter WCRT analysis,
and a number of studies have been made in this direction,
e.g., [18], [20], and [22]. The other is to employ an optimistic

WCRT estimate and to construct a mode-based scheduling that
provides a different type of guarantees per mode. The latter is
a new direction proposed in this paper, which has been little
studied and is orthogonal to the former approach.

The key idea of our mode-based scheduling is to apply dif-
ferent scheduling strategies in different modes according to
the optimistic WCRT estimates. We first introduce an opti-
mistic WCRT estimate, denoted as Ro

i , of �i (i.e., Ro
i < R∗i).

The value of Ro
i can be used as a guideline for determining

the criticality mode of each stage at runtime.4 In particular, all
stages (i.e., nodes and links) start in LO mode during which all
flows are assigned resources based on their optimistic WCRT
estimates and scheduled together to achieve both G1 and G2.
However, once any HI flow experiences a larger response time
than its optimistic WCRT estimate, stages associated with the
HI flow switch to HI mode during which HI flows get strictly
higher priority than LO ones to still achieve both G1 and G2
with their pessimistic WCRT estimates.

Another challenge is to properly handle HI behavior with-
out compromising requirements of other flows in large-scale
distributed systems. In distributed systems, there is a ripple
effect in which HI behavior at one stage directly (or indirectly)
affects interference estimation of other stages. To handle HI

behavior while minimizing the range of nodes to be influenced
by HI behavior, we also introduce per-stage optimistic WCRT
estimate. Since �i goes through a series of stages si,k, its opti-
mistic WCRT estimate Ro

i can be split into per-stage optimistic
WCRT estimates {Ro

i,k}, and we can detect a violation of Ro
i

separately on each stage. This can be done since the end-to-end
response time Ri is computed as the sum of individual response
times on each stage Ri,k. It enables the following: even if a
flow experiences more interference than the estimation on a
certain stage (i.e., Ri,k > Ro

i,k) at runtime, the overall estima-
tion can still be valid if the rest of the stages can compensate
for the exceeded response time. Therefore, we introduce the
concept of stage-level mode change under which we check the
validity upon the completion of execution on each stage si,k

by checking the sum of response times up to that stage and
perform mode change at each stage. Here, each stage has its
own criticality mode (HI or LO) that indicates what scheduling
policy to be applied in response to runtime behavior of flows
on each stage; it effectively limits the influence of HI behavior
to the system. In contrast to classical MC scheduling, in JMC,
the notion of criticality (mode) no longer represents the criti-
cality of the entire system. Instead, it represents the criticality
of each stage.

For the stage-level mode change, we check whether∑k
m=1 Ri,m ≤ ∑k

m=1 Ro
i,m holds on each stage. If it is vio-

lated, we change the mode of the next stage si,k+1 to HI. As to
simplify the notation, our mode-based scheduling framework
uses the release jitter Ji,k to effectively detect the violation of
optimistic WCRT estimate. As shown in Fig. 1, Ji,k directly
represents the sum of response times up to the previous stage
si,k−1 [see (2)]. That is, we denote Jo

i,k as an optimistic release

jitter on stage si,k and define Jo
i,k as

∑k−1
m=1 Ro

i,m. This way,

4In this section, we assume that the value of Ro
i is given, and we will discuss

issues regarding how to determine the appropriate value later in Section VI.

LEE et al.: JMC 6315

TABLE I
EXAMPLE PARAMETERS

Fig. 3. Example topology.

Fig. 4. Scheduling of the example. (a) CA-DM scheduling. (b) EDF
scheduling. (c) JMC scheduling.

our framework can effectively check the violation of an opti-
mistic jitter estimate (also called jitter-threshold) on each stage
si,k (i.e., Ji,k > Jo

i,k) upon arrival of a job, and perform per-
stage mode change so as to satisfy the timing constraints of
HI flows. In summary, our framework maximizes the system
performance (in terms of satisfying the deadlines of LO flows)
as well as satisfy the deadlines of all HI flows.

Example: In order to illustrate the benefit of our mode-based
scheduling, we present a motivational example with two flows;
�1 and �2 (see Table I). We assume that �1 goes through a
series of stages and have contention on stage sm with �2, as
shown in Fig. 3. �2 is a flow that executes on a single stage
sm. �1 is a HI flow with its period (T1) of 10, and the execution
time on stage sm is 3. �2 is a LO flow with its period (T2) of 7,
and the execution time on stage sm is 3. Each flow’s deadline
(Di) is 9 and 4, respectively.

Fig. 4 shows the scheduling on stage sm under various
scheduling strategies: CA-DM, EDF, and JMC. Jobs of �1 arrive
at stage sm at 2 and 14, and jobs of �2 are released at stage sm

at 0, 7, and 14. We first consider a case where CA-DM schedul-
ing algorithm is used. Since CA-DM favors HI flows, it always
assigns a higher priority to �1 than �2. Therefore, WCRT of
�2 is calculated as R∗2 = 6 according to the WCRT analysis.

This leads to R∗2 > D2, which means that �2 fails the schedu-
lability test of CA-DM. It is shown in the figure that two jobs
(the first and the third) of �2 miss deadlines, which does not
help achieve our goal G2. On the other hand, EDF scheduling,
which is an optimal scheduler for single-criticality systems,
can reduce the number of deadline misses by assigning higher
priorities to the jobs with earlier deadlines regardless of the
criticality of flows. However, it may result in deadline misses
of HI flows (i.e., the second job of �1), which is against
our goal G1. Note that both CA-DM and EDF apply a single
scheduling policy that does not change at runtime.

Our framework JMC, on the other hand, employs different
scheduling policies depending on the mode of each stage. In
Fig. 4, the optimistic release jitter Jo

1,n1
is 3; we will explain

how to determine the value of Jo
i,k in Section VI. Upon arrival

of a job on stage sm, actual release jitter J1,n1 is compared
with Jo

1,n1
to decide the operating mode of the stage. In the

example, the first job of �1 satisfies J1,n1 ≤ Jo
1,n1

(2 ≤ 3),
thus si is in LO mode. In LO mode, flows are scheduled with
DM, each of which assigns its priority according to its deadline
only, regardless of its criticality. On the other hand, the second
job of �2 arrives later than its release time plus Jo

1,n1
(i.e.,

J1,n1 > Jo
1,n1

), thus triggering the mode change of sm to HI

mode. In HI mode, flows are scheduled according to CA-DM,
which strictly gives higher priority to HI flows. Note that if
we do not change the mode of sm to HI mode, �1 misses its
deadline. This way, JMC is able to achieve both G1 and G2.

To enable the design principles of JMC explained so far, we
define the following notions associated with a jitter Ji,k and
its optimistic threshold Jo

i,k.

Job Behavior: A job τ
j
i,k is said to exhibit LO behavior on a

stage si,k if it arrives at si,k within its optimistic jitter threshold
(Ji,k ≤ Jo

i,k). A job is said to exhibit HI behavior otherwise,

i.e., if it takes more than Jo
i,k time units for τ

j
i,k to reach si,k

after the release of si,1.
Stage Mode: Let Zi,k(t) denote a set of jobs τ

j
i,k that arrived

at si,k but are not yet completed at time t. A stage si,k is said
to be in LO mode at time t if for every job τ

j
i,k ∈ Zi,k(t),

τ
j
i,k exhibits LO behavior. The stage si,k is said to be in HI

mode at time t otherwise, i.e., if there exist one or more jobs
τ

j
i,k ∈ Zi,k(t) that exhibits HI behavior.

JMC-Schedulability: An MC distributed system � is defined
to be JMC-schedulable by a scheduling algorithm if the
following two conditions hold.

1) Every job invoked by a HI flow in �(HI) meets an end-
to-end deadline.

2) Every job invoked by a LO flow in �(LO) meets an end-
to-end deadline if it passes only LO mode stages.

