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a b s t r a c t 

Real-time scheduling is the primary research for designing real-time systems whose correctness is de- 

termined by not only logical correctness but also timely execution. Real-time scheduling involves two 

fundamental issues: scheduling algorithm design and schedulability analysis development, which aim at 

developing a prioritization policy for real-time tasks and offering their timing guarantees at design time, 

respectively. Among the numerous scheduling algorithms and schedulability analysis for a multiprocessor 

platform, the contention-free (CF) policy and response-time analysis (RTA) have received considerable at- 

tention owing to their wide applicability and high analytical performance, respectively. Notwithstanding 

their effectiveness, it has been conjectured that it is not feasible to exploit the two techniques together. 

In this study, we propose a new schedulability analysis for the CF policy, referred to as pseudo-response 

time analysis (PRTA), which exploits a new notion of pseudo-response time effectively capturing the time 

instant at which the schedulability of a task is guaranteed under the CF policy. To demonstrate the ef- 

fectiveness of PRTA, we apply PRTA to the existing earliest deadline first and rate monotonic scheduling 

algorithms employing the CF policy, and show that up to 46.4% and 18.3% schedulability performance im- 

provement can be achieved, respectively, compared to those applying the existing schedulability analysis. 

© 2019 Elsevier Inc. All rights reserved. 
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1. Introduction 

Systems are regarded real-time when the correctness of the sys-

tems depends on not only their functional aspects but also their

temporal aspects ( Liu and Layland, 1973 ). For example, in auto-

motive electronics, wheel control systems must correctly execute

within a predefined time interval in order to accurately control

the vehicle. Real-time scheduling is the primary research for de-

signing such systems, which determines the order of executions

of jobs infinitely generated by real-time tasks running on the sys-

tem in order to satisfy a timing requirement (i.e., deadline). Among

the broad spectrum of research in the area of real-time schedul-

ing, scheduling algorithm design and schedulability analysis are

the fundamental parts; the former aims at developing a prioritiza-

tion policy for real-time tasks, and the latter aims to obtain their

timing guarantees at design time. A number of studies addressed

the former and/or the latter, e.g., Lee et al. (2016) and Lee and

Shin (2017) . 

Over the last few decades, as multiprocessor platforms have

been increasingly used in the real-time systems for high-end real-
∗ Corresponding author. 
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ime applications, a number of studies on real-time scheduling

heory have been performed so as to effectively exploit such plat-

orms, e.g., Brandenburg and Gul (2016) , Melani et al. (2016) and

iondi et al. (2016) . Whereas most of them have focused on de-

eloping new real-time scheduling algorithms, some studies have

roposed polices to prioritize real-time tasks, which can be incor-

orated into the existing real-time scheduling algorithms to im-

rove their performance. Expanding the latter approaches is quite

mportant, in that it could potentially improve the schedulability

erformance of not only the existing scheduling algorithms but

lso those that will be developed in the future. Successful ex-

mples of the latter approaches include the zero-laxity (ZL) pol-

cy ( Baker et al., 2008 ) and the contention-free (CF) policy ( Lee

t al., 2011; 2014 ), which improve the schedulability performance

f the existing real-time scheduling algorithms with opposite prin-

iples. The ZL policy promotes the priority of a real-time task to

he time instant when it should be scheduled to avoid a deadline

iss; on the contrary, the CF policy demotes the priority of a real-

ime task to the time instant when it is guaranteed to complete its

xecution before its deadline. 

Although the ZL and CF policies have received considerable at-

ention owing to their wide applicability and schedulability per-

ormance improvement, the CF policy has not been thoroughly

https://doi.org/10.1016/j.jss.2019.04.067
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Fig. 1. Schedules of base algorithm A and algorithm A incorporating CF policy for 

τ = { τ1 = τ2 = { T i = 15 , C i = 2 , D i = 9 } , τ3 = { 15 , 7 , 10 }} . 

i  

a  

l  

B  

i  

y  

(  

w  

a  

t  

o

 

u  

j  

b  

h  

i  

c  

e  

m  

t  

m  

b  

i

 

a  

p  

t  

l  

F  

f  

a  

t  

l  

a  

t  

t  

t  

s  

o  

l  

9  

c

 

a  

i  

a  

H  

b  

a  

t  

i  

l  

u  

9

 

c  

d  

g  

o  

t  

w  

J  

4  

j  

w

 

f  

w  

w  

o  

d  

i  

p  

r  

s  

b  

t  

p  

a  

m  

a  

p

 

 

 

 

 

 

 

 

 

 

2

 

l  

t  

u  

r  

c  

N  

w  

(  

u  

r  

a  

D  
nvestigated with respect to the development of its schedulability

nalysis. That is, in contrast to the development of several schedu-

ability tests for the ZL policy ( Cirinei and Baker, 2007; Davis and

urns, 2011; Lee and Shin, 2013 ), only one sufficient schedulabil-

ty test has been proposed for the CF policy, called deadline anal-

sis (DA) ( Bertogna et al., 2009 ). Although response-time analysis

RTA) ( Joseph and Pandya, 1986 ) is known to dominate (i.e., to al-

ays provide better analytical capability than) DA, RTA loses such

n advantage with respect to a scheduling algorithm incorporating

he CF policy, because it does not fully capture the characteristics

f real-time tasks’ behavior under the CF policy. 

Such characteristics stem from the CF policy’s principle, which

tilizes the notion of a contention-free slot , in which the number of

obs with remaining executions is less than or equal to the num-

er of available processors in the time slot. A contention-free slot

as an important property that all jobs with remaining execution

n the time slot can execute without any contention. The CF policy

alculates the lower-bounded number of contention-free slots that

xist up to the deadline of each job before its release, and then

oves some remaining executions of the jobs that are guaranteed

o be schedulable to the contention-free slots by comparing re-

aining execution times and the remaining lower-bounded num-

er of contention-free slots of each job at each time slot, thereby

mproving the schedulability of the existing algorithms. 

Fig. 1 depicts an example of a task set τ scheduled by a base

lgorithm A ( Fig. 1 (a)) and an algorithm A incorporating the CF

olicy ( Fig. 1 (b)), on a two-processor platform. τ contains three

asks, τ 1 , τ 2 , and τ 3 , with execution times of 4, 4 and 7; dead-

ines of 9, 9 and 10; and a common period of 15. In the case of

ig. 1 (b), the three tasks have minimum numbers of contention-

ree slots of 2, 2, and 3 until their deadlines, respectively, which

re calculated offline by the CF policy. Such an offline calculation is

he key technique of the CF policy, whose high-level idea is as fol-

ows. At most, 4 + 4 + 7 = 15 executions can be performed within

n interval [0,9) (i.e., the release and deadline of a job of τ 1 ) and

hus, at least two contention-free slots exist in the interval, under

he assumption of a two-processor platform (i.e., 9 − � 15 
2 � = 2 );

his also holds for a job of τ 2 . A similar line of reasoning re-

ults in 10 − � 15 
2 � = 3 for a job of τ 3 . Note that the actual number

f contention-free slots can be different from the number calcu-

ated by the CF policy (e.g., five actual contention-free slots in [4,

) of Fig. 1 (b)). We will explain how to calculate the number of

ontention-free slots for a general case in Section 3.1 . 

Let J 1 , J 2 , and J 3 be the first jobs of τ 1 , τ 2 , and τ 3 , respectively,

nd assume that J 1 and J 2 have higher priorities than J 3 by schedul-

ng algorithm A . In the case of J 3 in Fig. 1 (a), it misses its deadline

t time instant 10 owing to interference from J 1 and J 2 in [0, 4).

owever, J 3 in Fig. 1 (b) completes its execution at time instant 9,

ecause the priorities of τ 1 and τ 2 are demoted by the CF policy

t time instant 2. The underlying principle of such a demotion by
he CF policy is that the remaining executions of J 1 and J 2 at time

nstant 2 (i.e., 2) will be successfully performed before their dead-

ines (i.e., 9) because there are at least two contention-free slots

p to their deadline (in fact five contention-free slots exist in [4,

)). 

Then, the challenging issue for schedulability analysis is how to

apture the characteristics of such online priority demotions con-

ucted by the CF policy so as to effectively obtain offline timing

uarantee (i.e., predictability). We can observe that schedulability

f each job in Fig. 1 (a) is identified at its own finishing time (e.g,

ime instant 4 for J 1 and J 2 ) whereas that in Fig. 1 (b) can be done

hen its own priority is demoted (e.g., time instant 2 for J 1 and

 2 ), which is earlier than its own finishing time (e.g., time instants

 and 6 for J 1 and J 2 respectively). Then, we can deem that the

ob is schedulable if such a time instant (a finishing time or a time

hen the priority demotion occurs) is earlier than its deadline. 

In this study, we propose an improved schedulability analysis

ramework for the CF policy, which effectively considers the time

hen the priority demotion occurs by the CF policy. To this end,

e propose a new notion of pseudo-response time at which the pri-

rity of a job is demoted (i.e., its schedulability is guaranteed) un-

er the CF policy even before its actual response time, and discuss

ts properties. Then, we propose a new schedulability analysis ex-

loiting the notion of pseudo-response time, referred to as pseudo-

esponse time analysis (PRTA), which significantly improves the

chedulability of DA. PRTA exploits the core idea of RTA to upper-

ound the pseudo-response time of a task. We also discuss how

o further improve its performance by utilizing a new notion of

seudo-slack time . To demonstrate the effectiveness of PRTA, we

pply PRTA to the existing earliest deadline first (EDF) and rate

onotonic (RM) scheduling algorithms employing the CF policy,

nd shows that it achieves up to 46.4% and 18.3% performance im-

rovements, respectively, compared to those applying DA. 

