
The Journal of Systems and Software 137 (2018) 36–49

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Multi-level contention-free policy for real-time multiprocessor

scheduling

Hyeongboo Baek

a , Jinkyu Lee

a , ∗, Insik Shin

b

a Sungkyunkwan University (SKKU), Suwon, South Korea
b Korea Advanced Institute of Science and Technology (KAIST), Deajeon, South Korea

a r t i c l e i n f o

Article history:

Received 14 July 2017

Revised 8 November 2017

Accepted 11 November 2017

Available online 13 November 2017

Keywords:

Real-time systems

Real-time multiprocessor scheduling

Schedulability analysis

Multi-level contention-free policy

a b s t r a c t

The contention-free policy has received attention in real-time multiprocessor scheduling owing to its

wide applicability and significant improvement in offline schedulability guarantees. Utilizing the notion

of contention-free slots in which the number of active jobs is smaller than or equal to the number of

processors, the policy improves the schedulability by offloading executions in contending time slots to

contention-free ones. In this paper, we propose the multi-level contention-free policy by exploiting a

new, generalized notion of multi-level contention-free slots. In a case study, we present how the multi-

level contention-free policy is applied to EDF (Earliest Deadline First) scheduling and develop a schedu-

lability test for EDF that adopts the new policy. Our evaluation results demonstrate that the multi-level

contention-free policy significantly improves the schedulability by up to 4188% and 127%, compared to

vanilla EDF and EDF adopting the existing contention-free policy, respectively.

© 2017 Elsevier Inc. All rights reserved.

2

i

m

s

e

o

i

a

t

t

m

t

h

e

l

m

d

a

b

f

e
1. Introduction

Timing constraints are critical to embedded computing systems,

leading to extensive studies on real-time scheduling of a set of

tasks each of which invokes a series of jobs (Brandenburg and

Gül, 2016; Li et al., 2016; Guasque et al., 2016). Starting from Liu

and Layland’s seminal work (Liu and Layland, 1973), uniproces-

sor scheduling theories have been fully matured for both schedul-

ing algorithms (which determine the order of job execution) and

schedulability tests (which guarantee no job deadline miss under

a target scheduling algorithm) with respect to both implicit- and

constrained-deadline task models. That is, it has been proved that

EDF (Earliest Deadline First) (Liu and Layland, 1973) is optimal, and

many exact (i.e., necessary and sufficient) schedulability tests have

been developed, e.g., for EDF (Liu and Layland, 1973) and RM (Rate

Monotonic) (Audsley et al., 1991).

When it comes to multiprocessor platforms, however, such ma-

turity has been limited to the implicit-deadline task model. A

bunch of optimal scheduling algorithms such as P-Fair, ER-Fair, LL-

REF, EKG, DP-Wrap, RUN, U-EDF and QPS have been developed

(Anderson and Srinivasan, 20 0 0; Cho et al., 20 06; Andersson and

Tovar, 2006; Levin et al., 2010; Nelissen et al., 2012; Massa et al.,
∗ Corresponding author.

E-mail addresses: hbbaek@skku.edu (H. Baek), jinkyu.lee@skku.edu (J. Lee),

insik.shin@cs.kaist.ac.kr (I. Shin).

(

t

v

B

o

https://doi.org/10.1016/j.jss.2017.11.027

0164-1212/© 2017 Elsevier Inc. All rights reserved.
016; Regnier et al., 2011), which aim at much effectively reduc-

ng preemptions/migrations costs or accommodating new environ-

ents (e.g., supporting sporadic releases). Also, a semi-partitioned

cheduling with the C = D heuristic (Burns et al., 2012) and its

xtension (Brandenburg and Gül, 2016) demonstrated their near-

ptimal schedulability performance (i.e., about 98% and exceed-

ng 99% schedulable processor utilizations, respectively). However,

bove algorithms lose their (near-)optimality when a more general

ask model is considered (e.g., the sporadic constrained-deadline

ask model). Considering a well-known fact that optimal online

ultiprocessor scheduling of the sporadic constrained-deadline

ask model is impossible (Fisher et al., 2010), developing advanced

euristic scheduling algorithms that are applicable to a more gen-

ral task model is a promising approach to obtain higher schedu-

ability performance.

While a number of heuristic algorithms for a more general task

odel have been proposed, there has been another direction to

evelop prioritization policies that can be incorporated into and

pplied to most (if not all) existing scheduling algorithms (called

ase algorithms) to improve schedulability on multiprocessors ef-

ectively. Among such policies, the zero-laxity (ZL) policy (Baker

t al., 2008; Lee et al., 2011b) and the contention-free (CF) policy

 Lee et al., 2011a; 2014) have received considerable attentions due

o their wide applicability (even to scheduling algorithms to be de-

eloped in the future) and significant schedulability improvement.

etween these two policies, this paper focuses on the CF policy,

wing to the potential for further schedulability improvement.

https://doi.org/10.1016/j.jss.2017.11.027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2017.11.027&domain=pdf
mailto:hbbaek@skku.edu
mailto:jinkyu.lee@skku.edu
mailto:insik.shin@cs.kaist.ac.kr
https://doi.org/10.1016/j.jss.2017.11.027

H. Baek et al. / The Journal of Systems and Software 137 (2018) 36–49 37

Fig. 1. Schedules under EDF and EDF-CF on a two-processor platform for a task set

τ consisting of τ1 (T 1 = 15 , C 1 = 5 , D 1 = 9) , τ 2 (15, 5, 9), and τ 3 (15, 6, 10).

w

e

c

c

t

l

b

b

a

i

f

m

t

t

i

w

j

e

s

a

c

s

f

n

τ

b

c

f

s

i

E

n

c

s

o

l

E

w

s

s

o

m

m

n

o

a

w

t

j

t

C

h

a

e

t

w

t

f

W

t

e

d

p

a

i

o

t

c

t

o

e

o

p

s

i

b

n

j

p

e

f

l

a

h

t

s

p

v

t

t

2

(

g
The CF policy exploits the notion of a contention-free slot in

hich the number of active jobs (i.e., jobs with remaining ex-

cution time) is smaller than or equal to the number of pro-

essors; the most important property is that all active jobs in a

ontention-free slot are schedulable without any contention be-

ween them. The key technique to the CF policy is its offline calcu-

ation of the minimum number of contention-free slots that exists

etween each job’s release and deadline; such a minimum num-

er obtained by the offline calculation is independent of a base

lgorithm, thereby resulting in wide applicability of the CF pol-

cy. By utilizing the calculated minimum number of contention-

ree slots of a newly-released job, we trace the job’s remaining

inimum number of contention-free slots and remaining execu-

ion time at every time instant. If the former is larger than or equal

o the latter, we can demote the job’s priority without compromis-

ng schedulability since the remaining execution will be performed

ithin its deadline regardless of its priority.

Fig. 1 depicts a scheduling example in which there are three

obs on two processors, i.e., three jobs of τ 1 , τ 2 , and τ 3 , with ex-

cution times of 5, 5, and 6, release times of 0, 0, and 0, and ab-

olute deadlines of 9, 9, and 10. When it comes to an algorithm

dopting the CF policy, we can obtain the minimum number of

ontention-free slots of 1, 1, and 2, for jobs of τ 1 , τ 2 , and τ 3 re-

pectively by offline calculation. We will detail how to calculate it

or a general case in Section 4.4 , but here is a high-level expla-

ation. Between the release and absolute deadline of the job of

1 (i.e., within interval [0,9)), at most 5+5+6 = 16 executions can

e performed regardless of its scheduling, and thus at least one

ontention-free slot exist since we assume a two-processor plat-

orm (i.e., 9 − � 16
2 � = 1). The same holds for the job of τ 2 , and the

imilar reasoning results in 10 − � 16
2 � = 2 for the job of τ 3 .

Whereas the job of τ 3 misses its deadline under EDF, as shown

n Fig. 1 (a), there is no job deadline miss under EDF-CF (i.e.,

DF adopting the CF policy), as shown in Fig. 1 (b). Since [0,4) is

ot contention-free, at t = 4 , the minimum number of remaining

ontention-free slots of the jobs of τ 1 and τ 2 is still 1, and it is

ame as their remaining execution time (i.e., 1). This triggers a pri-

rity demotion of the jobs of τ 1 and τ 2 at t = 4 , yielding no dead-

ine miss for the job of τ 3 as well as jobs of τ 1 and τ 2 under

DF-CF.

Although the CF policy is successful in the previous example,

hat if the execution time of τ 3 is increased to 7 from 6? It is

traightforward for EDF-CF to incur a deadline miss of τ 3 ’s job, as

hown in Fig. 3 (a), and, therefore, it is necessary to make the pri-

rity demotion earlier than t = 4 . For example, if the priority de-

otion occurs at t = 2 , as shown in Fig. 3 (b), there is no deadline

iss, which will be explained in Section 4 . An interesting phe-

omenon observed in Fig. 3 (a) (likewise in Fig. 1 (b)) is that jobs

f τ and τ exploit only one contention-free slot although there
1 2
re four contention-free slots up to their deadlines (i.e., in [5,9)]),

hich indicates the limitation of the existing CF policy. To advance

he priority demotion without compromising the schedulability of

obs with a demoted priority after the demotion, we need to fur-

her exploit the undisclosed contention-free slots that the existing

F policy failed to utilize; this entails investigation of how jobs be-

ave after the CF policy is applied.

In this paper, we propose the multi-level CF policy that gener-

lizes the existing CF policy by effectively exploiting different lev-

ls of contention-free slots; the new policy can further improve

he schedulability by demoting the priority of jobs earlier than

hat the existing CF policy does. To this end, we first reinterpret

he existing CF policy, by developing new notions of contention-

ree/contending slots and normal/demoted jobs and their relations.

e then develop the two-level CF policy using the notions and

heir relations, and generalize it to the N -level CF policy. Such gen-

ralization is quite sophisticated since the N -level CF policy han-

les N +1 different priority levels (unlike the existing CF policy sim-

ly handling two priority levels for demoted and undemoted jobs)

nd demotes the priority of a job N times (if necessary) during

ts execution from the highest-priority level to the lowest-priority

ne sequentially, not directly, by comparing its remaining execu-

ion time and remaining minimum numbers of N different levels of

ontention-free slots. Such sequential priority-demotion is the key

echnique for the N -level CF policy to work correctly (i.e., with-

ut compromising the schedulability of the base algorithm) since

ach level of contention-free slots allows only jobs with an equal-

r higher-level priority to execute without any contention. A sim-

le priority-demotion to the lowest priority does not guarantee the

chedulability of a job, which indicates that generalizing the exist-

ng CF policy to the N -level one is not straightforward, which will

e detailed in Section 4 .

