
1888
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.11 NOVEMBER 2018

PAPER
Incorporating Zero-Laxity Policy into Mixed-Criticality
Multiprocessor Real-Time Systems

Namyong JUNG†, Nonmember, Hyeongboo BAEK†, Member, Donghyouk LIM††,
and Jinkyu LEE†a), Nonmembers

SUMMARY As real-time embedded systems are required to accommo-
date various tasks with different levels of criticality, scheduling algorithms
for MC (Mixed-Criticality) systems have been widely studied in the real-
time systems community. Most studies have focused on MC uniprocessor
systems whereas there have been only a few studies to support MC multi-
processor systems. In particular, although the ZL (Zero-Laxity) policy has
been known to an effective technique in improving the schedulability per-
formance of base scheduling algorithms on SC (Single-Criticality) multi-
processor systems, the effectiveness of the ZL policy on MC multiprocessor
systems has not been revealed to date. In this paper, we focus on realizing
the potential of the ZL policy for MC multiprocessor systems, which is the
first attempt. To this end, we design the ZL policy for MC multiprocessor
systems, and apply the policy to EDF (Earliest Deadline First), yielding
EDZL (Earliest Deadline first until Zero-Laxity) tailored for MC multipro-
cessor systems. Then, we develop a schedulability analysis for EDZL (as
well as its base algorithm EDF) to support its timing guarantee. Our simu-
lation results show a significant schedulability improvement of EDZL over
EDF, demonstrating the effectiveness of the ZL policy for MC multiproces-
sor systems.
key words: mixed-criticality, multiprocessor real-time systems, zero-laxity
policy schedulability analysis, EDZL (Earliest Deadline first until Zero-
Laxity), EDF (Earliest Deadline First)

1. Introduction

Integrated systems have received considerable attention for
their ability to reduce size, weight and power for real-time
systems. In other words, instead of implementing each func-
tion in each distributed system, a single, integrated hardware
controls all functions. Typical examples are ARINC 653 [1]
for avionics and Autosar [2] used in the automotive industry.
To support different criticality levels with high CPU utiliza-
tion for such integrated systems, timing guarantees for MC
(Mixed-Criticality) multiprocessor real-time systems have
been studied in the real-time systems community [3]–[5].
However, the underlying theory has yet to mature, unlike in
SC (Single-Criticality) multiprocessor systems.

For example, the ZL (Zero-Laxity) policy [6], [7] have
received considerable attention due to its wide applicability
and significant schedulability improvement, which can be
incorporated into most (if not all) existing real-time schedul-
ing algorithms (called base algorithms) on SC multiproces-

Manuscript received April 24, 2018.
Manuscript revised July 23, 2018.
†The authors are with Department of Computer Science and

Engineering, Sungkyunkwan University (SKKU), Republic of Ko-
rea.
††The author is with RTST, Daejeon, Republic of Korea.
a) E-mail: Jinkyu.lee@skku.edu (Corresponding author)

DOI: 10.1587/transfun.E101.A.1888

sor systems. The ZL policy assigns the highest priority to
zero-laxity jobs and prioritizes other jobs according to the
base algorithm. Here, a job’s laxity at any time instant is
defined as remaining time to the job’s absolute deadline mi-
nus the amount of remaining execution time at that instant.
By executing jobs that would otherwise miss their absolute
deadlines (i.e., zero-laxity jobs), the ZL policy considerably
improves the base algorithm in terms of schedulability in SC
multiprocessor systems. However, such effectiveness of the
ZL policy in enhancing schedulability has not been achieved
in MC multiprocessor systems.

In this paper, we focus on demonstrating that the ZL
policy is also effective in improving the schedulability of
the base algorithm in MC multiprocessor systems, which
is the first attempt. To this end, we first consider EDF
(Earliest Deadline First) as the base algorithm and develop
RTA (Response-Time Analysis) for EDF to support a timing
guarantee in MC multiprocessor systems. Although RTA is
one of the most popular schedulability analysis frameworks
because of its higher schedulability performance, no RTA
for EDF has been established in MC multiprocessor sys-
tems. Second, we design EDZL (Earliest Deadline first until
Zero-Laxity) scheduling algorithm for MC multiprocessor
systems by incorporating the ZL policy into EDF. Unlike
for EDZL in SC multiprocessor systems, we must re-define
the concept of a job’s laxity because MC multiprocessor sys-
tems entail multiple types of execution times based on cer-
tification authorities. Finally, we develop RTA for EDZL in
MC multiprocessor systems, which considers the new con-
cept of a job’s laxity. Our simulation results demonstrate that
EDZL considerably improves the schedulability of EDF in
MC multiprocessor systems.

We emphasize that we consider EDF as the base algo-
rithm owing to its simplicity and popularity, and the appli-
cability of the ZL policy for MC multiprocessor systems is
not limited to EDF. Thus, the ZL policy can be used for most
(if not all) existing scheduling algorithms such as EDF-VD
(Earliest Deadline First with Virtual Deadlines) [3] and FP
(Fixed Priority) [4]. This indicates the significance of our
work as the first study that demonstrates the potential per-
formance improvement achieved by the ZL policy when it
is incorporated into the various base algorithms in MC mul-
tiprocessor systems.

In summary, this paper provides the following contri-
butions to MC multiprocessor systems.

Copyright c© 2018 The Institute of Electronics, Information and Communication Engineers

JUNG et al.: INCORPORATING ZERO-LAXITY POLICY INTO MIXED-CRITICALITY MULTIPROCESSOR REAL-TIME SYSTEMS
1889

Fig. 1 Three cases of the system transition occurrence.

• Design of the ZL policy and incoporate the policy to
EDF, yielding EDZL tailored to MC multiprocessor
systems,

• Development of RTA for EDF,
• Development of RTA for EDZL, and
• Demonstration of the potential of the ZL policy in im-

proving schedulability performance via simulation.

The remainder of this paper is organized as follows.
Section 2 presents our system model. Section 3 reviews our
development of RTA for EDF in MC multiprocessor sys-
tems. Section 4 discusses our design of EDZL scheduling
algorithm, which includes the concept of a job’s laxity in
MC multiprocessor systems, and our development of RTA
for EDZL in MC multiprocessor systems. Section 5 eval-
uates the schedulability performance of the proposed RTAs
for EDF and EDZL, and Sect. 6 discusses related work. Sec-
tion 7 concludes this paper.

2. System Model

We consider a set of sporadic real-time tasks [8] having two-
criticality levels [9]. A task τi ∈ τ is characterized by five
parameters (Ti,CLO

i ,CHI
i ,Di, Li). Ti is the minimal interval

between release times of consecutive jobs of τi. CLO
i and

CHI
i are the worst-case execution times with low criticality

(LO) and high criticality (HI), respectively. Di is the relative
deadline of τi. Li ∈ {LO,HI} is a criticality of τi. For τi sat-
isfying Li = LO, CLO

i = CHI
i ≤ Di holds. For τi satisfying

Li = HI, CLO
i ≤ CHI

i ≤ Di holds. In the beginning, every job
invoked by τi ∈ τ performs its execution up to CLO

i . If a time
instant is observed at which the amount of execution of a job
of τi is about to exceed CLO

i , we say that a system transition
occurs at this time instant, denoted as tTR. After the system
transition, we care only about tasks {τi} with Li = HI, as-
suming their execution time can be up to CHI

i , and do not
care about tasks {τi} with Li = LO. We say that the system
exhibits LO- and HI-criticality behavior before and after the
system transition, respectively.

We let RLO
k and RHI

k denote the response time of τk be-
fore and after the system transition, respectively. That is, be-
fore the system transition (likewise after the system transi-
tion), every job invoked by τk finishes its execution within
RLO

k time units (likewise RHI
k time units) from its release. We

then let S LO
k and S HI

k denote a slack of τk before and after the
system transition, which is calculated by S LO

k = Dk−RLO
k and

S HI
k = Dk − RHI

k , respectively. In other words, these refer to
every job of τk before the system transition finishes its exe-

cution at least S LO
k ahead of its absolute deadline, and after

the system transition finishes its execution at least S HI
k ahead

of its absolute deadline.
In this paper, we consider work-conserving, preemp-

tive, and global scheduling algorithms. In other words, a
ready job should be executed as long as at least one idle pro-
cessor exists (work-conserving); a higher-priority job can
preempt the execution of a lower-priority job at any time
(preemptive); and a job is allowed to execute in any pro-
cessor with migration (global). We assume that m identical
processors are present in the system.