In summary, this paper makes the following contributions: 

• It proposes a new notion of pseudo-response time, which rep-

resents a time when priority is demoted by the CF policy, which

is exploited as a new criterion to determine the schedulability

of a job scheduled by a scheduling algorithm employing the CF

policy, and discusses its properties ( Section 4.1 ). 
• A new schedulability analysis framework, referred to as PRTA, is

proposed, which significantly improves the schedulablity of DA

by exploiting the notion of pseudo-response time ( Section 4.2 ). 
• A method to further improve the schedulability of PRTA is

presented, which utilizes a new notion of pseudo-slack time

( Section 4.3 ). 
• It applies PRTA to the existing EDF and RM scheduling algo-

rithms employing the CF policy and demonstrates the effective-

ness of PRTA compared with DA ( Sections 5 and 6 ). 

. System model 

We consider the Liu and Layland’s task model ( Liu and Lay-

and, 1973 ) in which a task set τ contains n sporadic real-time

asks τi = 

(
T i , C i , D i 

)
and is scheduled on m identical processors

sing a global, preemptive, and work-conserving scheduling algo-

ithm. T i is a minimum inter-arrival time or period, C i is the worst-

ase execution time (WCET) of τ i , and D i is a relative deadline.

ote that a scheduling algorithm is called global, preemptive and

ork-conserving if a job can be migrated from one core to another

 global ) and preempted at any time ( preemptive ), and if the sched-

led processors are always kept busy when there are released jobs

eady to be scheduled ( work-conserving ). Throughout our paper, we

ssume that τ i has an implicit or a constrained deadline satisfying

 = T or D ≤ T , respectively. Without loss of generality, we as-
i i i i 
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Fig. 2. The worst-case scenario in which the workload of a task τ i in an interval of 

length � is maximized. 
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sume a quantum-based time with a quantum length equal to one

time unit. 

A task τ i invokes a series of jobs, where the j th job J 
j 
i 

is re-

leased at r 
j 
i 

and finished at f 
j 

i 
. We refer to a job with remaining

execution as an active job. J 
j 
i 

has an absolute deadline d 
j 
i 

= r 
j 
i 
+ D i ,

which represents the latest time instant at which we can accept

the job to complete its execution. We say that J 
j 
i 

is schedulable if

f 
j 

i 
≤ d 

j 
i 

holds, and τ i is schedulable if every job J 
j 
i 

of τ i is schedu-

lable. Additionally, a task set τ is schedulable if every task τ i ∈ τ
is schedulable. The response time R i of a task τ i is defined as

max 
J 

j 
i 
∈ τ ( f 

j 
i 

− r 
j 
i 
) , and J ∗

i 
is the job that induces R i , i.e ., J 

∗
i 

is the job

exhibiting the largest value of f 
j 

i 
− r 

j 
i 

among all the jobs of τ i . By

the definition of the response time R i , a task set τ is schedulable

if R i ≤ D i ( i.e . f ∗
i 

≤ d ∗
i 
) holds. 

We define the interference I k ( a, b ) on τ k in an interval [a, b) as

the cumulative length of all the intervals in which τ k is ready to

be executed but cannot be scheduled on any processor owing to

m higher priority tasks. Additionally, the interference I i 
k 
(a, b) of τ i 

on τ k in an interval [a, b) is defined as the cumulative length of

all the intervals in which τ k is ready to be executed but cannot be

scheduled on any processor while τ i executes. 

The workload of a task τ i in an interval of length � is defined as

the amount of computation time required for τ i in the interval of

length � . Fig. 2 illustrates the scenario in which the workload of a

task τ i is maximized under any preemptive scheduling. As seen in

Fig. 2 , the first job of τ i begins its execution at the beginning of the

interval and completes the execution at d 
j 
i 
, which executes for C i 

without any interference or delay. Then, the following jobs are re-

leased and scheduled as soon as possible. Building upon the num-

ber of executions of jobs fully executing for C i and the other jobs

executing for a portion of C i , the upper-bounded workload W i ( � ) is

calculated by ( Bertogna and Cirinei, 2007 ) 

 i (� ) = N i (� ) · C i + min 

(
C i , � + D i − C i − N i (� ) · T i 

)
, (1)
Table 1 

Notations and their description. 

Notation Description Notation Descr

n The number of tasks in τ N i ( � ) The n

m The number of processors Q H A que

τ A task set Q L A que

τ i A task in τ C (t) 
i 

The r

T i A minimum inter-arrival time or period of τ i �i The lo

C i WCET of τ i �(t) 
i 

The r

D i A relative deadline of τ i R ub 
k 

An up

J j 
i 

The j th job invoked by τ i 
˜ f j 
k 

A pse

r j 
i 

A release time of J j 
i 

˜ R k A pse

f j 
i 

A finishing time of J j 
i 

J + 
k 

The jo

d j 
i 

An absolute deadline of J j 
i 

˜ R ub 
k 

An up

R i A response time of τ i ˆ τ A mo

J ∗
i 

The job inducing R i ˜ s i A pse

I k ( a, b ) The interference on τ k in an interval [a, b) W 

s 
i 
(�, ̂  τ ) The w

I i 
k 
(a, b) The interference of τ i on τ k in an interval [a, b) N s 

i 
(�, ̂  τ ) The n

W i ( � ) The upper-bounded workload in an interval of length � E s 
i 
(D k , ̂  τ ) The u
here N i ( � ) is the number of jobs executing for C i calculated by 

 i (� ) = 

⌊ 

� + D i − C i 
T i 

⌋ 

. (2)

For the ease of understanding, Table 1 summarizes the nota-

ions used in this paper. 

. Background 

This section briefly introduces the CF policy and the existing

TA framework on a multi-processor platform ( Lee et al., 2011;

014 ), both of which form the basis for our approach proposed in

his study. 

.1. CF policy 

The principle of the CF policy is to improve schedulability of the

xisting scheduling algorithms by demoting the priority of a job

hen its schedulability is guaranteed during its execution, using

he advantage of the notion of a contention-free slot. A contention-

ree slot is a time slot in which active jobs are guaranteed to exe-

ute without any contention, which is formally defined as follows. 

efinition 1. (contention-free slot (from Lee et al., 2014 )) : A time

lot is contention-free if the number of jobs that are ready to exe-

ute in the slot is less than or equal to the number of processors m .

dditionally, a time slot is contending if the slot is not contention-

ree. 

To manage the active jobs with priorities assigned by algorithm

 and demoted by the CF policy, the CF policy uses two separated

ueues, Q H and Q L , in which jobs in Q H have their original prior-

ties assigned by the algorithm A , and those in Q L have priorities

emoted by the CF policy. For job J 
j 
i 
, let C (t) 

i 
be the remaining ex-

cution time to finish its execution at time instant t . Additionally,

et �i be the lower-bounded number of contention-free slots (cal-

ulated offline by the CF policy) that exists in the interval [ r 
j 
i 
, d 

j 
i 
)

nd �(t) 
i 

be the remaining number of contention-free slots at time

nstant t . 

The CF policy conducts the following steps sequentially at each

ime slot. 

If job J 
j 
i 

of task τ i is released, 

1. Put J 
j 
i 

with its own priority to Q H , calculate �i of J 
j 
i 

and set

�(t) 
i 

to �i . 

For job J 
j 
i 

in Q H , 
iption 

umber of jobs fully executing for C i in an interval of length � 

ue containing jobs with its original priorities assigned by the algorithm A 

ue containing jobs with the priorities demoted by the CF policy 

emaining execution time to finish it execution at time instant t 

wer-bounded number of contention-free slots that exists in the interval [ r j 
i 
, d j 

i 
) 

emaining number of contention-free slots at time instant t 

per-bounded response time of τ k 

udo-finishing time of J j 
k 

udo-response time of τ k 

b inducing ˜ R k 
per-bounded pseudo-response time 

dified task set from τ (detailed in Section 4.2 ) 

udo-slack time 

orst-case workload of τi ( ̂ τ ) 

umber of jobs fully executing for C i − �i 

pper-bounded interference of τi ( ̂ τ ) to a job J j 
k 

of τk ( ̂ τ ) 
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2. If the current time slot is contention-free, reduce �(t) 
i 

by 1. 

3. If C (t) 
i 

≤ �(t) 
i 

, move J 
j 
i 

from Q H to Q L and assign the lowest

priority to J 
j 
i 
. 

Then, 

4. Execute the m highest-priority jobs, i.e., C (t) 
i 

← ( C (t) 
i 

− 1 ), and

then remove J 
j 
i 

from its queue if C (t) 
i 

= 0 . 

Step 3 implies that the job moved to Q L at time instant t will

ever miss its deadline, because the number of remaining execu-

ions will be successfully performed in the remaining contention-

ree slots that exists before the deadline of J 
j 
i 
. Then the remaining

ssue is how to calculate the lower-bounded number of contention-

ree slots that exist in the interval [ r 
j 

k 
, d 

j 

k 
) of each job of a task τ k .

k is derived as follows; note that two methods were introduced

n Lee et al. (2014) to lower-bound contention-free slots, but we

se the approach of Lemma 3.4 in Lee et al. (2014) because it out-

erforms that of Lemma 3.3 in Lee et al. (2014) in most cases. 

emma 1. (from Lemma 3.4 in Lee et al., 2014 ) For an active job of

 task τ k scheduled by A-CF, there are at least �k contention-free

lots between the release and the deadline of the active job, which is

omputed as follows. 

k = max 

(
0 , D k −

⌊ C k + 

∑ 

τi ∈ τ\{ τk } W i (D k ) 

m 

⌋ )
. (3) 

roof. We summarize the proof of Lemma 3.4 in Lee et al. (2014) .