We also show how to perform an offline calculation of the

umber of multi-level contention-free slots that a newly-released

ob will experience until its deadline, and derive the important

roperties regarding the multi-level CF policy, both of which are

ssential parts for runtime operation and offline timing guarantees

or the multi-level CF policy. In a case study, we apply the multi-

evel CF policy to EDF scheduling (as a popular global scheduling

lgorithm), and develop its schedulability test in order to show

ow much schedulability of base scheduling algorithms can be po-

entially improved by the multi-level CF policy. Our simulation re-

ults demonstrate that the multi-level CF policy significantly im-

roves the schedulability by up to 4,188% and 127%, compared to

anilla EDF and EDF adopting the existing level CF policy, respec-

ively.

In summary, this study provides the following four contribu-

ions:

• Reinterpretation of the existing CF policy by developing

new notions of contention-free/contending slots and nor-

mal/demoted jobs and their relations (Section 3),
• Development of a multi-level CF policy using the no-

tions of multi-level contention-free/contending slots and nor-

mal/demoted jobs, and their relations (Section 4),
• Application of the multi-level CF policy to EDF scheduling and

development of a schedulability test thereof (Section 5.1), and

• Demonstration of the effectiveness of the multi-level CF policy

in terms of schedulability performance and preemption over-

head via simulations (Sections 5.2 and 5.3).

. System model

In this paper, we consider a set τ of η sporadic real-time tasks

 Mok, 1983) to be scheduled on m identical processors using a

lobal preemptive work-conserving scheduling algorithm. A task

38 H. Baek et al. / The Journal of Systems and Software 137 (2018) 36–49

Table 1

N -level CF relations (N ≥ 1).

Expression Description

S N c and S N
f

are disjoint, and S is

S = S N c

⊎

S N
f

a union of S N c and S N
f
.

J N n (t) and J N
d
(t) are disjoint,

J N −1
n (t) = J N n (t)

⊎

J N
d
(t) and J N −1

n (t) is a union of J N n (t) and J N
d
(t) .

J N n (t) is a set of active jobs

J N n (t)
p � J N

d
(t) having priorities higher than any job in J N

d
(t)

Active jobs in (J N n (t)
⊎

J N
d
(t)) (

J N −1
n (t) = J N n (t)

⊎

J N
d
(t)

)−→

F S N
f

are contention-free in time slots in S N
f

D

p

i

t

d

t

a

l

S

p

a

a

e

C

a

J

J

o

a

j

w

t

C

t

C

a

q

J

a

d

t

d

l

s

τi = (T i , C i , D i) in a task set τ is specified by the minimum sepa-

ration (or period) T i , the worst-case execution time C i , and the rel-

ative deadline D i . Recognizing that an implicit-deadline task sys-

tem (i.e., D i = T i) already has been studied extensively, we focus

on a constrained-deadline task system in which C i ≤ D i ≤ T i holds

for every task τ i ∈ τ . Each task τ i invokes a series of jobs, each of

which is separated from its predecessor by at least T i time units,

and is supposed to finish its execution within D i time units from

its release. We assume quantum based time, and without loss of

generality, a time unit describes a quantum length of 1; all task

parameters are specified by the multiples of the quantum length.

A single job is assumed to be unable to execute in parallel. A job is

called active at t if it has a remaining execution time at t . As the CF

policy can be incorporated into most (if not all) existing preemp-

tive work-conserving algorithms, we let A -CF denote the algorithm

A that adopts the CF policy. For ease of presentation, we refer to

the existing CF policy (Lee et al., 2011a; 2014) as the one-level CF

policy.

3. One-level CF policy: reinterpretation

Building on our own reinterpretation, this section recapitulates

the existing one-level CF policy (Lee et al., 2011a; 2014). Our rein-

terpretation entails new notions and their relations, which will be

used for developing the multi-level CF policy in Section 4 .

The principle of the one-level CF policy is to demote the prior-

ity of a job if we can guarantee the job to complete its remaining

execution before its deadline; such a guarantee is supported by the

notion of a contention-free slot in which the number of active jobs

is no larger than the number of processors, yielding no contention

among the active jobs in the slot. That is, a newly released job

calculates how many contention-free slots exist until its deadline

(which is presented in Lee et al., 2011a; 2014 and in Section 4.4 of

this paper), and the job traces its remaining contention-free slots

and execution time at each time slot. If the remaining execution

time is not larger than the remaining contention-free slots, the job

is reassigned to the lowest priority since the remaining execution

even with the lowest priority can still be successfully performed

in the remaining contention-free slots. This allows the jobs with

original priorities to avoid contending with the jobs with demoted

priorities, yielding a schedulability improvement.

To systematically analyze the one-level CF policy, we introduce

the notions of time slots and jobs, derive their relations, and then

explain the one-level CF policy by using the notions and their re-

lations.

The notions and their relations newly developed in this section

will be the basis for developing the multi-level CF policy.

Notions. Under the principle of the one-level CF policy, a time

slot is categorized into two types, depending on the possibility of

contention in the slot, as follows:

Definition 1. (From Lee et al., 2011a; 2014) A time slot is called

one-level contention-free if the number of active jobs in the slot is

less than or equal to the number of processors (m).

Otherwise, the time slot is called one-level contending .

The one-level CF policy demotes the priority of an active job

if the job’s remaining execution time is not larger than the num-

ber of remaining one-level contention-free slots. Therefore, active

jobs scheduled by A -CF (i.e., the base algorithm A adapting the

one-level CF policy) are separated into two types: active jobs with

their initial priority assigned by a base algorithm A , and those with

a demoted priority assigned by the one-level CF policy, which are

formally defined as follows:
efinition 2. An active job is called a one-level demoted job if its

riority is demoted to the lowest priority by the one-level CF pol-

cy. Otherwise, the active job is called one-level normal job .

Relations. Since such notions of time slots and active jobs for

he one-level CF policy are closely related to each other, we can

erive the relations between them. We let S denote a set of all

ime slots during the scheduling of A -CF, and we denote by S 1 c ⊆ S

 set of one-level contending slots and by S 1
f

⊆ S a set of one-

evel contention-free slots. By definition, S 1 c and S 1
f

are disjoint (i.e.,

1
c

⋂

S 1
f

= ∅), and S is a union of S 1 c and S 1
f

(i.e., S = S 1 c

⋃

S 1
f
), ex-

ressed as follows:

• S = S 1 c

⊎

S 1
f
.

Then, we let J (t) denote a set of active jobs at time instant t ,

nd we denote by J 1 n (t) a set of one-level normal jobs and by J 1
d
(t)

 set of one-level demoted jobs at time instant t , respectively. For

ase of presentation (which is actually needed for the multi-level

F policy), we let J 0 n (t) denote J (t), meaning that we express all

ctive jobs at t as 0-level normal jobs at t . By definition, J 1 n (t) and

1
d
(t) are disjoint (i.e., J 1 n (t)

⋂

J 1
d
(t) = ∅), and J 0 n (t) is a union of

1
n (t) and J 1

d
(t) (i.e., J 0 n (t) = J 1 n (t)

⋃

J 1
d
(t)), expressed as follows:

• J 0 n (t) = J 1 n (t)
⊎

J 1
d
(t) .

Since J 1
d
(t) represents a set of active jobs with a demoted pri-

rity, active jobs in J 1 n (t) have a higher priority than that of any

ctive job in J 1
d
(t) , expressed as follows:

• J 1 n (t)
p � J 1

d
(t) .

By the definition of the one-level contention-free slot, all active

obs at time instant t (i.e., jobs in J 0 n (t) = J 1 n (t)
⊎

J 1
d
(t)) can execute

ithout any contention if [t, t+1) belongs to S 1
f
, and we express

his relation as follows:

•
(
J 0 n (t) = J 1 n (t)

⊎

J 1
d
(t)

)−→

F S 1
f
.

We can see the expression and description of the four one-level

F relations in Table 1 by applying N = 1 , which are visualized in

he upper part of Fig. 2 .

One-level CF Policy. We formally present how the one-level

F policy operates using the notions and their relations explained

bove. The one-level CF policy manages two different priority

ueues, namely, Q

1 and Q

0 , that will contain the jobs in J 1 n (t) and

1
d
(t) , respectively. Let C i (t) denote the remaining execution time of

 job j i of a task τ i at time instant t . Moreover, let �1
i

and �1
i
(t)

enote the number of time slots belonging to S 1
f

that exist between

he release time and the deadline of j i , and that between t and the

eadline of j i (where t is between the release time and the dead-

ine), respectively.

A -CF runs the following six rules sequentially at each time in-

tant t .

H. Baek et al. / The Journal of Systems and Software 137 (2018) 36–49 39

Fig. 2. Visualization of the N -level CF relations (N = 1, 2, and 3).

Fig. 3. Schedules under EDF-CF and EDF-CF 2 on a two processor platform for a task

set τ consisting of τ1 (T 1 = 15 , C 1 = 5 , D 1 = 9) , τ 2 (15, 5, 9), and τ 3 (15, 7, 10);

here, �2
1 = �2

2 = 3 , �2
3 = 4 , �1

1 = �1
2 = 1 , and �1

3 = 2 , which will be calculated by

Lemma 2 in Section 4.4 .

c

J

t

t

i

b

4

p

t

i

p

C

n

l

C

4

j

t

t

f

i

m

m

T

i

e

(

c

j

w

w

t

i

o

j

s

a

t

s

t

l

p

D

n

t

t

m

m

s

C

C

t

b

i

t
• If a job j i of a task τ i is released,

R 1. Put j i into Q

1 , with its own priority given by the base algo-

rithm A .

R 2. Calculate �1
i

of j i and set �1
i
(t) ← �1

i
and C i (t) ← C i .

• For every job j i in Q

1 ,

R 3. If C i (t) ≤ �1
i
(t) holds, move the corresponding job from Q

1

to Q

0 .

R 4. If the current time slot belongs to S 1
f
, reduce �1

i
(t) by 1.

