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Abstract: While recent studies addressed security attacks in real-time embedded systems, most of
them assumed prior knowledge of parameters of periodic tasks, which is not realistic under many
environments. In this paper, we address how to infer task parameters, from restricted information
obtained by simple system monitoring. To this end, we first develop static properties that are
independent of inference results and therefore applied only once in the beginning. We further develop
dynamic properties each of which can tighten inference results by feeding an update of the inference
results obtained by other properties. Our simulation results demonstrate that the proposed inference
framework infers task parameters for RM (Rate Monotonic) with reasonable tightness; the ratio
of exactly inferred task periods is 95.3% and 65.6%, respectively with low and high task set use.
The results also discover that the inference performance varies with the monitoring interval length
and the task set use.

Keywords: task parameter inference; real-time embedded systems; real-time scheduling

1. Introduction

Real-Time Embedded Systems (RTES) have been deployed in time-critical environments,
often involving control tasks each of which invokes a series of jobs with periodic releases, which has
been widely studied in the industrial informatics community [1–6]. While traditional RTES have
been little exposed to security attacks due to isolation from the external world and use of
specialized hardware/protocol, increased connectivity yields new security attacks on RTES. Therefore,
recent studies have addressed vulnerability issues by incorporating security mechanisms into RTES,
without compromising timing constraints [7–9]; for example, a study in [8] has proposed a schedule
randomization protocol against timing inference attacks such as side-channel or covert-channel
attacks [10–15]. Also, targeting Electronic Control Units (ECU), some studies have developed a new
denial-of-service attack [16] and a new intrusion detection system [17].

The attacks presented by those existing studies (from both defensive and offensive aspects)
assume that the adversary knows important information of task parameters such as task period
and actual/worst-case execution time; for example, the attacks in [8,9] and those in [16,17] assume
knowledge of all task parameters and some task parameters including task priority ordering,
respectively. Since information of task parameters is not necessarily open to the public, we need
(i) to know whether it is feasible to infer task parameters from restricted information obtained by
simple system monitoring and (ii) to develop a systematic way how to infer, both of which have not
been fully addressed in existing studies. As shown in Figure 1, it is very challenging to infer task
parameters, from information of the task index of currently-executing jobs (Section 2 will discuss how
to obtain the information by simple system monitoring).
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Figure 1. An example of the monitoring interval during 90 time units; for example, the first line
indicates the execution information for the first 20 time units, and time slots with gray color and white
color mean no execution and execution with the corresponding task, respectively.

In this paper, we propose a framework to infer task parameters, only from information about
the task index of currently-executing jobs, and we apply the framework to RM (Rate Monotonic) [18];
once developed, the framework makes it possible to predict future job release and execution patterns
of a given RTES so as to facilitate security attacks. To this end, we develop two types of properties that
can narrow down (a) the feasible range of each task period and (b) the feasible group of each task’s
execution chunks that belong to the same job. First, we design static properties that are independent of
inference results, which are therefore applied only once in the beginning. Second, we propose dynamic
properties, each of which can yield tighter inference for (a) and (b) by feeding an update of the inference
results obtained by other properties. Since all the properties to be developed in this paper do not
assume any prior knowledge of job release times, task/job priority ordering, and distribution of actual
execution times (many studies for security issues in RTES implicitly assume that the actual execution
time is static [8,9,11,19]), the proposed framework successfully operates with various environments.

Our simulation results for the proposed inference framework make the following implications.
First, the proposed framework infers task parameters for RM with reasonable tightness; the ratio of
exactly inferred task periods is 95.3% and 65.6%, respectively with low and high task set use. Second,
the inference performance gets improved, as the system use decreases or the monitoring interval
length increases.

In summary, this paper makes the following contributions:

• Introduction of a task parameter inference problem for given restricted information,
• Development of useful properties that narrow down (a) and (b),
• Demonstration of reasonably tight inference of task parameters for RM, and
• Identification of factors that affect inference performance: the monitoring interval length and the

system use.

The remainder of this paper is structured as follows. Section 2 explains the system and adversary
model. Section 3 presents the overall structure of the inference framework. Sections 4 and 5 propose
static and dynamic properties, respectively. Section 6 evaluates the effectiveness of the proposed
framework, and finally, Section 9 concludes the paper.

2. System and Adversary Model

System model. We target a real-time embedded system which deploys a uniprocessor, and the
system has a set of periodic real-time tasks. Each task τi ∈ τ is modeled by the period (Ti) and the
worst-case execution time (Ci); τi invokes a series of jobs, each separated from its predecessor by
exactly Ti time units (in this paper, we assume quantum-based time; without loss of generality, let one
time unit be the quantum length, and therefore all task/job parameters are non-zero natural numbers).
We do not assume any relationship between jobs belonging to different tasks; therefore, individual
tasks do not necessarily invoke their jobs in a synchronous manner. Different from recent studies for
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security issues in real-time systems [8,9,11], the actual execution time of each job of τi (denoted by
Ai(J) for job J) is not necessarily equal to Ci; instead, 1 ≤ Ai(J) ≤ Ci holds.