3. RTA for EDF in MC Multiprocessor Systems

In this section, we discuss our development of RTA for EDF
in MC multiprocessor systems. We first apply the existing
RTA for EDF designed for SC multiprocessor systems, to
that for MC multiprocessor systems under LO-criticality be-
havior. We then develop RTA for EDF in MC multiprocessor
systems under HI-criticality behavior by deriving an upper-
bounded interference for it.

3.1 RTA for EDF under LO-Criticality Behavior

Before the system transition, underlying scheduling in MC
multiprocessor systems is the same as that in SC multipro-
cessor systems. Therefore, we can apply existing RTA for
EDF designed for SC multiprocessor systems [10] to MC
multiprocessor systems. To calculate the response time of a
job of τk, we must calculate the interference from jobs of τi
to that of τk. Let ILO

k←i(`) denote the length of the cumulative
intervals such that jobs of τi execute but the job of τk of in-
terest cannot execute within an interval of length ` starting
at the job’s release time, when the system transition does not
occur before the end of the interval of length `, i.e., Fig. 1(a).
Then, the job of τk of interest can finish executing (just as
CLO

k) within ` time units after its release time, if the sum of
ILO
k←i(`) for every τi ∈ τ\ {τk} divided by m is not greater than
` − CLO

k . In other words, the response time of a job of τk is
no greater than ` if the following inequality holds [10]:

` ≥ CLO
k +

⌊
1
m
·

∑
τi∈τ\{τk}

min
(
ILO
k←i(`), ` −CLO

k + 1
)⌋
. (1)

Although ILO
k←i(`) depends on the target scheduling al-

gorithm, the existing RTA for EDF calculates two upper-
bounds for ILO

k←i(`) under EDF. First, with any scheduling

1890
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.11 NOVEMBER 2018

Fig. 2 Functions needed to upper-bound the interference.

algorithm (assuming no job deadline is missed), ILO
k←i(`)

is upper-bounded by the maximum amount of execu-
tion of jobs of τi under LO-criticality behavior in an
interval of length `, as denoted by WLO

i (`, S LO
i) def.

=

W(`,Ti,CLO
i ,Di, S LO

i) [10], where

W(`,Ti,CLO
i ,Di, S LO

i) =

⌊
` + Di −CLO

i − S LO
i

Ti

⌋
·CLO

i +

min
(
CLO

i , ` + Di −CLO
i − S LO

i −

⌊
` + Di −CLO

i − S LO
i

Ti

⌋
· Ti

)
.

(2)

The function W(`,Ti,CLO
i ,Di, S LO

i) shown in Fig. 2(a)
calculates the maximum amount of execution of jobs of a
task whose period, worst-case execution time, relative dead-
line, and slack are Ti, CLO

i , Di, and S LO
i , respectively, within

an interval of length `. In Fig. 2(a), the last (i.e., right-most)
job of the task in the interval of interest of length ` is ex-
ecuted as early as possible, whereas the other jobs finishes
its execution S LO

i time units ahead of its absolute deadline

without any interference or delay. Then,
⌊ `+Di−CLO

i −S LO
i

T
⌋

is
used to calculate the number of jobs whose executions are
fully performed within the interval (the first job within the
interval may not be counted in this number). For example,⌊ `+Di−CLO

i −S LO
i

Ti

⌋
= 2 in Fig. 2(a) refers to the second and third

jobs. Next, the amount of execution of the first job (if the job
is not counted in

⌊ `+Di−CLO
i −S LO

i
Ti

⌋
) within the interval is cal-

culated using the second term of Eq. (2). Therefore, in any
scheduling algorithm, jobs of a task cannot execute more
than W(`,Ti,CLO

i ,Di, S LO
i) within an interval of length `.

Second, if we consider the prioritization policy of EDF,
a job with a later absolute deadline cannot interfere with
another job with an earlier absolute deadline. Therefore,
under EDF, Ik←i(`) is upper-bounded by ELO

k←i(S
LO
i) def.

=

E(Dk,Ti,CLO
i , S LO

i) (Theorem 5 in [10]), where

E(`,Ti,Ci, S LO
i) =⌊

`

Ti

⌋
·CLO

i + max
(
0,min

(
CLO

i , ` −

⌊
`

Ti

⌋
· Ti − S LO

i

))
.

(3)

E(`,Ti,CLO
i , S LO

i) shown in Fig. 2(b) computes the
maximum amount of execution of jobs of a task whose pe-
riod, worst-case execution time, and slack are Ti, Ci, and
S LO

i , respectively, within an interval of length ` such that
each job’s absolute deadline is no later than the end of the in-
terval. Then,

⌊ `
Ti

⌋
is used to count the number of jobs whose

executions are fully performed within the interval (the first
job in the interval may not be counted in this number). For
example,

⌊ `
Ti

⌋
= 2 in Fig. 2(b) refers to the second and third

jobs. Next, the amount of execution of the first job (if the
job is not counted in

⌊ `
Ti

⌋
) can be calculated using the sec-

ond term of Eq. (3).
Combining the two upper-bounds and applying that

any interference in an interval of length ` cannot be larger
than the length ` (i.e., ILO

k←i(`) ≤ `), ILO
k←i(`) under EDF under

LO-criticality behavior is upper-bounded by

ILO
k←i(`) ≤ min

(
`,WLO

i (`, S LO
i), ELO

k←i(S
LO
i)

)
. (4)

Applying the upper-bound of ILO
k←i(`) to the existing

RTA for SC multiprocessor systems [10], we can judge the
schedulability of a task set as follows.

Lemma 3.1. Let RLO
k denote the smallest ` (≤ Dk) that sat-

isfies the following inequality; if this ` does not exist, RLO
k is

set to∞.

` ≥ CLO
k +

⌊
1
m
·

∑
τi∈τ\{τk}

min
(
the RHS of Eq. (4), ` −CLO

k +1
)⌋
.

(5)

Then, τ is schedulable by EDF in MC multiprocessor
systems under LO-criticality behavior, if every task τk ∈ τ
satisfies RLO

k ≤ Dk.

Proof. Here we summarize the proof in [10], which is by
contradiction. Suppose that RLO

k computed by the lemma
is no greater than Dk but the actual response time of τk is
greater than RLO

k . We can derive the following equation from
the fact that the iteration ends in Eq. (5).

RLO
k = CLO

k +

⌊
1
m
·

∑
τi∈τ\{τk}

min
(
WLO

i (RLO
k , S LO

i),

ELO
k←i(S

LO
i),RLO

k −CLO
k + 1

)⌋
. (6)

From Eqs. (4) and (6), we can derive the following in-
equality.

RLO
k ≥ CLO

k +

⌊
1
m
·

∑
τi∈τ\{τk}

min
(
ILO
k←i(R

LO
k),RLO

k −CLO
k + 1

)⌋
.

(7)

JUNG et al.: INCORPORATING ZERO-LAXITY POLICY INTO MIXED-CRITICALITY MULTIPROCESSOR REAL-TIME SYSTEMS
1891

It is a trivial fact that, for τk to be schedulable, the
amount of time in which τk cannot be executed as a result of
the execution of other jobs within an interval of length RLO

k
should be less than (RLO

k − CLO
k + 1). Note that the interfer-

ence by jobs of τi with that of τk of interest is limited to at
most (RLO

k −CLO
k + 1) [10]. Then, if the actual response time

cannot be bounded by RLO
k , the following inequality must

hold.∑
τi∈τ\{τk}

min
(
ILO
k←i(R

LO
k),RLO

k −CLO
k +1

)
≥ m ·

(
RLO

k −CLO
k +1

)
.

(8)

From Eqs. (7) and (8), we get

RLO
k ≥ CLO

k +

⌊
1
m
· m ·

(
RLO

k −CLO
k + 1

)⌋
= RLO

k + 1,

(9)

which contradicts the supposition. �

In Sect. 4.2, we will explain how to find ` such that it
satisfies Eq. (5). In addition, we will explain how to update
{S LO

i }τi∈τ.

3.2 RTA for EDF under HI-Criticality Behavior

The previous subsection describes the development of RTA
for EDF under LO-criticality behavior in MC multiproces-
sor systems, which is accomplished by simply applying ex-
isting RTA for EDF in SC multiprocessor systems. Unlike
RTA for EDF under LO-criticality behavior, developing that
under HI-criticality behavior in MC multiprocessor systems
requires a careful investigation how each job that experi-
ences a system transition is interfered with by other jobs.
Whereas a job of interest can be interfered with by jobs un-
der LO-criticality behavior before the system transition, it
can also be interfered with by those under HI-criticality be-
havior after the system transition. Addressing this concern,
we next calculate the response times of tasks under EDF un-
der HI-criticality behavior.