• Then,

R 5. Prioritize the jobs in Q

1 and Q

0 separately according to

the base algorithm A and execute the (at most) m highest-

priority jobs, considering that every job in Q

1 has a higher

priority than that of every job in Q

0 .

R 6. Update C i (t) ← C i (t) − 1 for the (at most) m selected jobs,

and remove each job from its queue if the job has no re-

maining execution time.
Note that once a job is moved from Q

1 to Q

0 by R 3, we

an guarantee the job’s schedulability by the relation

(
J 0 n (t) =

1
n (t)

⊎

J 1
d
(t)

)−→

F S 1
f

(i.e., no contention for the remaining execution

ime). By moving some jobs from Q

1 to Q

0 , the algorithm ensures

hat the other jobs in Q

1 execute with relatively higher priorities

n the time slots belonging to S 1 c , thereby improving the schedula-

ility.

. Multi-level CF policy

Generalizing the existing one-level CF policy, this section pro-

oses the multi-level CF policy. To this end, we first develop the

wo-level CF policy by utilizing the new notions and their relations

ntroduced in Section 3 . We then generalize it to the multi-level CF

olicy on the basis of the ideas used for developing the two-level

F policy. Finally, we show how to calculate a lower bound of the

umber of contention-free slots that a job can have under different

evels of CF policies and derive useful properties for the multi-level

F policy.

.1. Two-level CF policy

Let us focus on a schedule under EDF-CF in Fig. 3 (a). Let j 1 ,

 2 , and j 3 denote the jobs of three tasks τ 1 , τ 2 and τ 3 , respec-

ively. The interval [0,5) and [5,10) belong to S 1 c and S 1
f
, respec-

ively, because whether a time slot is the one-level contention-

ree or contending is determined by the number of all active jobs

n the slot (i.e., J 0 n (t)). On the basis of tracing the number of re-

aining contention-free slots, the priorities of j 1 and j 2 are de-

oted at t = 4 , which cannot avoid j 3 ’s deadline miss at t = 10 .

o make the task set schedulable, we need to demote the prior-

ties of j 1 and j 2 earlier than t = 4 (see, e.g., Fig. 3 (b)). To this

nd, we pay attention to the jobs in J 1 n (t) instead of those in J 0 n (t)

i.e., one-level normal jobs instead of all jobs); once we define the

ontention-free/contending slots based on the basis of number of

obs in J 1 n (t) , we can advance the time for the priority demotion,

hich is a core idea of the two-level CF policy. In this subsection,

e present the two-level CF policy, including how to guarantee

hat the remaining execution time of jobs having demoted prior-

ties is finished within their deadline. We first present the notions

f two-level contention-free/contending slots and normal/demoted

obs and their relations, as follows.

Notions. To derive a new type of contention-free slots, let us as-

ume that our background policy is the one-level CF policy, which

ssigns the lowest priority to the demoted jobs (i.e., J 1
d
(t)). Under

he priority assignment policy, we focus on the jobs in J 1 n (t) in-

tead of those in J 0 n (t) . Since all jobs in J 1 n (t) have a higher priority

han that of all jobs in J 1
d
(t) , all jobs in J 1 n (t) will execute at t as

ong as the number of jobs in J 1 n (t) is no larger than the number of

rocessors (m), which yields another level of contention-free slots.

efinition 3. A time slot is called two-level contention-free if the

umber of one-level normal jobs in the slot is less than or equal

o the number of processors (m). Otherwise, the time slot is called

wo-level contending .

Note that the definition does not care about the one-level de-

oted jobs (i.e., J 0 n (t) \ J 1 n (t) = J 1
d
(t)) because we apply the de-

otion strategy of the one-level CF policy , which guarantees the

chedulability of jobs in J 1
d
(t) . This implies that the two-level

F policy should employ the demotion strategy of the one-level

F policy, to utilize the notion of two-level contention-free slots;

hat is, it moves a job to the lowest-priority queue if the num-

er of remaining one-level contention-free slots until its deadline

s no smaller than its remaining execution time. In addition to

he its demotion strategy, the two-level CF policy also moves a

40 H. Baek et al. / The Journal of Systems and Software 137 (2018) 36–49

a

s

�

t

a

t

w

R

w

j

n

t

j

J

m

b

�

e

t

t

m

f

u

a

�

S

i

w

a

c

F

c

J
job to the lower-priority queue if the number of remaining two-

level contention-free slots until its deadline is no smaller than

its remaining execution time. In other words, whereas the one-

level CF policy maintains two queue, i.e., Q

1 and Q

0 , to distin-

guish jobs with undemoted and demoted priorities, the two-level

policy maintains three queues, i.e., Q

2 , Q

1 , and Q

0 , to distinguish

jobs with undemoted priorities, with priorities demoted by trac-

ing two-level contention-free slots (the lower-priority queue), and

with priorities demoted by tracing one-level contention-free slots

(the lowest-priority queue). Then, we can formally express jobs

with priorities demoted by tracing two-level contention-free slots,

as follows:

Definition 4. A one-level normal job is called a two-level demoted

job if its priority is demoted by the two-level CF policy to the low-

est priority among the one-level normal jobs, but is higher than

that of any one-level demoted job. Otherwise, the one-level nor-

mal job is called a two-level normal job .

Note that the two-level CF policy utilizes not only

Definitions 3 and 4 , but also Definitions 1 and 2 derived for

the one-level CF policy.

Relations. Like those of the one-level CF policy, the new no-

tions of the two-level CF policy are also closely related to each

other, which we will discuss now. Let S 2 c and S 2
f

denote a set of

two-level contending slots and contention-free slots, respectively,

which exist during the scheduling of A -CF 2 (i.e., a base algorithm

A adopting the two-level CF policy), and let J 2 n (t) and J 2
d
(t) denote

a set of two-level normal jobs and demoted jobs at time instant t ,

respectively. By Definitions 3 and 4 , we can derive the relations of

the two-level CF relation, as follows:

• S = S 2 c

⊎

S 2
f
.

• J 1 n (t) = J 2 n (t)
⊎

J 2
d
(t) .

• J 2 n (t)
p � J 2

d
(t) .

•
(
J 1 n (t) = J 2 n (t)

⊎

J 2
d
(t)

)−→

F S 2
f
.

The meaning of the relations above is the same as that of the

corresponding relations for the one-level CF policy (i.e., simply re-

placing 1 with 2), which are described in Table 1 with N = 2, and

are visualized in the middle part of Fig. 2 .

Inter-relations. We now develop the relations between the

one- and the two-level notions, which are illustrated in Fig. 2 .

As illustrated in the upper and middle parts of Fig. 2 , jobs in

J(t) = J 1 n (t)
⊎

J 1
d
(t) are contention-free in S 1

f
if [t, t+1) belongs to

S 1
f

(i.e.,
(
J 0 n (t) = J 1 n (t)

⊎

J 1
d
(t)

)−→

F S 1
f
) whereas only jobs in J 1 n (t) are

contention-free in S 2
f

if [t, t+1) belongs to S 2
f

(i.e., J 1 n (t)
−→

F S 2
f
). This

indicates that S 2
f

includes not only the time slots in S 1
f
, but also the

time slots in which the jobs in J 1 n (t) are contention-free but those

in J 1
d
(t) are contending. Thus, we derive the following relation for

the sets of one-level and two-level contention-free time slots.

• S 2
f

⊇ S 1
f
.

As for the jobs, J (t) is partitioned into J 1 n (t) and J 1
d
(t) , and

J 1 n (t)
p � J 1

d
(t) holds (shown in the upper part of Fig. 2). Likewise,

J 1 n (t) is partitioned into J 2 n (t) and J 2
d
(t) , and J 2 n (t)

p � J 2
d
(t) holds

(shown in the middle part of Fig. 2), expressed as follows:

• J 2
d
(t)

p � J 1
d
(t) .

Two-level CF policy. We present how the two-level CF policy is

conducted using both the one-level and the two-level CF relations,

and the inter-relation between the one-level and the two-level no-

tions. The two-level CF policy manages three queues, i.e., Q

2 , Q

1 ,
nd Q

0 , which will contain the jobs in J 2 n (t) , J 2
d
(t) and J 1

d
(t) , re-

pectively. In addition to �1
i

and �1
i
(t) defined in Section 3 , let

2
i

and �2
i
(t) denote the number of time slots belonging to S 2

f

hat exists between the release time and the deadline of a job j i of

 task τ i , and that between t and its deadline (where t is between

he release time and the deadline), respectively.

A -CF 2 runs the following rules sequentially at each time t ,

here a rule ˆ R x for the two-level CF policy corresponds to a rule

x for the one-level CF policy in Section 3 .

• If a job j i of a task τ i is released,

ˆ R 1 . Put j i into Q

2 , with its own priority given by the base algo-

rithm A .
ˆ R 2 . Calculate �1

i
and �2

i
of j i , and set �1

i
(t) ← �1

i
, �2

i
(t) ←

�2
i
, and C i (t) ← C i .

• For every job j i in Q

x , for x = from 2 to 1.

ˆ R 3 . If C i (t) ≤ �x
i
(t) holds, move the corresponding job from Q

x

to Q

x −1 .

• For every job j i in Q

x , for x = from 2 to 1.

ˆ R 4 . If the current time slot belongs to S
y

f
, reduce �y

i
(t) by 1, for

y = from x to 1.

• Then,

ˆ R 5 . Prioritize the jobs in Q

2 , Q

1 , and Q

0 separately according to

the base algorithm A and execute the (at most) m highest-

priority jobs, considering that every job in Q

2 has a higher

priority than that of every job in Q

1 and that every job in

Q

1 has a higher priority than every job in Q

0 .
ˆ R 6 . Update C i (t) ← C i (t) − 1 for the (at most) m selected jobs,

and remove each job from its queue if the job has no re-

maining execution time.