Difference Between JMC and Classic MC: We would like
to emphasize that the notion of the JMC scheduling is totally
new, and explain the difference between JMC and classic MC
as follows. In MC scheduling, the mode-based scheduling is
an essential principle to support MC tasks in a cost-effective
manner. It employs multiple estimates for a certain parameter
under each mode [e.g., C(LO) and C(HI) for the WCET], and
changes the mode when runtime behavior for the parameter
violates the estimate.

6316 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 4, AUGUST 2019

While JMC also follows the principle of MC scheduling,
the difference between JMC and the classical MC comes from
the target system. Most MC scheduling studies employ the
WCET parameter (C) to determine the mode, since it is effec-
tive to alleviate pessimistic resource reservation on a single
node where timing guarantee for a job is determined by the
order of execution. In addition, the most MC scheduling stud-
ies trigger the system-wide mode change (i.e., once a mode
change occurs, it applies to all the jobs in the system) on a
single node, since a violation of C(LO) by a particular job
directly affects timing guarantees of all other (lower-priority)
jobs in the system. On the other hand, if we focus on a dis-
tributed system, timing guarantee for a flow (corresponding
to a job in a single node system) is determined by the order
of execution on all the resources (i.e., computing nodes and
network links) that the flow uses. This entails selecting not
only a proper parameter that triggers a mode change, but also
a new coverage of the distributed system in which a mode
change applies; note that both parameter and coverage to be
determined should be able to alleviate pessimistic resource
reservation on “multiple” resources. In addition, it is impor-
tant to assign a proper jitter-threshold value for each stage so
as to achieve G1 and G2.

In summary, JMC has the following distinctions with classic
MC scheduling.

1) JMC uses the jitter (J) parameter to determine the mode.
2) JMC proposes a stage-level mode change, while distin-

guishing the minimum range of nodes to be influenced.
3) JMC proposes a strategy to find out a proper jitter-

threshold for each stage.
Although this paper mainly focuses on MC scheduling with

the jitter parameter, JMC can be extended with the other
parameters. For instance, JMC is orthogonal to the execution
time-based classic MC scheduling (see Section VIII for more
details).

V. JITTER-BASED MC SCHEDULING FRAMEWORK

Based on the approach overview in Section IV, this sec-
tion develops JMC, which efficiently reduces the pessimism of
WCRT estimates. A key feature of JMC is performing a stage-
level mode change when detecting a HI behavior of a job on
a stage, instead of system-wide or path-wide mode change. In
this way, JMC penalizes a minimal set of LO flows to guaran-
tee the schedulability of HI flows upon a violation of WCRT
estimate assumption. It is also important to perform a HI-to-LO

mode change as soon as possible to maximize the performance
of LO flows. Since JMC takes a divide-and-conquer approach
in a sense that it conducts mode change on individual stages,
it is possible to change the mode of a stage back to LO as
soon as the job exhibiting HI behavior leaves the stage. Now,
we first detail the mode change protocol and scheduling for
JMC, and then analyze JMC including the range of Jo

i,k that
guarantees the JMC-schedulability.

A. Mode Change Protocol

Algorithm 1 presents the stage-level mode change protocol.
Each stage in the system starts in LO mode. If any job of HI

Algorithm 1 Stage-Level Mode Change Protocol

When a job τ
j
i,k arrives at sm (=si,k),

1: if Ji,k > Jo
i,k then

2: if Li = LO then
3: DROP τ

j
i,k

4: else
5: if sm is in a LO mode then
6: change the mode of sm to HI
7: end if
8: σm ← σm ∪ {τ j

i,k}
9: end if

10: end if
When τ

j
i,k ∈ σm finishes its execution

1: σm ← σm \ {τ j
i,k}

2: if σm = ∅ then
3: change the mode of sm to LO
4: end if

flow �i exhibits a HI behavior on stage sm = si,k, we change
the mode of the stage sm only, instead of carrying out the
system-wide mode change. That is, when a job of �i with
Li = HI arrives at sm, we compare Ji,k and Jo

i,k. If Ji,k > Jo
i,k

(i.e., a job of a HI flow does not arrive at stage si,k within the
Jo

i,k estimate), we set the mode of sm to HI. The mode of sm is
changed back to LO when all the jobs exhibiting HI behavior
on stage sm complete execution (or transmission). To this end,
we insert the index of the job exhibiting HI behavior into σm

(note that when the system starts, σm is set to ∅ for each sm).
If the job finishes its execution on sm, we remove the index of
the job from σm; if σm becomes empty, we change the mode
of sm back to LO. On the other hand, we simply drop a job of
LO flow �i if it violates Jo

i,k estimation. This isolates the effect
of such a LO job from HI jobs in other stages.

B. Mode Scheduling

Each stage employs different fixed-priority scheduling poli-
cies in HI and LO modes as long as it preserves the following
priority relationship: for each pair of two flows of the same
criticality level, the priority relationship between the two flows
must stay consistent in both HI and LO modes. That is, for all
�i ∈ �(HI), �i should be of a higher priority than �j in HI

mode if the same relationship holds in LO mode, and so is the
case with LO flows.

To this end, we consider DM in LO mode and CA-DM in HI

mode. CA-DM prioritizes flows in two-steps: first, according
to criticality (HI flows first), and then according to deadline
(shorter relative deadline first). This way, the priority relation-
ship between two flows of the same criticality level remains
the same regardless of HI and LO modes. Note that JMC can
be applied with any other flow-level fixed priority assignment
algorithms. In Section VII, we show how well JMC works
when it combines with various priority assignment algorithms.

C. Response Time Analysis

We first introduce some notations and convention to ana-
lyze JMC. Let Ri,k denote the actual response time of a job of
step τi,k on stage si,k regardless of the mode at si,k. Ri,k(HI)

LEE et al.: JMC 6317

[likewise, Ri,k(LO)] indicates Ri,k in the case where si,k is HI

(likewise, LO) mode when �i reaches si,k. We will use ∗ to
denote an upper bound. For example, R∗i,k(HI) and R∗i,k(LO)

are the upper bounds of Ri,k(HI) and Ri,k(LO), respectively.
We can compute R∗i,k(HI) and R∗i,k(LO) using (1) while

replacing hp(i, k) with hp(i, k, HI) and hp(i, k, LO), respec-
tively, since �i has a different set of higher-priority flows
under different scheduling algorithms in different modes. For
instance, hp(i, k, LO) will be defined according to DM in LO

mode and hp(i, k, HI) according to CA-DM in HI mode.
Every HI flow �i ∈ �(HI) satisfies the following three prop-

erties. First, R∗i,k(HI) ≤ R∗i,k(LO); this is because hp(i, k, HI) ⊆
hp(i, k, LO) holds, where hp(i, k, LO) contains LO flows but
hp(i, k, HI) does not. Second, when τi,k experiences a mode
change (i.e., LO to HI) in the middle of execution, Ri,k ≤
R∗i,k(LO); this is because all LO flows no longer interfere τi,k

after the mode change. Third, when τi,k exhibits HI behavior
on si,k, Ri,k ≤ R∗i,k(HI); this is because the mode of si,k will
be changed to HI upon the arrival of τi,k, so that τi,k will be
interfered by HI flows only.

In addition, we will use Ri to denote the actual end-to-end
response time of a job in flow �i for execution on its whole
stages Si regardless of the mode in each individual stage. We
let Ri(HI) and Ri(LO) denote the response times of a job of �i

when all the stages it passes exhibit HI and LO mode, respec-
tively, and R∗i (HI) and R∗i (LO) denote an upper-bound of Ri(HI)

and Ri(LO), respectively.
Necessary Condition: We present a necessary condition for

the scheduling scheme of JMC in the following lemma.
Lemma 1: A necessary condition for the JMC-schedulability

under JMC is

∀�i ∈ �(HI), R∗i (HI) ≤ Di and ∀�j ∈ �(LO), R∗j (LO) ≤ Dj.