hen we limit our attention to the interval [ r 
j 

k 
, d 

j 

k 
) of an active

ob J 
j 

k 
, the upper-bounded workload of a task τ i in the interval is

 i ( D k ). By Definition 1 , at least m executions of active jobs are

eeded for a time slot to be contending. Thus, there are at least

 k − min 

(
D k , 

⌊ 

∑ 

τi ∈ τ W i (D k ) 

m 

⌋ )
contention-free slots in the interval

 r 
j 

k 
, d 

j 

k 
). Then, the workload W k ( D k ) can be reduced to C k because

he number of jobs of a task τ k invoked in the interval [ r 
j 

k 
, d 

j 

k 
) is

imited to one, unlike the other jobs invoked by τ i ∈ ( τ�τ k ). Thus,

he lemma holds. �

.2. RTA framework on a multi-processor platform 

RTA has been a popular schedulability analysis framework ow-

ng to its applicability and analytic performance on schedulabil-

ty. For a given interval � , RTA focuses on J 
j 

k 
of interest of τ k 

nd calculates I i 
k 
(r 

j 

k 
, r 

j 

k 
+ � ) to derive the upper-bounded response

ime of task τ k , which is denoted by R ub 
k 

. Because a job can-

ot execute in a time slot if m other higher-priority jobs execute,

( 
∑ 

τi ∈ τ−{ τk } I 
i 
k 
(r 

j 

k 
, r 

j 

k 
+ � )) /m represents the length of cumulative in-

ervals in [ r 
j 

k 
, r 

j 

k 
+ � ) such that J 

j 

k 
cannot execute owing to the ex-

cutions of other jobs. Therefore, if the value is no larger than

 − C k , J 
j 

k 
can finish its execution at or before r 

j 

k 
+ � . Based on this

easoning, RTA tests the schedulability of τ k as follows; we para-

hrase Lemma 2 in Lee (2017) , but the same is also shown with

ifferent descriptions in Theorem 3 in Bertogna and Cirinei (2007) ,

heorem 1 in Lee (2014) , and Eq. (1) in Lee and Shin (2014) . 

emma 2. (from Lemma 2 in Lee, 2017 ) A task τ k ∈ τ is schedulable,

f every job J 
j 

k 
satisfies the following for C k ≤ � ≤ D k . 

 k + 

⌊
1 

m 

∑ 

τi ∈ (τ\ τk ) 

min 

(
I i k (r j 

k 
, r j 

k 
+ � ) , � − C k + 1 

)⌋
≤ �. (4) 

roof. Let us consider a value X = C k +
 

1 
m 

∑ 

τi ∈ τ\{ τk } I 
i 
k 
(r 

j 

k 
, r 

j 

k 
+ � ) 

⌋ 

. X represents the duration between

 

j 

k 
and f 

j 

k 
for a given � , i.e., WCET of J 

j 

k 
plus interference on
 

j 

k 
, because a job cannot execute in a time slot if m other

igher-priority jobs execute. By the definition of I i 
k 
(r 

j 

k 
, r 

j 

k 
+ � ) , if

 

i 
k 
(r 

j 

k 
, r 

j 

k 
+ � ) > � − C k + 1 for certain tasks τ i , J 

j 

k 
never finishes its

xecution in [ r 
j 

k 
, r 

j 

k 
+ � ). Thus, if X is strictly larger than � , the LHS

s also strictly larger than � . By the contra-position, the lemma

olds. �

The remaining issue is how to find such a value of � and

n upper-bound I i 
k 
(r 

j 

k 
, r 

j 

k 
+ � ) . The existing study proved that

he amount of interference of τ i on τ k in an interval can be

pper-bounded by the worst-case workload of τ i in the inter-

al ( Bertogna and Cirinei, 2007 ). Thus, it satisfies I i 
k 
(r 

j 

k 
, r 

j 

k 
+ � ) ≤

 i (� ) . 

Then, RTA works as follows using Equation (4) by substituting

 

i 
k 
(r 

j 

k 
, r 

j 

k 
+ � ) of the LHS into W i ( � ). Initially, � is set to C k and RTA

ests whether the inequality holds. If the inequality holds, the task

s deemed schedulable. Otherwise, RTA resets � to the previous

alue of the LHS of the inequality, until the inequality holds or

 > D k ; � > D k represents that τ k is deemed unschedulable. If the

nequality holds, τ k is deemed schedulable, and the value of � sat-

sfying the inequality is R ub 
k 

, meaning that R ub 
k 

≤ D k holds. 

. Proposed schedulability analysis for CF scheduling 

In this section, we propose PRTA, a new schedulability analysis

ramework for an algorithm A adopting the CF policy (referred to

s A -CF), which effectively identifies the time when the priority de-

otion occurs (i.e., schedulability is guaranteed) by the CF policy.

o this end, we first define a new notion of pseudo-response time

y investigating the characteristics of a task τ i under A -CF in order

o effectively judge the task’s schedulability, and discuss its prop-

rties. Then, we derive a new schedulablity condition for a task τ i ,

hich exploits a pseudo-response time of τ i . We also propose a

ew notion of pseudo-slack time, which can significantly improve

he performance of PRTA. 

.1. Pseudo-response time 

As we discussed in Section 1 , the existing RTA is not capable

f identifying the time instant when the priority is demoted under

he CF policy. Therefore, we need to define a new criterion to ef-

ectively determine the schedulability of tasks scheduled by A -CF.

o this end, we consider the following two types of τ k : 

1) τ k with �k = 0, whose jobs do not migrate to Q L , and 

2) τ k with �k � = 0, whose jobs may (or may not) migrate to Q L 

during its execution. 

or τ k of type 1), it is schedulable if f 
j 

k 
of every J 

j 

k 
is earlier than

r equal to d 
j 

k 
. For τ k of type 2), it is schedulable if f 

j 

k 
of every

 

j 

k 
not migrating to Q L is earlier than or equal to d 

j 

k 
. The other jobs

igrating to Q L during its execution are guaranteed to be schedula-

le, owing to the implication of Step 3 of the CF policy mentioned

n Section 3.1 . This implies that τ k is schedulable if the priority-

emotion time or f 
j 

k 
of every J 

j 

k 
is earlier than or equal to d 

j 

k 
. 

To express the condition of schedulability of a task τ k sched-

led by A -CF, we define new notions of pseudo-finishing time ˜ f 
j 

k 

f J 
j 

k 
and pseudo-response time ˜ R k of τ k as follows. 

efinition 2. (Pseudo-finishing time): The pseudo-finishing time
˜ f 

j 

k 
of a job J 

j 

k 
is a migration time t ′ if J 

j 

k 
migrates to Q L or a fin-

shing time f 
j 

k 
if J 

j 

k 
does not. 

efinition 3. (Pseudo-response time): The pseudo-response time
˜ 
 k of a task τ k is the largest value among all ( ̃  f 

j 

k 
− r 

j 

k 
) of all the

obs of τ . 
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Let J + 
k 

be the job inducing ˜ R k . By the definition of pseudo-

response time, ˜ R k = 

˜ f + 
k 

− r + 
k 

. Note that J + 
k 

and J ∗
k 

can be different

jobs, because ˜ R k and R k can be induced by different jobs. 

By the definition of the pseudo-finishing time, each job J 
j 

k 
of a

task τ k scheduled by A -CF migrates to Q L , or finishes, at ˜ f 
j 

k 
. J 

j 

k 
is

schedulable if it migrates to Q L or finishes before d 
j 

k 
. For a job J 

j 

k 

scheduled by A -CF, it is schedulable if ˜ f 
j 

k 
is earlier than or equal to

d 
j 

k 
. 

Then, we show that pseudo-response time can be a new cri-

terion to test the schedulability of τ k scheduled by A -CF as fol-

lows. By the definition of pseudo-response time and J + 
k 

, all J 
j 

k 
are

schedulable if J + 
k 

is schedulable. Because ˜ R k = 

˜ f + 
k 

− r + 
k 

and D k =
d + 

k 
− r + 

k 
, the relationship ( ̃  f + 

k 
≤ d + 

k 
) = ( ̃  f + 

k 
− r + 

k 
≤ d + 

k 
− r + 

k 
) = ( ̃  R k ≤

D k ) holds. Based on this reasoning, all jobs are schedulable if ˜ R k ≤
D k . Therefore, for a task τ k scheduled by A -CF, it is schedulable if
˜ R k is less than or equal to D k . 

4.2. PRTA: pseudo-response time analysis 

Now, we propose PRTA, which effectively incorporates the no-

tion of pseudo-response time into schedulability analysis. The chal-

lenging issue for deriving a better schedulability condition for tasks

scheduled by A -CF is how to tightly derive an upper-bounded

pseudo-response time denoted by ˜ R ub 
k 

. As shown in Lemma 2 , the

upper-bounded response time R ub 
k 

is derived by the summation

of WCET and the worst-case interference on τ k in the interval of

R ub 
k 

. Following the principle of the derivation of the upper-bounded

response-time, we derive ˜ R ub 
k 

by using the following two values: 

• WCET performed in the interval [ r 
j 

k 
, ˜ f 

j 

k 
), and 

• the worst-case interference on J 
j 

k 
in the interval [ r 

j 

k 
, ˜ f 

j 

k 
). 

WCET of J 
j 

k 
performed in the interval [ r 

j 

k 
, ˜ f 

j 

k 
) is bounded by C k 

as we consider implicit- or constrained-deadline tasks. 

Before we derive the worst-case interference on J 
j 

k 
in the inter-

val [ r 
j 

k 
, ˜ f 

j 

k 
), we derive the upper-bounded worst-case interference

of J 
j 
i 

on J 
j 

k 
in the interval [ r 

j 

k 
, ˜ f 

j 

k 
) based on the observations re-

garding the behavior of jobs scheduled by A -CF. By the definition

of the pseudo-finishing time, J 
j 

k 
migrates from Q H to Q L or finishes

its execution in Q H , at ˜ f 
j 

k 
. This implies that J 

j 

k 
stays in Q H before ˜ f 

j 

k 
.

Thus, we focus on how job J 
j 
i 

scheduled by A -CF interferes with J 
j 

k 

in Q H , because J 
j 
i 

in Q L cannot interfere with J 
j 

k 
in Q H . 

