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PAPER

Incorporating Security Constraints into Mixed-Criticality
Real-Time Scheduling

Hyeongboo BAEK†, Member and Jinkyu LEE†a), Nonmember

SUMMARY While conventional studies on real-time systems have
mostly considered the real-time constraint of real-time systems only, recent
research initiatives are trying to incorporate a security constraint into real-
time scheduling due to the recognition that the violation of either of two
constrains can cause catastrophic losses for humans, the system, and even
environment. The focus of most studies, however, is the single-criticality
systems, while the security of mixed-criticality systems has received scant
attention, even though security is also a critical issue for the design of
mixed-criticality systems. In this paper, we address the problem of the
information leakage that arises from the shared resources that are used by
tasks with different security-levels of mixed-criticality systems. We define
a new concept of the security constraint employing a pre-flushing mech-
anism to cleanse the state of shared resources whenever there is a possi-
bility of the information leakage regarding it. Then, we propose a new
non-preemptive real-time scheduling algorithm and a schedulability analy-
sis, which incorporate the security constraint for mixed-criticality systems.
Our evaluation demonstrated that a large number of real-time tasks can be
scheduled without a significant performance loss under a new security con-
straint.
key words: mixed-criticality system, security, real-time scheduling,
schedulability analysis

1. Introduction

A Real-Time System (RTS) is a system being required to
satisfy real-time constraints that every task on a RTS should
completely performed its execution within its own deadline.
As many RTSes manipulate security-sensitive data, and se-
curity violation in RTSes causes a greater catastrophic loss
than those for general purpose systems, it is a critical is-
sue in RTS design to enhance the quality of security in
RTSes [1]. However, directly applying conventional secu-
rity mechanisms for general purpose systems to RTSes can
compromise real-time constraints since those mechanisms
have not been designed with consideration of real-time con-
straints. In recognition of this property, recent studies tried
to incorporate security constraints into real-time scheduling
to capture the real-time and security constraints simultane-
ously [2]–[6].

A number of studies in [2]–[4] addressed the prob-
lem of information leakage that can arise on the shared re-
sources used by real-time tasks with different security-levels
in a RTS. The initial work [3] proposed the Flush Task (FT)
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mechanism to cleanse the state of shared resources to pre-
vent the sensitive data on the shared resource from being
gleaned by attackers. It also proposed a real-time schedul-
ing algorithm and a schedulability analysis that take into ac-
count the timing overhead of the FT mechanism as a secu-
rity constraint. There have been following studies designed
for preemptive Fixed Priority (FP) and preemptive Dynamic
Priority (DP) scheduling for enhancing the timing guaran-
tees [2], [4].

While the above-mentioned studies have focused on
single-criticality systems, nowadays RTSes are evolving
into Mixed-Criticality Systems (MCSes) for which multiple
components with different criticalities are integrated onto a
single shared platform [7]. Such system characterizes mod-
ern real-time embedded systems (e.g., aerospace) in which a
deadline miss by a high-criticality function can be disastrous
(e.g., flight control), but losing a low-criticality function
only moderately affects the quality of service (e.g., sensing
rate), which requires a new principle of real-time scheduling
effectively utilizing limited computing resources of embed-
ded systems. Motivated by the necessity and following the
up to date research trend in the real-time systems research
community, we address the real-time scheduling problem of
MCS in this paper.

Like single-criticality real-time systems, MCSes are
also attractive targets for attackers aiming at obtaining sen-
sitive data on the shared resources used by real-time tasks
since their sub-systems are designed by different vendors
and have different levels of criticality and security [3]. Tak-
ing an avionic system as an example, the sub-system that
controls a camera to capture image or communicates the
processed images back to the command center can be
sourced from a more trustworthy vendor in terms of secu-
rity. On the other hand, another sub-system calculating the
flight path and controlling codes to manage the engine can
be sourced from a more trustworthy vendor in terms of crit-
icality. Since the former sub-system deals with more sen-
sitive data in confidentiality, it can be placed at a higher
security-level than the latter sub-system. In this case, the
compromised sub-system having a lower security-level can
glean the sensitive data on the shared resources while the
two sub-systems are scheduled according to the given sched-
uler and actively communicate with each other.

Despite the structural vulnerability of the security of
MCSes, most conventional MCS studies have focused on the
real-time aspects of MCSes while security has received little
attention [8], [9]. Motivated by this, we address the problem
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of information leakage arising on the shared resources used
by tasks with different security-levels of MCSes. We first
define a new concept of a security constraint, and then we
propose a new real-time scheduling algorithm for MCSes
employing FT mechanism to incorporate the security con-
straint to mitigate information leakage on MCSes.

While a body of research has been made in the class of
preemptive scheduling for MCS, those of non-preemptive
scheduling for MCS have received little attention in spite
of its necessity. In particular, non-preemptive schedul-
ing is advantageous compared to preemptive scheduling in
many practical systems whose preemption/migration over-
head (e.g., interrupts and transactional operations) is pro-
hibitively expensive [10]. Also, program locality can be
destroyed by preemption, increasing runtime overhead due
to cache miss and pre-fetch mechanisms, which make dif-
ficult to predict worst-case execution time [11], [12]. In
control applications, non-preemptive scheduling simplifies
control techniques for delay compensation at design time
since every task has the same execution duration (interval
between start and end times) [13]. In this paper, we focus on
non-preemptive FP scheduling [3], and we adopt the AMC
scheme [8] using a concept of mode change, which appears
to be the best performing scheme among the MC scheduling
schemes [14].

We also present a new schedulability analysis for the
AMC scheme for which a security constraint is incorpo-
rated. We first derive the worst-case response time analysis
for non-preemptive FP scheduling for AMC scheme based
on the understanding how a mode change of AMC scheme
influences executions of low- or high-criticality tasks. Then,
we extend it to consider a security constraint, which em-
ploys two types of the interferences: (a) the worst-case in-
terference from higher priority tasks and (b) from FTs in-
voked between them. The upper-bound of (a) depends on
the timing of a mode change since low-criticality tasks can-
not contribute to interference after a mode change. Thus we
investigate how a security constraint influences the timing
of mode change inducing the worst-case interference. The
upper-bound of (b) depends on not only the timing of the
mode change but also the ordering of security-levels of in-
terfering tasks before and after the mode change. We discuss
how to safely upper-bound the maximum number of FTs be-
fore and after a mode change independently, and then incor-
porate them into schedulability analysis.

