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Abstract In this paper, we propose a simple, but effective scheduling framework
for EDF and RM, which reduces the number of preemptions by simply introducing a
dummy task.We first observe useful preemption behavior under EDF and RM, leading
to an interesting finding: an effective way to reduce the number of preemptions is to
prevent jobs of a task with the smallest task period from preempting other jobs upon
their release. To achieve this, we add a dummy task that invokes its job only when a
newly-released jobof the taskwith the smallest task period has a higher priority than the
currently-executing job. Then, the currently-executing job can continue its execution
without getting preempted by inheriting the priority of the dummy job. Since adding
the dummy task can make a schedulable task set unschedulable, we propose how to
set the dummy task’s parameters without compromising schedulability. In addition to
the negligible overhead of this framework due to its simplicity, it holds an important
property that does not increase the number of preemptions of any task set, compared
to the original scheduling algorithm, which has not been achieved by existing studies.
We also demonstrate via simulation that the proposed framework effectively reduces
the number of preemptions under EDF and RM.
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1 Introduction

To satisfy the timing requirements of critical tasks, the subject of real-time scheduling
has been studied extensively [1,2]. As a result, EDF (Earliest Deadline First) [3] and
RM (Rate Monotonic) [3] have been proved as optimal dynamic and static scheduling
algorithms for uniprocessor platforms, respectively, if a higher-priority job is always
allowed topreempt a lower-priority one.However, a preemption incurs additional delay
and power consumption for a context switch. For a uniprocessor system equipped with
a cache, this overhead becomes greater because the preemption may cause loss of the
cached contents.

There have been numerous efforts to reduce the number of preemptions on a unipro-
cessor platform [4], which can be classified into three categories. First, some studies
have controlled preemptions in order to support various preemption requirements or
improve schedulability. Starting from [5] that enforces a dual prioritizationmechanism
for job selection in the wait queue and job preemption (later extended in [6–8]), the
studies in [9–13] accommodated non-preemptive regions. Since techniques in these
studies have been originally designed to accommodate various preemption require-
ments or improve schedulability, there is no guarantee that the number of preemptions
with the techniques is always smaller than that without the techniques for any task set
(albeit the former is smaller, on average). Second, there have been some proposals for
reducing preemptions. The proposal in [14] exchanges the order of execution based on
the original schedule, but it requires knowledge of future job release patterns offline
and complex run-time mechanisms for safe execution exchanges without missing any
deadline. Third, several studies rely on dynamic voltage/frequency scaling [15–18],
all of which require hardware support. Most studies in the third category incorporate
non-zero preemption delays into schedulability analyses [19–21], which focus on a
system model different from the one in this paper.

To overcome the limitations of the existing studies, the goal of this paper is to
develop a scheduling framework that reduces the number of preemptions with the
following salient features.

(i) Simplicity: it incurs little run-time/system overhead;
(ii) Wide applicability—it can be applied to not only existing algorithms including

EDF and RM, but also existing schedulability analyses;
(iii) Independence from hardware/information: it does not rely on hardware support

of dynamic voltages/frequency scaling and information of future job release
patterns; and

(iv) Satisfaction of the important property: for every task set, the number of preemp-
tions with our approach is smaller than (or at least equal to) that with the original
scheduling.

To this end, we propose a new scheduling framework based on a dummy task,
which provides the above four features. To achieve this, we first observe that under
EDF and RM, (a) all preemptions take place when a job is released, and (b) a task with
the smallest task period is a dominant source of preemption. Based on this preemption
behavior, we artificially add a dummy task, which invokes its job only when a newly-
released job of the task with the smallest task period has a higher priority than the
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Real-time uniprocessor scheduling with fewer preemptions 1259

currently-executing job. Then, the currently-executing job can continue execution
without getting preempted by inheriting the priority of the dummy job. Since adding
the dummy task may cause regular task deadline misses, we also present how to set the
dummy task parameters without compromising the schedulability of a given task set.