We target one of the most popular preemptive real-time scheduling algorithms: RM, which gives
a higher priority to a job whose invoking task’s period is shorter. Each task has a unique task index,
but it does not necessarily imply the task priority. We assume that the target system normally operates
without any deadline miss for all jobs.

Adversary model. The main objective of the adversary is to infer task parameters Ci and Ti for
every task τi ∈ τ, which potentially yields various security attacks such as side-channel attacks [10–13]
or covert-channel attacks [15]. We consider that the adversary monitors the target system during
the monitoring interval (denoted by MI) and obtains very restricted information—the task index of
currently-executing jobs, which is feasible for many environments such as ECU connected with control
area network [16,17]. Please note that the task index information does not necessarily imply that we
should know the task indexes used in the system; instead, we only need to distinguish every task
from other tasks, which is feasible using various techniques such as [20]. For example, an attacker can
number tasks in Figure 1 after s/he differentiates all tasks.

Notations. We can formally express the monitoring interval (MI) as follows. From knowledge
of the task index of currently-executing jobs, we naturally track which task was executed and
whether CPU was idle or busy in each time quantum. We define the busy (likewise idle) interval
as an interval in which a series of jobs are consecutively executed without idling CPU (likewise no job is
executed). We can express MI as a union of busy and idle intervals in which different types of intervals
alternate (for the ease of presentation, we assume that MI starts with an idle interval), meaning that
MI = II1 ∪ BI1 ∪ II2 ∪ BI2 ∪ ..., where BIx (likewise IIx) denote the xth busy (likewise idle) interval,
as shown in Figure 1. We also define a subinterval as an interval between the time instant when a job
of a task starts or resumes its execution and that when it stops its execution by the scheduler; therefore,
each job in its subinterval continuously runs without being interrupted by any other job or idle interval.
Let SIax denote the ath subinterval in BIx. By definition, a full or partial execution of a single job is
performed in each subinterval, and it is not allowed to execute more than one job in each subinterval.
As MI is decomposed into IIx and BIx, BIx can be decomposed into SI1x ∪ SI2x ∪ ..., as shown in Figure 1.

In this paper, let NBI denote the number of busy intervals in MI, and NSIx denote the number
of subintervals in BIx. Also, let τ(SIax) denote the task executed in SIax. Finally, let tstart(Interval) and
tend(Interval) denote the start and end time of Interval; for example, tstart(MI), tstart(BIx), and tstart(SIax)
denote the start time of MI, BIx, and SIax, respectively.

3. Inference Framework Overview

The proposed framework aims at inferring task parameters (Ti, Ci) for every task executed in
the monitoring interval MI, so as to facilitate other security attacks. Once we investigate MI, we can
arrange the following information:

Info1. A set of tasks executed in MI (denoted by τ), and
Info2. tstart(BIx) and tend(BIx) for every 1 ≤ x ≤ NBI, and tstart(SIax), tend(SIax) and τ(SIax) for every

pair of 1 ≤ x ≤ NBI and 1 ≤ a ≤ NSIx .

Based on Info1 and Info2, the framework develops properties regarding task periods and subinterval
groups for job separation. While it is straightforward to require the former, the need/role of the latter
will be explained now. The hth subinterval group of τk (denoted by SGh(τk)) is defined as a group
of subintervals in each of which the potentially same job of τk is executed. What we meant by
“the potentially same job” is as follows. If two subintervals SIax and SIby satisfying τ(SIax) = τ(SIby) = τk
belong to different subinterval groups, then it means that a job of τk executed in SIax is different from
that in SIby. Otherwise, a job of τk executed in SIax can be either different from or the same as that in SIby.
Whenever we find new evidence that different jobs of a task are executed in subintervals belonging to
the same subinterval group, we split the subinterval group into two.
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Once we gather sufficiently specific information of subinterval groups and then combine it to task
period information, we finally know not only Ti, but also statistics for Ai(J), allowing the prediction of
Ci. To this end, we maintain the following information regarding task periods and subinterval groups:

Info3. T−i and T+
i for every τi ∈ τ, and

Info4. Subintervals in SGh(τk), t−release
(

Jearliest(SGh(τk))
)
,

t+release
(

Jearliest(SGh(τk))
)
, t−release

(
Jlatest(SGh(τk))

)
, and

t+release
(

Jlatest(SGh(τk))
)

for every pair of τk ∈ τ and possible h,

Here, T−i and T+
i denote the lower and upper bounds of Ti, respectively. trelease(J), t−release(J),

and t+release(J) also denote the release time of a job J, its lower bound, and its upper bound.
Jearliest(SGh(τk)) and Jlatest(SGh(τk)) denote a job with the earliest and latest release time among
jobs executed in subintervals in SGh(τk). Therefore, Info4 includes information regarding the feasible
range of release times of jobs with the earliest and latest release times, and will be used for deriving
Info3 in the later sections.

Then, the proposed inference framework’s objective can be expressed by obtaining Info3 and Info4

as tightly as possible, and the framework operates with the following steps.