Let us investigate how a job j i of τ i moves between queues

ithout compromising the schedulability guarantee. Suppose that

 i in Q

2 satisfies C i (t ′) ≤ �2
i
(t ′) at t ′ . This implies that j i will

ever miss its deadline despite its demoted priority (but higher

han that of jobs in J 1
d
(t ′)) since the remaining execution of

 i will be successfully performed owing to the relation

(
J 1 n (t) =

2
n (t)

⊎

J 2
d
(t)

)−→

F S 2
f

of the two-level CF relation. Therefore, we can

ove the job to Q

1 by ˆ R 3 without compromising the schedula-

ility guarantee. Thereafter, suppose that j i in Q

1 satisfies C i (t ′′) ≤
1
i
(t ′′) at t ′ ′ . This also implies that j i will never miss its deadline

ither despite the demoted priority (i.e., the lowest priority) owing

o the relation

(
J 0 n (t) = J 1 n (t)

⊎

J 1
d
(t)

)−→

F S 1
f

of the one-level CF rela-

ion. Therefore, we can guarantee the schedulability of j i despite

oving to Q

0 by ˆ R 3 .

Fig. 3 illustrates how the two-level CF policy is conducted to

urther improve the schedulability with an example task set. Let

s consider a task set τ containing three tasks, τ1 = τ2 = (15 , 5 , 9)

nd τ3 = (15 , 7 , 10) . We assume that �2
1

= �2
2

= 3 , �2
3

= 4 , �1
1

=
1
2

= 1 and �1
3

= 2 , which will be calculated by Lemma 2 in

ection 4.4 . The high-level principle behind the offline calculation

s as follows. Between the release and the deadline of j 1 (like-

ise of j 2), at most 5+5+7 = 17 executions can be performed,

nd thus at least one one-level contention-free slot exist since we

onsider a two-processor platform (i.e., �1
1 = �1

2 = 9 − � 17
2 � = 1).

rom the similar reasoning, we obtain �1
3

= 10 − � 17
2 � = 2 . For cal-

ulating �2
i
, we can ignore �1

i
amount of executions since jobs in

1
n (t) = J 2 n (t)

⊎

J 2
d
(t) are not interfered by jobs in J 1

d
(t) due to the

H. Baek et al. / The Journal of Systems and Software 137 (2018) 36–49 41

r

a

t

i

p

=
a

�

T

f

�

m

4

N

t

p

d

t

p

y

f

t

i

s

i

a

C

e

W

j

1

f

D

n

n

c

3

f

D

m

l

t

l

D

o

W

t

a

a

w

A

o

w

l

r

c

b

a

q

p

a

e

t

t

A

F

r

τ

o

f

(

m

t

(

�

r

w

o

e

a

j

N

4

l
elation J 1 n (t)
p � J 1

d
(t) . Thus, we obtain �2

1
= �2

2
= 9 − � 4+4+5

2 � = 3

nd �2
3 = 10 − � 4+4+5

2 � = 4 .

We also assume that τ is scheduled by EDF-CF and EDF-CF 2 on

wo processors, shown in Fig. 3 (a) and (b), respectively. As seen

n Fig. 3 (a), j 3 misses its deadline at time instant 10, although the

riorities of j 1 and j 2 are demoted at time instant 4, where �1
1 (4)

 �1
2
(4) = 1. In the case of Fig. 3 (b), the priorities of j 1 and j 2

re demoted (i.e., moved from Q

2 to Q

1) at time instant 2, where
2
1 (2) = �2

2 (2) = 3, and j 3 meets its deadline at time instant 9.

hen, the priorities of j 1 and j 2 are further demoted (i.e., moved

rom Q

1 to Q

0) at time instants 4 and 6, respectively since C 1 (4) =
1
1 (4) and C 2 (6) = �1

2 (6) hold. Such a two-level priority demotion

akes τ schedulable.

.2. N -level CF policy

In this subsection, we generalize the two-level CF policy to the

 -level CF policy using the notions and their relations derived for

he one-level and the two-level CF policies.

In the previous subsection, we showed that the two-level CF

olicy is developed with new notions and their relations, which are

erived by focusing on the jobs in J 1 n (t) . This idea is also applicable

o the jobs in J 2 n (t) , meaning that we can develop a higher-level CF

olicy recursively, by focusing on higher-level normal jobs, which

ields a further improvement in schedulability. For example, let us

ocus on an interval [0,4) belonging to S 2 c in Fig. 3 (b). We can parti-

ion it into two types of time slots: time slots in which active jobs

n J 2 n (t) can execute without any contention, i.e., [2,4), and time

lots in which the jobs in J 2 n (t) should contend for their execution,

.e., [0,2). Thus, we can define another level of contention-free slots

nd demoted jobs for the jobs in J 2 n (t) , which yields the three-level

F policy.

On the basis of such chaining reasoning, the N -level CF policy

xploits N different levels of notions and their relations all together.

e now present the notions of N -level (N ≥ x ≥ 1) time slots and

obs, and relations thereof.

Notions. By focusing on x -level normal jobs in J x n (t) (for N ≥ x ≥
) under the N -level CF policy, we can define x -level contention-

ree and contending slots as follows:

efinition 5. A time slot is called x -level contention-free if the

umber of (x − 1)-level normal jobs is less than or equal to the

umber of processors (m). Otherwise, the time slot is called x -level

ontending .

Note that Definition 5 is a generalization of Definitions 1 and

 . Moreover, we can define x -level demoted and normal jobs as

ollows:

efinition 6. An (x − 1)-level normal job is called an x -level de-

oted job if its priority is demoted by the x -level CF policy to the

owest priority among the (x − 1)-level normal jobs, but is higher

han that of any (x − 1)-level demoted job. Otherwise, the (x − 1)-

evel normal job is called an x -level normal job.

Likewise, Definition 6 is also a generalization of

efinitions 2 and 4 .

Relations. Then, we present the relations between the notions

f x -level time slots and jobs, referred to as x -level CF relations.

e explain the relations by applying x to N in Table 1 , and the

hree-level CF relation is visualized in the lower part of Fig. 2 as

n example of x -level CF relation. Here, we let S x c and S N
f

denote

 set of x -level contending and contention-free slots, respectively

hich exist during the scheduling of A -CF N (i.e., a base algorithm

 adopting the N -level CF policy), and J x n (t) and J x
d
(t) denote a set

f x -level normal and demoted jobs at time instant t , respectively,

here 1 ≤ x ≤ N .
Inter-relations. Similar to the inter-relations between the one-

evel and the two-level notions, the following are the inter-

elations between (x − 1)-level and x -level notions:

• S x
f

⊇ S x −1
f

.

• J x
d
(t)

p � J x −1
d

(t) .

N -level CF policy. We then present how the N -level CF policy is

onducted with N different levels of CF relations and inter-relations

etween N different levels of notions. The N -level CF policy man-

ges (N +1) queues such that Q

N contains jobs in J N n (t) and the other

ueues Q

N contain jobs in J x +1
d

(t) for 0 ≤ x ≤ N − 1 ; the N -level CF

olicy also uses N different levels of contention-free slots. Let �x
i

nd �x
i
(t) denote the number of time slots belonging to S x

f
that

xist between the release time and the deadline of a job j i of a

ask τ i , and that between t and the deadline (where t is between

he release time and the deadline), respectively.

Algorithm 1 describes the N -level CF policy with a base algo-

lgorithm 1 The N -level CF policy with the base algorithm A .

or each time slot,

1: if a job of τi is released then

2: Put the job into Q

N and set �x
i
(t) ← �x

i
for all N ≥ x ≥ 1 and

C i (t) ← C i .

3: end if

4: for x = from N to 1 decreasing by 1 do

5: for all jobs in Q

x do

6: if the job of τi satisfies �x
i
(t) ≥ C i (t) then

7: Move the job to Q

x −1 .

8: end if

9: end for

10: end for

11: for x = from N to 1 decreasing by 1 do

12: if
∑ N

y = x −1 | Q

y | ≤ m then

13: Update �x
i
(t + 1) ← max

(
0 , �x

i
(t) − 1

)
for all jobs inev-

ery Q

y for all N + 1 ≥ y ≥ x .

14: end if

15: end for

16: Prioritize jobs in every Q

x for N ≥ x ≥ 0 separately, according to

the base algorithm A .

17: Update C i (t) ← C i (t) − 1 for the (at most) m highest-priority

jobs considering that all jobs in Q

x have a higher priority than

that of all jobs in Q

x −1 , for N ≥ x ≥ 1 , and remove each job from

its queue if the job has no remaining execution time.

ithm A . For each time slot, the N -level CF policy puts a job j i of

i into Q

N when the job is released; then it sets N different levels

f remaining contention-free slots �x
i
(t) of j i to �x

i
, respectively

or N ≥ x ≥ 1 ; and it sets its remaining execution time C i (t) to C i
Lines 1–3). For each queue Q

x (N ≥ x ≥ 1), the N -level CF policy

oves a job in Q

x to Q

x −1 , and assigns the job a priority lower

han that of any job in Q

x but higher than that of any job in Q

x −2

if any) if the number of remaining x -level contention-free slots
x
i
(t) is greater than or equal to C i (t) (Lines 4–10). Then, if the cur-

ent time slot belongs to x -level contention-free slots (N ≥ x ≥ 1),

e decrease the number of remaining x -level contention-free slots

f each job by 1 (Lines 11–15). Then, we prioritize the jobs in ev-

ry Q

x for N ≥ x ≥ 0 separately, by the base algorithm A (Line 16),

nd choose (at most) m jobs to be executed, considering that all the

obs in Q

x have a higher priority than that of all jobs in Q

x −1 for

 ≥ x ≥ 1 .

.3. Theoretical computational overhead

We now discuss time complexity of EDF-CF N . Since the multi-

evel CF policy is the per time instant operation (as seen in

42 H. Baek et al. / The Journal of Systems and Software 137 (2018) 36–49

Fig. 4. Scenario maximizing the amount of executions performed by the x -level

normal jobs of a task τ i in x -level contending slots during the interval of interest

of length � .

f

f

n

�

τ

o

l

f

a

W

o

L

s

P

l

�

f

u

i

m

t

T

i

t

�

τ

t

F

n

w

T

j

b

b

W

l

t

v
Algorithm 1), we investigate additional computations that should

be conducted at every time instant when the multi-level CF policy

is applied. Let f be the average job release/completion frequency

(e.g., f = 1/2 means that a job release/completion occurs once ev-

ery two time instants in average). Since EDF schedules jobs only

when a job is released or finishes its execution, the time com-

plexity of EDF is O(1 / f) . The N -level CF policy keeps track of the

remaining execution time of jobs, C i (t), executing on the proces-

sors (O(m)) and the remaining N different levels of contention-

free slots, �N
i
(t) , for all active jobs (O(N · η)), and compares C i (t)

with �N
i
(t) for every active job (O(N · η)). If m ≥ η, then the sys-

tem is trivially schedulable; thus we assume m < η. Therefore, the

time complexity of EDF-CF N is O(1 / f)+ O (m)+ O (N · η) + O(N · η)

= O(1 / f) + O(η) + 2 · O (N · η) = O(1 / f) + O(N · η) + 2 · O (N · η) =
O(1 / f) + 3 · O (N · η) = O(1 / f) + O(N · η) . Considering the time

complexity of EDF-CF is O(1 / f) + O(η) , the time complexity of

EDF-CF N indicates that increasing level of the CF policy increases

its computational overhead linearly, not exponentially.