Our proposed scheduling framework then provides the features (i)–(iv). Adding
a dummy task makes the framework not only simple, but also applicable to most
(if not all) scheduling algorithms as well as their schedulability analyses.1 Also, the
framework does not require any hardware support, nor any information on future job
releases. More importantly, Sect. 3.3 proves that the framework meets the important
property in (iv), which has not been achieved by existing studies. In addition to the four
salient features, we demonstrate via simulation that EDF and RM associated with the
framework based on the dummy task reduce the number of preemptions significantly,
compared to vanilla EDF and RM.

The rest of the paper is organized as follows. Section 2 introduces the system
model, assumptions and notations. Section 3 identifies preemption behavior under
EDF and RM, proposes the dummy task based scheduling framework, and inves-
tigates its property. Section 4 describes how to set the dummy task parameters to
preserve schedulability. Section 5 demonstrates the effectiveness of the framework
using simulation. Finally, Sect. 6 concludes the paper.

2 System model, assumptions and notations

In this paper, we focus on a sporadic task model in [3], in which a task τi in a task set
τ is specified by (Ti ,Ci ) where Ti is the the minimum separation between successive
invocations (or the task period), and Ci is the worst-case execution time. Without loss
of generality, we sort tasks in τ such that a task with a smaller Ti has a smaller task
index, i.e., T1 ≤ T2 ≤ . . . T|τ |, where |τ | is the number of tasks in the set τ . A task
τi invokes a series of jobs; each job is separated from the predecessor/successor job
by at least Ti time units, and supposed to finish its execution within Ti time units. We
assume that a job can be preempted at any time.

We consider a uniprocessor system, on which at most one job can be executed in
each time slot. We focus on two popular scheduling algorithms, EDF and RM [3]. In
each time slot, while EDF executes a job with the earliest deadline, RM executes a job
with the smallest task period (Ti ).

3 Scheduling framework based on a dummy task for fewer preemptions

We now present a dummy-task-based scheduling framework to reduce preemptions.
To achieve this, we first identify some preemption behavior under EDF and RM. Based
on this observed behavior, we develop a dummy-task-based scheduling framework,
which can significantly reduce the number of preemptions under EDF andRM. Finally,
we derive an important property of the framework.

1 Wewould like to stress that the framework can utilize any existing schedulability analysis in that it simply
adds the dummy task to the original task set.
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Table 1 Percentage of
preemptions caused by a specific
task under EDF and RM; 4500
task sets, each consisting of five
tasks with Tmax = 1000, are
tested, and how to generate task
sets is detailed in Sect. 5

Task # of preemptions incurred by a specific task (%)

Under EDF (%) Under RM (%)

τ1 83.5 80.5

τ2 12.4 13.3

τ3 3.4 4.6

τ4 0.8 1.5

τ5 0.0 0.0

3.1 Preemption behavior under EDF and RM

While preemption depends on the underlying scheduling algorithms, we will show
that under EDF and RM, the task with the shortest period is a dominant source of
preemption. Specifically, we will present an analytic property and an empirical result
of the dominant preemption source.

The following observation states the preemption behavior under EDF and RM.

Observation 1 Under EDF and RM, a job Jx can preempt another job Jy, only upon
release of Jx . Moreover, a preemption occurs only if the period of Jx is no larger than
that of Jy.

Proof Since the priority of jobs does not vary with time under EDF and RM, a job
can preempt another job only when it is released. What remains is thus to prove the
task period condition for preemptions.

Under EDF, if τi has a longer period than τ j (i.e., Ti > Tj ), a newly-released job
of τi cannot have an earlier deadline than a currently-executing job of τ j . Under RM,
if Ti > Tj , all jobs of τi have lower priorities than all jobs of τ j , meaning that no job
of τi can preempt any job of τ j . Thus, the lemma follows. ��

By Observation 1, we know that a job of τi can preempt another job of τ j only if
i < j (recall that tasks are indexed in ascending order according to their periods).
Then, a task with a smaller index has more likely to cause preemptions. Thus, while τ1
(i.e., the task with the smallest period) can preempt jobs of all other tasks, regardless
of their deadlines under RM, and depending on their deadlines under EDF, τ|τ | (i.e.,
the task with the largest period) cannot preempt any job in any case under EDF and
RM. To obtain the statistical results of this property, we simulate 4500 task sets of
five tasks each, and measure the number of preemptions during the first 100,000 time
units for each task set. As shown in Table 1, most preemptions are caused by τ1:
83.5% under EDF, and 80.5% under RM. Note that τ5 cannot cause any preemption
by Observation 1.