Step1. Obtain Info1 and Info2 from MI.
Step2. Set the default values to Info3 and Info4.
Step3. Apply static properties for Info3 and Info4.
Step4. Apply dynamic properties for Info3 and Info4.
Step5. If there is any change of Info3 and Info4 in Step4, go to Step4; otherwise, stop the inference

framework.

In Step2, we set T−i and T+
i to 1 and MAXT (sufficiently large value) for every τi ∈ τ,

respectively. Also, we assign only one unified subinterval group SGuni(τk) for every τk ∈ τ, and set
t−release(Jearliest(SGh(τk)) and t−release(Jlatest(SGh(τk)) to tstart(MI), and t+release(Jearliest(SGh(τk)) and
t+release(Jlatest(SGh(τk)) to tend(MI); the unified subinterval group will be split by properties to be
presented in later sections.

When it comes to Step3, static properties to be developed in Section 4, rely on Info1 and Info2 only.
Hence, the properties are not affected by any change of Info3 and Info4, implying that we apply the
properties only once in the beginning.

In Step4, dynamic properties to be developed in Section 5, utilize some of Info3 and Info4, and have
potential to further narrow down Info3 and Info4, from an update of Info3 and Info4 by other properties.
Therefore, we repeatedly apply the properties whenever there is an update of Info3 and Info4.

Once we apply our inference framework with Step1 to Step5, we are able to not only infer each
task period, but also differentiate different jobs belonging to the same task, which implies that we
know the execution time of each job. Therefore, for the remainder of the paper, we focus on inferring
each task period.

4. Task Inference by Static Properties

In this section, we aim at inferring Info3 and Info4, and derive static properties that are independent
of Info3 and Info4.

The first static property determines the range of the release times of the earliest and latest jobs in
a subinterval group as follows.

Subinterval Group Property 1. We can split the unified subinterval group SGuni(τk) into several groups
each of which includes subintervals belonging to the same busy interval. After splitting, the following inequalities
hold for a subinterval group SGh(τk) which includes subintervals SIb1

x , SIb2
x , ..., SIbm

x where b1 < b2 < ... < bm.
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tstart(BIx) ≤ trelease
(

Jearliest(SGh(τk))
)
≤ tstart(SIb1

x ), (1)

tstart(BIx) ≤ trelease
(

Jlatest(SGh(τk))
)
≤ tstart(SIbm

x ). (2)

In short, the release time of a job with the earliest release time among jobs executed in subintervals in
SGh(τk) is between the start time of the busy interval and the start time of the earliest subinterval in SGh(τk).
Also, the release time of a job with the latest release time among jobs executed in subintervals in SGh(τk) is
between the start time of the busy interval and the start time of the latest subinterval in SGh(τk).

In addition, if b1 = 1 (i.e., SIb1
x is the earliest subinterval in its busy interval BIx), then we can find an

exact value of the release time of the earliest job in SGh(τk) as follows:

trelease
(

Jearliest(SGh(τk))
)
= tstart(BIx). (3)

Proof. Since no job is released and executed in an idle interval, the release time of any job in a busy
interval cannot be earlier than the starting time of the busy interval, implying the first inequalities
in Equations (1) and (2). The second inequalities in Equations (1) and (2) hold as follows. Since there
exists a job which starts its execution at tstart(SIb1

x ), a job with the earliest release time in SGh(τk) cannot
be released later than tstart(SIb1

x ). Similarly, since the latest subinterval in which τk is executed starts
at tstart(SIbm

x ), a job with the latest release time in SGh(τk) cannot be released later than tstart(SIbm
x ).

Equation (3) immediately holds because no job is released and executed in an idle interval.

Now, we present useful properties that narrow down the range of every task period, starting from
the property indicating the period of a task is at least as much as the length of a subinterval in which
the task is executed.

Task Period Property 1. The following inequality holds for SIax satisfying τ(SIax) = τk, for every pair of
1 ≤ x ≤ NBI and 1 ≤ a ≤ NSIx :

Tk ≥ tend(SIax)− tstart(SIax). (4)

The inequality means that the period of τk is at least the difference between the start and end time of each
subinterval for τk.

Proof. The length of SIax is no longer than Ak(J) for every job J of τk, and Ak(J) ≤ Ck ≤ Tk holds.
Therefore, the property holds.

Based on the observation that any job cannot be released within an idle interval, we derive the
following property.

Task Period Property 2. The following inequality holds for BIx for every 1 ≤ x ≤ NBI − 1:

Tk >
tstart(BIx+1)− tend(BIx)

2
. (5)

The inequality means that the period of τk is at least half of the difference between the start time of the next
busy interval and the end time of the current busy interval.

Proof. Suppose that Equation (5) is wrong. Then, there exists at least one job released in
[tend(BIx), tend(BIx)+

tstart(BIx+1)−tend(BIx)
2 ], and the job’s deadline is no later than tstart(BIx+1), meaning

that the idle interval [tend(BIx), tstart(BIx+1)) subsumes the interval between the job’s release and
deadline, which implies no execution of the job. This contradicts the supposition.