To this end, we explicitly show that job J 
j 
i 

scheduled by A -CF

can interfere with any job J 
j 

k 
in Q H during at most C i − �i time

slots. We first consider the case in which J 
j 
i 

stays in Q H until d 
j 
i 
,

for any job J 
j 
i 

scheduled by A -CF. In this case, J 
j 
i 

faces at least �i 

contention-free slots because there are at least �i contention-free

slots in the interval [ r 
j 
i 
, d 

j 
i 
). Because no job interferes with other

jobs in contention-free slots, J 
j 
i 

interferes with any job in Q H dur-

ing at most C i − �i time slots. Then, we consider the other case, in

which J 
j 
i 

migrates from Q H to Q L at time t ′ , i.e., C (t ′ ) 
i 

= �(t ′ ) 
i 

. Before

t ′ , J 
j 
i 

executes in C i − C (t ′ ) 
i 

time slots and faces exactly �i − �(t ′ ) 
i 

contention-free slots. Hence, C i − C (t ′ ) 
i 

− (�i − �(t ′ ) 
i 

) = C i − �i exe-

cutions of J 
j 

k 
in Q H interfere with any job in Q H . After t ′ , J j 

i 
cannot

interfere with any job in Q H , because J 
j 
i 

is in Q L . Therefore, a job

J 
j 
i 

scheduled by A -CF can interfere with any job J 
j 

k 
in Q H during at

most C i − �i time slots. This reasoning indicates that the upper-

bounded amount of interference of any job J 
j 
i 

on J 
j 

k 
in the interval

[ r 
j 

k 
, ˜ f 

j 

k 
) is at most C i − �i time slots, because J 

j 

k 
stays in Q H before
˜ f 
j 

k 
as, at ˜ f 

j 

k 
, J 

j 

k 
migrates to Q L or finishes its execution in Q H by the

efinition of the pseudo-finishing time ( Definition 2 ). 

Then, we derive ˜ R ub 
k 

based on the RTA framework with a spe-

ialized task set. Let us consider a modified task set ˆ τ from τ ,

n which the parameters of the task whose schedulability will be

ested (i.e., τ k ) are not changed, and WCET of the other tasks that

ill be regarded as those interfering with τ k (i.e., τ i ) is deducted

y �i . We assume that ˆ τ is always scheduled by A rather than A -

F. We will use the term ˆ τ when ˆ τ is considered (e.g., ˆ τk , T k ( ̂  τ ) ,

 

j 

k 
( ̂  τk ) , W i (�, ̂  τ ) , etc.). Thus, ˆ τk = { T k ( ̂  τ ) = T k , C k ( ̂  τ ) = C k , D k ( ̂  τ ) =
 k } and τ i = { T i ( ̂  τ ) = T i , C i ( ̂  τ ) = C i − �i , D i ( ̂  τ ) = D i } ( i.e ., k � = i )

old. 

Next, we derive the upper-bounded response time of ˆ τk ∈ ˆ τ
cheduled by A instead of τ k ∈ τ scheduled by A -CF. Although the

esult may not be the upper-bounded response time of τ k ∈ τ
cheduled by A -CF, it can be the safe upper-bound of its pseudo-

esponse time. This is because we already showed that the amount

f execution of J k before the pseudo-finishing time is upper-

ounded by C k , and J i cannot interfere with J k in Q H for more than

 i − �i as long as the CF policy is applied, regardless of when τ i ’s

riority is demoted (even if it is not demoted). Note that we do

ot have to consider J k in Q L , because the schedulability of J k in Q L 

s guaranteed by the CF policy. 

In other words, we show that R ub 
k 

( ̂  τ ) (instead of ˜ R ub 
k 

) sufficiently

pper-bounds ˜ R k , meaning that we can judge the schedulability of

k scheduled by A -CF using R ub 
k 

( ̂  τ ) as follows. 

heorem 1. A task τ k scheduled by A-CF is schedulable, if every job

 

j 

k 
( ̂  τ ) scheduled by A satisfies the following for C k ( ̂  τ ) ≤ � ≤ D k ( ̂  τ ) : 

 k ( ̂  τ )+ 

1 

m 

∑ 

τi ( ̂ τ ) ∈ ( ̂ τ\ τk ( ̂ τ )) 

min 

(
I i k (r j 

k 
( ̂  τ ) , r j 

k 
( ̂  τ ) + � ) , � − C k ( ̂  τ ) + 1 

)⌋
≤ �. 

(5)

roof. J 
j 

k 
is in Q H when it executes or is interfered by J 

j 
i 

before

˜ f 
j 

k 
. Every job is scheduled by base algorithm A when it is in Q H 

before the priority of the job is demoted). Thus, J 
j 

k 
is scheduled by

 when it executes and is interfered by J 
j 
i 

in Q H . In other words,

 

j 

k 
is scheduled by A before ˜ f 

j 

k 
. Trivially, the amount of execution

f J 
j 

k 
before ˜ f 

j 

k 
is upper-bounded by C k . Then, it is same as that of

 

j 

k 
( ̂  τ ) scheduled by A before f 

j 

k 
( ̂  τ ) as a single job scheduled by A

ully executes before f 
j 

k 
( ̂  τ ) . We already showed that the amount

f interference of J 
j 
i 

on J 
j 

k 
before ˜ f 

j 

k 
is upper-bounded by C i − �i .

hen, it is the same as that of J 
j 

k 
( ̂  τ ) scheduled by A (without the

F policy) before f 
j 

k 
( ̂  τ ) as J 

j 
i 
( ̂  τ ) executes for at most C i − �i by the

efinition of ˆ τi . Thus, this theorem holds. �

Based on Theorem 1 , PRTA judges the schedulability of a

ask τ k scheduled by A -CF with � and the upper-bounded value

f I i 
k 
(r 

j 

k 
( ̂  τ ) , r j 

k 
( ̂  τ ) + � ) . As I i 

k 
(r 

j 

k 
, r 

j 

k 
+ � ) can be upper-bounded by

 i ( � ) ( Bertogna and Cirinei, 2007 ), we derive W i (�, ̂  τ ) by substi-

uting C i of Equation (1) into C i ( ̂  τ ) = C i − �i and use it to upper-

ound I i 
k 
(r 

j 

k 
( ̂  τ ) , r j 

k 
( ̂  τ ) + � ) . 

Fig. 3 (a) describes the worst-case scenario for W i (�, ̂  τ ) under

ny preemptive scheduling algorithm A . The configuration of the

xecution of each job is the same as the worst-case scenario of

 i ( � ), but J 
j 
i 
( ̂  τ ) executes for C i ( ̂  τ ) = C i − �i . 

Then, PRTA works with the same procedure of the RTA frame-

ork using Eq. (5) by substituting I i 
k 
(r 

j 

k 
( ̂  τ ) , r j 

k 
( ̂  τ ) + � ) to the LHS in

 i (�, ̂  τ ) . If � > D k ( ̂  τ ) holds, then τk ( ̂  τ ) is deemed unschedulable

nder A meaning τ k is deemed unschedulable under A -CF. Other-

ise, τ ( ̂  τ ) is deemed schedulable under A meaning τ is deemed
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Fig. 3. Two worst-case scenarios for W i (�, ̂  τ ) and W 

s 
i 
(�, ̂  τ ) . 
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Fig. 4. Worst-case scenario for E s 
i 
(D k ( ̂ τ ) , ̂  τ ) . 
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chedulable under A -CF, and the value of � satisfying the inequality

s R ub 
k 

( ̂  τ ) = 

˜ R ub 
k 

; this eventually represents R ub 
k 

( ̂  τ ) = 

˜ R ub 
k 

≤ D k ( ̂  τ ) =
 k . 

.3. Exploiting pseudo-slack time 

In this subsection, we show that the performance of PRTA can

e further improved using a new notion of pseudo-slack time. 

We first show that the amount of the worst-case interference

f τ i on τ k in a given interval of length � is reduced with a new

otion of pseudo-slack time. Suppose that the schedulability of a

iven task τ i is tested by PRTA, resulting in 

˜ R ub 
i 

, satisfying ˜ R ub 
i 

≤ D i .

his indicates that job J 
j 
i 

of task τ i under A -CF finishes its execu-

ion or migrates to Q L at least D k − ˜ R ub 
i 

time slots ahead of d 
j 
i 

be-

ause ˜ R ub 
i 

represents the worst-case pseudo-finishing time of job J 
j 
i 

f task τ i . Here, we define a new notion of the pseudo-slack time

f task τ i , denoted by ˜ s i as follows. 

Definition 4 (Pseudo slack time) : For task τ i scheduled by A -

F, the pseudo-slack time ˜ s i of task τ i is defined as the difference

etween the upper-bounded pseudo-response time ˜ R ub 
i 

and the rel-

tive deadline D i of the task, which exists only if τ i is deemed

chedulable under the CF policy. 

In the previous subsection, we showed that D i = D i ( ̂  τ ) and
˜ 
 

ub 
i 

= R ub 
i 

( ̂  τ ) . Thus, we can calculate the pseudo-slack time ˜ s i of

ach task scheduled by A -CF by calculating the difference between

 

ub 
i 

( ̂  τ ) and D i ( ̂  τ ) under scheduling algorithm A . 

Using this difference, we can reduce the worst-case workload

 i (�, ̂  τ ) and use it to upper-bound the interference of τ i on τ k .

et W 

s 
i 
(�, ̂  τ ) be the worst-case workload of a task τi ( ̂  τ ) consider-

ng the pseudo-slack time of τ i . Fig. 3 (b) illustrates the worst-case

cenario for W 

s 
i 
(�, ̂  τ ) in the given interval of � . As seen in Fig. 3 (b),

he leftmost job J 
j 
i 
( ̂  τ ) begins its execution at the beginning of the

nterval � , executes for C i − �i without any interference or delay,

nd finishes at f 
j 

i 
( ̂  τ ) = d 

j 
i 
( ̂  τ ) − ˜ s i ( ̂  τ ) . Thereafter, the following jobs

re released and scheduled as soon as possible. Compared with

 i (�, ̂  τ ) , � of W 

s 
i 
(�, ̂  τ ) moves to the left by the amount of ˜ s i ( ̂  τ ) ,

uch that the execution of the rightmost job can be reduced by at

ost the amount of ˜ s i ( ̂  τ ) . Then, W 

s 
i 
(�, ̂  τ ) is calculated as follows. 