Using Observation 1 and the simulation result, we will develop next a new schedul-
ing framework that can reduce preemptions.

3.2 Dummy-task-based scheduling framework

Observation 1 and the simulation result in Table 1 indicate “which task” and “when”
we should control. That is, to effectively reduce the number of preemptions under
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Real-time uniprocessor scheduling with fewer preemptions 1261

Algorithm 1 Dummy-task-based scheduling framework
Timer Set: If a newly-released job of τ1 has a higher priority than the currently-executing job at t , and the
release time of the dummy task’s previous job is no later than the current time − Tx ,
1: Release a job of the dummy task τx with the execution time Cx .
2: Set the timer to t + Cx .
3: Let the currently-executing job inherit the priority of the job of the dummy task, i.e., keep the currently-

executing job executing.
4: Put the newly-released job of τ1 into the wait queue.

Timer expiration: If the timer expires at t and the currently-executing job is the one that inherits the priority
of a job of the dummy task,
1: Let the currently-executing job stop inheriting the priority of the dummy task’s job, i.e., let the currently-

executing job stop execution.
2: Put the currently-executing job in the wait queue.
3: Start execution of the τ1’s job in the wait queue.

EDF or RM, we should control preemptions incurred by the task with the smallest
task period (i.e., τ1 ∈ τ ), when it releases jobs. With this information, our goal is
to reduce the number of preemptions without compromising task set schedulability.
In other words, controlling preemptions should not make any schedulable task set
unschedulable.

To achieve this goal, we add a dummy task τx (Tx ,Cx ) which invokes its jobs as
follows:

(i) τx invokes a job only when a newly-released job of τ1 has a higher priority than
the currently-executing job.

(ii) The minimum separation between successive jobs (or the task period) of τx is T1,
i.e., Tx = T1.

Since Tx = T1, two jobs of τx and τ1 always have the same priority under RM, and
two jobs of τx and τ1 released at the same time have the same priority under EDF. For
the same-priority jobs, we enforce a tie-breaking rule; we give a higher priority to the
dummy task’s job if the priorities of multiple jobs are the same under EDF or RM.
Then, between the two jobs of τ1 and τx , released at the same time, the job of τx is
always a given priority over that of τ1. Therefore,

(iii) a job of τx has the highest priority when it is released, and this holds until its
execution is completed. So, the job of τx executes for Cx time units without any
preemption.

Under RM, a job of τx always has the highest priority. Recalling (i), under EDF, a job
of τx has the highest priority when it is released. Since τx has the smallest period (Tx ),
no job released after τx releases a job, has a shorter deadline than the job of τx .

Using the property (iii), we can prevent a job of τ1 from preempting the currently-
executing job, by letting the currently-executing job inherit the priority of the job
of τx . Then, by (iii), the currently-executing job can continue its execution without
any preemption until the (virtual) execution of the dummy task’s job is completed.
Algorithm 1 details this dummy-task-based scheduling framework using (i), (ii) and
(iii). It is important to note that the currently-executing job can have the highest priority
during Cx time units because the virtual execution time of the job of the dummy task
is Cx , and this is implemented using a timer in the algorithm.
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As one can see in Algorithm 1, the dummy-task-based scheduling framework does
not change the prioritization policy of the original scheduling algorithms. Instead, it
adds jobs of the dummy task, and gives the currently-executing job chance to continue
execution. Therefore, it need not (a) know job release patterns offline and (b) enforce
complicated online mechanisms, which are required by some existing approaches.
The only additional overhead is setting and expiration of a timer set for dummy jobs.
Also, one more advantage of the framework in Algorithm 1 is its wider applicability to
different scheduling algorithms. The framework can be applied not only to both EDF
and RM, but also potentially to other existing algorithms; we can also re-use existing
schedulability analyses by simply adding a dummy task when the task set is tested.