Analyzing the job release/execution patterns, we can derive the following property regarding
each task period.
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Task Period Property 3. Suppose that there are at most n− 2 subintervals satisfying τ(SIax) = τk within
a continuous interval of length n · L, where n is a natural number not smaller than 2. Then, the following
inequality holds:

Tk > L. (6)

Proof. Suppose that Equation (6) is wrong; we will show the contradiction. If we focus on an interval
of length n · L, the interval contains at least n− 1 jobs whose release times and deadlines are within
the interval. Since each job has at least one unit of execution, there should be at least n− 1 subintervals.
This contradicts the supposition.

Please note that we can apply a binary search to find the largest L in Task Period Property 3.
This is because if we find a continuous interval of length n · L satisfying the property, we also find that
of length n · L′ (if L′ < L).

We also note that it may be time-consuming to test all feasible intervals of given length n · L within
MI. To alleviate computation cost, we may select some of candidate intervals, e.g., [tstart(MI), tstart(MI)+
n · L), [tstart(MI) + n · L, tstart(MI) + 2 · n · L), [tstart(MI) + 2 · n · L, tstart(MI) + 3 · n · L) and so on.
Likewise, we may also limit the number of trials for n.

Example 1. We explain how static properties work using an example in Figure 1. In the example, the monitoring
interval MI is [0, 90), and there are 5 tasks: τ0, τ1, τ2, τ3 and τ4. Due to the space limit, we explain how the
framework narrows down the range of T2 of τ2. After applying Task Period Property 1, we know T2 ≥ 2.
Since the length of the longest idle interval is 3, Task Period Property 2 also yields T2 > 1.5. If we focus on
[13, 19), there is no execution of τ2, deriving T2 > 3 from Task Period Property 3. Considering the quantum
length equal to 1, we conclude T2 ≥ 4. The feasible range of Ti for all tasks are shown in Table 1.

Table 1. The feasible range of each task period after applying static properties.

Task Index 0 1 2 3 4

T−i 12 11 4 11 13
T+

i MAXT MAXT MAXT MAXT MAXT

5. Task Inference by Dynamic Properties

Different from static properties, dynamic properties utilize Info3 and Info4; we can feed an update
of Info3 and Info4 by a dynamic property back to other dynamic properties, potentially improving
inference performance by collaboration of different dynamic properties.

We first narrow down the range of the release time of the earliest and latest jobs in a subinterval
group as follows.

Subinterval Group Property 2. Suppose that there are two consecutive subinterval groups of τk:
(i) SGh−1(τk) consisting of subintervals SIa1

x , SIa2
x , ..., SIan

x where a1 < a2 < ... < an, and (ii) SGh(τk)

consisting of subintervals SIb1
y , SIb2

y , ..., SIbm
y where b1 < b2 < ... < bm, and x ≤ y. Then, we can determine the

range of the release times of the earliest and latest jobs in SGh(τk) as follows (here, the term “two consecutive
subinterval groups” SGh−1(τk) and SGh(τk) implies that there is no subinterval group which is later than
SGh−1(τk) and earlier than SGh(τk)).

tend(SIan
x ) ≤ trelease

(
Jearliest(SGh(τk))

)
≤ tstart(SIb1

y ), (7)

tend(SIan
x ) ≤ trelease

(
Jlatest(SGh(τk))

)
≤ tstart(SIbm

y ). (8)

The structure of the above inequalities are similar to that of Subinterval Group Property 1.
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Proof. Suppose that trelease
(

Jearliest(SGh(τk))
)

is earlier than tend(SIan
x ). Then, it contradicts the

definition of a subinterval group—different jobs should be executed in subintervals in different
groups. Therefore, the first inequalities in Equations (7) and (8) hold. We already prove the second
inequalities in Equations (7) and (8) in Subinterval Group Property 1.

Subinterval Group Property 2 is effective for the situation where all subintervals in two consecutive
subinterval groups belong to the same busy interval. Whenever a subinterval is split by some properties
to be presented later, the property yields a tighter value of t−release

(
Jearliest(SGh(τk))

)
and t−release(

Jlatest(SGh(τk))
)

than Subinterval Group Property 1. This is because, tend(SIan
x ) in Equations (7)

and (8) is no earlier than tstart(BIx) in Equations (1) and (2), if SGh−1(τk) and SGh(τk) belong to the
same busy interval.

Using the above subinterval group property, we can determine the range of each task period
as follows.

Task Period Property 4. Suppose that there are two consecutive subinterval groups of τk: (i) SGh−1(τk)

consisting of subintervals SIa1
x , SIa2

x , ..., SIan
x where a1 < a2 < ... < an, and (ii) SGh(τk) consisting of

subintervals SIb1
y , SIb2

y , ..., SIbm
y where b1 < b2 < ... < bm, and x ≤ y. Then, we can determine the range

of τk’s period as follows.