We now address the number of additional migrations that can

occur in EDF-CFN compared to EDF and EDF-CF. The migration of

an active job conditionally happens when a job is preempted on

one processor by a higher priority job and resumes its execution

on another processor, which is conducted by the given scheduler.

This implies that the number of migrations is upper-bounded by

the number of preemptions, and thus, we need to consider how

frequently each job is preempted by each scheduling algorithm.

In the case of EDF, the number of preemptions is trivially upper-

bounded by the number of jobs released during the system op-

eration since the priority of each job is changed only when a

job release/completion occurs, and a job completion cannot pre-

empt an executing job. When it comes to EDF-CF and EDF-CF N ,

such a preemption can occur at most one and N times more, re-

spectively, since EDF-CF and EDF-CF N demote the priority of a job

whose remaining execution is equal to the corresponding level of

remaining contention-free slots. Therefore, for a given number of

released jobs denoted by γ , the number of migrations (i.g., upper-

bounded by the number of preemptions) is upper-bounded by

O (γ) , O (2 · γ) and O((N + 1) · γ) for EDF, EDF-CF and EDF-CF N .

Naturally, the cost of overall migration of the system with each

scheduling algorithm is proportional to each upper-bound. Note

that such derived maximum numbers of migrations are theoreti-

cal upper-bounds; we will demonstrate that the increasing average

number of migrations under EDF-CF N is marginal compared to EDF

and EDF-CF (e.g., less than 2% increase) via empirical evaluation

results in Section 5.3 .

4.4. Lower-bound of the number of contention-free slots

We now explain how to calculate the lower-bound of the num-

ber of N different levels of contention-free slots, which a job expe-

riences between its release time and its deadline under the N -level

CF policy. Between the two mechanisms for calculating the lower-

bound of the number of one-level contention-free slots proposed

in Lee et al. (2011a , 2014) , respectively, we extend the latter ow-

ing to its higher average schedulability performance. As S = S x c

⊎

S x
f

holds for 1 ≤ x ≤ N , we now calculate the lower-bound of the num-

ber of x -level contention-free slots that exist between the release

time and the deadline of a job of a task τ i by calculating the

upper-bound of the number of x -level contending slots that exist

within the same interval. To calculate the latter, we need to cal-

culate how many executions of (x − 1)-level normal jobs are per-

formed with contention according to Definition 5 . Thus, we first

investigate how many executions of (x − 1)-level normal jobs of a

task τ i can be performed in (x − 1)-level contending slots and then

derive the upper-bound of the x -level contending slots on the basis

of investigation result.
Let W

x
i
(�) denote the maximum amount of executions per-

ormed by the x -level normal jobs of τ i in x -level contending slots

or 1 ≤ x ≤ N , during an interval of length � , and let W

0
i
(�) de-

ote that performed by all jobs of τ i during an interval of length

 . Fig. 4 depicts a scenario in which W

0
i
(�) is produced for a task

i . The first job of τ i in Fig. 4 starts its execution at the left end

f the interval of length � and completes the execution at its dead-

ine, which uses C i time slots in the interval of length � while it

ully executes for its C i . Thereafter, the following jobs are released

nd scheduled as soon as possible (Bertogna et al., 2009). As for

x
i
(�) for 1 ≤ x ≤ N , we can ignore the amount of �x

i
executions

ut of C i by using the following lemma.

emma 1. An x -level normal job j i executes in x -level contending

lots during at most C i − �x
i

time instants.

roof. We consider the following two cases for j i :

Case 1. j i does not migrate to Q

x −1 (i.e., does not become a x -

evel demoted job) until its deadline: In this case, j i satisfies C i (t) >
x
i
(t) until its deadline and faces at least �x

i
x -level contention-

ree slots since there are at least �x
i
x -level contention-free slots

p to its deadline. Thus, at most C i − �x
i

executions are performed

n x -level contending slots.

Case 2. j i migrates from Q

x to Q

x −1 (i.e., becomes an x -level de-

oted job) at time instant t ′ before its deadline: Before it migrates

o Q

x −1 , j i faces exactly �x
i

− �x
i
(t ′) x -level contention-free slots.

hus, the number of x -level contending slots in which j i executes

s exactly C i − (�x
i

− �x
i
(t ′)) − �x

i
(t ′) = C i − �x

i
. �

As seen in Fig. 4 , in the worst-case scenario for W

x
i
(�) , the in-

erval of interest of length � moves to the right by the amount of
x
i
, compared to W

0
i
(�) .

We then let n x
i
(�) denote the number of x-level normal jobs of

i that can execute completely within the interval of interest (e.g.,

he first two jobs from the left end of the interval of length � in

ig. 4) upper-bounded by

x
i (�) =

⌊

� + D i − C x
i

T i

⌋

, (1)

here C x
i

= max
(
0 , C i − �x

i

)
for N ≥ x ≥ 1 , and C x

i
= C i for x = 0 .

hen, the execution time of the last job of τ i (e.g., the right-most

obs in Fig. 4) within the interval of length � can be upper-bounded

y min (C x
i
, � + D i − C x

i
− n x

i
(�) · T i) . Therefore, W

x
i
(�) is calculated

y

x
i (�) = min

(
�, n

x
i (�) · C x i + min

(
C x i , � + D i − C x i − n

x
i (�) · T i

))
.

(2)

If a time slot is x -level contending, there are at least m (x − 1)-

evel normal jobs in the slot by Definition 5 . Thus, we can calculate

he upper-bounded number of x -level contending slots in an inter-

al of length � by

⌊∑

τi ∈ τ W

x −1
i

(�)

m

⌋
. Using the upper-bound of the

H. Baek et al. / The Journal of Systems and Software 137 (2018) 36–49 43

Fig. 5. Schedules of different levels of contention-free policy with an example task set.

n

c

f

L

l

r

�

P

r

t ⌊

w

s

τ

a

4

s

a

t

i

m

l

r

E

i

i

j

o

e

t

b

4

s

t

p

r

c

t

L

m

P

t

l

(

o

h

c

a

i

s

s

i

l

o

umber of x -level contending slots in an interval of length � , we

an calculate the lower-bound of the number of x -level contention-

ree slots as follows:

emma 2. For a job of a task τ k scheduled by A-CF N , there are at

east �x
k
x -level contention-free slots (N ≥ x ≥ 1) between the job’s

elease time and its deadline, which are computed as follows:

x
k = max

(
0 , D k −

⌊ C x −1
k

+

∑

τi ∈ τ\{ τk } W

x −1
i

(D k)

m

⌋)
. (3)

roof. When we limit our attention to the interval between the

elease and the deadline of a job of a task τ k , the lower-bound of

he contention-free slots in the interval is derived by D k -min

(
D k ,

∑

τi ∈ τ W

x −1
i

(D k)

m

⌋)
. Here, we can reduce W

x −1
k

(D k) by replacing it

ith C x −1
k

with the observation that it is guaranteed that only a

ingle job of a task τ k is invoked (unlike the other jobs invoked by

i ∈ (τ�τ k)) between the release time and the deadline of a job of

 task τ k . Thus, the lemma holds. �

.5. Example

This section shows how the higher-level CF policy improves

chedulability with an example. We consider EDF-CF, EDF-CF 2

nd EDF-CF 3 . Suppose that a task set τ = { τ1 = (12 , 4 , 11) , τ2 =
(12 , 3 , 11) , τ3 = (23 , 20 , 22) } is scheduled by each algorithm on a

wo-processor platform, and all the tasks invoke their jobs period-

cally beginning at t = 0 . We check whether there exists a deadline

iss in the interval [0, 22). We denote the first and second re-

eased jobs of τ 1 (likewise τ 2) by j 1 1 and j 2 1 (likewise j 1 2 and j 2 2),

espectively, and denote the first released job of τ 3 by j 1 3 .

• EDF-CF (Fig. 5 (a)): At t = 0 , �1
i

is calculated by Eq. (3) in

Section 4.4 ; �1
1

= 11 − � 4+6+11
2 � = 1 , �1

2
= 11 − � 3+8+11

2 � = 0 ,

and �1
3

= 22 − � 20+12+9
2 � = 2 hold. j 1 1 and j 2 1 migrate from Q

1 to

Q

0 at t = 3 and t = 14 respectively. Unfortunately, such migra-

tions do not reduce the interference on j 1 3 , yielding a deadline

miss of j 1 3 at t = 22 .
• EDF-CF 2 (Fig. 5 (b)): In addition to �1

i
, �2

i
is calculated at t =

0 ; �2
1

= �2
2

and �2
3

are calculated as 11 − � 3+6+11
2 � = 1 and

22 − � 18+9+9
2 � = 4 , respectively. At t = 2 and t = 13 , j 1 2 and j 2 2

migrate from Q

2 to Q

1 , which reduces the interferences on j 1 3

by 2, but it is not sufficient to make j 1 3 schedulable.
• EDF-CF 3 (Fig. 5 (c)): In addition to �1

i
and �2

i
, �3

i
is calculated

at t = 0 ; �3
1
, �3

2
and �3

3
are calculated as 11 − � 3+4+11

2 � = 2 ,

11 − � 2+6+11
2 � = 2 and 22 − � 16+9+6

2 � = 7 , respectively. j 1 2 and

j 2 2 move from Q

3 to Q

2 at t = 1 and t = 12 , respectively, and j 1 1

and j 2 1 migrate from Q

3 to Q

2 at t = 2 and t = 13 , respectively.

j 1 3 is now schedulable at t = 22 .