In the rest of the paper, let EDF-d (likewise RM-d) denote EDF (likewise RM)
associated with Algorithm 1.

One may regard the proposed framework as a different expression of an existing
technique called the limited preemption [9]. Under the limited preemption technique,
a job always keeps its execution without any preemption during X time units, where
X is the invoking task’s length of non-preemptive region. Since the technique always
disallows preemptions of a job of a task during X time units, it is impossible to
selectively prevent a currently-executing job from being preempted by a job of τ1.
Therefore, the limited preemption technique with any parameter cannot yield the
schedule generated by the proposed framework.

3.3 Property and example

Since Algorithm 1 is developed for fewer preemptions, it is important to determine
whether the algorithm guarantees the reduction of the number of preemptions of any
task set under a certain condition, compared to the corresponding original scheduling,
which has not been done with any existing study. That is, we want to find the property
that the number of preemptions of any task set under EDF-d is smaller than that under
EDF. The following lemma addresses the property.

Lemma 1 As long as there is no deadline miss, the number of preemptions of a task
set under EDF-d (likewise RM-d) is no greater than that under EDF (likewise RM).

Proof Let nEDF(t) and nEDF-d(t) denote the number of preemptions of a task set
in [0, t) under EDF and EDF-d, respectively. Suppose that there exists t such that
nEDF-d(t) > nEDF(t). We focus on the earliest t , called t0. Then, at t0, a preemption
occurs under EDF-d, but not under EDF. We consider two cases: the job which incurs
a preemption at t0 belongs to (i) τ1, and (ii) other task than τ1.

Case (i). Since a job of the dummy task is released whenever a job of τ1 is released,
the job of τ1 causes a preemption only when the timer is expired at t0 (which was set to
t0 −Cx ). Then, at t0 −Cx (when the timer is set), a preemption occurs under EDF, but
not under EDF-d. Therefore, nEDF-d(t0 −Cx ) ≤ nEDF(t0 −Cx )− 1 holds; otherwise,
nEDF-d(t0 −Cx − ε) > nEDF(t0 −Cx − ε) holds for a small ε > 0, which contradicts
the definition of t0. Using the inequality of nEDF-d(t0 − Cx ) ≤ nEDF(t0 − Cx ) − 1
and the fact that there is no preemption under EDF-d in (t0 − Cx , t0), we derive that
nEDF-d(t0) ≤ nEDF(t0), which contradicts the supposition.
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Real-time uniprocessor scheduling with fewer preemptions 1263

Fig. 1 Schedules with preemption behavior of τ = {τ1(T1 = 4,C1 = 1), τ2(12, 4), τ3(20, 3)} under EDF
or RM, and EDF-d or RM-d

Case (ii). A job J of a task other than τ1 can incur a preemption only when it is
released and the currently-executing job has a lower priority than J . If we compare
the schedule under EDF-d with that under EDF, the currently-executing job with the
former has an equal- or higher-priority than that with the latter (since the former allows
a job to inherit a dummy job’ priority, which is the highest). Therefore, the supposition
cannot hold.

By Cases (i) and (ii), the lemma holds for EDF-d; the proof for RM-d is the same
as that for EDF-d. ��

We would like to emphasize that such a guarantee on preemption reduction has not
been achieved by existing studies (which can reduce the number of preemptions on
average). While Lemma 1 guarantees fewer preemptions, we present an illustrative
example, showing how Algorithm 1 actually reduces preemptions.