Tk ≥ t−release
(

Jearliest(SGh(τk))
)
− t+release

(
Jlatest(SGh−1(τk))

)
, (9)

Tk ≤ t+release
(

Jearliest(SGh(τk))
)
− t−release

(
Jlatest(SGh−1(τk))

)
. (10)

The first inequality means, the period of τk is at least the difference between the lower-bound of the release
time of a job with the earliest release time among jobs executed in subintervals in SGh(τk) and the upper-bound
of the release time of a job with the latest release time among jobs executed in subintervals in SGh(τk). The second
inequality means, the period of τk is at most the difference between the upper-bound of the release time of a job
with the earliest release time among jobs executed in subintervals in SGh(τk) and the lower-bound of the release
time of a job with the latest release time among jobs executed in subintervals in SGh(τk).

Proof. Since subintervals in different subinterval groups belong to different jobs, Jlatest(SGh−1(τk)) and
Jearliest(SGh(τk)) belong to different jobs. Therefore, Tk cannot be smaller than the length between the
latest release time of Jlatest(SGh−1(τk)) and the earliest release time of Jearliest(SGh(τk)), implying
Equation (9). Similarly, Tk cannot be larger than the length between the earliest release time of
Jlatest(SGh−1(τk)) and the latest release time of Jearliest(SGh(τk)), implying Equation (10).

Task Period Property 4 can upper-bound and lower-bound each task period, based on the
information of the release time of the earliest and latest jobs in each subinterval group, which can be
obtained by Subinterval Group Property 2.

The following property also narrows down the range of each task period.

Task Period Property 5. Suppose that τ(SIax) = τ(SIby) = τk, where either (x < y) or (x = y and a < b)
holds, and tstart(SIax) and tstart(SIby) are release times of jobs of τk. Then, the following equality holds.

tstart(SIby)− tstart(SIax) = Tk · n, (11)

where n is a natural number.

Proof. Since tstart(SIax) and tstart(SIby) are release times of jobs of τk, the number of jobs whose release
times are within [tstart(SIax), tstart(SIby)) can be a natural number. This proves the property.

This property, once incorporated with Equation (3) in Subinterval Group Property 1 and other
properties to be developed later, is powerful because the property discretizes the possible candidates
of each task period.
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Example 2. We also explain how dynamic properties on top of the static properties calculate T−2 and T+
2

of τ2 in the previous example shown in Figure 1. With collaboration between Subinterval Group Property 2
and Task Period Property 4, the framework narrows down the range of T2, yielding 8 ≤ T2 ≤ 10. Here,
T−i = 43− 35 = 8 is derived from a subinterval group of τ2 consisting of [35, 37), and another subinterval
group of τ2 consisting of [43, 45) and [51, 53). Similarly, T+

i = 35− 25 = 10 is derived from a subinterval
group of τ2 consisting of [27, 29) (whose busy interval starts at t = 25), and another subinterval group of τ2

consisting of [35, 37) . We summarize the task period inference results for every task in τ in Table 2.

Table 2. The feasible range of each task period after applying static/dynamic properties.

Task Index 0 1 2 3 4

T−i 15 14 8 19 17
T+

i 15 14 10 22 17

If we find a pair of tasks satisfying T+
i < T−j (implying Ti < Tj) through Task Period Properties 1–4

presented so far, we additionally know the priority ordering of the tasks under RM. Once we use such
task priority ordering information, we are able to not only split a subinterval group, but also narrow
down the range of the release time of the earliest job in the split subinterval group, recorded in the
following property.

Subinterval Group Property 3. Suppose that SIax and SIcx (where a < c) satisfy (i) τ(SIax) = τ(SIcx) = τk,
and (ii) there is no subinterval SIbx satisfying τ(SIbx) = τk and a < b < c. Then, the following two properties hold.

Case 1. If there exists SIbx satisfying a < b < c, τ(SIbx) = τj, and Tk < Tj, then SIcx should be the earliest
subinterval of a subinterval group of τk (denoted by SGh(τk)) and the following inequality holds:

tend(SIbx) ≤ trelease
(

Jearliest(SGh(τk))
)
≤ tstart(SIcx). (12)

Case 2. If there exists SIbx satisfying a < b < c, τ(SIbx) = τj, and Tk > Tj, then SIbx should be the earliest
subinterval of a subinterval group of τj (denoted by SGg(τj)) and the following inequality holds:

tend(SIax) ≤ trelease
(

Jearliest(SGg(τj))
)
≤ tstart(SIbx). (13)

The structure of the above inequalities are similar to that of Subinterval Group Property 1.

Proof. Now we prove Case 1. From Tk < Tj and τ(SIax) = τ(SIcx) = τk 6= τ(SIbx) = τj, we know that
the job priority executed in SIax is the same as that in SIcx, which is higher than that in SIbx. Therefore,
jobs executed in SIax and SIcx are different, implying that SIcx should be the earliest subinterval of a
subinterval group of τk. Since the job priority executed in SIcx is higher than that in SIbx, a job executed
in SIcx cannot be released earlier than tend(SIbx).

We can prove Case 2 using the same proof technique.

Considering a special case of Subinterval Group Property 3, we can derive an exact release time
of the earliest job in a subinterval group, which is useful for Task Period Property 5.