(4)

Proof: It is trivial to see that it will fail to schedule �i ∈
�(HI) in HI mode if R∗i (HI) > Di and �j ∈ �(LO) in LO mode
if R∗j (LO) > Dj.

D. How to Determine Jo
i,k

While Algorithm 1 with the above scheduling policy pro-
vides a simple, but efficient interface for utilizing distributed
resources, the protocol itself cannot provide the end-to-end
delay guarantee. The guarantee can be achieved by carefully
designing Jo

i,k, which needs the following requirements.
R1: For �i ∈ �(HI), Jo

i,k should be sufficiently small such
that even if the inequality of line 1 in Algorithm 1 (i.e.,
Ji,k > Jo

i,k) holds, the corresponding job never misses its
deadline in any case to satisfy the goal G1.

R2: Jo
i,k should satisfy the goal G2—maximizing the number

of jobs in LO flows that meet end-to-end deadlines.
For R1, we need to determine Jo

i,k so as to meet the deadline
of a job of a HI flow in the presence of a mode change. At
the same time, for R2, we need to minimize the number of
mode changes. To this end, we now explain a policy for Jo

i,k
to capture the last minute to delay a mode change, called the
Lazy policy. The Lazy policy for �i on si,k assumes the situation
where the job of �i of interest executes si,k in LO mode but all
the remaining stages in HI mode, which yields the minimum

response time for the job to execute from the current stage to
the last without changing the mode of si,k to HI. If the worst-
case response time for this situation (associated with a target
schedulability test) exceeds the deadline of the job, we cannot
guarantee the timely completion of the job on the last stage
without triggering a mode change on si,k; in this case, we
inevitably change the mode of si,k from LO to HI. This yields
the following criterion for the lazy policy:

Jo
i,k = Di − R∗i,k(LO)−

∑

k+1≤m≤ni

R∗i,m(HI). (5)

The following theorem presents that the condition for the
lazy policy is a feasibility condition for Jo

i,k.
Theorem 1: Given a distributed system � that satisfies the

necessary condition of (4), it is feasible to schedule � correctly
if ∀�i ∈ �,∀si,k ∈ Si

Jo
i,k ≤

{
RHS of (5), if �i ∈ �(HI)∑

1≤m<k R∗i,m(LO), otherwise.
(6)

Note that RHS stands for the right-hand side of an equation.
To prove Theorem 1, we present an auxiliary lemma for the
property that for all HI flows �i, �j ∈ �(HI), the analysis of
R∗i,k(LO) remains true even if τj,k′ triggers a mode change at
stage si,k = sj,k′ .

Lemma 2: The response time Ri,k of a HI mode step τi,k

does not exceed R∗i,k(LO) even though it experiences a mode
change that another HI flow �j triggers on si,k.

Proof: Since �i and �j share the same stage si,k, there
exists k′ such that si,k = sj,k′ . By definition, �j exhibited HI

behavior on sj,k′ by exceeding Jo
j,k′ , i.e., Jj,k′ > Jo

j,k′ , and this
might yield additional interference on �i. We note that this is
the only source of additional interference, since other possible
sources like Cj,k and Tj remain fixed.

As shown in (3), R∗i,k(LO) is calculated with the maxi-
mum possible jitter of higher priority flows �j, J∗j,k′ , which
is equal to

∑
1≤l<k′ R

∗
j,l(LO) according to (2). Since each

HI flow �j finishes earlier than R∗j,m(LO) on any HI mode
stage sj,m, Rj,m(LO) can never exceed R∗j,m(LO). Therefore,∑

1≤l<k′ Rj,m(LO) ≤ ∑
1≤m<k′ R

∗
j,m(LO). Then, it is valid that

Ri,k ≤ R∗i,k(LO) since �j arrives on sj,k′ within J∗j,k′ time units
after the release on sj,1.

If �j is a LO flow violating Jo
j,k′ , �j has no effect on Ri,k

since it is dropped in this case. If �j is a LO flow exhibiting LO

behavior, it has no negative impact on R∗i,k(LO) since it arrives
on sj,k′ (=si,k) within Jo

j,k′ time units after the release on sj,1,
which is smaller than

∑
1≤m<k′ R

∗
j,m(LO).

More specifically, though Jo
j,k′ property is violated at si,k

triggering the mode change to HI mode, it does not affect the
worst-case analysis, R∗i,k(LO).

Proof of Theorem 1: We prove the theorem by contradiction.
Suppose even if Jo

i,k satisfies Theorem 1 and the mode change
framework is working properly, �i missed its deadline, i.e.,

Di < Ri. (7)

We consider two cases depending on the criticality level of
�i: HI and LO.

For the first case where �i ∈ �(HI), we further con-
sider two subcases depending on whether or not τi,ni violates

6318 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 4, AUGUST 2019

Jo
i,ni

at the last stage si,ni . Suppose it does not violate, i.e.,
Ji,ni ≤ Jo

i,ni
. Lemma 2 states that the actual response time Ri,ni

does not exceed R∗i,ni
(LO) even though �i experiences a mode

change triggered by another HI flow. Then, it follows from the
definition (6) that:

Ri = Ji,ni + Ri,ni ≤ Jo
i,ni
+ R∗i,ni

(LO) ≤ Di.

This contradicts (7).
Suppose �i violates Jo

i,ni
(i.e., Ji,ni > Jo

i,ni
) and triggers a

mode change at si,ni . Then, let si,k be the first stage such that
�i continues to trigger mode changes on a series of stages
[si,k, . . . , si,ni]. It is sufficient to consider these consecutive HI

stages, since for LO mode stage si,k−1,
∑

1≤m<k−1 Ri,m(LO)

is correctly upper-bounded by Jo
i,k−1 and it therefore will not

affect the correctness. In the case where k = 1, �i triggers
mode changes from a source node, and it is clear that

Ri = Ji,1 +
∑

1≤m<ni

Ri,m(HI)+ Ri,ni(HI) = 0+ Ri(HI) ≤ Di.

The last inequality holds from the necessary condition, (4),
which contradicts (7).

In the case where 2 ≤ k ≤ ni, it follows from Lemma 2
and (6) that:

Ri = Ji,k +
∑

k≤m≤ni

Ri,m(HI)

= Ji,k−1 + Ri,k−1 +
∑

k≤m≤ni

Ri,m(HI)

≤ Jo
i,k−1 + R∗i,k−1(LO)+

∑

k≤m≤ni

R∗i,m(HI)

≤ Di

which also contradicts (7).
For the second case where �i ∈ �(LO), we further consider

two subcases in terms of the criticality level of a higher-
priority flow �j: HI and LO. Here, since the T and C terms
are assumed to be fixed, we only consider the J term. With k′
that satisfies si,k = sj,k′ :

1) consider �j is a HI flow. If Jj,k′ > Jo
j,k′ , �j triggers a mode

change and the system does not guarantee the schedu-
lability of �i. Otherwise, we have Jj,k′ ≤ Jo

j,k′ . Since
Jo

j,k′ ≤ J∗j,k′ , the maximum possible interference of �j

on �i is already captured in the analysis of R∗i (LO). It
follows that Ri ≤ Ri(LO) ≤ Di, contradicting (7);

2) consider �j is a LO flow. Let us assume �j imposes a
larger amount of interference on �i at si,k than the one
calculated in the analysis of R∗i (LO). Since Tj and Cj are
fixed, this assumption cannot be valid when Jj,k′ ≤ Jo

j,k′ .
Since �j is dropped whenever Jj,k′ > Jo

j,k′ , the above
assumption cannot be valid.

We now prove the optimality of Theorem 1 subject to given
schedulability analysis.

Lemma 3: If a scheduler sets Jo
i,k of �i ∈ �(HI) to a value

larger than the RHS of (5), there exists a scenario that results
in a job deadline miss for �i ∈ �(HI) subject to the target
schedulability analysis.