Example 1 Consider a task set τ with three tasks {τ1(T1 = 4,C1 = 1), τ2(12, 4),
τ3(20, 3)}, and suppose that jobs of the tasks are periodically released starting from
t = 0. Then, the execution order in [0, 10) under EDF or RM is shown in the upper
figure of Fig. 1. Here, the total number of preemptions of τ in [0, 10) under EDF
or RM is 2; the second job of τ1 preempts the first job of τ2 at t = 4, and the
third job of τ1 does the first job of τ3 at t = 8. However, if we apply Algorithm 1
with a dummy task τx (Tx = 4,Cx = 1), the execution order in [0, 10) under EDF-
d or RM-d is shown in the lower figure of Fig. 1, where no preemption occurs.
That is, the currently-executing job of τ2 at t = 4 (likewise τ3 at t = 8) inher-
its the priority of a job of the dummy task, and finishes its execution without any
preemption.

As shown in Lemma 1 and Example 1, we can effectively reduce preemptions
by Algorithm 1, which delays the execution of τ1’s jobs through the virtual exe-
cution of dummy jobs. However, such a delay may make a schedulable task set
unschedulable. In the next section, we will discuss how to set Cx (the virtual execu-
tion time of the dummy task) without compromising the schedulability of a given task
set.
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4 Dummy task parameter setting

This section describes how to set the execution time of the dummy task for EDF-d and
RM-d, without compromising the schedulability of a given task set.

4.1 Generation of a dummy task for EDF-d

Toguarantee the schedulability under EDF,we use the following existing exact schedu-
lability condition.

Lemma 2 (Theorem 7 in [3])Under EDF with any arbitrary tie-breaking rule, a task
set τ is schedulable if and only if the following conditions holds:

∑

τi∈τ

Ci

Ti
≤ 1. (1)

Using Lemma 2, we determine the execution time of the dummy task as follows.

Theorem 1 Suppose that Lemma 2 guarantees a task set τ to be schedulable by EDF.
Then, τ is also schedulable by EDF-d, if the dummy task τx is set as follows:

Cx ≤
(
1 −

∑

τi∈τ

Ci

Ti

)
· Tx . (2)

Proof If we focus on τ ∪ {τx }, the following conditions holds.

Cx

Tx
+

∑

τi∈τ

Ci

Ti
≤

(
1 − ∑

τi∈τ
Ci
Ti

)
· Tx

Tx
+

∑

τi∈τ

Ci/Ti = 1. (3)

Therefore, by Lemma 2, τ ∪ {τx } is schedulable by EDF.
If we compare the schedule of τ under EDF-d, with that of τ ∪ {τx } under EDF,

the finishing time of any job in the former is equal to, or earlier than that of the same
job in the latter. Therefore, since τ ∪ {τx } is schedulable under EDF, τ is schedulable
under EDF-d. Thus, the theorem follows. ��

In Sect. 5, we will demonstrate the effectiveness of EDF-d in terms of the number
of preemptions, by setting Cx to the RHS of Eq. (2), i.e., the largest possible Cx .

4.2 Generation of a dummy task for RM-d

For RM, we use the following existing exact schedulability condition.

Lemma 3 (Fig. 3 in [22]) Under RM, a task set τ is schedulable if and only if every
task τk satisfies Rs∗

k ≤ Tk such that R
s∗+1
k ≤ Rs∗

k for some s∗, starting from R0
k = Ck:

Rs+1
k ← Ck +

∑

τi∈HP(τk ,τ )

⌈
Rs
k

Ti

⌉
· Ci , (4)
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where HP(τk, τ ) denotes a set of tasks in τ whose priority is higher than τk , i.e.,
HP(τk, τ ) � {τi ∈ τ |Ti ≤ Tk}.

Following Lemma 3, we set the execution time of the dummy task as follows.