Subinterval Group Property 4. If Case 1 of Subinterval Group Property 3 holds with b = c− 1, then we
can find an exact value of a parameter of SGh(τk) as follows:

trelease
(

Jearliest(SGh(τk))
)
= tstart(SIcx). (14)

If Case 2 of Subinterval Group Property 3 holds with b = a + 1, then we can find an exact value of a
parameter of SGg(τj) as follows:
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trelease
(

Jearliest(SGg(τj))
)
= tstart(SIbx). (15)

Proof. The property immediately holds if we apply Subinterval Group Property 3 with b = c− 1 and
b = a + 1.

Now, we explain how all the dynamic properties collaborate with each other.
Dependency relationship between dynamic properties. Once Subinterval Group Property 3

separates a subinterval group, both separated groups’ parameters (i.e., the range of the release time of
the earliest and latest jobs in each group) are determined by Equations (12) and (13) of the property
itself and Equations (7) and (8) in Subinterval Group Property 2. This subinterval group separation
may allow Task Period Property 4 to further narrow down the range of the task period. This update for
the task period may also result in new priority ordering information by finding T+

i < T−j relationship,
which in turn, yields potential subinterval group separation chance by Subinterval Group Properties 3
and 4 again.

Similarly, once Subinterval Group Property 4 finds an exact release time of a job, Task Period
Property 5 has a chance to narrow down the range of a task period, which may find additional T+

i < T−j
relationship. This, in turn, may yield an update by Subinterval Group Properties 3 and 4 again.

Example 3. We also continue applying all properties presented so far, to the previous example in Figure 1.
Since Table 2 shows that τ2 has the shortest period, implying the highest priority. Therefore, Subinterval Group
Property 4 provides several exact release time information for τ2, which are t = 11 and 51. Together with another
release time t = 35 from Subinterval Group Property 1, Task Period Property 5 yields T2 = 8. Finally, Table 3
presents the final results for task period inference.

Now, we know exact task periods of all tasks except τ3. However, we know that τ3 has the lowest priority,
and therefore it does not affect any schedule of other tasks. We therefore trace all execution times of all tasks
except τ3. Then, it is possible to know future release times of jobs of all tasks except τ3, and to predict their
execution times, based on the distribution of observed actual execution times.

Table 3. The feasible range of each task period after applying all static/dynamic properties.

Task Index 0 1 2 3 4

T−i 15 14 8 19 17
T+

i 15 14 8 22 17

6. Evaluation

In this section, we evaluate inference performance of the proposed framework for RM. We first
describe simulation environments, and then discuss the factors that affect the inference performance.

We consider the following two inputs for task set generation: (a) system use groups (represented
by [i]) for i = 0.1, 0.2, · · · , 1.0, each of which represents the system use ∑τj∈τ Cj/Tj in [i–0.1,i), and (b)
the distribution of ratio between Ci and Ti for five bimodal and five exponential distributions in
[21]. For each combination of (a) and (b), we randomly generate 100 task sets based on the task set
generation technique in [21,22], yielding 10,000 task sets in total. Here, Ti is uniformly selected in
[1, 1000], and Ci is chosen in [1, Ti] based on the distribution in (b); also, we do not include task sets
unschedulable by RM through response time analysis [23]. Once Ti and Ci of each task in a task set
is determined, we generate a series of periodic jobs from each task starting from t = 0. In addition,
for each task set, we test ten options of the monitoring interval LMI: 1000, 2000, ..., 9000, and 10,000
time units.

We measure the number of feasible choices of each task period inferred by the proposed inference
framework. For example, if the framework reveals that the period of the target task is one of 12, 13,
14 and 15, then the number of feasible choices of the task period is four; therefore, if the number of
feasible choices for a task is exactly one, it means that the framework succeeds to find the exact value
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of the task period. We set MAXT to 1000, implying that there are 1000 feasible choices of each task
period before we apply the proposed inference framework.

In Figure 2a, we visualize the ratio of exactly inferred task periods (i.e., the ratio of tasks which
have a single feasible choice), over increasing LMI with the system use group [0.2]. The x-axis exhibits
the monitoring interval LMI (from 1000 to 10,000), and the y-axis represents two values: the number
of feasible choices (from 1 to 64) and the ratio of exactly inferred task periods (from 0% to 100%).
For example, with LMI = 10,000, the number of feasible choices is 2.72 and the ratio of exactly inferred
task periods is 95.3%. This means, with the monitoring interval of 10,000 time units, the number of
candidates of the exact period of each task is two or three on average, and we can find the exact period
for 95.3% tasks (while cannot find that for 4.7% tasks). In Figure 2b, we visualize the number of feasible
choices over increasing the system use. The x-axis means the system zse (from [0.1] to [1.0]), and the
y-axis represents the number of feasible choices when LMI is 1000 and 10,000, respectively.
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Figure 2. Inference accuracy of each task period under RM. (a) Average number of feasible choices of
each task period and the ratio of exactly inferred task periods, over increasing LMI with [0.2]; (b) Average
number of feasible choices of each task period, over varying use with LMI = 1000 and 10,000.