The contributions of this paper are summarized as fol-
lows:

• We propose a new concept of security constraint to mit-
igate the information leakage arising on the shared re-
sources used by real-time tasks with different security-
levels in MCSes and propose a new MC scheduling
policy incorporating it (Sect. 3).
• We derive response time analysis (RTA) [15] for non-

preemptive FP for an MCS (Sect. 5.1).
• We introduce a new RTA providing for non-preemptive

FP scheduler incorporating our proposed security con-

straint for MCSes (Sect. 5.2).
• We conduct experiments for comparison of our pro-

posed mechanisms with conventional approaches, and
we discuss how the variation of the parameters rep-
resenting the features of an MCS and a security
constraint affects the performance of each technique
(Sect. 6).

Organization The MCS model considered in this pa-
per is formally defined in Sect. 2. The existing scheduling
scheme and security constraint for preventing information
leakage are described in Sect. 3. The existing mechanism
for the upper-bound of the maximum number of FTs is de-
scribed in Sect. 4 as a background matter. A new schedu-
lability analysis of non-preemptive FT for AMC scheme is
described in Sect. 5. A new schedulability analysis consid-
ering a security constraint is proposed in Sect. 6. Perfor-
mance of the proposed mechanism is evaluated in Sect. 7.
Section 8 discusses the related work, and finally, Sect. 9 con-
cludes with a discussion of future work.

2. Adversary and System Model

In this section, we present the adversary model describing
the capability of attackers and the system model.

2.1 Adversary Model

We assume that an adversary can compromise some tasks
or insert new tasks having low security-levels in an MCS to
obtain sensitive data used by a task having a high security-
level on the shared resource such as cache. For example, the
adversary can launch a side-channel attack by compromis-
ing a lower security-level task to glean sensitive data on the
shared cache used by higher security-level task. We also as-
sume that the inserted task can consider real-time guarantee
so that the task cannot be detected immediately. Adversaries
that can tamper with the system operation are beyond the
scope of this paper.

2.2 System Model

We consider a system that consists of K number of compo-
nents, and each component has different criticality level X.
Each component has the finite set of sporadic tasks. For sim-
plicity, we assume a system comprising two criticality level
HI and LO, which stand for the high- and low-criticality
level, respectively. For a task set τ, we will characterize each
MC (Mixed-Criticality) sporadic task τi ∈ τ by a 6-tuple
of the following parameters: τi = (Xi,CLO

i ,CHI
i ,Di,Ti, S i),

where

• Xi ∈ {HI, LO} denotes the criticality of the task. We as-
sume that a task τi with Xi = HI, called a HI-criticality
task, should be certified correctly by the Certification
Authorities (CAs) while a task τi with Xi = LO, called
a LO-criticality task, is not the target of the CAs.
• CLO

i and CHI
i are the worst-case execution times
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(WCETs) for the high and low criticalities, respec-
tively, and they satisfy CHI

i ≥ CLO
i since the high assur-

ance of the high-criticality requires more conservative
analysis for WCET.
• Di denotes the relative deadline and Ti denotes the min-

imum separation between arrival times of two consec-
utive jobs. The n-th released job of a task τi is denoted
by jni ; we will omit the superscript from jni when no
ambiguity arises.
• S i denotes the security-level of a task τi. As a set

of security-levels S forms total order, any pair of two
tasks (τi, τ j) exhibits two relationships: S i ≺ S j mean-
ing τi has a higher security-level than τ j, or S j ≺ S i

otherwise.

We consider the constrained-deadline sporadic task
system, meaning that Di ≤ Ti for each task τi ∈ τ. We fo-
cus on non-preemptive FP, and assume quantum-based time.
We consider an MCS with a uniprocessor.

Behaviors. For the different runs, a given task system
shows two behaviors. Criticality of a behavior is defined
as the minimum-criticality level that all released jobs do not
actually execute for more than its WCET of the criticality
level. For our two-level criticality model, if all released jobs
ji executed or are executing for less than its CLO

i , by the
definitions of criticality of a behavior, the current critical-
ity level of behavior is low. On the other hand, if any job
ji executed or is executing for more than its CLO

i , the cur-
rent criticality level of behavior is high. For simplicity, we
refer to the behavior of high- and low-criticality levels as
HI-mode and LO-mode, respectively.

Correctness. The algorithm for scheduling MC task
systems is said to be correct if and only if it satisfies the
properties that

• In LO-mode, every job ji of every task τi finishes its
execution within Di time units; and
• In HI-mode, every job ji of every HI-criticality task

finishes its execution within Di time units.

For MCSes, a large body of fixed priority scheduling
has been proposed such as CrMPO (Criticality Monotonic
Priority Ordering) [14], SMC (Static Mixed-Criticality) [9],
and AMC (Adaptive Mixed-Criticality) [8]. In this paper,
we focus on AMC scheme since it appears to show the best
performance among them and there a lot of further studies
for MCSes have been based on it [16]–[18].

3. AMC Scheme Incorporating Security Constraints

In this section, we first review the conventional AMC
scheme, and then we introduce a new AMC scheme incorpo-
rating a security constraint proposed to mitigate the problem
of information leakage arising on the shared resources.

3.1 Existing AMC Scheme

In the AMC scheme, all LO-criticality jobs are dropped

Fig. 1 Example of AMC scheme taking a mode change.

Table 1 Task parameters.

τi Xi CLO
i CHI

i Di Ti

τ1 LO 1 - 5 5
τ2 HI 1 2 7 7
τ3 HI 2 3 8 8

when any job ji executes for more than its LO-criticality
WCET CLO

i . The ability to stop any job executing for more
than its CLO

i is based on the platform support that can moni-
tor the execution of the job. This is an ability to measure the
duration of the execution of the target job [8].