Theorem 2 Suppose that Lemma 3 guarantees a task set τ to be schedulable by RM.
Then, τ is also schedulable by RM-d, if the dummy task τx is set as follows: every task
τk ∈ τ satisfies Rs∗

k ≤ Tk such that R
s∗+1
k ≤ Rs∗

k for some s∗, starting from R0
k = Ck:

Rs+1
k ← Ck +

⌈
Rs
k

Tx

⌉
· Cx +

∑

τi∈HP(τk ,τ )

⌈
Rs
k

Ti

⌉
· Ci . (5)

Proof The proof is similar to that of Theorem 1. If we compare the schedule of τ under
RM-d, with that of τ ∪ {τx } under RM, the finishing time of any job in the former
is equal to or earlier than that of the same job in the latter. Therefore, if τ ∪ {τx } is
schedulable under RM, τ is schedulable under RM-d. By Lemma 3, the condition in
Theorem 2 is the exact schedulability condition of a task set τ ∪ {τx } under RM. This
proves the theorem. ��

In Sect. 5, we will demonstrate the reduction of the number of preemptions by
RM-d using the largest possible Cx , which is calculated by applying the binary search
to Theorem 2.

5 Evaluation and discussion

This section compares the number of preemptions under EDF-d and RM-d, with that
under EDF and RM.

Task set generation We generate task sets based on a widely used technique [23,24].
To make a variety of task sets, we consider two task parameters: task utilization
(Ci/Ti ) and the maximum task period (Tmax ). First, we consider 10 individual task
utilization (Ci/Ti ) distributions: bimodalwith parameters 0.1, 0.3, 0.5, 0.7 and 0.9, and
exponential with parameters 0.1, 0.3, 0.5, 0.7 and 0.9. For a given bimodal parameter
p, a value for Ci/Ti is uniformly distributed in [0, 0.5) with probability p, and in
[0.5, 1] with probability 1 − p. For a given exponential parameter 1/λ, a value for
Ci/Ti is chosen according to an exponential distribution whose probability density
function is λ · exp(−λ · x). Second, we consider two different maximum task periods:
Tmax = 10 and Tmax = 1000. Then, for each task, Ti is uniformly chosen in [1, Tmax ],
and Ci is chosen based on the given bimodal or exponential parameter. Note that we
set Ti and Ci to the closest positive integer values.

For a given bimodal or exponential parameter and a given Tmax , we repeat the
following procedure and generate 10,000 task sets, yielding 200,000 task sets in total.

1. We generate a set of two tasks since a task set consisting of a single task is trivially
schedulable.

2. In order to exclude unschedulable task sets, we check the generated task set τ can
pass the exact feasibility condition, i.e.,

∑
τi∈τ Ci/Ti ≤ 1 [3].
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3. If it fails to pass the feasibility test, we discard the generated task set and return
to Step 1. Otherwise, we include this set for evaluation. Then, this set serves as a
basis for the next new set; we create a new set by adding a new task into an already
created and tested set, and return to Step 2.

Average performance comparison To compare the number of preemptions under EDF
with EDF-d, and RM with RM-d, we simulate each task set with periodic job releases
from t = 0 and on. Then, we measure the number of preemptions under each schedul-
ing algorithm until 2520 time units when Tmax = 10, which is a common multiple of
task periods in any task set with Tmax = 10. Then, the preemption behavior (as well
as schedules) of each task set with Tmax = 10 for the first 2520 time units is repeated
forever. For task sets with Tmax = 1000, it is intractable to simulate each task set up to
the least common multiple of its task periods, and therefore, we measure the number
of preemptions until 100,000 time units for task sets with Tmax = 1000.

Then, Fig. 2 compares the number of preemptions of EDF-d with that of EDF,
and RM-d with RM, in terms of their ratio and difference. In each figure, the x-
axis represents task set utilization, i.e.,

∑
τi∈τ Ci/Ti . Note that the smallest possible

contribution of a task to task set utilization is 0.1 for Tmax = 10 (when Ci = 1 and
Ti = 10). Since the number of tasks in each task set is at least two, the number of
generated task sets whose task set utilization is in [0, 0.5] is small for Tmax = 10.
Therefore, we only show a partial range of task set utilization in the x-axis for Tmax =
10, i.e., [0.5, 1.0], while we present the entire range for Tmax = 1000, i.e., [0.0, 1.0].