 

s 
i (�, ˆ τ ) = N 

s 
i (�, ˆ τ ) · (C i − �i ) 

+ min 

(
C i − �i , � + D i − (C i − �i ) − ˜ s i − N 

s 
i (�, ˆ τ ) · T i 

)
, 

(6) 
i  
here N 

s 
i 
(�, ̂  τ ) is the number of jobs fully executing for ( C i − �i ),

alculated by 

 

s 
i (�, ˆ τ ) = 

⌊
� + D i − (C i − �i ) − ˜ s i 

T i 

⌋
. (7) 

PRTA then exploits the pseudo-slack value ˜ s i as follows. 

1. Initially, ˜ s i of every task is set to zero, and 

˜ R ub 
i 

of every task is

calculated. 

2. We reset every ˜ s i of every schedulable task to D i − ˜ R ub 
i 

if ˜ R ub 
i 

≤
D i holds. 

3. We repeat calculating ˜ R ub 
i 

of every task, until all tasks are

deemed schedulable (schedulable task set) or there is no slack

value update (unschedulable task set). 

. PRTA for EDF-CF and RM-CF 

In this section, we apply our PRTA approach to the two schedul-

ng algorithms EDF-CF and RM-CF. Although Eq. (6) can safely

pper-bound the worst-case interference of τ i on τ k scheduled by

 -CF, there is a room to reduce it when it comes to EDF-CF. Let

 

s 
i 
(D k , ̂  τ ) be the upper-bounded interference of τi ( ̂  τ ) to a job J 

j 

k 
( ̂  τ )

f τk ( ̂  τ ) scheduled by EDF-CF in the interval of D k ( ̂  τ ) , which con-

iders the pseudo-slack time. As shown in Fig. 4 , E s 
i 
(D k , ̂  τ ) is max-

mized when the rightmost job of τi ( ̂  τ ) in the interval of D k ( ̂  τ ) is

ligned with the deadline of J 
j 

k 
( ̂  τ ) because a job J 

j 
i 
( ̂  τ ) with a later

bsolute deadline cannot interfere with J 
j 

k 
( ̂  τ ) . With this reasoning,

e derive E s 
i 
(D k , ̂  τ ) as follows. 

 

s 
i (D k , ( ̂  τ )) = 

⌊
D k 

T i 

⌋
(C i − �i ) + min 

(
C i − �i , D k −

⌊
D k 

T i 

⌋
T i − ˜ s i 

)
. 

(8) 

We then derive a tighter schedulability analysis condition for

DF-CF as follows. 

heorem 2. Task τ k scheduled by EDF-CF is schedulable, if every job

 

j 

k 
( ̂  τ ) scheduled by A satisfies the following for C k ( ̂  τ ) ≤ � ≤ D k ( ̂  τ ) : 

 k ( ̂  τ )+ 

1 

m 

∑ 

τi ( ̂ τ ) ∈ ( ̂ τ\ τk ( ̂ τ )) 

min (W 

s 
i (�, ( ̂  τ )) , E s i (D k , ( ̂  τ )) , � −C k ( ̂  τ ) + 1) 

⌋
≤ �. 

(9) 

roof. As the amount of W 

s 
i 
(�, ̂  τ ) varies according to the length

f � , we use the smaller value between W 

s 
i 
(�, ̂  τ ) and E s 

i 
(D k , ̂  τ ) to

pper-bound the worst-case interference of a job J 
j 
i 

on a job J 
j 

k 
.

hen, this theorem holds by Theorem 1 . �

We now discuss some characteristics of PRTA for EDF-CF, in-

luding the time complexity and dominance relation between PRTA

nd the existing schedulability analysis. First, the time complexity

f PRTA is derived as follows. W 

s 
i 
(�, ̂  τ ) and E s 

i 
(D k , ̂  τ ) are computed

n a constant time, and these are computed n times because we
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consider all τ i in Eq. (9) (i.e., O ( n )). Then, the LHS of Eq. (9) is

computed recursively until Eq. (9) holds for each task, and � can-

not be larger than D k (i.e., O ( D max ) where D max is the largest value

among all the tasks’ deadlines). Such computation is conducted

for every task (i.e., O ( n )). Thereafter, exploiting the pseudo-slack

value of each task is conducted until the values of all the tasks are

converged, and each value cannot be larger than each task’s rela-

tive deadline (i.e., O ( D max )). Thus, the time complexity of PRTA is

O ( n 2 D max 
2 ), which is the same as that of the existing RTA. 

Then, we derive a dominance relation between PRTA for EDF-

CF and two the existing schedulability analysis with the following

theorem. 

Theorem 3. PRTA for EDF-CF strictly dominates not only RTA for EDF

but also DA for EDF-CF. 

Proof. By comparing Eq. (4) of RTA and Eq. (5) of PRTA, we

can easily see that PRTA finds � no larger than � of RTA from

Equation (5) , because C i ( ̂  τ ) is not smaller than C i , resulting in

I i 
k 
(r 

j 

k 
( ̂  τ ) , r j 

k 
( ̂  τ ) + � ) ≤ I i 

k 
(r 

j 

k 
, r 

j 

k 
+ � ) . Hence, PRTA for EDF-CF domi-

nates RTA for EDF. Additionally, PRTA considers the interference of

τ i (actually τi ( ̂  τ ) ) on τ k within the worst-case pseudo-response

time, whereas DA considers it within the deadline. Thus, PRTA for

EDF-CF dominates DA for EDF-CF. �

As RM is fixed-priority scheduling, a priority is assigned to a

task rather than each job, and only the tasks with priories higher

than that of a task τ k can interfere with a job J 
j 

k 
of task τ k . Thus,

we derive the following theorem. 

Theorem 4. Task τ k scheduled by RM-CF is schedulable, if every job

J 
j 

k 
( ̂  τ ) satisfies the following for C k ( ̂  τ ) ≤ � ≤ D k ( ̂  τ ) : 

 k ( ̂  τ ) + 

⌊
1 

m 

∑ 

τi ( ̂ τ ) ∈ hep(τk ( ̂ τ )) 

min (W 

s 
i (�, ˆ τ ) , � − C k ( ̂  τ ) + 1) 

⌋
≤ �. 

(10)

where hep(τk ( ̂  τ )) is a set of tasks with priorities higher than τk ( ̂  τ ) . 

6. Evaluation 

In this section, we evaluate the performance of our approach

compared to the existing techniques. For performance metrics, we

measure how many randomly generated task sets are deemed

schedulable by each schedulability analysis. 

6.1. Experiment environment 

In order to evaluate the performance of the considered tech-

niques, we randomly generate task sets using a task set genera-

tion method used in many of the existing studies ( Bertogna et al.,

20 09; Baker, 20 05; Andersson et al., 20 08 ). We consider two types

of task sets, in which tasks have implicit and constrained deadlines

respectively, and four different numbers of processors, i.e., m ∈ {2,

4, 8, 16}. The utilization ( C i / T i ) of each task is determined by a bi-

modal or exponential distribution with their input parameters se-

lected in {0.1, 0.3, 0.5, 0.7, 0.9} ( Lee et al., 2014 ). A value for C i / T i
is uniformly selected in [0, 0.5) and [0.5, 1) with probability p and

1 − p, respectively, for a given bimodal parameter p , and the value

is selected according to the exponential distribution whose proba-

bility density function is λ · exp (−λ · x ) for a given exponential pa-

rameter 1/ λ. For each task, T i is uniformly chosen in [1,10 0 0], C i is

chosen with the bimodal or exponential parameter, and D i is uni-

formly chosen in [ C i , T i ]. Based on the parameters, the task sets are

generated as follows: 

1. Initially, a set of m + 1 tasks is generated. 
2. Next, the generated task set is tested to ascertain whether

it passes the necessary feasibility condition in Baker and

Cirinei (2006) . 

3. If it fails the test, the task set is discarded and return to Step 1.

Otherwise, this set is included for evaluation. Then, we use this

set as a basis for the next new task set; we create a new task

set by adding a new task into the existing task set and return

to Step 2. 

The idea behind the necessary feasibility condition in Step 2

mplies that, if U sys of a task set is greater than m , the task set

annot be schedulable with any scheduling algorithm. We gener-

te 10,0 0 0 task sets for each bimodal or exponential distribution

ith their individual input parameters (e.g., bimodal distribution

ith 0.1), each individual value of m (e.g., m = 2 ), and each type of

eadline (e.g., implicit deadline). Because we consider ten different

istribution settings (e.g., bimodal or exponential distribution with

ve different input values), four different values of m (e.g., 2, 4, 8,

r 16), and two types of deadline (e.g., implicit or constrained), we

enerate 10,0 0 0 · 10 · 4 · 2 = 80 0,0 0 0 task sets in total. 

Then, we measure the performance of PRTA for EDF-CF com-

ared to the existing techniques by investigating how many task

ets are deemed schedulable by each technique. We consider the

ollowing schedulability analysis techniques. 

• DA{EDF} : DA test for EDF proposed in Bertogna et al. (2009,

2005) , 
• RTA{EDF} : RTA test for EDF with slack reclamation proposed

in Bertogna and Cirinei (2007) , 
• DA{EDF-CF} : DA test for EDF incorporating the CF policy pro-

posed in Lee et al. (2014) , and 

• PRTA{EDF-CF} : PRTA test for EDF incorporating the CF policy

with slack reclamation proposed in Section 5 . 

.2. Example of a task set: ACSW in satellite system 

In this subsection, we justify the practicability of task sets syn-

hetically generated by the previous subsection. To this end, we

how an actual real-time system and the task parameters of its

eal-time tasks. 