Figure 1 illustrates an AMC scheme using runtime
monitoring with RM priority assignment for a task set with
the parameters described in Table 1.

As seen in Fig. 1, a job of τ1 having the shortest pe-
riod executes with the highest priority, and then jobs of τ2

and τ3 execute according to rate monotonic (RM) priority
assignment scheme. We assume that a mode change occurs
by the second released job j23 of the task τ3 at the time 10.
Before the mode change, the execution of each job is com-
pleted within its CLO

i . At time 10, a mode change occurs,
and then a LO-criticality task τ1 is dropped out and the two
HI-criticality tasks τ2 and τ3 are assumed to complete its
execution within its CHI

i

3.2 New AMC Scheme Incorporating Security Constraints

Many mechanisms to mitigate or completely prevent infor-
mation leakage have been proposed [19]–[21]. One of the
mechanisms is to partition cache with hardware or software
approaches [21]. However, such approaches are dependent
on the type of the shared resources and can negatively influ-
ence the execution time of task since each task could use the
limited shared resource. Instead, some studies used a gen-
eral flushing mechanism [2]–[4]. Whenever there is a pos-
sibility of information leakage, a function to clear the state
of the shared resource is invoked, which is called FT. The
cache, for example, can be flushed and a row of DRAM can
be closed when a task executes immediately after the exe-
cution of another task since the newly executing task could
inspect the contents of the shared resource that were recently
used.

As we assume real-time tasks having different security-
levels meaning different levels of security requirements, two
directions of information leakage are possible: from the
task of the higher security-level τH to the task of the lower
security-level τL and vice versa, for any two consecutively
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Fig. 2 Example of AMC scheme incorporating a security constraint.

executing tasks. Note that we assume the total order of
security-levels meaning that all tasks have different security-
levels. In this paper, likewise existing studies [3], [4], we fo-
cus on the information leakage arising from τH to τL since
the information leakage from τL to τH is not as critical as
that from τH to τL and considering two directions of infor-
mation leakage causes more FTs, which often results in task
sets becoming unschedulable. Thus, we incorporate the fol-
lowing security constraint into real-time scheduling to ad-
dress the information leakage problem; for any two consec-
utively executing tasks under any real-time scheduler, a FT
to cleanse the state of shared resources should be invoked
between the two tasks if the former is τH and the latter is τL.
We assume that a FT is executed together with a scheduled
job ji if ji follows a job j j, with S j ≺ S i. Hence, a FT can
increase the execution time of ji by C f t, and it also executes
non-preemptively before the execution of ji.

Figure 2 illustrates an example of scheduling applying
a security constraint for tasks with parameters in Table 1.
Additionally, we assume that tasks τ1, τ2 and τ3 have their
security ordering as S 3 ≺ S 2 ≺ S 1. Comparing to the exam-
ple in Fig. 1, three FTs are invoked at time 5, 14 and 21 to
prevent information leakage between a transition τH → τL;
in this case, τ3 → τ1, τ3 → τ2 and τ3 → τ2. As a FT exe-
cutes non-preemptively with a priority higher than all of the
real-time tasks, the execution of the jobs j21, j32 and j42 are de-
layed by the amount of execution time of the FT (1 time unit
in this case). Comparing the two cases illustrated by Figs. 1
and 2 respectively, a job ji of the former case (Fig. 1) can be
interfered by the higher priority jobs only while a job ji of
the latter case (Fig. 2) can be interfered by both of the higher
priority jobs and FTs invoked between the release and the
completion of ji. Thus, to test the schedulability of τi (i.e.,
test whether every job of τi completes its execution within
its relative deadline Di), the upper-bound of the worst-case
interference from higher priority jobs than ji of the task τi

and the maximum number of FTs invoked between them is
crucial.

In the following section, we introduce a conventional
mechanism upper-bounding the maximum number of FTs
interfering with a job ji, which will be embedded into our
new RTA to analyze the schedulability of the AMC scheme
incorporating a security constraint.

4. Existing Mechanism for FT Bounds

In this section, we review the mechanism upper-bounding

the maximum number of FTs invoked between the interfer-
ing jobs of a job ji of a task τi, which is used to test the
schedulability of τi introduced in [3].

The exact number of FTs invoked between the interfer-
ing jobs of ji is derived by three factors of interfering jobs:
(a) the ordering of the security level S , (b) the number of
the interfering jobs of a task τ j denoted by Nj and (c) the
sequence of the executions of the interfering jobs induced
by the actual arrival time of each interfering job. However,
the mechanism proposed in [3] only depends on the ordering
of the security-level S and the number of jobs Nj interfer-
ing with τi but not the actual arrival time of each interfering
job. Thus, it does not derive the exact number of FTs but a
safe upper-bound of the maximum number of FTs invoked
between interfering jobs of ji. Intuitively, it finds a job se-
quence inducing the maximum number of FTs invoked be-
tween interfering jobs among possible permutations of job
sequences. The function to derive the maximum number of
FTs is denoted by Nf t(S , {Nj |τ j ∈ hep(i)}) where hep(i) is
a set of tasks having higher or equal priority. To derive the
value of Nf t(S , {Nj |τ j ∈ hep(i)}), the following two defini-
tions are used.

Definition 1 (Valid job sequence [3]). A valid job se-
quence ψ is a sequence of

∑
τ j∈hep(i) Nj + 2 jobs. The first

job can be any job; the last job should be a job of τi; and
intermediate jobs form any permutation of the union of Nj

jobs for each task τ j in hep(i). Let Ψ(S , {Nj |τ j ∈ hep(i)})
be the set of valid job sequences for S and {Nj|τ j ∈ hep(i)}.

Definition 2 (Number of FTs for ψ [3]). Let N(ψ) be
the number of FTs required in the valid job sequence ignor-
ing the arrival times of interfering jobs. For example, for
any consecutively executing jobs ja and jb in a valid job
sequence, an FT is invoked if S a ≺ S b.