Table 2 describes how each active job of the above example of

DF-CF 3 (Fig. 5 (c)) behaves in each time slot in [0, 5) with chang-

ng values of C i (t) and �x
i
. The 1st row of Table 2 indicates the

ndex of the time instant, and the 2nd to 5th rows indicate which
obs each queue contains. The 6th to 9th rows indicate the number

f remaining multi-level contention-free slots up to the deadline of

ach job, and the 10th to 12th rows indicate the remaining execu-

ion time of each job.

With the values of C i (t) and �x
i
, three jobs, i.e., j 1 1 , j 1 2 , and j 1 3

ehave in each time slot as follows.

• At t = 0 , j 1 1 , j 1 2 , and j 1 3 are released and put into Q

3 , and �3
i
,

�2
i
, and �1

i
are calculated. Then, j 1 1 and j 1 2 execute as they

have deadlines earlier than that of j 1 3 .

• At t = 1 , j 1 2 moves to Q

2 as C 2 (1) = �3
2
(1) = 2 , followed by j 1 1

and j 1 3 . We mark the value corresponding to �3
2

by “-” as no

job uses the value after t = 1 .
• At t = 2 , j 1 1 moves to Q

2 as C 1 (2) = �3
1
(2) = 2 . j 1 3 and j 1 1 ex-

ecute; for tie-breaking, we assume that an active job of lower

task index has a higher priority when they have the same ab-

solute deadlines and are in the same queue.
• At t = 3 , j 1 1 moves to Q

0 as C 1 (3) = �2
1 (3) = �1

1 (3) = 1 . j 1 3 and

j 1 2 execute. �3
3
, �2

3
and �2

2
are reduced by 1 as the correspond-

ing time slot belongs not only to the three-level contention-free

slots, but also to the two-level contention-free slots. Then, j 1 2

and j 1 3 execute.

• At t = 4 , �3
3

and �2
3

are reduced by 1, and j 1 2 and j 1 3 execute.

j 1 2 finishes its execution here.

.6. Derivation of properties of the multi-level CF policy

As illustrated so far, as the level of the CF policy increases, the

chedulability improves by demoting the priorities of jobs earlier

han what the lower-level CF policy does. We show that such early

riority demotion entails an important property—the interference

eduction on a job that is scheduled by A -CF N . This property indi-

ates that the amount of interference on a job can be reduced by

he multi-level CF policy.

To prove the property, we derive the following lemma:

emma 3. Once a job moves from Q

N to Q

N −1 under A-CF N , the re-

aining execution time of the job will be finished before its deadline.

roof. A job j i of a task τ i scheduled by A -CF N migrates from Q

N

o Q

N −1 at time instant t ′ only when remaining execution of j i is

ess than or equal to the remaining N -level contention-free slots

i.e., C i (t ′) ≤ �N
i
(t ′)). Since jobs in Q

N and Q

N −1 can execute with-

ut any contention in the N -level contention-free slots, j i in Q

N −1

as at least C i (t) time slots in which j i can execute without any

ontention as long as it stays in Q

N −1 . Then, j i migrates to Q

N −2

t time instant t ′ ′ when C i (t ′′) ≤ �N −1
i

(t ′′) or finishes its execution

n Q

N −1 . Even if j i migrates to Q

N −2 , there are at least C i (t
′ ′) time

lots in which j i can execute without any contention as long as it

tays in Q

N −2 . On the basis of the chaining reasoning, j i can finish

ts execution in Q

x before its deadline (N -1 ≥ x ≥ 0). Thus, this

emma holds. �

From the above lemma, we derive the following important the-

rem.

44 H. Baek et al. / The Journal of Systems and Software 137 (2018) 36–49

Table 2

Values for EDF-CF 3 ; empty cells indicate the corresponding queues contain no jobs at

the corresponding time instant t , and “–” represents that the corresponding value will

not be used from the corresponding time instant t .

t 0 1 2 3 4

Q 3 j
1
1 , j

1
2 , j

1
3 j

1
1 , j

1
3 j

1
3 j

1
3 j

1
3

Q 2 j
1
2 j

1
1 , j

1
2 j

1
2 j

1
2

Q 1

Q 0 j
1
1 j

1
1

�3 , �2 , �1 �3 , �2 , �1 �3 , �2 , �1 �3 , �2 , �1 �3 , �2 , �1

j
1
1 2, 1, 1 2, 1, 1 –, 1, 1 –, –, – –, –, –

j
1
2 2, 1, 0 –, 1, 0 –, 1, 0 –, 0, 0 –, 0, 0

j
1
3 7, 4, 2 7, 4, 2 7, 4, 2 6, 3, 2 5, 2, 2

C 1 (t) 4 → 3 3 → 2 2 → 1 1 1

C 2 (t) 3 → 2 2 2 2 → 1 1 → 0

C 3 (t) 20 20 → 19 19 → 18 18 → 17 17 → 16

C

W

Fig. 6. Worst-case scenario wherein the interference of the jobs of τ i on a job of

τ k under EDF is maximized.

o

A

o

h

a

o

c

E

j

L

s

e

τ

P

B

l

e

m

H

m

c

a

s

C

T

p

Theorem 1. A job j i of a task τ i under A-CF N can interfere with a

single job j k whose schedulability is not guaranteed, during at most

 i − �N
i

time slots.

Proof. Lemma 3 indicates that a job j k of τ k is not guaranteed to

be schedulable by the N -level CF policy only when j k is in Q

N . By

Lemma 1 , a job j i in Q

N can interfere with another job j k in Q

N

at most C i − �N
i

since a job can interfere only in contending slots.

Also, a job j i in Q

x (N -1 ≥ x ≥ 0) cannot interfere with j k in Q

N

owing to its lower priority. Thus, the theorem holds. � �

As A -CF does not make any task set to be schedulable by the

base algorithm A unschedulable as presented in Lee et al. (2011a ;

2014), such a dominance property also holds between A -CF N and

A -CF (N −1) .

We prove the property by the following theorem.

Theorem 2. If a task set τ is schedulable by a scheduling algorithm

A-CF N −1 , then it is also schedulable by A-CF N .

Proof. As A -CF N and A -CF N −1 schedule the same task set,

N −1
i

(�) ≤ W

N −2
i

(�) and C N −1
k

≤ C N −2
k

hold by the Lemma 1 and the

definition of C x
i

. This makes �N
k

≥ �N −1
k

according to Eq. (3) . Since

S x
f

⊇ S x −1
f

holds for every x -level contention-free slots, and active

jobs in Q

N under A -CF N and those in Q

N −1 under A -CF N −1 are sched-

uled by the same algorithm A , when �N −1
k

is reduced by 1, �N
k

is

also reduced by 1 by Algorithm 1 . Thus, the priority of an active

job j i under A -CF N is demoted no later than what the same job j i
under A -CF N −1 does.

Then, active jobs with a demoted priority under A -CF N −1 and A -

CF N are guaranteed to be schedulable respectively by Lemma 3 and

cannot interfere with the active jobs in Q

N and Q

N −1 respectively

by the priority ordering policies of A -CF N and A -CF N −1 .

Thus, the theorem holds. �

5. Case study: EDF-CF N and its schedulability test

In this section, we apply the N -level CF policy to the global pre-

emptive EDF and develop a new schedulability test for EDF-CF N .

Then, we evaluate the schedulability performance of EDF-CF N with

different value of N via simulation.

5.1. Schedulability tests for EDF-CF N

Before we develop the schedulability test for EDF-CF N ,

we first re-visit the EDF schedulability test presented in

Bertogna et al. (2009) . To test the schedulability of a given job of a

task τ k , this test checks whether the job has enough interference

from other jobs to miss its deadline. Since calculating the exact in-

terference is difficult, it uses the upper-bound of the interference
 τ
n the basis of the worst-case release pattern illustrated in Fig. 6 .

s shown in Fig. 6 , the interference from the jobs of τ i to a job

f τ i is maximized when their deadlines are aligned since a job

aving a later absolute deadline cannot interfere with a job having

n earlier absolute deadline. With this reasoning, the upper-bound

f the amount of interference from the jobs of τ i to a job of τ k is

alculated by E (D k , C i , T i) as follows:

(D k , C i , T i) =

⌊

D k

T i

⌋

C i + min

(
C i , D k −

⌊

D k

T i

⌋

· T i

)
. (4)

With E (D k , C i , T i), we can evaluate the schedulability of a given

ob of τ k by using the EDF schedulability test as follows:

emma 4 (Theorem 7 in Bertogna et al., 2009) . A task set τ is

chedulable by EDF on an m -processor platform if the following in-

quality holds for every task τ k ∈ τ . ∑

i ∈ τ−{ τk }
min

(
E(D k , C i , T i) , D k − C k + 1

)
< m · (D k − C k + 1) . (5)

roof. We briefly summarize the proof of

ertogna et al. (2009) for their Theorem 7. To miss a dead-

ine for a given job of τ k scheduled on m processors, the job

xecutes in at most C k − 1 time slots. At each time slot, at least

 other jobs are required to block the execution of a job of τ k .

ence, at least D k − (C k − 1) amount of interference is required to

iss the job of τ k . �

Through Theorem 1 , we have shown that a job of a task τ i

an interfere with other jobs in at most C i − �N
i

time slots as long

s a base algorithm A follows the N -level CF policy. Thus, the EDF

chedulability test presented in Lemma 4 can be modified for EDF-

F N using a reduced execution by �N
i

as follows:

heorem 3. A task set τ is schedulable by EDF-CF N on an m -processor

latform, if the following inequality holds for every task τ k ∈ τ . ∑

i ∈ τ−{ τk }
min

(
E(D k , C

N
i , T i) , D k − C k + 1

)
< m · (D k − C k + 1) , (6)

H. Baek et al. / The Journal of Systems and Software 137 (2018) 36–49 45

Table 3

Schedulable ratio of EDF, EDF-CF and EDF-CF N with N = 2 , 3 , 4 and 5 for constrained-deadline task sets.