A satellite system is a compelling example of a huge-size real-

ime system. Among various satellite systems, we discuss a recon-

aissance satellite system equipped with a reconnaissance antenna

hat transmits and receives radio frequency signals to obtain an

mage of the target terrain even in cloudy weather or at night. An-

enna controller software (ACSW) ( Baek et al., 2018a ) controls a

econnaissance antenna in a satellite system, in which tasks are

cheduled by RM on a space-specific RTOS (real-time operating

ystem) called RTEMS (real-time executive for multi-processor sys-

ems) ( RTEMS ). ACSW conducts five tasks named tHigh, tMilbus,

One, tTwo and tSync, respectively, whose main roles are described

s follows. 

• tHigh takes each macro command (MCMD) in an MCMD queue,

which is received from the ground station and set out proper

information in each job of the other tasks. 
• tMilbus receives an MCMD via MIL-STD-1553B proto-

col ( Excalibur ) from the ground station and verifies integrity

of each received MCMD by utilizing various verification mech-

anisms such as CRC (cyclic redundancy check) before it is

inserted into a MCMD queue. 
• tOne conducts all jobs required for internal mode transitions

of a satellite system, such as turning on/off relevant equip-

ment and transmitting internal telemetries via SpaceWire pro-

tocol ( European ). 
• tTwo executes a number of work such as FDIR (fault detection,

isolation and recovery), formatting network packets containing
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Table 2 

Task parameter (millisecond base) of ACSW. 

T i D i WCET BCET ACET 

tHigh 62.5 50 2.98 0.08 0.14 

tMilbus 125 100 0.54 0.11 0.21 

tOne 250 200 30.08 0.05 0.29 

tTwo 500 400 231.72 37.7 147.5 

 

 

a  

e  

w  

d  

t  

f  

a  

c  

t  

i  

a

 

m  

e  

e  

t  

g

 

s  

r  

t

6

 

t  

d  

c  

(  

i  

b  

b  

l  

(  

m  

a  

p  

c  

a  

s  

l  

l  

T  

s

 

l

 

 

 

 

information of operation results and current status of the sys-

tem to be transmitted to the ground station. 
• tSync conducts operation preparation whenever it has surplus

computing resources. 

Task parameters of ACSW are described in Table 2 ; T i and D i 

re determined by a system designer, and BCET (the best-case

xecution time), WCET, ACET (the average-case execution time)

ere measured in various actual operation scenarios (e.g., stan-

ard mode and high resolution mode) under the target system

hat is equipped with 256 MB SDRAM, a multi-processor plat-

orm based on FT Leon3 CPU architecture (80 Mhz clock speed),

nd SPARC BSP ( Cobham ) supporting MIL-STD-1553B (for external

ommunication) and SpaceWire (for internal communication) pro-

ocols. tSync does not have a period and a relative deadline since

t executes without any deadline whenever the other tasks are not

ctive. 

Each task’s period is determined by the cycle of each task’s

ain role: checking the MCMD queue to take an MCMD in ev-

ry 62.5 ms, receiving an MCMD from the ground station in ev-

ry 125 ms, turning on/off individual equipment regarding mode

ransitions in every 250 ms, and transmitting system status to the

round station in every 500 ms. 

As the task set generation method considered in the previous

ection produces a number of task sets assuming random task pa-
Table 3 

The number of task sets deemed schedulable by individu

m DA{EDF} RTA{EDF} DA{EDF-CF} PRTA

2 20999 47033 36929 5010

4 11528 32779 28227 3865

8 6261 23807 23637 3212

16 3351 17706 21521 2809

(a) EDF, implicit deadline 

m DA{EDF} RTA{EDF} DA{EDF-CF} PRTA

2 9872 34251 27659 4051

4 4604 19783 20301 2767

8 2114 11996 16844 2124

16 936 7592 15357 1803

(b) EDF, constrained deadline 

m DA{RM} RTA{RM} DA{RM-CF} PRTA

2 47581 58183 50063 5925

4 35425 42232 40233 4518

8 27074 31953 34601 37511

16 20636 24292 30728 3259

(c) RM, implicit deadline 

m DA{RM} RTA{RM} DA{RM-CF} PRTA

2 38393 44981 45660 5044

4 24386 28058 32946 3524

8 16681 18837 26241 2743

16 11772 13129 22361 2300

(d) RM, constrained deadline 
ameters, it covers various real-time embedded systems in which

asks conduct different roles in various operation scenarios. 

.3. Schedulability evaluation 

For the discussion of the considered schedulability analysis

ests’ performance, we first identify how many task sets are

eemed schedulable by each schedulability analysis technique and

ompare them to each other for different numbers of processors

i.e., m from 2 to 16), as shown in Table 3 (a) and (b). Then, we

nvestigate how the schedulability performance of each schedula-

ility analysis technique is influenced by the various average num-

ers of tasks in a task set (denoted by n ) and average task uti-

ization of tasks in a task set (denoted by C i /T i ). Fig. 5 presents this

for implicit deadline task sets for m = 2 and 16) by considering bi-

odal distributions with 0.9 and exponential distributions with 0.1

nd 0.9; among ten task utilization distributions (bimodal and ex-

onential utilization distributions with five input parameters), we

onsider three that produce well-separated n (the smallest, largest,

nd medium) and C i /T i (the largest, smallest, and medium). Each

ubfigure in Fig. 5 plots the number of task sets deemed schedu-

able by each schedulability test against the varying task set uti-

ization ( U sys � 

∑ 

τi ∈T C i /T i ) on a given task utilization distribution.

OT represents the number of generated task sets with the corre-

ponding utilization distribution. 

We first interpret the following observations of implicit dead-

ine task sets, which are obtained from Table 3 (a) and Fig. 5 . 

O 1. The number of task sets deemed schedulable by RTA{EDF}

is substantially higher than that of DA{EDF} for all values of

m , and it is also higher than that of DA{EDF-CF} for m = 2 ,

4, and 8 (from Table 3 (a)). 

O 2. The performance of DA{EDF-CF} is higher than that of

RTA{EDF} for m = 16 (from Table 3 (a)). 
al techniques. 

PRTA{EDF-CF} PRTA{EDF-CF} 

{EDF-CF} RTA{EDF} DA{EDF-CF} 

6 106.5% 135.6% 

7 117.9% 136.9% 

0 134.9% 135.8% 

4 158.6% 130.5% 

PRTA{EDF-CF} PRTA{EDF-CF} 

{EDF-CF} RTA{EDF} DA{EDF-CF} 

9 118.3% 146.4% 

8 139.9% 136.3% 

9 177.1% 126.1% 

8 237.5% 117.4% 

PRTA{RM-CF} PRTA{RM-CF} 

{RM-CF} RTA{EDF} DA{EDF-CF} 

8 101.8% 118.3% 

1 106.9% 112.2% 

 117.3% 108.4% 

9 134.1% 106.0% 

PRTA{RM-CF} PRTA{RM-CF} 

{RM-CF} RTA{EDF} DA{EDF-CF} 

0 112.1% 110.4% 

5 125.6% 106.9% 

1 145.6% 104.5% 

3 175.2% 102.8% 
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Fig. 5. Schedulability tests for implicit deadline task sets. 
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O 3. PRTA{EDF-CF} outperforms both RTA{EDF} and DA{EDF-

CF} for all values of m (from Table 3 (a)). 

O 4. For m = 16 , RTA{EDF} performs better than DA{EDF-CF}

when an exponential utilization distribution with 0.1 is con-

sidered, whereas it does not when the others are considered

(from Figures 3 (d), (e) and (f)). 

O 5. RTA{EDF} makes a higher number of task sets schedulable

than DA{EDF-CF} for m = 2 with any utilization distribution

(from Fig. 3 (a)–(c)). 

O 6. PRTA{EDF-CF} outperforms both RTA{EDF} and DA{EDF-

CF} for m = 2 and 16 with any utilization distribution (from

Fig. 3 ). 
O 1 and O 2 stem from the advantage of the response-time-

ased approach (the aspect of the schedulability analysis) and the

F policy (the aspect of scheduling algorithm). O 1 indicates that

esponse-time-based approach such as RTA{EDF} finds a much

igher number of schedulable task sets, because it includes only

he interference of higher-priority tasks on job J k of task τ k in

he interval [ r ∗
k 
, f ∗

k 
) whereas DA{EDF} and DA{EDF-CF} consider

he worst-case interference on J k in the interval [ r ∗
k 
, d ∗

k 
). O 2 holds

ecause as the number of processors m increases, the number

f contention-free slots for J k that exist in [ r 
j 

k 
, d 

j 

k 
) also increases;

hus DA{EDF-CF} takes advantage of the increased lower-bounded

umber of contention-free slots �k . 
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O 3 demonstrates that, by exploiting the merits of both the

esponse-time-based approach and the CF policy, PRTA{EDF-CF}

utperforms both RTA{EDF} and DA{EDF-CF} for all values of m .

s m increases from 2 to 16, there are more contention-free slots,

nd therefore, PRTA{EDF-CF} improves compared to the perfor-

ance of RTA{EDF} by successively higher percentage (e.g., 58.6%

or m = 16 ) by exploiting the merit of contention-free slots. Ad-

itionally, for all values of m , the PRTA{EDF-CF} improves the

erformance of DA{EDF-CF} by a similar percentage (e.g., 35.6%

or m = 2 ) owing to the advantage of the response-time-based ap-

roach. 