Although some valid job sequences do not represent
a valid schedule (note that we do not make any assump-
tion of the arrival time of the interfering jobs), a valid job
sequence containing the maximum number of FTs safely
upper-bounds the actual number of FTs. Thus, we can
upper-bound the maximum number of FTs invoked between
interfering jobs as follows:

Nf t(S , {Nj|τ j ∈ hep(i)}) = max
ψ∈Ψ(S ,{N j |τ j∈hep(i)})

N(ψ). (1)

Enumerating all of the possible permutations of the
valid job sequences for the upper-bound of the maximum
number of FTs requires factorial time.

In [3] a mechanism showing the polynomial time com-
plexity (O(|V |3) is proposed through transformation of the
problem of maximization of the number of FTs into a max
flow problem, where |V | is the number of the interfering jobs
of ji under test.

Each of the jobs in a valid sequence is mapped onto
the pair of sender and receiver nodes. An edge with ca-
pacity 1 is then added between a sender node of a higher
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security-level and a receiver node of a lower security-level
as it represents the possibility of a FT invocation between
two consecutively executing jobs in a valid sequence. In de-
tail, the graph for maximizing the number of FT invocations
in a valid sequence is constructed as follow:

Definition 3 (FT graph [3]). The FT Graph for S and
{Nj|τ j ∈ hep(i)} is a flow graph (V, E). A set of vertexes V
contains the following vertexes:

1. a source vertex and a sink vertex;
2. a sender vertex S endF representing a blocking job and

a receiver vertex RecvL representing a job under test;
3. for each τ j ∈ hep(i) Nj sender vertexes S end j,1, · · · ,

S end j,N j and Nj receiver vertexes Recv j,1, · · · ,Recv j,N j ,
which represent Nj interfering jobs of the task τ j.

A set of directed edges E, where all edges have a capacity
of 1 contains the following edges:

1. an edge from the source to every sender vertex;
2. an edge from every receiver vertex to the sink;
3. for each sender vertex S endx except a source vertex,

an edge from the sender vertex S endx to any receiver
vertex Recvy except a sink vertex, if the job jx repre-
sented by S endx and the job represented by Recvy have
security-levels such that S x ≺ S y.

Figure 3 illustrates an example of a FT graph deriving
a max flow (Fig. 3(a)) and a corresponding valid sequence
(Fig. 3(b)) for a task set τ = {τ1, τ2, τ3} and a security or-
dering, S 1 ≺ S 2 ≺ S 3. Let τ3 be the task under test and
N1 = 1, N2 = 2. Thus, we consider the following jobs: jF ,
j11, j12, j22 and j13 where jF can be any job having a lower

Fig. 3 Example of FT graph and corresponding valid sequence.

priority than j13. Note that jF creates sender nodes S endF

only, since jF should be the first job in the valid sequence.
On the other hand, j13 creates a receiver node RecvL only,
since it cannot be ahead of any FT; it should be the end of
the valid sequence as it is the job under test. Each edge has
a capacity of 1, and bold red lines represent flows. Each
flow path starts from a source node and ends with a sink
node. A flow between two intermediate nodes, a sender
node and a receiver node, represents a FT invocation in the
valid sequence. Therefore, the max flow in Fig. 3(a) pro-
duces a corresponding valid sequence (Fig. 3(b)) containing
three FTs. Note that the resultant valid sequence does not
always present a valid schedule but it safely upper-bounds
the maximum number of FT invocations.

Lemma 4.1. (from [3]) For the given max flow value F′ de-
rived by the FT graph (V, E) for S , the maximum number of
FTs in the valid sequence is upper-bounded by F′.

5. New Schedulability Analysis for AMC

In this section,we propose a new RTA for non-preemptive
FP scheduling for AMC scheme. Before we develop a
new RTA technique, we revisit the existing RTA for non-
preemptive FP scheduling for the single-criticality system
introduced in [3]. The worst-case response time Ri for non-
preemptive FP scheduling is upper-bounded by the follow-
ing recursive form.

Ri = Bi +Ci +
∑

τ j∈hep(i)

Nj ·C j, (2)

where Bi is the maximum blocking time induced by a lower
priority task calculated by

Bi = max
τk∈lp(i)

Ck − 1, (3)

where lp(i) is a set of tasks having lower priority, and Nj

is the number of interfering jobs of higher priority task τ j

obtained by

Nj =

⌊Ri −Ci

T j
+ 1
⌋
. (4)

Unlike preemptive scheduling, a task τi can be interfered
by a lower priority task τk if τk is released before the re-
lease of τi. Since the lower priority task having the largest
WCET safely upper-bound the maximum blocking time Bi

for the worst-case interference, Bi is derived by Eq. (3). Nj

(in Eq. (4)) is calculated with the similar mechanism for
RTA for preemptive FT scheduling [15] but RTA for non-
preemptive FP scheduling has two different terms: (1) “-Ci”
term, and (2) “+1” and floor terms. Figure 4 illustrates the
two worst-case scenarios in which a job of τi is interfered by
τ j as much as possible. Let t be the time instant when a job
of τi is released. In the first worst-case scenario (Fig. 4 (a)),
only jobs of τ j released before t + Ri − Ci can interfere
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Fig. 4 Two worst-case scenarios in which a job of τi is maximally inter-
fered by higher priority jobs in each iteration of RTA for non-preemptive
FP scheduling.

with the job of τi since jobs execute non-preemptively. Fig-
ures 4 (b) presents the special case in which a job of τ j is re-
leased at t+Ri−Ci. In this case, the job released at t+Ri−Ci

also can interfere with the job of τ j. “+1” and floor terms in
Eq. (4) are used to cover both scenarios. Note that RTA for
preemptive FP scheduling uses ceil term without “+1” term
but it cannot cover the second worst-case scenario; actu-
ally, the second scenario does not happen in preemptive FP
scheduling. Once RTA computes the worst-case response
time Ri of each task τi ∈ τ, we can check the schedulability
of τ by comparing Ri with the relative deadline of each task
(i.e. tests if Ri ≤ Di).