Proof: Let RHS denote the RHS of (5). Suppose that a
scheduler sets Jo

i,k to RHS+ε. If RHS < Ji,k ≤ RHS+ε holds,

JMC with the scheduler does not trigger a mode change for �i

on si,k. If Ri,k on LO mode si,k equals to R∗i,k(LO) and Ri,m on
HI mode si,m equals to R∗i,m(HI) for every k + 1 ≤ m ≤ ni, a
job of �i misses its deadline.

VI. DEVELOPMENT OF EFFICIENT JITTER-THRESHOLD

ASSIGNMENT POLICIES

In this section, we develop two jitter-threshold (i.e., Jo
i,k)

assignment policies: 1) the Lazy and 2) Proactive policies.
While both satisfy R1, the former and the latter are favor-
able to achieving R2 when the target schedulability test is
pessimistic and tight, respectively. We prove that the two poli-
cies achieve R1 (without any condition) and R2 under some
conditions.

A. Lazy Policy

One of the simplest ways to assign the threshold of a jit-
ter for τi,k is to assign the largest possible value that does
not compromise R1. This policy is called the lazy policy, as
we explained in (5). Then, it is trivial that the lazy policy
satisfies R1.

Lemma 4: If we apply JMC with the lazy policy to �, then
no job of �i ∈ �(HI) misses its deadline as long as � is feasible
by Theorem 1. This is equivalent to satisfying R1.

Proof: The lemma holds by Theorem 1.
While it seems that the lazy policy considers R1 only, the

policy compensates the pessimism of the target schedulability
analysis, by procrastinating mode changes as much as pos-
sible. Therefore, the Lazy policy achieves R2 if the actual
response time of �i on si,k (i.e., Ri,k = Ji,k+1 − Ji,k) is
sufficiently smaller than the response time calculated by the
target schedulability analysis [i.e., R∗i,k(LO)], recorded by the
following lemma.

Lemma 5: If the following inequality holds for every pair
of �i ∈ � and 1 ≤ k ≤ ni− 1, JMC with the Lazy policy for �

achieves R2:

Ji,k+1 − Ji,k ≤ R∗i,k(LO)+ (
R∗i,k+1(LO)− R∗i,k+1(HI)

)
. (8)

Proof: Case I (Di − R∗i,1(LO)−∑ni
m=2 R∗i,m(HI) >= Ji,1 =

0): In this case, the Lazy policy does not trigger a mode change
for �i at the first stage of �i (i.e., si,1). In the next stage si,2,
the Lazy policy compares Di−R∗i,2(LO)−∑ni

m=3 R∗i,m(HI) with
Ji,2. Compared to the corresponding values to si,1, the former
increases by R∗i,1(LO) − (

R∗i,2(LO) − R∗i,2(HI)
)
, and the latter

increases by Ji,2 − Ji,1. By applying (8), we know that the
former is still larger than the latter, and therefore, the Lazy

policy does not trigger a mode change for �i at si,2. The rela-
tionship between si,1 and si,2 holds for si,k and si,k+1 for all
2 ≤ k ≤ ni − 1, yielding no mode change at the rest of
the stages. Since no mode change occurs, no other policy is
better than the Lazy policy in meeting R2, which proves this
case.

Case II (Di − R∗i,1(LO) −∑ni
m=2 R∗i,m(HI) < Ji,1 = 0): In

this case, every policy including the Lazy policy triggers a
mode change for �i at its first stage si,1. Then, the problem
of determining a mode change for the following stages is the

LEE et al.: JMC 6319

same as the original problem with replacing Di with Di −
(Ji,2 − Ji,1).

By the two cases, the lemma holds.

B. Proactive Policy

While the Lazy policy postpones mode changes of stages
that �i passes as much as possible, we develop another policy
that considers the number of LO-jobs that are affected upon
the mode change triggered by �i. This policy, namely Proactive,
may trigger mode switch proactively if the cost of mode switch
is low enough on the current stage.

To this end, we first define the cost of the mode switch.
When the stage is in HI mode, the jobs of LO flows may be
dropped. We denote the upper bound of the number of LO jobs
that are affected by the mode change triggered by �i on si,k.
Then, δi,k can be computed as follows:

δi,k =
∑

�j∈�(LO) and si,k∈Sj

⌈
R∗i,k(HI)

Tj

⌉
. (9)

With δi,k, the Proactive policy repeats to assign the HI mode
stages with the lowest δi,k first until the end-to-end response
time (calculated by the target schedulability analysis) meets
its deadline. This decision takes place at every stage, and
a mode change occurs if the current stage si,k is assigned
to be HI stage. Formally, this goal can be stated as the
following:

A mode change occurs in si,k, if si,k ∈ Ŝi(m)

where m is the minimum number of HI assigned stages

s.t. Ji,k +
∑

si,r∈Ŝi(m)

R∗i,r(HI)+
∑

si,t∈Si\Ŝi(m)

R∗i,t(LO) ≤ Di. (10)

Here, Ŝi(m) is the top-m elements of remaining stages
[si,k, . . . , si,ni], sorted by δi,k in nondecreasing order, where
0 ≤ m ≤ ni − k. By solving the minimum m in (10), we can
select the low-cost mode switches in a greedy manner until
�i meets its end-to-end deadline. Then, we make a decision
for the mode switch checking whether the current stage si,k is
assigned to be HI mode. We can express this policy using the
Jo

i,k term as follows:

Jo
i,k = Di −

∑

δi,r<δi,k

R∗i,r(HI)−
∑

δi,t≥δi,k

R∗i,t(LO) (11)

where k ≤ r, t ≤ ni. In other words, we can get Jo
i,k by sub-

tracting R∗i,r of remaining stages from Di, assuming HI mode
on lower-cost stages and LO mode on higher-cost stages than
the current stage.

The following lemma proves the equivalence of mode
change decisions for �i on si,k based on (10) and (11).

Lemma 6: Equation (10) decides to trigger a mode
change for �i on si,k if and only if Ji,k is larger than
Jo

i,k in (11).
Proof: Denote l as the rank of si,k among remaining

stages, sorted by δi,k in nondecreasing order. Also, let the solu-
tion of (10) be m̂. Then, (10) makes a mode change for �i on

si,k if and only if m̂ ≥ l. We can rewrite (10) as

Ji,k ≤ Di −
∑

si,r∈Ŝi(m)

R∗i,r(HI)−
∑

si,t∈Si\Ŝi(m)

R∗i,t(LO) (12)

and denote the right-hand side of (12) as f (m). Then, f (m) is
an increasing function on m. Therefore, the solution m̂ should
satisfy Ji,k ≤ f (m̂) and Ji,k > f (m̂−1). Then, the mode change
condition from (10) becomes

m̂ ≥ l⇔ f (m̂− 1) ≥ f (l− 1)⇔ Ji,k > f (l− 1)

m̂ < l⇔ m̂ ≤ l− 1⇔ f (m̂) ≤ f (l− 1)⇔ Ji,k ≤ f (l− 1).

Since we can rewrite the right-hand side of (11) as f (l− 1),
(10) and (11) take the same decision in any case.

We next prove that the Proactive policy does not
compromise R1.

Lemma 7: Jo
i,k set by the Proactive policy is no larger than

Jo
i,k set by the Lazy policy, implying JMC with the Proactive

policy satisfies R1.
Proof: Since we have the inequality R∗i,k(HI) ≤ R∗i,k(LO),

the maximum value of (11) occurs when δi,k is the maximum
among δi,r, where k ≤ r ≤ ni. In this case, (11) becomes

Jo
i,k = Di − R∗i,k(LO)−

∑

k+1≤r≤ni

R∗i,r(HI).

This is exactly Jo
i,k set by the Lazy policy.

Finally, we demonstrate that the Proactive policy is advan-
tageous for achieving R2, by proving its achievement for R2
under some conditions.