The ratio of exactly inferred task periods increases as the monitoring interval length increases,
as shown in Figure 2a. The ratio reaches 90.6% with LMI = 3000, and increases to 95.3% with
LMI = 10,000. The results demonstrate that the proposed inference framework successfully finds
the exact task period for most tasks with the system use group [0.2]. Focusing on Figure 2b, even under
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high system use [0.7] which is close to the RM use bound, the ratio is 65.6% with LMI = 10,000.
This implies that the proposed inference framework operates effectively even with high system use.

We next derive a guideline to determine the proper length of the monitoring interval LMI.
As shown in Figure 2a, as LMI linearly increases, the average number of feasible choices of each
task period exponentially decreases with the system use group [0.2]. In particular, the number nearly
converges after LMI = 10,000 (2.81, 2.75 and 2.72 for LMI = 8000, 9000 and 10,000, respectively),
implying that an interval of 8000 time units is a sufficiently large length of the monitoring interval.
Based on a pair of the average number of feasible choices and the ratio of exactly inferred task periods
(e.g., 2.27 and 95.3%, respectively), we conclude that the proposed framework does not effectively
narrow down the number of feasible choices for a limited number of tasks (e.g., 4.7%) while it
successfully reveals the exact period for most tasks (e.g., 95.3%).

We then present the inference performance of RM with ten system use groups from [0.1] to [1.0]
and two monitoring interval length LMI 1000 and 10,000. As seen in Figure 2b, the proposed framework
shows high accuracy for lower system use, but it decreases as the system use increases, which holds
for both LMI= 1000 and 10,000. This is because high system use entails fewer idle intervals; since many
properties in the proposed framework use the characteristics of idle intervals, such conditions yield
fewer clues to narrow down the number of feasible choices of each task period.

In summary, the simulation results discover the following. First, the proposed framework infers
task parameters with reasonable tightness for RM. Second, the inference performance increases, as the
system use decreases or the length of the monitoring interval increases. One may argue that the
proposed framework exhibits excellent performance with low task set use (e.g., 95.3% ratio of exactly
inferred task periods with the system use group [0.2]), but unfavorable performance with high task set
use (e.g., 65.6% ratio of exactly inferred task periods with the system use group [0.7]). After revealing
several task periods, we may try other techniques (to be developed) to infer the unrevealed task
periods. Therefore, it is important to reveal some task periods, even though the other task periods
are not identified. It remains open how to incorporate other properties to improve the ratio with high
system use and how to automatically adapt the monitoring interval for given target ratio.

7. Towards Other Scheduling Algorithms

We would like to emphasize that the proposed framework can be applied to any other scheduling
algorithm because all properties except Subinterval Group Properties 3 and 4 are applicable to
any work-conserving scheduling algorithm. To improve the inference performance for the target
(work-conserving) scheduling algorithm, it is preferable to develop algorithm-specific properties as
this paper developed Subinterval Group Properties 3 and 4 for RM. In this section, we develop
algorithm-specific properties for another popular scheduling algorithm EDF (Earliest Deadline
First) [18]. Since Ti < Tj does not imply the task priority ordering under EDF, it is challenging
to develop EDF-specific properties. Now, we first present a property similar to one of RM-specific
properties (i.e., Subinterval Group Properties 3 and 4). We then present how to apply our inference
framework with the property, and finally we show the inference performance for EDF.

For EDF, we propose the following property.

Subinterval Group Property 5. Suppose that SIax and SIcx (where a < c) satisfy (i) τ(SIax) = τ(SIcx) = τk,
and (ii) there is no subinterval SIbx satisfying τ(SIbx) = τk and a < b < c. Then, the following two properties hold.

Case 1. If there exists SIbx satisfying a < b < c, τ(SIbx) = τj, and Tk < Tj, then SIcx should be the earliest
subinterval of a subinterval group of τk.

Case 2. If there exists SIbx satisfying a < b < c, τ(SIbx) = τj, and Tk > Tj, then SIbx should be the earliest
subinterval of a subinterval group of τj.

Proof. Now we prove Case 1. From Tk < Tj and τ(SIax) = τ(SIcx) = τk 6= τ(SIbx) = τj, we consider two
cases depending on relationship between absolute deadlines of SIax and SIbx. If the absolute deadline
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of a job executed in SIax is earlier, SIax and SIcx should be the latest and earliest subintervals within
different subinterval groups of τk. Otherwise, considering Tk < Tj, the release time of the job executed
in SIbx should be earlier than that in SIax. Then, due to job priorities depending on absolute deadlines,
SIax cannot be placed earlier than SIbx, which contradicts a < b. Therefore, Case 1 holds.

We can prove Case 2 using the same proof technique.

Please note that the above property, although simpler than Subinterval Group Property 3 for RM,
is derived using characteristics of EDF, and therefore the proof is different from RM. Different from
Subinterval Group Property 3, the first inequalities in Equations (12) and (13) do not hold under EDF.
This is because, while RM guarantees that the priority of a job executed in SIbx is higher than that in SIcx
in Case 1, the same cannot hold under EDF due to job-level (rather than task-level) priority assignment.
Because of the same reason, Subinterval Group Property 4 cannot hold under EDF.