The schedulability analysis of AMC scheme consists of
three phases [8]: schedulability of LO-mode, HI-mode and
mode change. First two phases consider the stable mode
where a mode change does not occur, and the third one con-
siders, for HI-task, the dynamic mode starting at the LO-
mode, going through a mode change and finished at the HI-
mode. To test schedulability of a LO-criticality task, RTA
for the LO-mode is applied since LO-criticality tasks exe-
cute only in the LO-mode (note that all of the LO-criticality
tasks are dropped out in the HI-mode according to the pol-
icy of the AMC scheme). On the other hand, HI-criticality
tasks can execute only in the LO- or HI-mode, or can ex-
perience a mode change. We derive the three worst-case
response times of a HI-criticality task for the LO-mode, HI-
mode and mode change respectively. Then, we show that
the worst-case response time of a HI-criticality task for a
mode change is always safer than that of LO-mode and HI-
mode in this section. Therefore, we derive the following
three types of worst-case response time of each task; RLO

i
and RHI

i for two stable modes, and RTR
i for a dynamic mode

taking into account a mode change.

• RLO
i : the worst-case response time of a LO-criticality

task or a HI-criticality task executing only in LO-mode.

• RHI
i : the worst-case response time of a HI-criticality

task executing only in HI-mode.
• RTR

i : the worst-case response time of a HI-criticality
task whose execution starts in LO-mode and ends in
HI-mode, which experiences a mode change.

Since all of the jobs of HI- or LO-criticality tasks in-
cluding a job under test and the interfering jobs complete
its execution within its CLO

i in the LO-mode, only execution
times of the LO-mode are used for the analysis. On the other
hand, since only jobs of the HI-criticality tasks execute for
CHI

i in the worst-case in HI-mode, only execution times of
HI-mode are used for the analysis. Thus, the worst-case re-
sponse time RLO

i for the LO-mode and RHI
i for the HI-mode

are directly derived from Eq. (2) consisting of the summa-
tion of the maximum blocking time, the WCET of τi under
analysis and the worst-case interference from the higher pri-
ority tasks as follow:

RM
i = BM

i +CM
i +

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
τ j∈hep(i) NM

j ·CM
j

if M = LO,∑
τ j∈hepH(i) NM

j ·CM
j

otherwise,

(5)

where M ∈ {LO,HI} denotes the target mode for the analy-
sis, hepH(i) is a set of HI-criticality tasks having higher or
equal priority, BM

i is the maximum blocking time in the LO-
or HI-mode computed as

BM
i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

maxτk∈lp(i) CM
k − 1

if M = LO,
maxτk∈lpH(i) CM

k − 1
otherwise,

(6)

where lpH(i) is a set of HI-criticality tasks having lower
priority and NM

j is the number of interfering jobs of τi cal-
culated by

NM
j =

⌊RM
i −CM

i

T j
+ 1
⌋
. (7)

Note that hepH(i) is used for the analysis of the HI-mode
since only HI-criticality tasks execute and can interfere with
τi in the HI-mode.

Since a critical instant† of the AMC scheme is not
clear as it is impossible to know the exact timing of a
mode change in advance, to derive the exact response time
analysis for the schedulability analysis considering a mode
change is naturally intractable. Thus, we consider the suf-
ficient analysis [8] for schedulability for AMC scheme con-
sidering a mode change.

The equation of the standard RTA for non-preemptive
scheduling is formed by the summation of the blocking
time, the WCET of a task under analysis and the worst-
case interference from higher priority tasks. In the RTA
for the AMC scheme, the interference from higher prior-
ity of HI-criticality tasks and that of LO-criticality tasks are

†A critical instant is defined as a time instant inducing the
worst-case response time [22].
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independently considered since LO-criticality tasks do not
contribute to the interference after a mode change. Thus,
the worst-case response time of HI-criticality task taking
a mode change is derived by the following combination of
forms

RTR
i = BTR

i +CHI
i + IL + IH , (8)

where IL is the worst-case interference from LO-criticality
tasks, IH is the worst-case interference from HI-criticality
tasks, and BTR

i is the maximum blocking time calculated by

BTR
i = max( max

τk∈lpL(i)
CLO

k , max
τk∈lpH(i)

CHI
k ) − 1, (9)

where lpL(i) is a set of LO-criticality tasks having lower pri-
ority than τi. As we consider non-preemptive scheduling, a
job ji under test can be blocked by a lower priority job ei-
ther of LO- or HI-criticality [23]. If LO-criticality, the job
executes for less than its CLO

i ; otherwise, it can execute for
more than CLO

i since a mode change can occur during the
execution of the blocking job. Thus, we upper-bound the
maximum blocking time induced by a lower priority job ac-
cording to the criticalities of the blocking jobs as seen in
Eq. (9).

Since all LO-criticality tasks are dropped out after
a mode change by the policy of the AMC scheme, LO-
criticality tasks having higher priority than τi can interfere
until the mode change. Since a mode change to HI-mode oc-
curs before RLO

i , the number of interfering jobs of the LO-
criticality is maximized when the mode change occurs at
RLO

i . Based on the reasoning, IL is upper-bounded by

IL =
∑

τ j∈hepL(i)

⌊RLO
i −CLO

i

T j
+ 1
⌋

CLO
j , (10)

where hepL(i) is the set of LO-criticality jobs having higher
or equal priority. For the safe upper-bound of IH , we assume
that a mode change occurs at RLO

i to maximize the number of
HI-criticality interfering jobs, and all released HI-criticality
interfering jobs executes for CHI

i to maximize the amount of
interference. Thus, IH is safely upper-bounded by

IH =
∑

τ j∈hepH(i)

⌊RTR
i −CHI

i

T j
+ 1
⌋

CHI
j . (11)

Based on the above reasoning regarding the upper-
bound of the worst-case response time of a HI-criticality
task for a mode change, we derive the following lemma.