Extending ILO
k←i(`), we let IHI

k←i(`, `
TR) denote the length

of the cumulative intervals such that jobs of τi execute but
the job of τk of interest cannot execute within an interval of
length ` starting at the job’s release time when a transition
occurs `TR after the job’s release time for 0 < `TR < ` as
shown in Fig. 1(b). In addition, we express IHI

k←i(`, `
TR = 0)

as the length at which the system transition occurs before
or at the job’s release time as shown in Fig. 1(c). We do not
consider the case of `TR ≥ `, because it is a type of LO-
criticality behavior as shown in Fig. 1(a).

Similar to Eq. (1), a job of τk finishes its execution
within ` time units after its release when the system tran-
sition occurs after `TR time units from the job’s release time
(or before), if the following inequality holds.

` ≥ CHI
k +

⌊
1
m
·

∑
τi∈τ\{τk}

min
(
IHI
k←i(`, `

TR), ` −CHI
k + 1

)⌋
.

(10)

Next, we calculate the upper-bounds of IHI
k←i(`, `

TR) for
0 ≤ `TR < `. If a task τi satisfies Li = LO, IHI

k←i(`, `
TR) is

the same as ILO
k←i(`

TR) because jobs of a task τi with Li = LO
cannot execute after the system transition. This calculation
is recorded as follows from Eq. (4).

IHI
k←i(`, `

TR) ≤ min
(
`TR,WLO

i (`TR, S LO
i), ELO

k←i(S
LO
i)

)
.

(11)

However, calculating IHI
k←i(`, `

TR) for a task τi with Li =

HI requires that we carefully consider the system transition.
Here, we consider two cases: IHI

k←i(`, `
TR) for `TR = 0 and

0 < `TR < `.
First, if the system transition occurs no later than the

beginning of the interval of length ` (i.e., Fig. 1(c)), all jobs
of τi within the interval can execute up to CHI

i . Therefore,
we can simply apply E(·) and W(·) functions for the param-
eter with CHI

i . In other words, IHI
k←i(`, 0) is upper-bounded

by WHI
i (`, S HI

i) def.
= W(`,Ti,CHI

i ,Di, S HI
i) under any work-

conserving preemptive scheduling. In addition, IHI
k←i(`, 0) is

upper-bounded by EHI
k←i(S

HI
i) def.

= E(Dk,Ti,CHI
i , S

HI
i) under

EDF. In summary, IHI
k←i(`, `

TR = 0) is upper-bounded as fol-
lows:

IHI
k←i(`, `

TR = 0) ≤ min
(
WHI

i (`, S HI
i), EHI

k←i(S
HI
i)

)
. (12)

Second, if the system transition occurs in the middle of
the interval of interest of length ` (i.e., Fig. 1(b)), we should
consider that each job of τi is executed up to CLO

i before the
system transition, but up to CHI

i after the system transition.
Hereafter, we upper-bound IHI

k←i(`, `
TR) for 0 < `TR < `.

We first develop an upper-bound of IHI
k←i(`, `

TR) for
0 < `TR < ` under any work-conserving scheduling algo-
rithm. Let us consider an imaginary situation as shown in
Fig. 3(a). Similar to what is shown in Fig. 2(a), the interval
of interest of length ` ends with the finishing time of the
last job. The last job of τi is executed as early as possible,
whereas the other jobs of τi finishes its execution S LO

i (of
the left-most job executing for CLO

i) or S HI
i (of the middle

job executing for CHI
i) ahead of its absolute deadline. Re-

garding execution time, a job of τi will execute up to CHI
i

if the system transition occurs before its absolute deadline
(see the second and third jobs in Fig. 3(a)), and CLO

i oth-
erwise (see the first job in Fig. 3(a)). Note that this situa-
tion is imaginary. In reality, it is impossible for the second
job in Fig. 3(a) to execute up to CHI

i , because its execution
completes before the system transition. Then, the number of
jobs with CHI

i is NW
i (` − `TR), where NW

i (`) def.
=

⌈
`+Di−CHI

i
Ti

⌉
,

and the total execution of jobs with CLO
i is calculated by

max
(
0, E

(
`−NW

i (`− `TR) ·Ti,Ti,CLO
i , S LO

i
))

. We denote the
amount of execution of this situation by WHI

i (`, `TR, S LO
i),

which is calculated as follows:

WHI
i (`, `TR, S LO

i) = NW
i (` − `TR) ·CHI

i

+ max
(
0, E

(
` − NW

i (` − `TR) · Ti,Ti,CLO
i , S LO

i
))
.

(13)

1892
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.11 NOVEMBER 2018

Fig. 3 Functions required to upper-bound the interference when the sys-
tem transition occurs in the middle of the interval of interest.

Then, WHI
i (`, `TR, S LO

i) is an upper-bound of IHI
k←i(`, `

TR)
for 0 < `TR < ` as follows.

Lemma 3.2. WHI
i (`, `TR, S LO

i) in Eq. (13) is an upper-bound
of IHI

k←i(`, `
TR) for 0 < `TR < `.

Proof. Suppose that the amount of execution of jobs of τi in
an interval of length ` when the system transition occurs af-
ter `TR time units from the beginning of the interval of length
` exceeds WHI

i (`, `TR, S LO
i). We will show a contradiction.

Because we apply the ceiling function for NW
i (`− `TR),

it is straightforward that the amount of execution of jobs of
τi after the system transition is at most NW

i (` − `TR) ·CHI
i .

Therefore, WHI
i (`, `TR, S LO

i) upper-bounds IHI
k←i(`, `

TR)
for 0 < `TR < ` for the same reason that WLO

i (`, S LO
i) upper-

bounds ILO
k←i(`). In other words, if we shift the release and

execution pattern of WHI
i (`, `TR, S LO

i) in Eq. (13) slightly to
the left, we cannot get any more interference from the end
of the interval. However, if we shift slightly to the right, we
lose some interference from the last job and may get some
interference from the beginning of the interval. The last job
loses up to CHI

i of interference, but the first job gets up to
CLO

i of interference. This means that the change of interfer-
ence cannot be positive, which contradicts the supposition.
Therefore, the lemma holds. �

Using the prioritization policy of EDF, we can upper-
bound IHI

k←i(`, `
TR) for 0 < `TR < `. To this end, let us

consider an imaginary situation as shown in Fig. 3(b). Sim-
ilar to Fig. 2(b), the end of the interval of interest of length
Dk corresponds to the end of the absolute deadline of the
last job of τi; all jobs of τi are executed as late as pos-
sible. In addition, similar to what is shown in Fig. 3(a), a
job of τi will execute up to CHI

i if the system transition oc-
curs before its absolute deadline (see the second and third

jobs in Fig. 3(b)), and CLO
i otherwise (see the first job in

the figure). As a reminder, this situation is imaginary. In
reality, the second job shown in Fig. 3(b) cannot execute
up to CHI

i because the system transition occurs after execu-
tion is finished. The number of jobs of τi with CHI

i is cal-

culated by NE
i (Dk − `

TR), where NE
i (`) def.

=
⌈
`
Ti

⌉
and the

amount of execution jobs of τi with CLO
i is calculated by

max
(
0, E

(
Dk −NE

i (Dk − `
TR) · Ti,Ti,CLO

i , S LO
i

))
. We denote

the amount of execution of this situation by EHI
k←i(`

TR, S LO
i),

which is calculated as follows:

EHI
k←i(`

TR, S LO
i) = NE

i (Dk − `
TR) ·CHI

i

+ max
(
0, E

(
Dk − NE

i (Dk − `
TR) · Ti,Ti,CLO

i , S LO
i

))
.

(14)

Then, EHI
k←i(`

TR, S LO
i) is an upper-bound of IHI

k←i(`, `
TR)

for 0 < `TR < ` as follows.

Lemma 3.3. EHI
k←i(`

TR, S LO
i) in Eq. (14) is an upper-bound

of IHI
k←i(`, `

TR) for 0 < `TR < `.