Lemma 8: Suppose that the actual response time is always
the same as the worst-case response time by the target
schedulability analysis. In addition, suppose that the differ-
ence between R∗i,k(LO) − R∗i,k(HI) is uniform along the stages
si,k, . . . , si,ni . Then, JMC with the Proactive policy for �i min-
imizes the number of LO jobs that are affected by mode
changes triggered by �i, if δi,k in (9) yields the exact num-
ber of jobs that are affected by mode changes triggered by
�i on si,k.

Proof: When we have full knowledge of actual response
times of next stages as R∗i,k(LO) and R∗i,k(HI), there exists
the optimal mode assignment that minimizes

∑
m δi,m of

HI mode stages, satisfying the end-to-end deadline. Suppose
the situation where a job runs in LO mode at the rest of
the stages from si,k. Then our end-to-end response time
will be Ji,k + ∑

k≤m≤ni
R∗i,m(LO), which may not meet the

deadline Di.
If we decide to change the mode of stage si,m′ , the response

time is decreased by R∗i,m′(LO)− R∗i,m′(HI), with the cost δi,m′ .
When the decreased amount of time by mode change is uni-
form among the stages, the number of stages assigned to HI

mode is fixed. In this condition, the optimal policy minimizing∑
m δi,m of HI stages is the same as (10): selecting the stages

with lower δi,m first.
In addition, if δi,k estimation is exact, our Proactive policy

will also minimize the overall number of jobs that experience
HI mode stage along the path Si due to �i, since it finds the
optimal solution that minimizes

∑
m δi,m.

6320 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 4, AUGUST 2019

Although Proactive in general cases produces suboptimal
solutions to minimize the number of LO jobs that are affected
by mode changes triggered by �i, it approximates the optimal
solution and produces better decisions than Lazy when the
analysis is accurate. Also, R2 is highly related to minimize
the number, and therefore, the Proactive policy is favorable in
achieving R2 when the analysis is accurate.

In summary, while the Lazy and Proactive policies achieve R1
(proven by Lemmas 4 and 7), the Lazy and Proactive policies
have advantages in achieving R2, when the target schedulabil-
ity analysis is pessimistic and tight (proven by Lemmas 5 and 8
with some conditions), respectively.

VII. EVALUATION

We now demonstrate the effectiveness of our proposed
scheduling framework and jitter-threshold assignment policies
in terms of achieving G1 and G2.

Simulation Setup: We conducted various simulations based
on a distributed system that consists of 16 computation nodes
connected with each other by communication links, in a 4×4
grid topology. For each simulation, we generated a random
flow set as follows. The number of flows in a flow set (denoted
as N�) was chosen from 5 to 50 with a step size of 5. Note
that our choice for N� aims at representing the system load
as in many network scheduling studies [13], [14], since the
system utilization does not capture the load in distributed
systems effectively. For each flow �i, the first stage si,1 was
randomly selected from the computation nodes, and the last
stage si,ni was randomly chosen among the computation nodes
reachable from si,1 within the link-hop distance of 4 (i.e., the
link-hop distance is 0, 1, 2, 3, or 4). Note that the number
of stages including computing nodes and network links (ni)
was determined between 1 and 9, according to the hop dis-
tance between the first and last stages. The period Ti was
randomly chosen between 10 and 200 (with Di = Ti) accord-
ing to log-uniform distribution, and its execution/transmission
time Ci,k was randomly determined between 0.15 * Ti/ni and
0.3 * Ti/ni, also according to log-uniform distribution. The
criticality level Li was set to HI with the probability parameter
(denoted as PHI), where PHI was set from 0.1 to 0.9 with a
step size of 0.1. We assume that a communication link can
transmit up to the size of MTU (i.e., up to one packet) per
unit-time. Since a communication link cannot preempt each
packet transmission, each link has the blocking time Bi,k of
1 (i.e., maximum time unit to transmit the nonpreemptible
packet).

A. Schedulability Ratio

In this section, we compared the schedulability ratio of JMC

and criticality-aware scheduling including CA-DM, which is
defined as the ratio of schedulable flow sets to the total num-
ber of generated flow sets. Here, we counted a flow set as
schedulable under JMC, if the response time analysis guaran-
tees the JMC-schedulability (defined in Section IV) of the flow
set. On the other hand, we counted a flow set as schedulable
under criticality-aware scheduling, if the response time analy-
sis guarantees that the end-to-end response time of every flow

in the flow set is no larger than its relative deadline. We evalu-
ated the schedulability ratio with varying the number of flows
N� and the probability parameter PHI.

To evaluate JMC compared to other scheduling algorithms,
we measured the performance of JMC(X) and CA-X, where
JMC(X) and CA-X denote JMC and criticality-aware scheduling
with the priority assignment X, respectively.5 Note that in
CA-X, flows are assigned their priority according to: 1) crit-
icality (i.e., HI flows are always higher than LO flows) and
2) the criterion used by X. Note that, to the best of our knowl-
edge, JMC is the first study to consider the JMC scheduling;
thereby, it is natural to compare with and without the jitter-
based scheduling [i.e., JMC(X) and CA-X, respectively]. With
them, we applied various flow-level fixed priority assignment
algorithms as follows.

1) RD: RanDom; random priority assignment.
2) DM: Deadline monotonic; the smaller the deadline (Di),

the higher the priority.
3) SLM: Static laxity monotonic; the smaller the static

laxity (Di − Ci), the higher the priority.
4) PSLM: Per-stage static laxity monotonic; the smaller the

per-stage static laxity ([(Di − Ci)/ni]), the higher the
priority.

Note that we used RD as the minimum baseline. Except RD,
all algorithms are intuitively expected to be effective in dis-
tributed systems, since they effectively capture the urgency of
each end-to-end flow. For instance, PSLM captures the time slot
allowed to be interfered on each stage (i.e., [(Di − Ci)/ni]),
that directly affects the schedulability of each flow.

1) Varying N�: Fig. 5(a) depicts the schedulability of each
algorithm with varying N� from 5 to 50. As N� increases,
the average utilization of each stage increases, which affects
the schedulability. For each N� , we generated 1000 flow sets
and determined the schedulability of those flow sets by apply-
ing each scheduling algorithm. In the figure, we observe that
JMC(X) outperforms CA-X for every X, and the improvement of
JMC(X) over CA-X is significant for every X except RD. This is
expected since CA-X requires LO flows to meet their end-to-end
deadline even in the situation of receiving interference from
all HI flows, whereas JMC(X) only requires LO flows to do so
with a smaller set of higher-priority HI and LO flows. In partic-
ular, JMC(PSLM) outperforms other algorithms; this is because
PSLM is much effective to capture the urgency of each flow,
with considering not only the static laxity (Di − Ci) but also
the number of stages (ni). Meanwhile, CA-PSLM is not advan-
tageous as much as JMC(PSLM); it only shows slightly higher
performance than other CA-X algorithms. This is because, even
in CA-PSLM, LO flows still suffer from interference by all HI

flows. The result not only shows that JMC(X) outperforms CA-X

regardless of X, but also establishes the expectation that JMC

can benefit from other priority assignment algorithms working
well in distributed systems.

2) Varying PHI: Fig. 5(b) shows the schedulability with
varying PHI to control the ratio of HI and LO flows in each

5Note that comparison between jitter-threshold assignment policies is
excluded for this experiment since jitter-threshold assignment policies do not
affect schedulability performance. We will present their comparison in terms
of other metrics in Sections VII-B and VII-C.