Lemma 5.1. The worst-case response time RTR
i of a HI-

criticality task τi for a mode change is upper-bounded by

RTR
i = BTR

i +CHI
i + IL + IH . (12)

Using the derived worst-case response times for the
LO-mode, HI-mode and a mode change, the schedulability
is tested by the following theorem.

Theorem 5.2. A task set τ is schedulable by AMC scheme

if for each LO-criticality task τi satisfies

RLO
i ≤ Di, (13)

and for each HI-criticality task τi satisfies

RTR
i ≤ Di. (14)

Proof. LO-criticality tasks execute only in LO-mode. Thus,
RLO

i sufficiently upper-bounds the worst-case response time
of every LO-criticality task. A HI-criticality task can ex-
ecute only in LO-mode or HI-mode, and can experience a
mode change. For a given HI-criticality task τi, RTR

i is al-
ways greater than RLO

i and RHI
i . Since RTR

i is safely upper-
bounded by Lemma 5.1, the worst-case response time of a
HI-criticality task is safely upper-bounded by RTR

i regardless
of a mode change occurrence.

6. New Schedulability Analysis Embedding FT Bounds

In this section, we propose a new schedulability anal-
ysis approach for non-preemptive FP for AMC scheme
employing FT mechanism as a security constraint (pro-
posed in Sect. 3.2) by combining our proposed RTA for
non-preemptive FP for AMC scheme (proposed in Sect. 5)
and the previous mechanism upper-bounding the maximum
number of FTs invoked in the valid sequence (illustrated in
Sect. 4).

We first consider the worst-case response times for LO-
mode and HI-mode, and then we discuss how to upper-
bound it for a mode change. For a mode change, we first
identify the worst-case situations where the maximum num-
ber of FTs invoked before and after a mode change sepa-
rately. Then we upper-bound the maximum number of FTs
of each situation. Based on the same reasoning mentioned
in Sect. 5, we derive the following three types of the worst-
case response time to test the schedulability of LO- and HI-
criticality tasks.

• RLO+
i : the worst-case response time considering the

upper-bounded interference of FT of a LO-criticality
task or a HI-criticality task executing only in the LO-
mode.
• RHI+

i : the worst-case response time considering the
upper-bounded interference of FT of a HI-criticality
task executing only in the HI-mode.
• RTR+

i : the worst-case response time considering the
upper-bounded interference of FT of a HI-criticality
task whose execution starts in the LO-mode and ends
in the HI-mode, which takes a mode change.

Note that we use “+” notation if the value of the term in-
creases due to the consideration of a security constraint (i.e.
the worst-case response time R+i or the maximum blocking
time from a lower priority task B+i , which consider a security
constraint).

As illustrated in the previous section, RTA derives the
worst-case response time for LO-mode and HI-mode by the
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summation of three terms: the maximum blocking time in-
duced by a lower priority task, the WCET of τi, and the
worst-case interference of higher priority tasks. By consid-
ering a security constraint, a job ji of τi can be additionally
interfered by FTs invoked between interfering jobs of ji. As
the four factors are calculated independently, the worst-case
response time taking into account the maximum number of
FTs invoked between interfering jobs is directly extended
from Eq. (5), which is the summation of the four terms as
follow:

RM+
i =

BM+
i +CM

i +

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
τ j∈hep(i) NM+

j ·CM+
j

if M = LO∑
τ j∈hepH(i) NM+

j ·CM+
j

otherwise.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(15)

+ Nf t(S , {NM+
j |τ j ∈ hep(i)}) ·C f t,

where BM+
i is the maximum blocking time in the LO- or HI-

mode computed as

BM+
i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

maxτk∈lp(i) CM+
k − 1

if M = LO,
maxτk∈lpH(i) CM+

k − 1
otherwise.

(16)

CM+
k = CM

k +C f t if there exits any task having lower priority
and higher security-level than any task τk ∈ lp(i); CM+

k =

CM
k , otherwise. In other words, if any task having higher

security-level executed just before τk ∈ lp(i) so that a FT
should be invoked between the consecutive two tasks, then
we add C f t to the blocking time. NM+

j is the number of jobs
of τ j interfering with τi calculated by

NM+
j =

⌊RM+
i −CM

i

T j
+ 1
⌋
. (17)

Now, we consider the worst-case response time tak-
ing into account the maximum number of FTs for a mode
change. Unlike the case of single criticality scheduling, the
situations before and after a mode change should be consid-
ered separately since LO-criticality jobs cannot contribute
to the invocations of FTs after a mode change. Therefore,
we derive the maximum number of FTs before and after
a mode change independently, and then we derive a safe
upper-bound of the worst-case response time for a mode
change.

Before we upper-bound the maximum number of FTs,
we introduce the following lemma.

Lemma 6.1. Let Na and Nb be the number of elements of a
set of JA and JB, respectively. If a set of job JA includes a
set of job JB, then it satisfies the following

Nf t(S , {Nb|JB}) ≤ Nf t(S , {Na|JA}). (18)

Proof. We proof it by induction. Suppose JB has a job j1
only and JA has two jobs j1 and j2. The function value of
JB should be 0 and that of JA should be 0 or 1 since a single

job cannot induce any FT and two jobs can induce a single
FT at most. Thus the inequality is satisfied. Suppose JB has
N jobs, and JA include all of the jobs in JB and another job
ji. ji does not change the configuration (edges and nodes)
of the FT graph of JB, but just add its own edges and nodes,
which means the FT graph of JA also includes that of JB.
Thus the inequality is also satisfied. Therefore, the lemma
holds.

Let Nb
j be the number of interfering jobs of task τ j re-

leased before a mode change when the mode change occurs
at RLO+

i . Nb
j is directly calculated using Eq. (17) as follows:

Nb
j =

⌊RLO+
i −CLO

i

T j
+ 1
⌋
. (19)

We derive the following lemma to upper-bound Ib
f t with Nb

j .