Proof. The proof is similar to that of Lemma 3.2.
Consider an interval of length Dk. Here, we focus only

on jobs of τk whose absolute deadline is no later than the end
of the interval. Suppose that the amount of execution of jobs
of τi in the interval when the system transition occurs after
`TR time units from the beginning of the interval of length
Dk, exceeds EHI

k←i(`
TR, S LO

i). We will show a contradiction.
In NE

i (Dk − `
TR), we apply the ceiling function. There-

fore, the amount of execution of jobs of τi after the system
transition is at most NE

i (Dk − `
TR) · CHI

i . If we shift the re-
lease and execution pattern of EHI

k←i(`
TR, S LO

i) slightly to the
left, no additional interference occurs, whereas the first job
may lose some interference. On the other hand, if we shift
slightly to the right, the last job’s absolute deadline is later
than the end of the interval of interest. Therefore, although
we get some additional interference from the first job, we
lose the entire interference of the last job. Therefore, any
shift cannot increase interference, which contradicts the sup-
position. Therefore, the lemma holds. �

In addition, if the system transition occurs in the middle
of the interval of interest of length `, the amount of execu-
tion of jobs of τi with Li = HI should be no greater than
that when the system transition occurs before the interval
in the worst case (i.e., the RHS of Eq. (12)). Therefore, the
RHS of Eq. (12) is also an upper-bound of IHI

k←i(`, `
TR) for

0 < `TR < `. In summary, IHI
k←i(`, `

TR) for 0 ≤ `TR < ` can
be calculated as follows:

IHI
k←i(`, `

TR) ≤ min
(
WHI

i (`, `TR, S LO
i),WHI

i (`, S HI
i),

EHI
k←i(`

TR, S LO
i), EHI

k←i(S
HI
i)

)
. (15)

For a given `TR, we can judge the schedulability of a
task set as follows.

JUNG et al.: INCORPORATING ZERO-LAXITY POLICY INTO MIXED-CRITICALITY MULTIPROCESSOR REAL-TIME SYSTEMS
1893

Lemma 3.4. Let RHI
k (`TR) denote the smallest ` (≤ Dk) that

satisfies the following inequality for a given 0 ≤ `TR ≤

min(`,RLO
k); if this ` does not exist, RHI

k (`TR) is set to∞.

` ≥ CHI
k +⌊

1
m
·

∑
τi∈τ\{τk}

min
(
the RHS of Eq. (11) or (15), ` −CHI

k + 1
)⌋
.

(16)

Note that in Eq. (16), Eq. (11) is used for Li = LO, and
Eq. (15) is used for Li = HI.

Let RHI
k denote max0≤`TR≤RLO

k
RHI

k (`TR). Here, τ is
schedulable by EDF in MC multiprocessor systems under
HI-criticality behavior, if all tasks τk ∈ τ satisfy RHI

k ≤ Dk.

Proof. Because Eq. (15) holds, the lemma holds based on
the same reasoning as Lemma 3.1. The difference is that
multiple choices exist for `TR. The range of `TR is upper-
bounded by RLO

k ; otherwise, the job of interest is already
finished in LO-criticality behavior. �

Combining Lemmas 3.1 and 3.4, we can judge the
schedulability of a task set in MC multiprocessor systems,
recorded as follows.

Theorem 3.5. τ is schedulable by EDF in MC multiproces-
sor systems, if τ is deemed schedulable by both Lemmas 3.1
and 3.4.

Proof. The theorem immediately holds by Lemmas 3.1 and
3.4. �

4. EDZL Scheduling Algorithm and Its RTA in MC
Multiprocessor Systems

In this section, we describe our design for EDZL schedul-
ing algorithm in MC multiprocessor systems, and the subse-
quent development of its RTA.

4.1 EDZL Scheduling Algorithm in MC Multiprocessor
Systems

In SC systems, a job’s laxity at any time instant is defined
as the remaining time to its absolute deadline minus the
amount of remaining execution time at that instant [6]. A
zero-laxity job will miss its absolute deadline unless it starts
its execution immediately. Therefore, zero-laxity-based al-
gorithms that give the highest priority to zero-laxity jobs im-
prove schedulability of their corresponding base algorithms
(e.g., EDZL outperforms EDF).

Regarding MC multiprocessor systems, we must re-
define a job’s laxity under MC multiprocessor systems, be-
cause multiple types of the worst-case execution times de-
pend on verification authorities (i.e., CLO

i and CHI
i) in this

study. In other words, if we simply borrow the notion of a
job’s laxity from SC systems, the amount of remaining ex-
ecution time of a job of τi at t under MC multiprocessor

systems is calculated by, CLO
i minus the amount of execu-

tion of the job performed until t under LO-criticality, and
CHI

i minus the amount of execution of the job performed un-
til t under HI-criticality behavior. If we apply the notion, we
cannot take full advantage of zero-laxity-based algorithms,
as shown in the following example.

Example 1. Consider a task set consisting of τ1(T1 =

5,CLO
1 = 3,CHI

1 = 3,D1 = 5, L1 = LO), τ2(6, 2, 4, 6,HI)
and τ3(2, 2, 2, 2, LO) scheduled on two processors. As shown
in Fig. 4(a), we assume that three tasks periodically invoke
their jobs from t = 0, and the execution time for a job of τ2
exceeds CLO

2 = 2 at t = 5, meaning that the system transi-
tion occurs at t = 5. Note that we do not care tasks whose
criticality is low (i.e., τ1 and τ3 with L1 = L3 = LO) after
the system transition as we stated in Sect. 2; τ1 in Fig. 4(b)
after a system transition (i.e., after time instant 4) does not
affect schedulability of the system even if execution of τ1 is
not completed until τ1’s absolute deadline. This model is a
typical MC system model as we explained in Sect. 2.

Suppose that we give the highest priority to zero-laxity
jobs, in which the remaining execution for calculating a
job’s laxity at t is calculated by the execution time under
the system criticality behavior at t (LO or HI) minus the
amount of execution of the job performed until t. In addi-
tion, for jobs with positive laxity, we give a higher priority
to a job with an earlier absolute deadline. Then, all jobs of
τ3 always have zero-laxity (i.e. at any time instant) and the
highest priority. The first job of τ1 has a higher priority than
that of τ2 because its absolute deadline is earlier. Therefore,
the schedule until t = 5 is shown in Fig. 4(a). After the sys-
tem transition occurs at t = 5 due to the job of τ2, the job
misses its absolute deadline at t = 6. This is because once
the system transition occurs at t = 5, the job of τ2’s laxity
is already negative, meaning that no schedule can meet its
deadline.

As shown in the example, we should not define a laxity
of a job using its remaining execution time that is based on
system criticality behavior. Instead, although the system ex-

Fig. 4 Two schedules under EDZL with different laxity definitions.

1894
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.11 NOVEMBER 2018

hibits LO-criticality behavior, the remaining execution time
should be calculated based on HI-criticality behavior in or-
der to reserve additional execution incurred after the system
transition. To formalize EDZL scheduling algorithm in MC
multiprocessor systems, let CLO

i (t) denote the remaining ex-
ecution time of a job of τi of interest at time instant t before
the system transition. This is calculated by CLO

i minus the
amount of execution of the job of interest performed until t.
Similarly, let CHI

i (t) denote the remaining execution time of
a job of τi of interest at time instant t after the system tran-
sition. This is calculated by CHI

i minus the amount of execu-
tion of the job of interest performed until t. In addition, let
Di(t) denote the remaining time to the absolute deadline of
a job of τi of interest. We then define a laxity of a job of τi
at t as follows.

Definition 1. The laxity of a job of τi at t is defined as fol-
lows:

• Di(t) − CLO
i (t) − (CHI

i − CLO
i), if t is before the system

transition, and
• Di(t) −CHI

i (t), if t is after the system transition.

EDZL scheduling algorithm for MC multiprocessor
systems then functions as follows. If a job’s laxity defined in
Def. 1 is zero, the job’s priority becomes the highest. Other-
wise, each job’s priority is determined by its absolute dead-
line; the earlier the absolute deadline, the higher the priority.

Once we apply EDZL for MC multiprocessor systems
as previously explained, we can avoid a deadline miss for
the situation shown in Fig. 4(a). In other words, as shown
in Fig. 4(b), the first job of τ2 has a zero laxity at t = 2, i.e.,
D2(2)−CLO

2 (2)−(CHI
2 −CLO

2) = 4−2−(4−2) = 0. Therefore,
the job has the highest priority after t = 2, which yields no
deadline miss.

4.2 RTA for EDZL under LO-Criticality Behavior

We next develop RTA for EDZL under LO-criticality behav-
ior. To this end, we calculate the interference upper-bound
of jobs of τi to the job of interest of τk (i.e., ILO

k←i(`)) under
EDZL.

If a job of τi exhibits a positive laxity, the job cannot
have a higher priority unless its absolute deadline is earlier
than that of other jobs. Therefore, the interference upper-
bound under EDZL is the same as that under EDF, recorded
as follows:

ÊLO
k←i(S

LO
i) = ELO

k←i(S
LO
i) = E(Dk,Ti,CLO

i , S LO
i). (17)

However, if a job of τi exhibits a zero laxity, the job can
have a higher priority even if its absolute deadline is later
than that of other jobs. In addition, each job τi can have a
zero-laxity even though (CHI

i − CLO
i) amount of slack exists

before its absolute deadline. Therefore, the interference is
maximized when the difference between the last job’s abso-
lute deadline and the end of the interval of interest of length
Dk is CHI

i − CLO
i , as shown in Fig. 5(a). The interference

upper-bound can be then calculated as follows:

Fig. 5 Functions required to upper-bound the interference under EDZL.