LEE et al.: JMC 6321

(a) (b)

Fig. 5. Schedulability ratio. Varying (a) N� and (b) PHI.

flow set. PHI was set from 0.1 to 0.9 with a step size of 0.1.
For each PHI, we generated 1000 flow sets with N� = 25. We
observe that JMC(X) outperforms CA-X regardless of X, except
RD. In particular, the gap becomes larger when PHI is around
0.5. In CA-X, the schedulability of LO flows is directly affected
by the number of HI flows because a LO flow is interfered
by all HI flows on each stage. Therefore, as PHI increases,
the schedulability decreases. However, from some point (i.e.,
PHI = 0.5), the schedulability increases again. This is because
flow sets have a smaller number of LO flows that are con-
tending with HI flows. As to JMC(X), when PHI ≤ 0.5, the
schedulability of the flow set constantly increases since JMC(X)

can effectively favor HI flows to be scheduled to meet their
deadlines. On the other hand, when PHI > 0.5, the schedula-
bility of the flow set decreases since the increased number of HI

flows makes them difficult to be schedulable together to meet
their guarantees (G1). Similar to Fig. 5(a), we observe that
JMC(PSLM) outperforms other algorithms; this is because PSLM

makes the favorable priority assignment in distributed systems.
With the advantage of PSLM, CA-PSLM results in slightly better
performance than CA-DM and CA-SLM, in particular when PHI
is 0.1 or 0.9. However, it still shows low schedulability ratio
compared to JMC(X).

B. Number of Schedulable LO Jobs

In order to evaluate how well each scheme accommodates
LO flows, we measured the number of schedulable LO jobs,
which is defined as the number of LO jobs that meet their end-
to-end deadlines. We ran simulations for min{LCM�, 106} time
units, where LCM� is the least common multiplier of periods
of all flows in a flow set �. For ease of presentation, we
present the result with the DM priority assignment algorithm
as a representative; we observed that the results show similar
trends regardless of the priority assignment algorithm.

1) Varying N�: Fig. 6(a) shows the number of schedula-
ble LO jobs with varying the number of flows N� from 5 to
50. Note that the result of each approach is normalized to
that of CA-DM. For each N� , 20 flow sets were selected from
randomly generated flow sets with PHI = 0.5, where both CA-

DM and JMC(DM) guarantee all HI flows to meet the deadlines.
The figure shows that JMC(DM) allows more LO jobs (up to
13.2% more than CA-DM) to complete before their deadlines.
Under CA-DM, each LO flow is interfered by all HI flows, while,

(a) (b)

Fig. 6. Normalized number of schedulable LO jobs. Varying (a) N� and
(b) PHI.

under JMC(DM), it is interfered by a subset of HI flows having
a shorter deadline than the LO flow when it passes LO mode
stages. Therefore, under JMC(DM), LO flows can have a shorter
response time Ri,k, resulting in a higher chance to meet the
end-to-end deadline, compared to CA-DM. As N� increases,
under CA-DM, LO flows are interfered by more HI flows, while
they are interfered by a much smaller number of HI flows
under JMC(DM). Note that, under JMC(DM), LO flows can be
penalized when it passes HI mode stages. However, we observe
that a mode change from LO to HI rarely happens at runtime
because each HI flow rarely violates its optimistic release jit-
ters, Jo

i,k. Therefore, JMC(DM) has more schedulable LO flows
than CA-DM.

2) Varying PHI: Fig. 6(b) shows the number of schedula-
ble LO jobs with varying PHI from 0.1 to 0.9. The result of
each approach is also normalized to that of CA-DM. For each
PHI, 20 flow sets were selected from randomly generated flow
sets with N� = 30, where both CA-DM and JMC(DM) guar-
antee all HI flows to meet the deadlines. The figure shows
that JMC(DM) allows more LO jobs (up to 14.4% more than
CA-DM) to meet their end-to-end deadlines. This is expected
because of the similar reason we observed in Fig. 6(a). As
PHI increases, more HI flows join the system. Under CA-

DM, LO flows suffer from interference by all HI flows, while
they are only interfered by a smaller number of HI flows
under JMC(DM).

In Fig. 6(a), we observe that JMC(DM)-Lazy has more schedu-
lable LO flows than JMC(DM)-Proactive when N� = 50. This is
because the flow sets contain a high degree of pessimism in
the analysis accumulated along the stages. JMC(DM)-Proactive

6322 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 4, AUGUST 2019

decides a mode change under the assumption that all remain-
ing stages exhibit the worst-case behavior in terms of response
time; however, the worst case rarely happens. In contrast,
JMC(DM)-Lazy postpones mode change as late as possible,
based on the expectation that Ri,k will be smaller than R∗i,k so
that the mode change will not be necessary. With this principle,
JMC(DM)-Lazy makes the smaller number of mode changes than
JMC(DM)-Proactive, in particular when the difference between
R∗i,k and Ri,k is large [e.g., when N� = 50 in Fig. 6(a)]. We
will further investigate the characteristics of two algorithms in
the following section.

C. Comparison on Jitter-Threshold Assignment Policies

We observe that the Lazy policy shows better performance
than the Proactive policy in some cases. However, since the
Lazy policy does not consider the penalty of a mode change
specific to each stage, it inherently risks performance degra-
dation, in particular, depending on the degree of pessimism in
the analysis.

To examine the performance difference between the two
policies, we simulated a situation where a different number of
LO flows execute on different stages. We consider a distributed
system which consists of two computation nodes connected by
a communication link. In the system, a HI flow �i went through
three stages si,1, si,2, and si,3, where si,1 and si,3 were compu-
tation nodes, and si,2 was a communication link. On the stages
si,1 and si,3, five and seven LO flows were executed, respec-
tively, with the higher priority than �i; thereby, the penalty of
mode change on si,3 is greater than on si,1. To investigate
the effectiveness of each jitter-threshold assignment policy
according to the analysis pessimism, we consider two cases:
harmonic and nonharmonic period flow sets. Nonharmonic
period flow sets typically attribute more pessimism, and we
also experimentally confirmed that the average difference
between actual response time Ri and worst-case response time
estimate R∗i was 20% greater in the nonharmonic sets than in
the harmonic sets. Note that we used the DM priority assign-
ment as a representative, since simulations with other priority
assignment algorithms also bring an identical implication.

Fig. 7 plots the number of schedulable LO jobs with varying
Di of the HI flow �i. Note that the result is normalized to the
total number of LO jobs in the flow set. The x-axis represents
the flow density of �i, which is calculated by Ci/Di where
Ci is the total execution/transmission time over all stages. As
the deadline gets tighter (i.e., decrease in Di), the flow density
increases and it becomes more likely to trigger mode changes.

As shown in Fig. 7(a), the Proactive policy selects the mode
changing stage that results in fewer LO job drops (i.e., si,1),
when the mode change has to be taken place (i.e., when the
density becomes higher). Therefore, the Proactive policy makes
a robust decision against the Di value, making relatively good
performance regardless of flow density. On the other hand, the
Lazy policy that is oblivious to such information, delays the
decision until the last minute (i.e., mode change on si,3) lead-
ing to more LO job drops. Accordingly, the result shows that
the Proactive policy is able to dominate the Lazy policy when the
flow density of �i is larger. Meanwhile, the performance of the

(a) (b)

Fig. 7. Normalized number of schedulable LO jobs with varying the flow
density. (a) Nonharmonic set. (b) Harmonic set.

Lazy policy gradually improves as the flow density decreases
(i.e., increase in Di). This improvement mainly comes from a
large pessimism, leading to a larger difference between actual
response times and worst-case response time estimates. Such
a difference makes it advantageous to delay mode change
decision-making, as stated in Lemma 5. The timing gain leaves
a room for the Lazy policy not to change its mode even at si,3;
in addition, as the flow density decreases, the Lazy policy has
more rooms (i.e., more time slots until the deadline) to keep all
stages as LO mode. However, when such an effect is reduced
in the harmonic set as shown in Fig. 7(b), the Lazy policy is
more penalized in making decisions. In fact, the Lazy policy
does not do any better than the Proactive policy. As stated in
Lemma 8, as the actual response times get closer to a WCRT
estimate, the Proactive policy becomes more effective.