O 4 and O 5 are interpreted using the following factors: ( F 1) DA

erforms well for a small value of n , because the amount of pes-

imistic upper-bounded interference from higher-priority tasks is

roportional to the number of tasks in a task set; ( F 2) the CF pol-

cy performs well for a small value of C i /T i ,because each task possi-

ly has many contention-free slots; and ( F 3) the CF policy performs

ell for a large value of m , for a similar reason to that of F 2. In the

ase of O 4 (for m = 16 ), DA{EDF-CF} outperforms RTA{EDF} for a

imodal utilization distribution with 0.9 and an exponential dis-

ribution with 0.9 (in Fig. 5 (d) and (f)), owing to the combination

f F 1 and F 2. However, when exponential utilization distribution

ith 0.1 is considered ( Fig. 5 (e)), RTA{EDF} performs better than

A{EDF-CF} from the inverse of F 1 (owing to the large value of n ,

.e., 83.2). Although C i /T i is quite small (i.e., 0.1) in the utilization

istribution, this factor does not fully overcome the disadvantage

f the large value of n to DA{EDF-CF} . However, the phenomenon

 4 does not occur for m = 2 as O 5 indicates, because the inverse

f F 3 (i.e., the smaller value of m ) is a significantly stronger factor

or the performance gap between RTA{EDF} and DA{EDF-CF} . As

hown in Theorem 3 , PRTA dominates RTA and DA, A -CF dominates

he base algorithm A , and PRTA{EDF-CF} dominates RTA{EDF}

nd DA{EDF-CF} for all values of n and C i /T i , as indicated

y O 6. 

Table 3 (b) shows the evaluation results for task sets in which a

ask has a constrained deadline. The similar trend that occurs be-

ween RTA{EDF} and PRTA{EDF-CF} in Table 3 (a) is also shown in

able 3 (b); as m increases from 2 to 16, PRTA{EDF-CF} improves

he performance of RTA{EDF} at a progressively higher rate. How-

ver, the performance improvement of RTA{EDF} by PRTA{EDF-

F} is much higher (e.g., 137.5% for m = 16) than the case of

mplicit deadlines, because each J i does not execute in the inter-

al [ d 
j 
i 
, r 

j+1 
i 

), and thus the schedules of jobs produces a higher

umber of contention-free slots. Owing to this fact, the perfor-

ance improvement of DA{EDF-CF} by PRTA{EDF-CF} decreases

s the value of m increases from 2 to 16 (e.g., 46.4% for m = 2

nd 17.4% for m = 16 ). DA{EDF-CF} also exploits a large number of

ontention-free slots in the case of many processors (e.g. m = 16 ),

hile there is less room for performance improvement achieved

y PRTA{EDF-CF} using the advantage of response-time-based ap-

roach. 

Then, we evaluate the performance of the schedulability anal-

sis methods for RM and RM-CF. We also consider the four

chedulability analysis techniques obtained by changing the target

cheduling algorithm from EDF to RM, and from EDF-CF to RM-

F, which are denoted as DA{RM} , RTA{RM} , DA{RM-CF} , and

RTA{RM-CF} . 

Table 3 (c) and (d) present the evaluation results for task sets

f implicit and constraint deadlines, respectively. Table 3 (c) and

d) show similar trends to those shown in Table 3 (a) and (b),

espectively. However, the degrees of performance improvement

f RTA{RM} and DA{RM-CF} by PRTA{RM-CF} are smaller than

hose shown in Table 3 (a) and (b). This is because as all techniques

xclude the interference of lower-priority tasks on task τ k , they

nd a higher number of task sets deemed schedulable on average

fl  
ompared to the case of EDF scheduling. Thus, there is less room to

mprove the schedulability. In spite of this fact, PRTA{RM-CF} still

mproves the performance of RTA{RM} and DA{RM-CF} by a high

ate for m = 16 (e.g., 34.1% for implicit- and 75.2% for constrained-

eadline tasks) and m = 2 (e.g., 18.3% for implicit- and 10.4% for

onstrained-deadline tasks), respectively. 

. Discussion 

In this section, we discuss various factors affecting analytic ca-

ability of PRTA. PRTA judges schedulability of each task τ k by

omparing its pseudo-response time ˜ R k and its relative deadline

 k . Since ˜ R k is calculated by the summation of WCET C k ( ̂  τ ) and the

orst-case interference I k (r 
j 

k 
( ̂  τ ) , r j 

k 
( ̂  τ ) + � ) on ˆ τk during execution

as Theorem 1 indicates), how to effectively estimate the former

nd latter determines the analytic capability of PRTA, whose rele-

ant factors will be discussed in the following subsections. 

.1. Shared computing resources 

As mentioned in Section 2 , we consider the Liu and Layland’s

ask model assuming the fixed worst-case execution C i of each task

i , which implicitly includes the worst-case time induced by inter-

ore interference on shared computing resources such as shared

ache, memory bus, and main memory on a multi-processor plat-

orm. Since mutual exclusion is mandatory to utilize such shared

omputing resources, one job never enters its critical section at

he instance when another concurrent job enters its own criti-

al section. This mechanism is referred to as the resource-locking

rotocol that has been extensively discussed in a number of ex-

sting studies. The representative resource-locking protocols for

ultiprocessor systems include the priority inheritance protocol

PIP) ( Sha et al., 1990; Easwaran and Adersson, 2009 ), priority ceil-

ng protocol (PCP) ( Chen and Lin ), flexible multiprocessor lock-

ng protocol (FMLP) ( Block et al., 2007 ), O ( m ) locking protocol

OMLP) ( Brandenburg and Anderson, 2010 ) and real-time nested

ocking protocol (RNLP) ( Ward and Anderson, 2012 ). Considering

esource-locking protocol potentially improves analytic capability

f PRTA since it reduces response time of τ k by relieving a pes-

imistic assumption of underlying the worst-case execution time

f the Liu and Layland’s task model. 

To discuss how analytical capability of our PRTA can be im-

roved by removing pessimistic assumption regarding accessing

hared computing resources in WCET of the Liu and Layland’s task

odel, we consider the priority inheritance protocol (PIP) ( Sha

t al., 1990; Easwaran and Adersson, 2009 ) for RM scheduling in-

orporating the CF policy. In PIP, p different kinds of resources are

onsidered, and jobs can issue requests for exclusive access to the

hared resources δ1 , ���, δp . A task holding a resource can be pre-

mpted by the processor scheduler but the task still holds the

esource until it completes the resource usage. We consider non-

ested shared resources, indicating that a job does not request for

 shared resource while it holds another one. A job J 
j 
i 

of a task

i could request resource δx (1 ≤ x ≤ p ) multiple times during its

xecution. C i,x denotes the worst-case (i.e., longest) resource usage

ime among all requests for a resource δx by jobs of τ i . Further, the

et of all resources accessed by jobs of τ i is denoted by δS i ⊆{ δ1 ,

��, δp }. 

Under PIP, when a job J 
j 

k 
of a task τ k is holding (i.e., using) a

hared resource δx and another higher priority job J 
j 
i 

of a task τ i 

equests the same shared resource δx , the priority inheritance op-

rates such that the priority of J 
j 

k 
is promoted to i ; we assume that

maller i indicates a higher priority in the RM scheduling. We call

uch temporally promoted priority as the effective priority com-

ared to the base priority initially assigned by RM scheduler of-

ine. J 
j 
i 

may also experience interference from other lower priority
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Fig. 6. Priority inheritance protocol for m = 2 . 
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jobs under PIP because the effective priority of a lower priority job

can be higher than i due to priority inheritance. 

Fig. 6 illustrates an example schedule of τ = { τ1 , · · · , τ5 } un-

der PIP for m = 2 , where task indexes 1–5 indicate their base-

priorities. In the example, τ 2 and τ 5 share δ1 , τ 3 and τ 4 share

δ2 , and τ 1 does not use any resource. Initially, τ 5 and τ 4 hold δ1 

and δ2 , respectively, and perform their executions. At t 1 , τ 2 arrives

and requests δ1 , but τ 2 cannot get δ1 because τ 5 is holding δ1 . In-

stead, the effective priority of τ 5 is promoted to 2. At t 2 , τ 1 arrives

and τ 4 is preempted by τ 1 because τ 4 ’s effective (even base) pri-

ority is lower than τ 1 . At the same time, τ 3 arrives and requests

δ2 , but τ 3 cannot get δ2 because τ 4 is holding δ2 . Thus, τ 4 ’s pri-

ority is promoted to 3 at t 2 . At t 3 , τ 5 completes its execution with

δ1 , and τ 2 begins its execution with δ1 . At t 4 , τ 1 and τ 2 finish its

execution simultaneously, and τ 4 resumes its execution with δ2 .

At t 5 , τ 1 and τ 2 arrive at the same time, and τ 4 is preempted by

them. At t 6 , τ 4 resumes its execution with δ2 , and τ 4 completes

its execution and τ 3 beings its execution with δ2 at t 7 . 

To calculate the response time under PIP, we need to define the

new worst-case execution C δ
k 
, which includes CPU execution time

only and does not include the worst-case waiting time to get re-

quired resources. This is different from C i of the Liu and Layland

model, which assumes that it always includes the worst-case wait-

ing time for it. Then, the response time under PIP is determined by

three factors: (i) the worst-case execution C δ
k 

without the worst-

case waiting time for δS k , (ii) the maximum amount of time that a

job J 
j 

k 
of τ k waits to get its required resources δx ∈ δS k , and (iii) the

maximum amount of time that J 
j 

k 
’s execution that is hindered by

other jobs not requiring any resource δx ∈ δS k , whose effective or

base priorities are higher than J 
j 

k 
’s one. (i) is supposed to be given,

while we need to consider the following two terms to calculate (ii).

• DB k denotes the upper-bounded total amount of time that a job

J 
j 

k 
of τ k waits to get any resource δx ∈ δS k while δx is used by

lower base-priority (its effective priority may be promoted to k )

jobs, and 

• Ihp (dsr) 
k 

(� ) (direct shared resource) denotes the upper-bounded

total amount of time that J 
j 

k 
waits to get any resource δx while

δx used by higher base-priority jobs in an interval of length � . 

Also, (iii) is determined by the following three terms. 