ÊLO
k←i(S

LO
i) = E(Dk + (CHI

i −CLO
i),Ti,CLO

i , S LO
i). (18)

Considering that WLO
i (`, S LO

i) given in Sect. 3.1 can
be an interference upper-bound in any work-conserving
scheduling algorithm, Ik←i(`) under EDZL and LO-
criticality behavior is upper-bounded as follows.

ILO
k←i(`) ≤ min

(
WLO

i (`, S LO
i), ÊLO

k←i(S
LO
i)

)
. (19)

Considering that at least m + 1 zero-laxity jobs should
exist in order for a job to miss its absolute deadline [7], [11],
we can calculate the response time of tasks under EDZL and
LO-criticality behavior in the following lemma.

Lemma 4.1. Let RLO
k denote the smallest ` (≤ Dk) that sat-

isfies the following inequality; if this ` does not exist, RLO
k is

set to∞.

` ≥ CLO
k +

⌊
1
m
·

∑
τi∈τ\{τk}

min
(
the RHS of Eq. (19), ` −CLO

k +1
)⌋
.

(20)

τ is schedulable by EDZL in MC multiprocessor sys-
tems under LO-criticality behavior, if one of the following
conditions holds:

C1. All tasks τk ∈ τ satisfy RLO
k ≤ Dk, or

C2. |τ| − m tasks τk ∈ τ satisfy RLO
k < Dk.

Proof. Because Eq. (19) holds, the lemma holds based on
the same reasoning as Lemma 3.1. The difference is C2,
which is derived from the prioritization policy of EDZL. In
other words, if there are at most m tasks with zero laxity,
then all zero-laxity tasks are always scheduled, yielding no
deadline miss. Therefore, if C2 holds, τ is schedulable by
EDZL.

One may argue that it does not make sense that C2
guarantees the schedulability of a task set when there ex-
ists a task τk with RLO

k = ∞. However, C2 is a basic princi-
ple of zero-laxity-based scheduling algorithm, and RLO

k = ∞

means that our schedulability test framework cannot guar-
antee τk’s schedulability before the transition while the task

JUNG et al.: INCORPORATING ZERO-LAXITY POLICY INTO MIXED-CRITICALITY MULTIPROCESSOR REAL-TIME SYSTEMS
1895

in reality can be schedulable. If C2 holds, there are at most
m tasks which may reach a zero-laxity state. Then, when-
ever the at most m tasks reach a zero-laxity state, they are
scheduled according to the EDZL policy (giving the high-
est priority to the zero-laxity task). Therefore, the at most
m tasks never miss their deadlines, although each of them is
not deemed schedulable by RTA (i.e., RLO

k = ∞). Actually,
this is why EDZL schedulability analysis is much better than
EDF schedulability analysis. �

Two details about Lemma 4.1 may be perplexing: how
to have ` satisfy Eq. (20), and how to update S LO

i , which
affects the RHS of Eq. (19). We can apply the technique
in [10] for both details, which we can explain as follows.
Initially, we assign S LO

k to 0 for every τk ∈ τ. Then, for each
τk, we set ` to CLO

k , and calculate the RHS of Eq. (20). If the
value is greater than `, we reassign the value to `, and repeat
to calculate RHS. In addition, if we find ` such that it satis-
fies Eq. (20), then RLO

k is set to `. If ` is greater than Dk, we
stop the iteration, meaning that τk is not schedulable under
LO-criticality behavior.

Then, once we finish calculating RLO
k for every τk ∈ τ,

we update S LO
k = Dk − RLO

k if RLO
k < Dk. We then repeat

the entire process of calculating RLO
k for every τk ∈ τ with

updated {S LO
k } until no update remains for {S LO

k }.

4.3 RTA for EDZL under HI-Criticality Behavior

We next develop RTA for EDZL under HI-criticality behav-
ior. To this end, we calculate the interference upper-bound
of jobs of τi to the job of interest of τk (i.e., IHI

k←i(`, `
TR))

under EDZL.
Similar to RTA for EDZL under LO-criticality behav-

ior, we use the interference upper-bound under EDF, if a job
of τi has a positive laxity. Therefore, we must check what
occurs if a job of τi has a zero laxity. We first examine a
case in which the system transition occurs before the begin-
ning of the interval of interest of length Dk. Different from
LO-criticality behavior, each job of τi can have a zero laxity
only if its execution is performed until the absolute dead-
line (e.g., the third job in Fig. 5(b)). Although a zero-laxity
job with a later absolute deadline can have a higher prior-
ity than a positive laxity job with an earlier absolute dead-
line, some execution from the zero-laxity job cannot inter-
fere with the positive laxity job as shown in the third job in
Fig. 5(b) [7]. Therefore, we can use the same interference
upper-bound under EDF (i.e., EHI

k←i(S
HI
i)) for EDZL when

the system transition occurs before the beginning of the in-
terval of interest of length Dk. Similarly, when the system
transition occurs in the middle of the interval of interest of
length Dk, we use the same interference upper-bound under
EDF (i.e., EHI

k←i(`
TR, S LO

i)) for EDZL.
Considering that the two interference upper-bounds un-

der EDF when the system transition occurs before the be-
ginning of the interval of interest (i.e., WHI

i (`, S HI
i)) and in

the middle of the interval of interest (i.e., WHI
i (`, `TR, S LO

i))
hold for any work-conserving scheduling algorithm, we can

use Eqs. (11) and (15) for the interference upper-bounds un-
der EDZL. Using the upper-bounds, the following lemma
records a schedulability test of EDZL for MC multiproces-
sor systems under HI-criticality behavior.

Lemma 4.2. Let RHI
k (`TR) denote the smallest ` (≤ Dk) that

satisfies the following inequality for a given 0 ≤ `TR ≤

min(`,RLO
k); if this ` does not exist, RHI

k (`TR) is set to∞.

` ≥ CHI
k +

⌊
1
m
·

∑
τi∈τ\{τk}

min
(
the RHS of Eq. (11) or (15),

` −CHI
k + 1

)⌋
.

(21)

Note that in Eq. (21), Eq. (11) is used for Li = LO, and
Eq. (15) is used for Li = HI.

Let RHI
k denote max0≤`TR≤RLO

k
RHI

k (`TR). τ is schedulable
by EDZL in MC multiprocessor systems under HI-criticality
behavior, if one of the following conditions holds:

C1. All tasks τk ∈ τ satisfy RHI
k ≤ Dk, or

C2. |τ| − m tasks τk ∈ τ satisfy RHI
k < Dk.

Proof. The lemma holds based on the same reasoning as
Lemma 4.1. Note that the range of `TR is the same as that of
Lemma 3.4. �

Using Lemmas 4.1 and 4.2, we finally develop a
schedulability test of EDZL in MC multiprocessor systems,
recorded in the following theorem.

Theorem 4.3. τ is schedulable by EDZL in MC multipro-
cessor systems, if τ is deemed schedulable by both Lem-
mas 4.1 and 4.2.

Proof. The theorem immediately holds by Lemmas 4.1 and
4.2. �

5. Evaluation

This section presents the evaluation results obtained by
the experiments conducted under various simulation envi-
ronments to demonstrate effectiveness of the ZL policy in
MC multiprocessor systems, and then discusses the char-
acteristics of the considered schedulability analysis by in-
vestigating simulation results. As we emphasize in Sect. 1,
this paper aims at demonstrating performance improvement
achieved by the ZL policy when it is incorporated into base
algorithms in MC multiprocessor systems. Therefore, we fo-
cus on performance of our target base algorithm (i.e., EDF)
and that with the ZL policy incorporated (i.e., EDZL). The
performance gap between other (candidate) base algorithms
(e.g., EDF-VD, FP, etc.) and those with the ZL policy incor-
porated (e.g., may be named as EDZL-VD, FPZL, etc.) can
be discussed after one develops their schedulability analysis,
which deserves another full paper.