In summary, the performance of each policy depends on
tightness of the WCRT analysis. The Lazy policy performs
relatively well in most cases which have a highly pessimistic
WCRT analysis, e.g., when N� = 50 in Fig. 6(a). However, as
the analysis becomes tighter, the significance of the Proactive

policy may become greater. The Lazy and Proactive policies can
be selectively applied according to the system setup; note that
the pessimism in the analysis depends on the system setup
(see Section III).

VIII. DISCUSSION

So far, JMC has focused on MC scheduling based on the jit-
ter parameter, while most MC scheduling have focused on the
execution time parameter. Yet, it is possible to extend JMC with
other parameters; in particular, JMC can be extended to con-
sider the WCET parameter (the jitter is orthogonal to WCET).
This can further alleviate the pessimism of the response time
analysis, since it can use more optimistic WCET value for LO

mode [i.e., Ci,k(LO)]. Note that JMC always uses a single Ci,k

parameter estimated by HI mode behavior.
We first assume that each HI flow �i has both Ci,k(HI) and

Ci,k(LO) on each stage si,k. For ease of presentation, we define
two properties as follows.

1) A job of �i has a Ci,k(LO) property if it executes no
more than Ci,k(LO) on stage si,k.

2) A job of �i has a Jo
i,k property if it arrives at stage si,k

no later than its release time plus Jo
i,k.

LEE et al.: JMC 6323

We then define job behavior associated with the properties. A
job of a flow �i is said to exhibit LO behavior if it satisfies
both Ci,k(LO) and Jo

i,k properties. The job is said to exhibit
HI behavior otherwise, i.e., if it violates either Ci,k(LO) or
Jo

i,k property. With the new definition of job behavior, we can
directly extend JMC to trigger a stage-level mode change based
on not only jitter estimates but also WCET ones.

In order to validate the correctness of JMC under the new
definition of job behavior, we also need to extend response
time analysis to consider both jitter and WCET estimates. In
particular, we focus on how to extend R∗i,k(HI) and R∗i,k(LO),
which are core elements in response time analysis. First, recall
that R∗i,k(HI) is the WCRT of �i when si,k is in HI mode. We
can redefine R∗i,k(HI) by replacing Ci,k and hp(i, k) in (1) with
Ci(HI) and hp(i, k, HI), respectively. Second, R∗i,k(LO) is the
WCRT of �i when si,k is in LO mode. For R∗i,k(LO), the worst-
case happens when a job of �i violates the Ci,k(LO) property in
the middle of execution. Thus, R∗i,k(LO) should be redefined for
HI flows. We can compute R∗i,k(LO) similarly with the methods
in [5], and it can be presented as the following fixed-point
iteration:

R∗i,k
(n+1)

(LO) = Ci,k(HI)+ Bi,k

+
∑

τj,k′ ∈hp(i,k,HI)

⌈
R∗i,k

(n)(LO)+ J∗j,k′ (LO)

Tj

⌉
Cj,k′ (HI)

+
∑

τm,k′′ ∈hp(i,k,LO)

⌈
RLO

i,k (LO)+ J∗m,k′′ (LO)

Tm

⌉
Cm,k′′ (LO)

where RLO
i,k is the worst-case response time computed with

Ci,k(LO); R∗i,k
(0)(LO) is set to 0; and the iteration ends when

R∗i,k
(n)(LO) = R∗i,k

(n+1)(LO) or R∗i,k
(n)(LO) > Di (deemed

unschedulable). Note that a more efficient analysis method
can be found in [5].

In addition, we can directly use the Lazy and Proactive poli-
cies. We can plug the newly defined R∗i,k(HI) and R∗i,k(LO)

above into (5) for Lazy and (11) for Proactive, respectively,
without compromising the properties of the policies.

IX. RELATED WORK

MC systems have been introduced to address the problem of
low CPU utilization. Since Vestal’s [4] seminal work, a large
body of work has been proposed for MC systems (see [23] for
an extensive survey). In fixed-priority scheduling, Vestal [4]
developed response time analysis of MC task model. Later,
Baruah et al. [5] considered the runtime behavior of tasks
and introduced criticality mode at runtime to improve resource
efficiency. The concept of MC is further extended with the
period and the relative deadline [6]–[8]. Although early MC
studies ignored the performance of LO tasks when the low-
criticality assumption is no longer valid, the performance of
LO tasks is still important in the practical point of view [6].
Instead of suspending all LO tasks in HI mode, recent MC
studies proposed to provide the degraded service for all LO

tasks [6]–[8] or selective-dropping of LO tasks [9], [10].
MC scheduling has been extended to distributed systems.

For classical distributed systems, there exist many analysis

methods for response time of end-to-end flows, including RTA-
based approach (e.g., holistic schedulability analysis [16], [20]
and offset-based analysis [18]), RTC [17], and composi-
tional performance analysis [19]. Among them, RTA-based
approaches have been extended with MC on network platforms
such as control-area network (CAN) [12] and network-on-chip
(NoC) [13], [14]; those existing MC network studies adopted
the system-wide [12] or path-wide mode change [13], [14].

In summary, this paper can be differentiated from the stud-
ies listed above as follow. First, none of the previous work has
investigated applying the notion of MC scheduling to measure
and respond to the pessimism in the worst-case interference
(response time) analysis, while focusing on other static param-
eters such as WCET, the period, and the relative deadline.
Second, this paper proposes a stage-level mode change mech-
anism to minimize the penalty of mode change (in terms of
penalizing LO flows) for distributed systems, while the exist-
ing MC network studies adopted the system-wide [12] or
path-wide [13], [14] mode change mechanism.

X. CONCLUSION

In this paper, we have presented JMC, an efficient JMC
scheduling framework for distributed systems, to achieve the
goal of maximizing the performance of LO flows while guar-
anteeing the schedulability of HI flows. JMC uses jitters to
efficiently measure the pessimism in the analysis at runtime
and enables the change of criticality mode on a per-stage basis
to minimize the effect of the mode change. We have presented
an optimal feasibility condition (subject to given schedula-
bility analysis) to assign jitter-thresholds and introduced two
assignment policies, each achieving its own goals. Our simu-
lation results have shown that JMC has higher schedulability
while accommodating more LO flows, compared to the existing
criticality-aware fixed priority assignment scheduling schemes.
In the future, we would like to extend JMC toward WCET
(that has been discussed in Section VIII) and other parameters
such as the period. In addition, although JMC focuses on dual-
criticality systems, the scheduling framework can be extended
to more than two criticality levels, by applying per-level jitter
threshold. We leave it as future work.

REFERENCES

[1] R. Wilhelm et al., “The worst-case execution-time problem—Overview
of methods and survey of tools,” ACM Trans. Embedded Comput. Syst.,
vol. 7, no. 3, pp. 1–53, Apr. 2008.

[2] P. Ekberg and W. Yi, “Fixed-priority schedulability of sporadic tasks on
uniprocessors is NP-hard,” in Proc. IEEE Real Time Syst. Symp. (RTSS),
Dec. 2017, pp. 139–146.

[3] A. Burns, “Scheduling hard real-time systems: A review,” Softw. Eng.
J., vol. 6, no. 3, pp. 116–128, May 1991.

[4] S. Vestal, “Preemptive scheduling of multi-criticality systems with vary-
ing degrees of execution time assurance,” in Proc. IEEE Real Time Syst.
Symp. (RTSS), 2007, pp. 239–243.

[5] S. K. Baruah, A. Burns, and R. I. Davis, “Response-time analysis for
mixed criticality systems,” in Proc. IEEE Real Time Syst. Symp. (RTSS),
2011, pp. 34–43.

[6] A. Burns and S. Baruah, “Towards a more practical model for mixed
criticality systems,” in Proc. Workshop Mixed Criticality Syst. (WMC),
2013, pp. 1–6.