Lemma 6.2. The worst-case interference from the FT invo-
cations before a mode change Ib

f t is upper-bounded by

Ib
f t = Nf t(S , {Nb

j |τ j ∈ hep(i)}) ·C f t. (20)

Proof. Let Jb be the sets of interfering jobs executing be-
fore a mode change. As a mode change is delayed, the num-
ber of interfering jobs executing before a mode change in
Jb monotonically increases. During this increase, Jb adds
newly released jobs while conserving the existing jobs in Jb.
By Lemma 6.1, the function value of Jb does not decrease
while Jb adds newly released jobs. Therefore, Ib

f t is maxi-

mized when the mode change occurs at RLO+
i since RLO+

i is
the latest time that the mode change can occur. If a mode
change occurs at RLO+

i , then it means that the mode change
occurs by a job ji under test and all of the released interfer-
ing jobs before a mode change are already executed. Thus,
all of the jobs released before RLO+

i participate in the func-
tion Nf t(·). By Lemma 4.1, it is safely upper-bounded.

Let Ia
f t be the worst-case interference from FT invo-

cations after a mode change, and Ja is a set of jobs exe-
cuting after a mode change and contributing to Ia

f t. From

Lemma 6.2, Ib
f t is maximized when the mode change oc-

curs at RLO+
i meaning a mode change is maximally delayed.

However, it is not guaranteed that Ia
f t is maximized when the

mode change is maximally delayed, which means that two
worst-cases upper-bounding Ib

f t and Ia
f t cannot occur simul-

taneously. Let us consider the following two cases for a job
ji under test.

1. A mode change occurs before RLO+
i and a large number

of higher priority HI-criticality jobs have been released
but not executed yet. Those jobs will interfere with ji
after the mode change and contribute to Ia

f t.

2. A mode change occurs at RLO+
i and all of the jobs re-

leased before RLO+
i finish its executions. Ja only in-

cludes the job released after the mode change.

Comparing the above two cases, Ia
f t for the first case
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can be greater than that for the second case. Thus, the mode
change at RLO+

i maximizes Ib
f t but not Ia

f t. Based on the rea-

soning, we use the RTA for the HI-mode deriving RHI+
i for

the safe upper-bound of Ia
f t, since it safely upper-bounds the

maximum number of the interfering jobs between interfer-
ing jobs in HI-mode (see Eq. (15)). Therefore, for the safe
upper-bound of Ia

f t, we derive the following lemma.

Lemma 6.3. The worst-case interference from the FT invo-
cations after a mode change Ia

f t is upper-bounded by

Ib
f t = Nf t(S , {Na

j |τ j ∈ hepH(i)}) ·C f t, (21)

where, Na
j is the number of interfering jobs in the HI-mode

computed by

Na
j =

⌊RHI+
i −CHI

i

T j
+ 1
⌋
. (22)

Proof. Equation (15) safely upper-bounds the maximum
number of the interfering jobs and the maximum number
of the FTs invoked between interfering jobs in the HI-mode.
With the same reasoning as Lemma 6.2 using Lemmas 6.1
and 4.1, this lemma holds.

Based on the reasoning, we derive the following
lemma.

Lemma 6.4. The worst-case response time taking into ac-
count FTs for a mode change is upper-bounded by the fol-
lowing combination of terms:

RTR+
i = BTR+

i +CHI
i + IL + IH + Ib

f t + Ia
f t, (23)

where BTR+
i is the maximum blocking time calculated by

BTR+
i = max( max

τk∈lpL(i)
CLO+

k , max
τk∈lpH(i)

CHI+
k ) − 1. (24)

Proof. The worst-case response time for a mode change is
safely upper-bounded by Lemma 5.1 and, the worst-case in-
terference from the FT invocations before a mode change
Ib

f t and after a mode change Ia
f t are safely upper-bounded

by Lemmas 6.2 and 6.3 respectively. Thus the lemma
holds.

Based on the derived worst-case response times for the
LO-mode, HI-mode, and a mode change, we present the fi-
nal RTA as follows:

Theorem 6.5. A task set τ is schedulable by the AMC
scheme incorporating a security constraint if for each LO-
criticality task τi satisfies

RLO+
i ≤ Di, (25)

and for each HI-criticality task τi satisfies

RTR+
i ≤ Di. (26)

Proof. RLO+
i sufficiently upper-bounds the worst-case re-

sponse time of a LO-criticality task since LO-criticality

tasks execute only in the LO-mode. RTR+
i is always greater

than RLO+
i , and RHI+

i for any HI-criticality task. Since RTR+
i

is safely upper-bounded by Lemma 6.4, the worst-case re-
sponse time of a HI-criticality task is safely upper-bounded
by RTR+

i regardless of a mode change occurrence.

7. Evaluation and Discussion

In this section, we evaluate our approaches introduced in
the previous sections. We first describe the simulation en-
vironment, including the task generation method. Then, we
evaluate the performance of our proposed techniques.

7.1 Task Parameter Generation

We followed the task set generation method described in [3].
We set 10 base utilization† groups [0.02+0.1 · i, 0.08+0.1 · i]
for i = 0, · · · , 9, and generated 2000 instances per group.
For example, the first group contains task sets that the value
of utilization of each task set is from 0.02 to 0.08. As we
consider an MCS, we added two additional parameters: the
criticality factor (CF) and the criticality mix (CM) intro-
duced in [8]. CF denotes the fixed multiplier of the LO-
criticality execution time producing HI-criticality execution
time (i.e. CHI

i = CF · CLO
i ). CM denotes the probability

to generate HI-criticality task (i.e. 0 ≤ CM ≤ 1). Table 2
describes the task parameters used in our experiments.

7.2 Experiments

We investigated the performance of the following six
schedulability analysis techniques for rate monotonic pri-
ority ordering scheme (first four techniques for non-
preemptive scheduling and the others are for preemptive
scheduling).

• UB-H&L: Task sets pass this test if they are schedula-
ble both for the schedulability tests for non-preemptive
FP scheduling of the LO- and HI-mode. It represents
the upper-bounded performances of the rest of the con-
sidered techniques for non-preemptive FP scheduling,
because it does not check the schedulability with a
mode change.

Table 2 Task parameters for experiments.