For our simulations, we randomly generated task sets

1896
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.11 NOVEMBER 2018

Table 1 Schedulability under EDF and EDZL, and schedulable ratio between EDF and EDZL when
m = 2, 4, 8, and 16 and p = 0.1, 0.3, 0.5, 0.7 and 0.9.

m = 2 m = 4
p EDF EDZL EDZL to EDF p EDF EDZL EDZL to EDF

0.1 45.7% 46.3% 101.2% 0.1 31.7% 33.0% 104.0%
0.3 36.9% 41.7% 112.9% 0.3 18.6% 26.1% 140.3%
0.5 28.3% 38.7% 136.7% 0.5 10.1% 25.0% 246.4%
0.7 22.7% 39.1% 172.7% 0.7 5.4% 25.5% 469.9%
0.9 14.4% 35.1% 243.4% 0.9 1.7% 22.5% 1313.5%

m = 8 m = 16
p EDF EDZL EDZL to EDF p EDF EDZL EDZL to EDF

0.1 21.0% 23.2% 110.3% 0.1 12.7% 15.9% 125.2%
0.3 8.1% 16.6% 205.9% 0.3 2.7% 11.5% 430.5%
0.5 2.3% 14.2% 627.4% 0.5 0.3% 7.6% 2606.9%
0.7 0.6% 16.0% 2703.4% 0.7 0.0% 8.1% ∞%
0.9 0.1% 14.7% 18387.5% 0.9 0.0% 7.9% ∞%

based on the task set generation method used in [12], [13].
We considered two parameters m and p of each task set τ,
which are described as follows: m denotes the number of
processors on which each task set is scheduled; we consid-
ered four choices of m = 2, 4, 8 or 16. p represents the prob-
ability that a task contained in a task set is a HI-criticality
task, and was chosen from a set {0.1, 0.3, 0.5, 0.7, 0.9} (e.g,
p = 0.3 for a task set τ means that a task τi in a task set τ
can be a high-criticality task with 30% probability).

For each task τi ∈ τ, Ti was uniformly chosen from an
interval [1, 1000], and Li was selected from a set {LO,HI}
with probability p. We uniformly selected two values from
[1,Ti]. If Li = HI, CHI

i and CLO
i were set to the higher and

lower values, respectively; otherwise (i.e., Li = HI), CHI
i =

CLO
i was set to the lower value.

With each value of m and p, we determined if the uti-
lization was smaller than or equal to m for each task set†, and
then we used the task set for our simulation if it satisfied this
condition. More specifically, we repeated the following pro-
cedure until we get 10,000 task sets for each combination of
m and p.

1. First, we generated a task set τ containing m + 1 tasks.
2. We then checked whether the utilization of the gener-

ated task set τ is smaller than or equal to m. If τ satisfied
the condition, we used this set in our evaluation. Then,
we inserted a new task into τ and returned to Step 2. If
τ did not satisfy the condition, we abandoned this task
set and returned to Step 1.

Note that this section focuses on implicit-deadline task
sets in which Di = Ti. The simulation results of constrained-
deadline task sets showed similar trends to those of implicit-
deadline task sets.

We evaluated the performance of the following schedu-
lability analysis.

• EDF: for the proposed schedulability test in Theo-
rem 3.5, and

†The task set utilization U is defined as the larger summation
of Ci/Ti of each task τi in the task set between HI and LO-criticality
(i.e., U = max(

∑
τi∈τ

CLO
i /Ti,

∑
τi∈τ∧Li=HI CHI

i /Ti)).

• EDZL: for the proposed schedulability test in Theo-
rem 4.3.

In Table 1, we represent the ratio of schedulable task
sets for each schedulability test (i.e., the number of task sets
deemed schedulable by each schedulability test over the to-
tal number of task sets generated in a given condition), ac-
cording to m and p. In addition, we depict the ratio accord-
ing to varying task set utilization in Fig. 6. In the table and
the figure, we yield the following five main observations that
show the effectiveness of EDZL when compared to EDF.

O1. The number of tasks deemed schedulable by EDZL is
much higher than EDF for all values of m.

O2. The schedulable ratio between EDF and EDZL be-
comes greater as m increases for all given values of p.

O3. The schedulable ratio between EDF and EDZL be-
comes greater as p increases for all given values of m.

O4. As p increases, the number of schedulable tasks
deemed schedulable by EDF drops sharply whereas
that by EDZL moderately decreases.

O5. Schedulability of EDF and EDZL according to varying
task set utilization depends on both m and p.

Both O1 and O2 demonstrate the effectiveness of
EDZL scheduling algorithm, as well as the high analytical
capability of EDZL (i.e., schedulability analysis of EDZL
scheduling algorithm) with respect to multiprocessor real-
time systems under an MC domain. Based on the con-
cept behind EDZL scheduling algorithm, at least m zero-
laxity tasks are allowed to execute without any deadline
miss whereas even a single zero-laxity task is not allowed
to do so in an EDF scheduling algorithm, which generates a
crucial difference in schedulability. Moreover, the necessary
deadline miss condition of EDZL (e.g., at least m + 1 zero-
laxity tasks are required to make a deadline miss as C2 in
Lemma 4.2 indicates) well captures the advantage of EDZL
scheduling algorithm. In addition, the superiority of EDZL
is that it conserves this advantage as it safely captures the
property of MC scheduling, e.g., the system transition (in-
dicated by O1). Because the number of allowed zero-laxity
tasks for guaranteeing no deadline miss in EDZL is propor-
tional to the number of processors m, EDZL outperforms

JUNG et al.: INCORPORATING ZERO-LAXITY POLICY INTO MIXED-CRITICALITY MULTIPROCESSOR REAL-TIME SYSTEMS
1897

Fig. 6 Schedulability of EDF and EDZL under a pair of m = 2, 4, 8 or 16 and p = 0.1, 0.5 or 0.9,
according to varying task set utilization.

EDF at an increasing rate as m increases (indicated by O2).
O3 and O4 show that EDZL can handle task sets with

high utilization whereas EDF cannot. According to the set
generation method, many tasks may exist with Li = HI for
a given higher value of p. Such tasks have relatively higher
utilization than tasks with Li = LO because they contains
the higher worst-case execution time. This directly leads to
a higher possibility that they are zero-laxity tasks because
they are less able to accommodate the interference from
higher priority tasks. Although EDF cannot effectively han-
dle task sets with higher p because the vanilla EDF schedul-
ing algorithm focuses solely on jobs with earliest deadlines,
EDZL can handle such task sets because of a proper defini-
tion of the zero-laxity of EDZL scheduling algorithm; this
virtue is well incorporated into its schedulability condition.
Therefore, EDZL not only exhibits a better schedulability
performance than EDF, but it also yields less schedulability
degradation for higher p (indicated by O3 and O4).

O5 is simply observed by Fig. 6†. For example, schedu-
lability of m = 2 and p = 0.9 in Fig. 6(i) according to vary-
ing task set utilization is very different from that of m = 8
and p = 0.1 in Fig. 6(c). In addition, we have the follow-

†For some sub-figures in Fig. 6, the range of x-axis starts larger
than 0. In the sub-figures, task sets with very small task set utiliza-
tion are not generated due to the task set generation procedure. For
example, if m = 16, the number of tasks in a task set is at least 17;
with p = 0.9, it is difficult for a task set to have less than 0.4 task
set utilization because it is difficult for at least 17 (mostly HI-)tasks
to have small task utilization.

ing observations from Fig. 6. First, if we focus on figures
with different p and given m, the gap between schedulabil-
ity of EDF and EDZL increases as p increases. For example,
when it comes to m = 4, schedulability of EDF is similar to
that of EDZL in Fig. 6(b). On the other hand, in Fig. 6(f),
there is a gap between schedulability of EDF and EDZL;
finally, the difference becomes significant in Fig. 6(j). Sec-
ond, if we compare figures with different m and given p
(e.g., Figs. 6(e), (f), (g), and (h)), the schedulability of EDF
and EDZL decreases as m gets larger. Also, the difference
between schedulability of EDF and EDZL increases as m
gets larger except between m=8 (e.g., Fig. 6(k)) and m=16
(e.g., Fig. 6(l)). The exception (i.e., between Fig. 6(k) and
Fig. 6(l)) occurs due to large values of m and p, which de-
crease overall schedulability of both EDF and EDZL. How-
ever, when it comes to schedulable ratio between EDZL and
EDF (i.e., EDZL to EDF), it consistently increases as m gets
larger as shown in Table 1.