m EDF EDF − CF EDF − CF 2 EDF − CF 3 EDF − CF 4 EDF − CF 5 Ratio of Ratio of

EDF-CF 5 to EDF EDF-CF 5 to EDF-CF

2 9.7% 27.6% 36.7% 42.2% 45.7% 48.1% 495.8% 174.2%

4 4.6% 20.2% 28.8% 33.9% 37.4% 39.8% 865.2% 197.0%

8 2.1% 16.8% 25.1% 30.4% 33.7% 36.2% 1723.8% 215.4%

16 0.8% 15.1% 23.3% 28.4% 31.9% 34.3% 4287.5% 227.1%

P

5

p

w

s

B

f

4

m

0

p

p

p

d

E

t

p

w

s

a

a

d

g

c

a

a

w

t

s

w

l

e

s

E

b ∑

e

F

b

p

s

g

l

t

s

f

s

s

l

r

c

i

f

b

c

t

s

p

m

b

i

i

i

b

t

b

t

p

a

o

w

l
where C N
i

= max
(
0 , C i − �N

i

)
.

roof. By Theorem 1 and Lemma 4 , this theorem holds. �

.2. Schedulability evaluation

We then evaluate the performance of the multi-level CF

olicy for constrained-deadline task sets. For our evaluation,

e randomly generate 10 0,0 0 0 task sets using a popular task

et generation technique proposed and used in Baker (2005) ,

ertogna et al. (2009) and Andersson et al. (2008) . We consider the

ollowing two input parameters: the number of processors m ∈ {2,

, 8, 16}, and the individual task utilization (C i / T i) distribution (bi-

odal or exponential with its input parameter p selected in {0.1,

.3, 0.5, 0.7, 0.9} (Lee et al., 2014)). For a given bimodal parameter

 , a value for C i / T i is uniformly selected in [0, 0.5) and [0.5, 1) with

robability p and 1 − p, respectively, and for a given exponential

arameter 1/ λ, the value is selected according to the exponential

istribution whose probability density function is λ · exp(−λ · x) .

ach task has three parameters: T i uniformly chosen from the in-

erval [1 , T max = 10 0 0] , C i chosen with the bimodal or exponential

arameter, and D i uniformly chosen from the interval [C i , T i].

We use the schedulability ratio as the metric of performance,

hich is defined as the ratio of the number of task sets deemed

chedulable by a schedulability test to the total number of gener-

ted task sets.

We consider the following schedulability tests:

• EDF : for the EDF scheduling algorithm (in Bertogna et al.,

2009),
• EDF − CF : for the EDF-CF scheduling algorithm (in Lee et al.,

2011a; 2014), and

• EDF − CF N : for the EDF-CF N scheduling algorithms, where N

∈ {2, 3, 4, 5} (i.e., Theorem 3).

We first observe schedulable ratio of each schedulability test

nd compare existing techniques with the multi-level CF policy on

ifferent numbers of processors in with Table 3 . We then investi-

ate how schedulability of each schedulability analysis varies ac-

ording to different task utilization distributions, in each of which

 task set has different average number of tasks (denoted by n)

nd a task has different average task utilization (denoted by C i /T i)

ith Fig. 7 . Among ten utilization models (bimodal and exponen-

ial utilization distributions with five input parameters), we con-

ider bimodal distribution with 0.9 and exponential distributions

ith 0.1 and 0.9 since they present distinct n (the smallest, the

argest and medium respectively) and C i /T i (the largest, the small-

st and medium respectively). Fig. 7 shows schedulability test re-

ults over varying task utilization distributions for m = 2 and 16.

ach figure plots the number of tasks sets deemed schedulable

y each schedulability test over varying task set utilization (U sys �

τi ∈T C i /T i). TOT represents the number of generated tasks with

ach task set utilization.

We have the following five main observations from Table 3 and

ig. 7 .

O 1. EDF performs very poorly on a multi-processor system, but

EDF employing the multi-level CF policies significantly im-
proves the schedulable ratio. Less than 10% and 1% of the

task sets are deemed schedulable by EDF for m = 2, and m =
16, respectively.

O 2. EDF − CF 5 improves the schedulable ratio of EDF by up

to 4.96 times and even 42.88 times for m = 2 and m = 16

respectively.

O 3. With increasing number of processors (m) from 2 to 16, the

schedulable ratio of EDF drops sharply (from 9.7% to 0.8%)

whereas EDF with the (any-level) CF policies decrease at a

much lower rate than that of EDF .

O 4. EDF − CF 5 improves the schedulable ratio of EDF − CF

with increasing rate as m increases from 2 (1.74 times) to 16

(2.27 times).

O 5. For set of less CPU demanding tasks whose value of C i /T i is

small (e.g., exponential distributions with 0.1 in Fig. 7 (b) and

(e)), EDF − CF 5 improves the schedulability of EDF even

with a larger value of n .

The first three observations, O 1, O 2 and O 3, can be interpreted

y the same reasoning. EDF performs very poorly on a multi-

rocessor system owing to the well-known property of the EDF

cheduling algorithm in that it only considers which jobs are ur-

ent according to their absolute deadlines, thereby failing to uti-

ize the sufficient computing power of multi-processors to make

he task set schedulable (Lee et al., 2011b).

On the other hand, the higher-level CF policy allows the EDF

cheduling algorithm to exploit a larger number of contention-

ree slots that were not used initially, while jobs, each of whose

chedulability is guaranteed, yield their priorities in contending

lots at runtime. Hence, the multi-level CF policy efficiently uti-

izes the computing power of a multi-processor system, which also

esults in less performance degradation on a large number of pro-

essors.

From observation O 4, we infer that there is still a big room for

mprovement of the schedulability using higher-level contention-

ree slots that are not used in the one-level CF policy. As the num-

er of processors increases, exploiting such unused time slots be-

omes much more crucial for improving the schedulability since

he amount of computing power that a scheduling algorithm

hould utilize also increases. We believe that the multi-level CF

olicy effectively captures such a property, yielding a larger perfor-

ance gap between EDF − CF and EDF − CF 5 with a larger num-

er of processors.

O 5 is due to the virtue of the CF policy that it effectively mit-

gates pessimism of schedulability analysis test of EDF by demot-

ng a large number of jobs’ priorities so that such jobs impose less

nterference on the job of interest. Since EDF utilizes an upper-

ound of interference from individual tasks (i.e., Eq. (2)), more

asks in a task set increases the pessimism in the interference

ound, which more likely produces lower schedulability. In par-

icular, such pessimism becomes apparent for a larger number of

rocessors (e.g., m = 16) since more tasks execute on the system

s seen in Fig. 7 (d), (e) and (f). The high level of CF policy well

vercomes EDF ’s inherent limitation when it comes to task sets

hose average task set utilizations are large since as task set uti-

ization gets smaller, the number of contention-free slots of a job

46 H. Baek et al. / The Journal of Systems and Software 137 (2018) 36–49

Fig. 7. Schedulability tests for constrained deadline task sets.

H. Baek et al. / The Journal of Systems and Software 137 (2018) 36–49 47

Table 4

Average actual number of preemptions incurred by each con-

strained deadline task set during 10 0,0 0 0 time units.

m EDF EDF-CF EDF-CF 5 EDF-CF 5 EDF-CF 5

/EDF /EDF-CF

2 778.4 779.3 784.0 100.72% 101.60%

4 1070.2 1071.5 1074.8 100.43% 100.30%

8 1380.1 1380.9 1382.9 100.21% 100.14%

16 1560.6 1561.9 1563.8 100.20% 100.12%

Fig. 8. Preemption ratio over varying task set utilization for m = 4.

g

i

s

a

f

o

5

t

n

s

c

p

e

d

C

b

d

o

i

E

b

t

F

w

b

L

h

e

i

i

l

j

f

s

i

E

u

e

m

n

s

6

a

o

m

b

i

p

d

1

p

t

t

fi

t

t

i

o

A

0

N

0

I

2

R

(

R

A

A

A

A

B

B

B

B

B

C

ets larger. Hence, most tasks more likely become the lowest prior-

ty ones by the CF policy, and only few tasks’ interference are con-

idered to test the schedulability of a task of interest. For example,

s seen in Fig. 7 (e) and (f), EDF − CF 5 significantly improves per-

ormance of EDF even for the close to three times average number

f tasks (80.0 vs. 27.3) owing to the lower average task utilization.

.3. Preemption evaluation

One may wonder that a large number of additional preemp-

ion can occur with the multi-level CF policy due to the increased

umber of priority re-ordering at runtime. To address such an is-

ue, we investigate how many preemptions occurs under EDF-CF 5

ompared to EDF and EDF-CF in the following evaluation. Table 4

resents the average actual number of preemptions incurred by

ach constrained deadline task set during 10 0,0 0 0 time units un-

er the three scheduling algorithms EDF, EDF-CF and EDF-CF 5 .

omparing EDF-CF 5 with EDF and EDF-CF, we can see in the ta-

le that the number of preemptions does not increase significantly

espite the five opportunities for each active job to change its pri-

rity during its execution; for m = 2 and m = 16, the percentage of

ncreases are only about 0.72% and 0.2% respectively compared to

DF, and 1.6% and 0.12% respectively compared to EDF-CF.

Fig. 8 plots the ratio of the number of preemptions incurred

y EDF-CF 5 (and EDF-CF), to that by EDF (referred to as preemp-

ion ratio) according to varying task set utilization. As seen in

ig. 8 , preemption ratio of EDF-CF 5 (and EDF-CF) is much lower

ith the low utilization task, and it becomes higher than 1.0 only

etween task set utilizations around 2.0 and 3.0. As discussed by

ee et al. (2014) , such trend of EDF-CF is a result of an active job

aving a number of contention-free slots that is higher than its ex-

cution time (i.e., �1
i

≥ C i); when such jobs, which can be a major-

ty, move to Q

0 upon their release, no preemption can incur. When

t comes to the high utilization task set, active jobs incur simi-

ar numbers of preemptions to those under EDF since most active

obs remain in Q

1 owing to the insufficient number of contention-
ree slots to move to Q

0 . Only active jobs in middle utilization task

et incur visibly higher number of preemptions than EDF, but its

ncreased number of preemptions is limited to 20% of that under

DF, thereby resulting in similar numbers of preemptions to those

nder EDF in total. A similar phenomenon happens in EDF that

mploys the multi-level CF policy; in the low utilization task set,

ost active jobs move from Q

N to Q

0 directly because of the large

umber of contention-free slots, whereas in high utilization task

et, they remain in Q

N and show a similar schedule to that of EDF.