[7] O. Gettings, S. Quinton, and R. I. Davis, “Mixed criticality systems
with weakly-hard constraints,” in Proc. Int. Conf. Real Time Netw. Syst.
(RTNS), 2015, pp. 237–246.

6324 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 4, AUGUST 2019

[8] H. Su, P. Deng, D. Zhu, and Q. Zhu, “Fixed-priority dual-rate
mixed-criticality systems: Schedulability analysis and performance
optimization,” in Proc. IEEE Int. Conf. Embedded Real Time Comput.
Syst. Appl. (RTCSA), Aug. 2016, pp. 59–68.

[9] X. Gu, A. Easwaran, K.-M. Phan, and I. Shin, “Resource efficient iso-
lation mechanisms in mixed-criticality scheduling,” in Proc. Euromicro
Conf. Real Time Syst. (ECRTS), Jul. 2015, pp. 13–24.

[10] J. Lee, H. S. Chwa, L. T. X. Phan, I. Shin, and I. Lee, “MC-ADAPT:
Adaptive task dropping in mixed-criticality scheduling,” ACM Trans.
Embed. Comput. Syst., vol. 16, no. 5S, pp. 1–21, Oct. 2017.

[11] UML Profile for MARTE: Modeling and Analysis of Real-Time
Embedded Systems, OMG document formal/11-06-02, Object Manag.
Group, Needham, MA, USA, 2011.

[12] A. Burns and R. I. Davis, “Mixed criticality on controller area
network,” in Proc. Euromicro Conf. Real Time Syst. (ECRTS), Jul. 2013,
pp. 125–134.

[13] A. Burns, J. Harbin, and L. S. Indrusiak, “A wormhole NoC protocol for
mixed criticality systems,” in Proc. IEEE Real Time Syst. Symp. (RTSS),
Dec. 2014, pp. 184–195.

[14] L. S. Indrusiak, J. Harbin, and A. Burns, “Average and worst-case latency
improvements in mixed-criticality wormhole networks-on-chip,” in Proc.
Euromicro Conf. Real Time Syst. (ECRTS), Jul. 2015, pp. 47–56.

[15] J. M. Rivas, J. J. Gutierrez, J. C. Palencia, and M. G. Harbour,
“Schedulability analysis and optimization of heterogeneous EDF and
FP distributed real-time systems,” in Proc. Euromicro Conf. Real Time
Syst. (ECRTS), 2011, pp. 195–204.

[16] K. Tindell and J. Clark, “Holistic schedulability analysis for dis-
tributed hard real-time systems,” Microprocess. Microprogram., vol. 40,
nos. 2–3, pp. 117–134, 1994.

[17] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), vol. 4, 2000, pp. 101–104.

[18] J. Mäki-Turja and M. Nolin, “Efficient implementation of tight response-
times for tasks with offsets,” Real Time Syst., vol. 40, no. 1, pp. 77–116,
Oct. 2008.

[19] R. Hofmann, L. Ahrendts, and R. Ernst, “CPA: Compositional
performance analysis,” in Handbook of Hardware/Software Codesign.
Dordrecht, The Netherlands: Springer, 2017, pp. 721–751.

[20] J. C. Palencia and M. G. Harbour, “Offset-based response time analysis
of distributed systems scheduled under EDF,” in Proc. Euromicro Conf.
Real Time Syst. (ECRTS), Jul. 2003, pp. 3–12.

[21] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings,
“Applying new scheduling theory to static priority pre-emptive schedul-
ing,” Softw. Eng. J., vol. 8, no. 5, pp. 284–292, Sep. 1993.

[22] R. Garibay-Martínez, G. Nelissen, L. L. Ferreira, P. Pedreiras, and
L. M. Pinho, “Improved holistic analysis for fork–join distributed
real-time tasks supported by the FTT-SE protocol,” IEEE Trans. Ind.
Informat., vol. 12, no. 5, pp. 1865–1876, Oct. 2016.

[23] A. Burns and R. Davis. (2018). Mixed Criticality Systems—A Review.
[Online]. Available: http://www-users.cs.york.ac.uk/burns/review.pdf

Kilho Lee received the B.S. degree in information
and computer engineering from Ajou University,
Suwon, South Korea, in 2010, and the M.S.
and Ph.D. degrees in computer science from
KAIST, Daejeon, South Korea, in 2012 and 2019,
respectively.

He is a Post-Doctoral Researcher with the School
of Computing, KAIST. His current research interests
include system design and implementation for real-
time embedded systems and cyber-physical systems.

Minsu Kim received the B.S. degree in computer
science and engineering and the B.A. degree in polit-
ical science and international relations from Seoul
National University, Seoul, South Korea, in 2017.
He is currently pursuing the M.S. degree in computer
science with KAIST, Daejeon, South Korea.

Hayeon Kim received the B.S. degree in chemistry
(with a minor in computer science) from KAIST,
Daejeon, South Korea, in 2017, and the M.S. degree
from the School of Computing, KAIST, in 2019.

Hoon Sung Chwa (GS’09–M’18) received the B.S.,
M.S., and Ph.D. degrees from KAIST, Daejeon,
South Korea, in 2009, 2011, and 2016, respectively,
all in computer science.

He is an Assistant Professor with the Department
of Information and Communication Engineering,
DGIST, Daegu, South Korea. He has been a
Research Fellow with the Department of Electrical
Engineering and Computer Science, University of
Michigan, Ann Arbor, MI, USA, until 2018. His
current research interests include system design and

analysis with timing guarantees and resource management in real-time embed-
ded systems and cyber-physical systems.

Dr. Chwa was a recipient of the Best Paper Award from the 33rd IEEE Real-
Time Systems Symposium in 2012 and the IEEE International Conference on
Cyber-Physical Systems, Networks, and Applications in 2014.

Jaewoo Lee received the M.S. degree in com-
puter science and engineering from Seoul National
University, Seoul, South Korea, in 2008, and the
Ph.D. degree in computer and information science
from the University of Pennsylvania, Philadelphia,
PA, USA, in 2017.

He is currently an Assistant Professor with
Chung-Ang University, Seoul. His current research
interests include cyber-physical systems, real-time
embedded systems, and model-driven engineering.

Jinkyu Lee (GS’07–M’10) received the B.S., M.S.,
and Ph.D. degrees in computer science from KAIST,
Daejeon, South Korea, in 2004, 2006, and 2011,
respectively.

He joined Sungkyunkwan University, Suwon,
South Korea, in 2014, where he is an Assistant
Professor with the Department of Computer
Science and Engineering. He has been a Research
Fellow/Visiting Scholar with the Department of
Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, MI, USA, until

2014. His current research interests include system design and analysis
with timing guarantees, QoS support, and resource management in real-time
embedded systems and cyber-physical systems.

Dr. Lee was a recipient of the Best Student Paper Award of the 17th IEEE
Real-Time and Embedded Technology and Applications Symposium in 2011
and the Best Paper Award of the 33rd IEEE Real-Time Systems Symposium
in 2012.

Insik Shin (M’11) received the B.S. degree in
computer science from Korea University, Seoul,
South Korea, in 1994, the M.S. degree in com-
puter science from Stanford University, Stanford,
CA, USA, in 1998, and the Ph.D. degree in com-
puter science from the University of Pennsylvania,
Philadelphia, PA, USA, in 2006.

He joined KAIST, Daejeon, South Korea, in 2008,
where he is currently an Associate Professor with
the Department of Computer Science. His current
research interests include cyber-physical systems

and real-time embedded systems.
Dr. Shin was a recipient of the Best Paper Award of RTSS in 2003 and

2012, the Best Student Paper Award of RTAS in 2011, and the Best Paper
Runner-Ups of ECRTS and RTSS in 2008. He is currently an Editorial Board
member of the Journal of Computing Science and Engineering. He has been
the Program Co-Chair of RTCSA and has served various Program Committees
in real-time embedded systems, including RTSS, RTAS, and ECRTS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