Then, we can apply our inference framework proposed in Section 3 (i.e., Step1 to Step5) to EDF,
by applying Subinterval Group Property 5 as dynamic properties in Step4 instead of Subinterval Group
Properties 3 and 4 for RM. Figure 3 demonstrates the inference performance of EDF, which corresponds
to Figure 2b, where task set generation and all other settings are the same as the ones described
in Section 6.
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Figure 3. Average number of feasible choices of each task period, over varying use with LMI = 1000
and 10,000 under EDF.

As shown in Figure 3 (and Figure 2b), the inference performance of EDF exhibits similar trend
to that of RM. However, RM is easier to infer task parameters than EDF, especially with high system
use. For example, in system use group [1.0] and LMI of 1000, the average number of feasible choices of
each task period inferred under RM is smaller than that under EDF (308/247 = 1.25). Similar to RM,
our inference framework for EDF effectively finds the exact period when the system use is low and
exhibits reasonable inference performance when the system use is high.

In summary, we show how to develop algorithm-specific properties of EDF, and demonstrate
that our proposed inference framework for EDF also operates effectively . Please note that it deserves
another full paper to develop algorithm-specific properties of other complex scheduling algorithms.

8. Related Work

As real-time systems become connected to infrastructure, security issues in real-time systems
have attracted attention; therefore, several recent studies tried to address security issues of real-time
systems—how to attack and defend security vulnerability for periodic real-time tasks, which is the basic
real-time task model. We may classify such studies into two categories: (i) adding additional security
protection mechanisms without changing the prioritization policy, and (ii) randomizing schedules by
changing the prioritization. For both categories, the main difficulty is how to achieve timing guarantees
in the presence of additional/new mechanisms, which is the primary goal of real-time systems.

The papers belonging to the first category add a mechanism of flushing information remaining in
computing resources, or integrate additional (periodic) security tasks [9,19,24–26]. Mohan et al. [19]
focused on fixed priority scheduling (such as RM) on a uniprocessor platform, and proposed how to
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modify the original scheduling algorithm to accommodate the flushing mechanism, which prevents
other tasks from eavesdropping information in computing resources owned by critical tasks.
Based on [19], Pellizzoni et al. [9] explored tradeoffs between security requirements (achieved by
the flushing mechanism) and real-time guarantees. Then, the studies for the flushing mechanism were
extended towards considering preemption overheads [26] and mixed-criticality systems [25]. On the
other hand, Hasan et al. [24] developed how to integrate additional (periodic) security tasks without
compromising timing guarantees.

The papers in the second category [7,8] are different from those in the first one in that they tried to
avoid security attacks by randomizing schedules, meaning the prioritization change. TaskShuffler [8]
proposed how to randomize schedules under fixed priority scheduling (such as RM). To this end,
the paper introduces the worst-case maximum inversion budget for each task, and arbitrarily delays
high-priority tasks’ execution within their budget; the delay within the budget guarantees not to
compromise timing guarantees of high-priority tasks. Similar to TaskShuffler [8], Kruger et al. proposed
another schedule randomization technique without compromising timing guarantees.

This paper is different from the papers in the two categories as follows. Most (if not all) security
attacks that the existing papers for the periodic task model aim at avoiding are based on knowledge
of task parameters such as the task period, the worst-case execution time and the task release time.
However, the information of task parameters is not necessarily open to the public. Therefore, different
from general-purpose systems, the initial point of security attacks for real-time systems is to know
task parameters, and this paper satisfies the following curiosities. First, is it possible to infer task
parameters? Second, if possible, how can we infer task parameters? Since this paper successfully
answered the two questions, it can be followed to conduct research that infers the task parameters
more effectively and avoids the task parameter inference techniques revealed by this paper and
following papers, which is a main contribution of this paper.

9. Conclusions and Discussion

In this paper, we developed a framework that infers task parameters from restricted information.
Despite difficulties due to lack of knowledge of job release times, task/job priority ordering,
and distribution of actual execution times, we showed that the framework can effectively narrow down
the feasible range of task parameters. To this end, we developed static properties that can be used for
any work-conserving scheduling algorithm; we then developed dynamic properties tailored to RM.
Finally, we showed how to apply the inference framework to other scheduling algorithms, e.g., EDF.
As long as we develop algorithm-specific properties, we can use the proposed inference framework
effectively for the corresponding algorithm.

In the future, we would like to extend this paper in two directions. First, we need to consider more
general task and resource models than the periodic task model and a uniprocessor platform. As of
now, some properties can be used for the sporadic task model, but others cannot. We need to tailor
the properties by considering sporadic releases. When it comes to resource models, we may consider
more general resources than uniprocessors such as the periodic resource model and a multiprocessor
platform; the technique developed for a uniprocessor platform in this paper can be a basis for those
resources. Second, we would like to extend this framework to other scheduling algorithms and improve
the tightness of inference results, by developing new properties tailored to other target scheduling
algorithms. As we explained in Section 7, it deserves another full paper to address the second direction
for each target scheduling algorithm.
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