6. Related Work

Beginning with the notion of MC scheduling [9], a large
number of studies on MC scheduling for uniprocessor plat-
forms have been made. Baruah et al. demonstrated a domi-
nance relation between adaptive and static mixed-criticality
in RTA [14], and proposed a new scheduling algorithm
called EDF-VD and its schedulability analysis [15], [16].
Li et al. proposed OCBP (Own Criticality Based Prior-
ity) scheduling algorithm and expanded the schedulability

1898
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.11 NOVEMBER 2018

analysis to general task sets [17], [18]. Employing OCBP
scheduling algorithm, Guan et al. proposed a more effi-
cient algorithm called PLRS (Priority List Reuse Schedul-
ing) [19]. Regarding new models, Su et al. considered E-
MC (Elastic Mixed-Criticality) model [20], and Baruah pro-
posed a general recurrent real-time task model in which pa-
rameters of a task (the worst-case execution time, relative
deadline and period) have different values according to each
criticality level [21].

Based on achievement of real-time scheduling on
MC uniprocessor platforms, several studies addressed MC
global scheduling issues on a multiprocessor platform.
Pathan analyzed FP and applied Ausley’s approach [4]. Li
et al. extended EDF-VD to multiprocessors [3]. Su et al.
studied the E-MC model in multicore systems considering
the systems with and without task migrations [22]. Lee et
al. proposed MC-Fluid scheduling algorithm in which each
task executes with a different criticality-dependent execu-
tion rate [23]. Liu et al. proposed a synchronous MC job
model [24]. Although the interference-based schedulability
tests known as RTA and DA (deadline analysis) [10], [13]
are the most effective techniques for developing a tighter
schedulability test for SC scheduling on a multiprocessor
platform, only a few studies have extended the interference-
based schedulability test to MC scheduling. Moreover, no
interference-based schedulability test was known to exist
for the most basic scheduling algorithm EDF (as well as
EDZL), until we addressed it in this paper.

Suzuki et al. analyzed parallel scheduling with a di-
rected acyclic graph [25]. Leng et al. analyzed a constant-
time admission control algorithm under EDF [26]. Zhang
et al. proposed an energy-aware scheduling for real-time
tasks [27]. Yamaguchi et al. proposed an efficient EDF
scheduling for out-of-order stream queues [28].

7. Conclusion

In this paper, we demonstrated that the ZL policy is also
effective in improving the schedulability of the base algo-
rithm in MC multiprocessor systems. To this end, we con-
sider EDF as the base algorithm of the ZL policy and devel-
oped RTA for EDF in MC multiprocessor systems. We next
designed EDZL scheduling algorithm by incorporating the
ZL policy into EDF in MC multiprocessor systems, and then
developed its RTA. Our simulation results demonstrated that
the ZL policy considerably improves schedulability of the
base algorithm (i.e., EDF). In the future, we would like to
incorporate the ZL policy into other scheduling algorithms
such as EDF-VD and FP, and develop schedulability analy-
sis for them.

Acknowledgements

Earlier, naive ideas for EDZL scheduling algorithms and
schedulability analysis for mixed-criticality multiprocessor
real-time systems have been presented in 3-page-long (but
about 2-page-long in this template) Korean conference pa-

pers [29], [30] (written in Korean).
This research was also supported by Institute for In-

formation & communications Technology Promotion (IITP)
grant funded by the Korea government (MSIP) (No.R0190-
15-2071, Open PNP platform for diversity of autonomous
vehicle based on cloud map). This research was also sup-
ported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIT) (No.
2017R1A2B2002458). Jinkyu Lee is the corresponding au-
thor.

References

[1] ARINC 653: Avionics application software standard interface: Arinc
specification 653, required services, Aeronautical Radio, Inc.

[2] AUTOSAR classic platform 4.3, https://www.autosar.org/standards/
classicplatform/release-43/

[3] H. Li and S. Baruah, “Global mixed-criticality scheduling on mul-
tiprocessors,” Proc. Euromicro Conference on Real-Time Systems
(ECRTS), pp.166–175, 2012.

[4] R. Pathan, “Schedulability analysis of mixed-criticality systems on
multiprocessors,” Proc. Euromicro Conference on Real-Time Sys-
tems (ECRTS), pp.309–320, 2012.

[5] H. Baek and J. Lee, “Incorporating security constraints into
mixed-criticality real-time scheduling,” IEICE Trans. Inf. & Syst.,
vol.E100-D, no.9, pp.2068–2080, Sept. 2017.

[6] S. Cho, S.K. Lee, S. Ahn, and K.J. Lin, “Efficient real-time schedul-
ing algorithms for multiprocessor systems,” IEICE Trans. Commun.,
vol.E85-B, no.12, pp.2859–2867, Dec. 2002.

[7] T.P. Baker, M. Cirinei, and M. Bertogna, “EDZL scheduling analy-
sis,” Real-Time Syst., vol.40, no.3, pp.264–289, 2008.

[8] A. Mok, Fundamental design problems of distributed systems for the
hard-real-time environment, Ph.D. thesis, Massachusetts Institute of
Technology, 1983.

[9] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” Proc. IEEE Real-Time
Systems Symposium (RTSS), pp.239–243, 2007.

[10] M. Bertogna and M. Cirinei, “Response-time analysis for globally
scheduled symmetric multiprocessor platforms,” Proc. IEEE Real-
Time Systems Symposium (RTSS), pp.149–160, 2007.

[11] J. Lee, A. Easwaran, I. Shin, and I. Lee, “Zero-laxity based real-time
multiprocessor scheduling,” J. Syst. Softw., vol.84, no.12, pp.2324–
2333, 2011.

[12] T.P. Baker, “Comparison of empirical success rates of global vs par-
titioned fixed-priority and EDF scheduling for hard real-time,” Tech-
nical Report, TR-050601, Dept. of Computer Science, Florida State
University, Tallahasee, 2005.

[13] M. Bertogna, M. Cirinei, and G. Lipari, “Schedulability analysis of
global scheduling algorithms on multiprocessor platforms,” IEEE
Trans. Parallel Distrib. Syst., vol.20, no.4, pp.533–566, 2009.

[14] S. Baruah, A. Burns, and R. Davis, “Response-time analysis for
mixed criticality systems,” Proc. Real-Time Systems Symposium
(RTSS), pp.34–43, 2011.

[15] S. Baruah, V. Bonifaci, G. D’Angelo, H.L.A. Marchetti-Spaccamela,
S. van der Ster, and L. Stougie, “The preemptive uniproces-
sor scheduling of mixed-criticality implicit-deadline sporadic task
systems,” Proc. Euromicro Conference on Real-Time Systems
(ECRTS), pp.145–154, 2012.

[16] S. Baruah, V. Bonifaci, G. D’Angelo, A. Marchetti-Spaccamela, S.
van der Ster, and L. Stougie, “Mixed-criticality scheduling of spo-
radic task systems,” Proc. 19th Annual European Symposium on Al-
gorithms, pp.555–566, 2011.

[17] S. Baruah, H. Li, and L. Stougie, “Toward the design of certifiable
mixed criticality systems,” Proc. IEEE Real-Time Technology and
Applications Symposium (RTAS), pp.13–22, 2010.

https://www.autosar.org/standards/classicplatform/release-43/
https://www.autosar.org/standards/classicplatform/release-43/
http://dx.doi.org/10.1109/ecrts.2012.41
http://dx.doi.org/10.1109/ecrts.2012.41
http://dx.doi.org/10.1109/ecrts.2012.41
http://dx.doi.org/10.1109/ecrts.2012.29
http://dx.doi.org/10.1109/ecrts.2012.29
http://dx.doi.org/10.1109/ecrts.2012.29
http://dx.doi.org/10.1587/transinf.2016edp7447
http://dx.doi.org/10.1587/transinf.2016edp7447
http://dx.doi.org/10.1587/transinf.2016edp7447
http://dx.doi.org/10.1007/s11241-008-9061-6
http://dx.doi.org/10.1007/s11241-008-9061-6
http://dx.doi.org/10.1109/rtss.2007.47
http://dx.doi.org/10.1109/rtss.2007.47
http://dx.doi.org/10.1109/rtss.2007.47
http://dx.doi.org/10.1109/rtss.2007.31
http://dx.doi.org/10.1109/rtss.2007.31
http://dx.doi.org/10.1109/rtss.2007.31
http://dx.doi.org/10.1016/j.jss.2011.07.002
http://dx.doi.org/10.1016/j.jss.2011.07.002
http://dx.doi.org/10.1016/j.jss.2011.07.002
http://dx.doi.org/10.1109/tpds.2008.129
http://dx.doi.org/10.1109/tpds.2008.129
http://dx.doi.org/10.1109/tpds.2008.129
http://dx.doi.org/10.1109/rtss.2011.12
http://dx.doi.org/10.1109/rtss.2011.12
http://dx.doi.org/10.1109/rtss.2011.12
http://dx.doi.org/10.1109/ecrts.2012.42
http://dx.doi.org/10.1109/ecrts.2012.42
http://dx.doi.org/10.1109/ecrts.2012.42
http://dx.doi.org/10.1109/ecrts.2012.42
http://dx.doi.org/10.1109/ecrts.2012.42
http://dx.doi.org/10.1109/rtas.2010.10
http://dx.doi.org/10.1109/rtas.2010.10
http://dx.doi.org/10.1109/rtas.2010.10

JUNG et al.: INCORPORATING ZERO-LAXITY POLICY INTO MIXED-CRITICALITY MULTIPROCESSOR REAL-TIME SYSTEMS
1899

[18] H. Li and S. Baruah, “An algorithm for scheduling certifiable mixed-
criticality sporadic task systems,” Proc. IEEE Real-Time Systems
Symposium (RTSS), pp.183–192, 2010.