• Ihp (osr) 
k 

(� ) (other shared resources) denotes the upper-bounded

total amount of time that higher base-priority jobs J 
j 
i 

execute

holding a resource not in δS k (i.e., δS k ∩ δS i = ∅ ) in an interval

of length � , 
• Ihp (nsr) 

k 
(� ) (no shared resource) denotes the upper-bounded to-

tal amount of time of other higher base-priority jobs J 
j 
i 

execut-
ing without any resource (i.e., δS i = ∅ ) in an interval of length

� , and 

• Ilp k ( � ) denotes the upper-bounded total amount of time of

lower base-priority jobs in an interval of length � , when hav-

ing an effective-priority greater than J 
j 

k 
. 

J 
j 

k 
cannot execute when J 

j 

k 
requests any resource δx ∈ δS k while

nother job J 
j 

k 
is holding the same resource. On the other hand, m

obs are needed to hinder J 
j 

k 
’s execution if such jobs are holding

esources not in δS k or do not request any resource during their

xecution. Thus, task τ k scheduled by RM scheduling with PIP can

e schedulable, if every job J 
j 

k 
of τ k satisfies the following for C δ

k 
≤

 ≤ D k ( Easwaran and Adersson, 2009 ): 

 

δ
k + DB k + Ihp (dsr) 

k 
(� ) 

+ 

⌊ Ihp (osr) 
k 

(� ) + Ihp (nsr) 
k 

(� ) + Ilp k (� ) 

m 

⌋ 

≤ �. (11)

hen, RTA finds such � , using the procedure explained in

ection 3.2 . 

Now, we discuss how to incorporate the CF policy into RM

cheduling and develop PRTA with PIP. To this end, we need to

ddress the following three questions. 

1. How to calculate the lower-bounded number of contention-free

slots that exists in the interval [ r 
j 
i 
, d 

j 
i 
), 

2. How to effectively utilize such lower-bounded number of

contention-free slots during scheduling to improve schedulabil-

ity, and 

3. How to develop PRTA to guarantee schedulability of RM

scheduling under PIP. 

We first address Q1 as follows. By the definition of terms that

e mentioned, J 
j 

k 
cannot execute in an interval of length DB k +

hp (dsr) 
k 

(� ) . In addition, at least m executions of jobs are needed

or a time to be contending as explained in Lemma 1 . Therefore,

he lower-bounded number of contention-free slots that exists in

he interval [ r 
j 
i 
, d 

j 
i 
) under PIP (denoted by �δ

k 
) can be calculated

y 

δ
k = max 

(
0 , D k − DB k − Ihp (dsr) 

k 
(D k ) 

−
⌊ C δ

k 
+ Ihp (osr) 

k 
(D k ) + Ihp (nsr) 

k 
(D k ) + Ilp k (D k ) 

m 

⌋ )
. (12)

To address Q2, we need to carefully consider two scenarios

here the priority of a job J 
j 

k 
is demoted by the CF policy when J 

j 

k 
s holding a certain resource and is not. Since the priority demo-

ion of a job J 
j 

k 
causes a complicated influence to PIP, we can re-

ieve such complication as we demote J 
j 

k 
’s base priority only when
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B  
emaining contention-free slots �δ
k 

(under PIP) for J 
j 

k 
is sufficiently

arger than the summation of J 
j 

k 
’s remaining execution and the to-

al amount of time holding all resources in δS k . Thereafter, we pro-

ote J 
j 

k 
’s priority again when it requests any resource in δS k . 

Even though such policy may utilize smaller amount of

ontention-free slots compared to �δ
k 
, it makes easier to address

3. Since the priority of a job is temporally demoted only when it

oes not hold any resource, it changes the value of Ihp (nsr) 
k 

(� ) only

y the definition of Ihp (nsr) 
k 

(� ) . The amount of interference of τ i 

ontributing to Ihp (nsr) 
k 

(� ) (in Eq. (11) ) can be deducted at least as

uch as max (0 , �δ
i 

− ∑ 

δx ∈ δS i 
C i,x ) . So far, we briefly discussed how

o apply PIP to PRTA. 

Although the locking protocol such as PIP is an effective ap-

roach to relieve a pessimistic assumption regarding shared com-

uting resource in the Liu and Layland’s task model, the derived

orst-case waiting time for resources under such locking proto-

ol may be reduced, if we consider more specific CPU architec-

ure, which is, modern multicore systems use hardware memory

ontroller for arbitrating concurrent memory accesses from mul-

iple cores. If multiple active jobs access data in the different

anks in DRAM simultaneously, they could utilize their required

esources without any delay. However, the key difficulty in ex-

loiting such advantage of concurrent accesses on a resource for

ard real-time systems is that the exact locations of the allocated

emory over the banks are unpredictable. Some studies such as

redator ( Akesson et al., 2007 ) and AMC ( Paolieri et al., 2009 )

RAM controller treat multiple banks as a single one to improve

redictability, but such approaches do not take advantage of con-

urrent accesses to DRAM to reduce the worst-case waiting time.

ther approaches employ private banking schemes so that each

ore only can access its designated bank by modifying hardware

esign ( Reineke et al., 2011; Wu et al., 2013 ). While private bank-

ng schemes require a hardware modification, a software approach

uch as PALLOC ( Yun et al., 2014 ) just modifies kernel codes so that

 system designer can partition DRAM banks in a flexible manner

o improve predictability. Using PALLOC, partitioned tasks in a cer-

ain core is allowed to access to a designated bank, and it makes

ossible multiple access to DRAM with predictability. However, it

orces a partitioning scheduling and, non-designated banks cannot

e used even if it is not used by any task. To effectively exploit the

pproaches mentioned above, we may further improve the analyt-

cal capability of PRTA by considering memory access mechanism. 

.2. Preemption and migration costs 

The fixed worst-case execution time under the Liu and Lay-

and’s task model also assumes to include preemption and migra-

ion costs. Since a migration from one processor to another condi-

ionally occurs when a preemption happens, we upper-bound the

otential number of migrations by measuring the number of pre-

mptions under the target scheduling algorithm. According to the

xperiment results in a previous study ( Lee et al., 2011; 2014 ), the

verage actual number of preemptions incurred by each implicit-

eadline (i.e., D i = T i ) task set scheduled by EDF-CF during 10 0,0 0 0

ime units is 1,071.1 for m = 2 and 2,321.1 for m = 8 , meaning that

ossibility of the occurrence of a preemption at each time unit

s from 1.0% to 2.3% depending on the number of processors. Al-

hough PRTA does not provide a mechanism to calculate (or upper-

ound) the number of preemptions that occurs during each job’s

xecution, such experimental results imply that it is acceptable not

o take preemption cost into account (or it is acceptable to have

imilar WCET with the CF policy to that without the CF policy) be-

ause the CF policy does not cause a large amount of additional

ime delay due to preemptions (and migrations). 
.3. Worst-case interference 

When it comes to the worst-case interference I k (r 
j 

k 
( ̂  τ ) , r j 

k 
( ̂  τ ) +

 ) on ˆ τk , overestimation can intervene in upper-bounding both

 

i 
k 
(r 

j 

k 
( ̂  τ ) , r j 

k 
( ̂  τ ) + � ) and I k (r 

j 

k 
( ̂  τ ) , r j 

k 
( ̂  τ ) + � ) . Since upper-bounding

 

i 
k 
(r 

j 

k 
( ̂  τ ) , r j 

k 
( ̂  τ ) + � ) is based on the worst-case scenario in Fig. 3 ,

he analytic capability of PRTA can be improved if we find the

ore optimistic worst-case scenario. Also, PRTA upper-bounds

 k (r 
j 

k 
( ̂  τ ) , r j 

k 
( ̂  τ ) + � ) with the summation of min (I i 

k 
(r 

j 

k 
( ̂  τ ) , r j 

k 
( ̂  τ ) +

 ) , � − C k + 1) of all tasks in ˆ τ \ τk ( ̂  τ ) divided by the number

f processors m . As the proof of Lemma 2 indicates, the un-

erlying idea on such calculation is that a job cannot execute

n a time slot if m other higher-priority jobs execute and ex-

cution of each higher-priority job is assumed to contribute to

in (I i 
k 
(r 

j 

k 
( ̂  τ ) , r j 

k 
( ̂  τ ) + � ) , � − C k + 1) as much as possible. However,

uch an idea is quite pessimistic since a certain portion of a higher-

riority job’s execution can be performed in parallel with a job of

k ( ̂  τ ) . Therefore, the performance of PRTA can also be enhanced

f we reduce upper-bounded execution of higher-priority jobs in

 r 
j 

k 
( ̂  τ ) , r j 

k 
( ̂  τ ) + � ) . 

. Conclusion 

In this study, we aimed at developing a tighter schedulability

nalysis for A -CF by inspecting the limitations of the RTA frame-

ork. To this end, we proposed a new schedulability analysis for

 -CF, referred to as PRTA, by investigating the properties of the

riority demotion conducted by the CF policy. Building upon the

nvestigation, we defined the notion of pseudo-response time as a

ighter criterion than response time for the CF policy, which rep-

esents the worst-case time when the schedulability of a task is

uaranteed; we observed that the pseudo-response time of a task

an be derived by either the time when priority demotion occurs

r the finishing time. We then derived a tighter schedulability con-

ition of a task scheduled by A -CF. We also showed that perfor-

ance of PRTA can be further improved by exploiting a new notion

f pseudo-slack time. To demonstrate the effectiveness of PRTA, we

pplied PRTA to the existing EDF and RM scheduling algorithms

mploying the CF policy, and showed that up to 46.4% and 18.3%

chedulability performance improvement can be achieved, respec-

ively, compared to those applying the DA test. 

For future work, we are planning to develop an extended PRTA,

hich is applicable to a combination of the CF and ZL policies. We

lso would like to extend PRTA from the single-level to multi-level

F policy ( Baek et al., 2018b ). In order to improve analytic capabil-

ty of the proposed PRTA, we need to address the issues discussed

n Section 7 to relieve pessimism of the overestimated response

ime on PRTA. 
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