. Conclusion

In this paper, we presented the multi-level CF policy as a gener-

lization of the existing one-level CF policy, based on new notions

f multi-level contention-free/contending slots and multi-level nor-

al/demoted jobs. The policy significantly improves the schedula-

ility performance, without compromising its applicability to ex-

sting scheduling algorithms and schedulability tests. As an exam-

le, we applied the multi-level CF policy to global EDF scheduling,

emonstrating a schedulability improvement by up to 4188% and

27% over vanilla EDF and EDF adopting the existing one-level CF

olicy (Lee et al., 2014), respectively.

While we extended the level of the existing CF policy to mul-

iple one, further extending the capability of the CF policy into

he following two directions would be promising future works. The

rst direction is to accommodate parallel task models entailed by

hread programmings such as fork-join, which captures intra-task

hread-level parallelism (Chwa et al., 2016). The second direction

s to develop a composition technique for schedulability analysis

n multi-core platforms (Lee et al., 2016).

cknowledgments

This work was supported in part by BSRP (NRF-2015R1D1A1A01

58713; NRF-2016R1A6A3A11930688; NRF-2017R1A2B2002458),

RF (2017H1D8A2031628), NRF(2015M3A9A7067220), IITP(2015-

-00914, the National Program for Excellence in SW),

ITP(2014-0-0 0 065, Resilient Cyber-Physical Systems Research;

017M3C4A7065925), and DAPA/ADD (High-Speed Vehicle

esearch Center of KAIST) funded by the Korea Government

MEST/MSIT/MOTIE).

eferences

nderson, J.H. , Srinivasan, A. , 20 0 0. Early-release fair scheduling. In: Proceedings of
Euromicro Conference on Real-Time Systems, pp. 35–43 .

ndersson, B. , Bletsas, K. , Baruah, S. , 2008. Scheduling arbitrary-deadline sporadic
task systems on multiprocessor. In: Proceedings of IEEE International Con-

ference on Embedded and Real-Time Computing Systems and Applications,
pp. 197–206 .

ndersson, B. , Tovar, E. , 2006. Multiprocessor scheduling with few preemptions. In:

Proceedings of IEEE International Conference on Embedded and Real-Time Com-
puting Systems and Applications, pp. 322–334 .

udsley, N. , Burns, A. , Richardson, M. , Wellings, A. , 1991. Hard real-time schedul-
ing: the deadline-monotonic approach. In: Proceedings of the IEEE Workshop

on Real-Time Operating Systems and Software, pp. 133–137 .
aker, T.P. , 2005. Comparison of Empirical Success Rates of Global vs. Partitioned

Fixed-Priority EDF Scheduling for Hard Real-Time. Technical Report, TR–050601.

Department of Computer Science, Florida State University, Tallahassee .
aker, T.P. , Cirinei, M. , Bertogna, M. , 2008. EDZL scheduling analysis. Real-Time Syst.

40 (3), 264–289 .
ertogna, M. , Cirinei, M. , Lipari, G. , 2009. Schedulability analysis of global schedul-

ing algorithms on multiprocessor platforms. IEEE Trans. Parallel Distrib. Syst. 20
(4), 553–566 .

randenburg, B. , Gül, M. , 2016. Global scheduling not required: simple, near-opti-
mal multiprocessor real-time scheduling with semi-partitioned reservations. In:

Proceedings of IEEE Real-Time Systems Symposium, pp. 99–110 .

urns, A. , Davis, R.I. , Wang, P. , Zhang, F. , 2012. Partitioned edf scheduling for multi-
processors using a c = d task splitting scheme. Real-Time Syst. 48 (1), 3–33 .

ho, H. , Ravindran, B. , Jensen, E.D. , 2006. An optimal real-time scheduling algo-
rithm for multiprocessors. In: Proceedings of IEEE Real-Time Systems Sympo-

sium, pp. 101–110 .

https://doi.org/10.13039/501100003725
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0009

48 H. Baek et al. / The Journal of Systems and Software 137 (2018) 36–49

L

L

M

M

N

R

Chwa, H.S. , Lee, J. , Lee, J. , Phan, K.-M. , Easwaran, A. , Shin, I. , 2016. Global edf schedu-
lability analysis for parallel tasks on multi-core platforms. IEEE Trans. Parallel

Distrib. Syst. 28 (5), 1331–1345 .
Fisher, N. , Goossens, J. , Baruah, S. , 2010. Optimal online multiprocessor scheduling

of sporadic real-time tasks is impossible. Real-Time Syst. 45, 26–71 .
Guasque, A. , Ballastre, P. , Crespo, A. , 2016. Real-time hierarchical systems with arbi-

trary scheduling at global level. J. Syst. Softw. 119 (5), 70–86 .
Lee, J. , Easwaran, A. , Shin, I. , 2011a. Maximizing contention-free executions in mul-

tiprocessor scheduling. In: Proceedings of IEEE Real-Time Technology and Ap-

plications Symposium, pp. 235–244 .
Lee, J. , Easwaran, A. , Shin, I. , Lee, I. , 2011b. Zero-laxity based real-time multiproces-

sor scheduling. J. Syst. Softw. 84 (12), 2324–2333 .
Lee, J. , Easwaran, A. , Shin, I. , 2014. Contention-free executions for real-time multi-

processor scheduling. ACM Trans. Embedded Comput. Syst. 13 (69), 1–69 .
Lee, J. , Shin, K.G. , Shin, I. , Easwaran, A. , 2016. Composition of schedulability analyses

for real-time multiprocessor systems. IEEE Trans. Comput. 64 (4), 941–954 .

Levin, G. , Funk, S. , Sadowski, C. , Pye, I. , Brandt, S. , 2010. DP-FAIR: as simple model
for understanding optimal multiprocessor scheduling. In: Proceedings of Eu-

romicro Conference on Real-Time Systems, pp. 3–13 .
i, Z. , Guo, C. , Hua, X. , Ren, S. , 2016. Reliability guaranteed energy minimization on
mixed-criticality systems. Journal of Systems and Software 112 (1), 1–10 .

iu, C. , Layland, J. , 1973. Scheduling algorithms for multi-programming in a hard-re-
al-time environment. J. ACM 20 (1), 46–61 .

assa, E. , Lima, G. , Regnier, P. , Levin, G. , Brandt, S. , 2016. Quasi-partitioned schedul-
ing: optimality and adaptation in multiprocessor real-time systems. Real-Time

Syst. 52 (5), 566–597 .
ok, A. , 1983. Fundamental Design Problems of Distributed Systems for the

Hard-Real-Time Environment. Massachusetts Institute of Technology Ph.D. the-

sis .
elissen, G. , Berten, V. , Nelis, V. , Goossens, J. , Milojevic, D. , 2012. U-EDF: An un-

fair but optimal multiprocessor scheduling algorithm for sporadic tasks. In: Pro-
ceedings of Euromicro Conference on Real-Time Systems, pp. 13–23 .

egnier, P. , Lima, G. , Massa, E. , Levin, G. , Brandt, S. , 2011. RUN: Optimal multiproces-
sor real-time scheduling via reduction to uniprocessor. In: Proceedings of IEEE

Real-Time Systems Symposium, pp. 104–115 .

http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0011
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0011
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0011
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0011
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0012
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0012
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0012
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0012
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0017
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0017
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0017
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0017
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0017
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0017
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0019
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0019
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0019
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0021
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0021
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30277-7/sbref0023

H. Baek et al. / The Journal of Systems and Software 137 (2018) 36–49 49

H KU), South Korea. He received the BS degree in Computer Science and Engineering from

K r Science from KAIST, South Korea in 2012 and 2016, respectively. His research interests

i He won the best paper award from the 33rd IEEE Real-Time Systems Symposium (RTSS)
i

J ineering, Sungkyunkwan University (SKKU), South Korea, where he joined in 2014. He

r ced Institute of Science and Technology (KAIST), South Korea, in 20 04, 20 06, and 2011,
r ctrical Engineering and Computer Science, University of Michigan until 2014. His research

i nd resource management in real-time embedded systems and cyber-physical systems. He
w hnology and Applications Symposium (RTAS) in 2011, and the Best Paper Award from the

3

I ford University, and the PhD degree from the University of Pennsylvania all in computer
s in the Department of Computer Science at KAIST, South Korea, where he joined in 2008.

H visiting scholar at the University of Illinois, Urbana-Champaign until 2008. His research

i rently a member of the Editorial Board of Journal of Computing Science and Engineering.
H PSWeek, and RTCSA and has served various program committees in real-time embedded

s s, including Best Paper Awards from RTSS in 2003 and 2012, Best Student Paper Award
f ember of the IEEE.
yeongboo Baek is a postdoctoral research fellow in Sungkyunkwan University (SK
onkuk University, South Korea in 2010 and the MS and PhD degrees in Compute

nclude cyber-physical systems, real-time embedded systems and system security.
n 2012.

inkyu Lee is an assistant professor in Department of Computer Science and Eng

eceived the BS, MS, and PhD degrees in computer science from the Korea Advan
espectively. He has been a research fellow/visiting scholar in the Department of Ele

nterests include system design and analysis with timing guarantees, QoS support, a
on the best student paper award from the 17th IEEE Real-Time and Embedded Tec

3rd IEEE Real-Time Systems Symposium (RTSS) in 2012.

nsik Shin received the BS degree from Korea University, the MS degree from Stan
cience in 1994, 1998, and 2006, respectively. He is currently an associate professor

e has been a postdoctoral research fellow at Malardalen University, Sweden, and a

nterests include cyber-physical systems and real-time embedded systems. He is cur
e has been cochair of various workshops including satellite workshops of RTSS, C

ystems, including RTSS, RTAS, ECRTS, and EMSOFT. He received best paper award
rom RTAS in 2011, and Best Paper runner-ups at ECRTS and RTSS in 2008. He is a m

	Multi-level contention-free policy for real-time multiprocessor scheduling
	1 Introduction
	2 System model
	3 One-level CF policy: reinterpretation
	4 Multi-level CF policy
	4.1 Two-level CF policy
	4.2 -level CF policy
	4.3 Theoretical computational overhead
	4.4 Lower-bound of the number of contention-free slots
	4.5 Example
	4.6 Derivation of properties of the multi-level CF policy

	5 Case study: EDF-CF and its schedulability test
	5.1 Schedulability tests for EDF-CF
	5.2 Schedulability evaluation
	5.3 Preemption evaluation

	6 Conclusion
	 Acknowledgments
	 References