[19] N. Guan, P. Ekberg, M. Stigge, and W. Yi, “Effective and effi-
cient scheduling of certifiable mixed-criticality sporadic task sys-
tems,” Proc. IEEE Real-Time Systems Symposium (RTSS), pp.13–
23, 2011.

[20] H. Su and D. Zhu, “An elastic mixed-criticality task model and its
scheduling algorithm,” Proc. Design Automation and Test in Europe
(DATE), pp.147–152, 2013.

[21] S. Baruah, “Schedulability analysis for a general model of mixed-
criticality recurrent real-time tasks,” Proc. IEEE Real-Time Systems
Symposium (RTSS), pp.25–34, 2016.

[22] H. Su, D. Zhu, and D. Moss’e, “Scheduling algorithms for elastic
mixed-criticality tasks in multicore systems,” Proc. IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), pp.352–357, 2013.

[23] J. Lee, K. Phan, X. Gu, J. Lee, A. Easwaran, I. Shin, and I. Lee,
“MC-fluid: Fluid model-based mixed-criticality scheduling on mul-
tiprocessors,” Proc. IEEE Real-Time Systems Symposium (RTSS),
pp.41–52, 2014.

[24] G. Liu, Y. Lu, S. Wang, and Z. Gu, “Partitioned multiprocessor
scheduling of mixed-criticality parallel jobs,” Proc. Embedded and
Real-Time Computing Systems and Applications (RTCSA), pp.1–
10, 2014.

[25] Y. Suzuki, T. Azumi, N. Nishio, and S. Kato, “HLBS: Heteroge-
neous laxity-based scheduling algorithm for DAG-based real-time
computing,” Proc. Cyber-Physical Systems, Networks, and Applica-
tions (CPSNA), pp.83–88, 2016.

[26] C. Leng, Y. Qiao, H. Wang, J. Liu, and X. Zhang, “A new utilization
based admission control algorithm for aperiodic tasks with constant
time complexity under EDF scheduling,” Proc. Embedded and Real-
Time Computing Systems and Applications (RTCSA), pp.338–341,
2013.

[27] Z. Zhang, P. Liu, L. Ju, and Z. Jia, “Energy efficient real-time
task scheduling for embedded systems with hybrid main memory,”
Embedded and Real-Time Computing Systems and Applications
(RTCSA), pp.1–10, 2014.

[28] A. Yamaguchi, Y. Nakamoto, K. Sato, Y. Watanabe, and H. Takada,
“EDF-PStream: Earliest deadline first scheduling of preemptable
data streams – Issues related to automotive applications,” Proc.
Embedded and Real-Time Computing Systems and Applications
(RTCSA), pp.257–267, 2015.

[29] N. Jung and J. Lee, “Development of mixed-criticality EDZL al-
gorithm for multiprocessors,” Korea Information Science Society,
pp.1579–1581, 2015.

[30] N. Jung and J. Lee, “Mixed-criticality EDZL scheduling analysis on
multiprocessors considering scenarios before criticality transition,”
Korea Information Science Society, pp.1573–1575, 2016.

Namyong Jung is a M.S. student at
Sungkyunkwan University, where he receives
the B.S. degree in 2016. His research interests
are timing guarantees of real-time embedded
systems.

Hyeongboo Baek is a postdoctoral research
fellow in Sungkyunkwan University (SKKU),
South Korea. He received the B.S. degree
in Computer Science and Engineering from
Konkuk University, South Korea in 2010 and the
M.S. and Ph.D. degrees in Computer Science
from KAIST, South Korea in 2012 and 2016, re-
spectively. His research interests include cyber-
physical systems, real-time embedded systems
and system security. He won the best paper
award from the 33rd IEEE Real-Time Systems

Symposium (RTSS) in 2012.

Donghyouk Lim received the B.S. and
M.S. degrees in Computer Science from Korea
Advanced Institute of Science and Technology
(KAIST), Daejeon, Korea in 2003 and 2005, re-
spectively. He is currently the CTO of RTST,
Korea. He has been a member of research staff in
Electronics and Telecommunications Research
Institute (ETRI), Korea, until 2014. His research
interests are system software platforms for real-
time embedded systems.

Jinkyu Lee is an assistant professor in De-
partment of Computer Science and Engineering,
Sungkyunkwan University (SKKU), Republic
of Korea, where he joined in 2014. He received
the B.S., M.S., and Ph.D. degrees in computer
science from the Korea Advanced Institute of
Science and Technology (KAIST), Republic of
Korea, in 2004, 2006, and 2011, respectively. He
has been a visiting scholar/research fellow in the
Department of Electrical Engineering and Com-
puter Science, University of Michigan, U.S.A.

in 2011–2014. His research interests include system design and analysis
with timing guarantees, QoS support, and resource management in real-
time embedded systems, mobile systems, and cyber-physical systems. He
won the best student paper award from the 17th IEEE Real-Time and Em-
bedded Technology and Applications Symposium (RTAS) in 2011, and the
Best Paper Award from the 33rd IEEE Real-Time Systems Symposium
(RTSS) in 2012.

http://dx.doi.org/10.1109/rtss.2010.18
http://dx.doi.org/10.1109/rtss.2010.18
http://dx.doi.org/10.1109/rtss.2010.18
http://dx.doi.org/10.1109/rtss.2011.10
http://dx.doi.org/10.1109/rtss.2011.10
http://dx.doi.org/10.1109/rtss.2011.10
http://dx.doi.org/10.1109/rtss.2011.10
http://dx.doi.org/10.7873/date.2013.043
http://dx.doi.org/10.7873/date.2013.043
http://dx.doi.org/10.7873/date.2013.043
http://dx.doi.org/10.1109/rtss.2016.012
http://dx.doi.org/10.1109/rtss.2016.012
http://dx.doi.org/10.1109/rtss.2016.012
http://dx.doi.org/10.1109/rtcsa.2013.6732239
http://dx.doi.org/10.1109/rtcsa.2013.6732239
http://dx.doi.org/10.1109/rtcsa.2013.6732239
http://dx.doi.org/10.1109/rtcsa.2013.6732239
http://dx.doi.org/10.1109/rtss.2014.32
http://dx.doi.org/10.1109/rtss.2014.32
http://dx.doi.org/10.1109/rtss.2014.32
http://dx.doi.org/10.1109/rtss.2014.32
http://dx.doi.org/10.1109/rtcsa.2014.6910497
http://dx.doi.org/10.1109/rtcsa.2014.6910497
http://dx.doi.org/10.1109/rtcsa.2014.6910497
http://dx.doi.org/10.1109/rtcsa.2014.6910497
http://dx.doi.org/10.1109/cpsna.2016.25
http://dx.doi.org/10.1109/cpsna.2016.25
http://dx.doi.org/10.1109/cpsna.2016.25
http://dx.doi.org/10.1109/cpsna.2016.25
http://dx.doi.org/10.1109/rtcsa.2013.6732236
http://dx.doi.org/10.1109/rtcsa.2013.6732236
http://dx.doi.org/10.1109/rtcsa.2013.6732236
http://dx.doi.org/10.1109/rtcsa.2013.6732236
http://dx.doi.org/10.1109/rtcsa.2013.6732236
http://dx.doi.org/10.1109/rtcsa.2014.6910524
http://dx.doi.org/10.1109/rtcsa.2014.6910524
http://dx.doi.org/10.1109/rtcsa.2014.6910524
http://dx.doi.org/10.1109/rtcsa.2014.6910524
http://dx.doi.org/10.1109/rtcsa.2015.31
http://dx.doi.org/10.1109/rtcsa.2015.31
http://dx.doi.org/10.1109/rtcsa.2015.31
http://dx.doi.org/10.1109/rtcsa.2015.31
http://dx.doi.org/10.1109/rtcsa.2015.31