Figure 2a, c show the ratio of the number of preemptions of EDF-d to that of
EDF. As shown in the figures, when task set utilization is low, EDF-d significantly
reduces the number of preemptions in terms of the ratio. This is because EDF-d can
accommodate the dummy task with a largeCx , and then in most cases, a job of τ1 does
not resume its execution before the completion of the job that inherits the priority of
the dummy job. As the task utilization gets higher, we have a smaller Cx , resulting
in higher chance for a job of τ1 to preempt the currently-executing job when the
job of τ1 resumes its execution. In the extreme case of task set utilization equal to
1.0, we cannot accommodate any positive value of Cx , and therefore, the number of
preemptions under EDF-d is the same as that under EDF.

Figure 2b, d show the quantitative difference of the number of preemptions under
EDF-d and EDF. For low task set utilization, EDF-d cannot reduce a larger number of
preemptions, because the number of preemptions under EDF itself is not substantial
in this environment. Therefore, although the ratio of the number of preemptions of
EDF-d to EDF is increasing, the absolute value for EDF-d to reduce the number of
preemptions is increasing up to a certain point; in the figures, the maximum point is
around 0.8 when Tmax = 1000 and 0.65 when Tmax = 10. Beyond this point, it is
difficult to reduce the number of preemptions due to a small (or even zero) Cx .

For the comparison of RM-d and RM, we only focus on RM-schedulable task sets
by Lemma 3, resulting in 88,483 task sets out of 100,000 task sets with Tmax = 1000
and 94,476 task sets out of 100,000 sets with Tmax = 10. Then, the difference between
the preemption behavior of RM-d and RM is similar to that between the preemption
behavior of EDF-d and EDF. As shown in Fig. 3a, c, the ratio of the number of
preemptions of RM-d to RM is increasing as the task utilization gets larger; if task set
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Fig. 2 Comparison of the
number of preemptions under
EDF-d with EDF. a Ratio of the
number of preemptions between
EDF-d and EDF when
Tmax = 1000. b Difference of
the number of preemptions
between EDF and EDF-d when
Tmax = 1000. c Ratio of the
number of preemptions between
EDF-d and EDF when
Tmax = 10. d Difference of the
number of preemptions between
EDF and EDF-d when
Tmax = 10

(a)

(b)

(c)

(d)
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Fig. 3 Comparison of the
number of preemptions under
RM-d and RM. a Ratio of the
number of preemptions between
RM-d and RM when
Tmax = 1000. b Difference of
the number of preemptions
between RM and RM-d when
Tmax = 1000. c Ratio of the
number of preemptions between
RM-d and RM when
Tmax = 10. d Difference of the
number of preemptions between
RM and RM-d when Tmax = 10

(a)

(b)

(c)

(d)
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utilization equals to 1.0, the number of preemptions under RM-d is the same as that
under RM. In Fig. 3b, d, the number of preemptions reduced by RM-d is maximized
when task set utilization is around 0.7 when Tmax = 1000 and 0.65 when Tmax = 10.

In summary, EDF-d and RM-d effectively reduce the number of preemptions, com-
pared to the corresponding scheduling algorithms EDF and RM. Also, we observe that
the resource saved by EDF-d and RM-d is maximized with a certain task utilization,
which varies with scheduling and task set specification. Then, the saved resource by
reducing the number of preemptions can be utilized to enhance system performance,
e.g., accommodation of more non-real-time tasks, and/or quick response of non-real-
time tasks.

6 Conclusion

We proposed a simple but effective scheduling framework that incurs fewer preemp-
tions, and applied the framework to two popular scheduling algorithms, EDF and RM,
yielding EDF-d and RM-d. We not only proved that the framework does not increase
the number of preemptions for any task set, but also demonstrated via simulation that
EDF-d and RM-d effectively reduces the number of preemptions, compared to EDF
and RM.

While the framework targets uniprocessor platforms, the dummy-task-based
scheduling concept can be extended to multiprocessor platforms. It would be interest-
ing to generalize the framework for multiprocessor platforms and global scheduling
algorithms that are specialized for the platforms, e.g., EDZL [25], SPDF [26].
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