Number of tasks N ∈ {3, 4, · · · , 10}
Task period pi ∈ {50, 100, · · · , 1000}
Task execution time ei ∈ {5, 6, · · · , 50}
Security-level of task S i ∈ {3, 4, · · · , 10}
FT overhead C f t ∈ {1, 2, · · · , 10}
Criticality Factor CF ∈ {1, 1.5, · · · , 5}
Criticality Mix CM ∈ {0.1, 0.2, · · · , 1}

†Utilization of a task τi is defined as CLO
i /Ti for a LO-criticality

task and CHI
i /Ti for a HI-criticality task. Utilization of a task set τ

is defined as the summation of utilizations of tasks in τ.
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• AMC-non: the schedulability analysis for non-
preemptive FP scheduling for the AMC scheme intro-
duced in Sect. 5 not incorporating a security constraint.
• AMC-mf: the approach described in Sect. 6 consider-

ing a security constraint.
• AMC-ob: the schedulability analysis for non-

preemptive FP scheduling for the AMC scheme con-
sidering a security constraint naively upper-bounding
the maximum number of FTs invoked between inter-
fering jobs. The maximum number of Nf t is calculated
by Nf t = Nhep(i) + 1, where Nhep(i) is the number of
higher or equal priority jobs for each task τi.
• AMC-p: the schedulability analysis for preemptive FP

scheduling for the AMC scheme proposed in [8].
• AMC-ob-p: the schedulability analysis for preemptive

FP scheduling for the AMC scheme (based on [8]) con-
sidering a security constraint naively upper-bounding
the maximum number of FTs invoked between inter-
fering jobs. The maximum number of Nf t is calculated
by Nf t = 2 · Nhep(i) + 1.

Note that AMC-non, AMC-mf and AMC-ob share the same
schedulability analysis to upper-bound the worst-case inter-
ference from the higher priority tasks for the LO-mode, HI-
mode and mode change. However, AMC-non does not con-
sider the worst-case interference from the FTs while AMC-
mf and AMC-ob upper-bound it with their own approaches;
AMC-ob considers that a FT is invoked in every transition
of any two tasks τi → τ j while AMC-mf uses a more so-
phisticated approach upper-bounding the maximum number
of FTs by transforming it into a max-flow problem. There-
fore, AMC-non and AMC-ob provide upper- and lower-
bounds of performance of AMC-mf respectively. When it
comes to AMC-p and AMC-ob-p, AMC-p does not con-
sider a security constraint, and AMC-ob-p considers that a
FT is invoked in every transition of any two tasks τi → τ j.
The bounded number of FT of AMC-ob and AMC-ob-p
(Nhep(i) + 1 and 2 · Nhep(i) + 1 respectively) are derived by
the maximum number preemptions that can occur from each
job; a job can occur preemption at most once and twice un-
der any non-preemptive and preemptive scheduling respec-
tively.

We first investigate how performances of schedulabil-
ity analysis techniques for non-preemptive scheduling are
varied with changing values of base utilization groups, CM
and CF. Figure 5 plots the percentage of the task sets
deemed schedulable for 2000 tasks in each base utiliza-
tion group with C f t = 5, CF = 2 and CM = 0.5. As
seen in Fig. 5, UB-H&L provides an upper-bound of per-
formance, and the rest of the three techniques produce three
distinctive results. As AMC-non does not consider a secu-
rity constraint, it performs better than AMC-mf and AMC-
ob since the executions of tasks are not hindered by the FTs.
AMC-ob performs badly because of its naive mechanism
(i.e. N f t = Nhep(i) + 1) for the upper-bound of the max-
imum number of FT invocations, while AMC-mf outper-
forms AMC-ob thanks to tight calculation of the interfer-

Fig. 5 Percentage of schedulable task sets (C f t = 5, CF = 2, CM = 0.5).

ence/blocking. As seen in Fig. 5, a large portion of the tasks
sets of AMC-mf is still schedulable compared to AMC-non
even when a security constraint is incorporated.

In the following evaluations, we use the weighted
schedulability measure Wy(p) [24] for schedulability analy-
sis y as a function of parameter p. Let S y(τ, p) be the binary
result (1 or 0) of schedulability test y for task set τ with the
parameter value p, and then Wy(p) is calculated as follows:

Wy(p) =
∑
∀τ

u(τ) · S y(τ, p)/
∑
∀τ

u(τ), (27)

where u(τ) is the utilization of τ. The weighted schedulabil-
ity measure rates high value to the task set having high uti-
lization deemed schedulable, and it reduces 3-dimensional
result to 2-dimensional result.

Figures 6 and 7 show how the experimental results are
changed by the varying value of CF and CM respectively;
the value of CM for Fig. 6 is set to 0.5, and that of CF for
Fig. 7 is set to 2.0. As seen in Figs. 6 and 7, the weighted
schedulability of each technique decreases as the values of
CM and CF increase since it increases the possibility of
generating tasks of high utilization. We also can see that the
results of the considered techniques show the similar trend
to Fig. 5; UB-H&L provides an upper-bound, and the rest of
the three techniques produce distinctive results.

Then, we show performance of each schedulability
analysis technique (except UB-HL) over varying value of
C f t. Figure 8 plots the weighted schedulability of each tech-
nique according to an increasing value of C f t from 0 to 20.
As shown in Fig. 8, the weighted schedulability of AMC-
p and AMC-non remain constant for a changing value of
C f t due to no consideration of a security constraint, which
shows about 32% performance gap consistently. Such gap
is mainly from that AMC-non considers a maximum block-
ing time of a lower priority job (i.e., Bi) unlike AMC-p does
not. Note that such handicap is originated from a character-
istic of non-preemptive scheduling itself, which is not avoid-
able to a schedulability analysis thereof. Despite such disad-
vantage, AMC-mf and AMC-ob outperform AMC-ob-p for
large values of C f t. For an increasing value of C f t from 0
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Fig. 6 Varying the criticality factor (C f t = 5, CM = 0.5).

Fig. 7 Varying the number of HI-criticality tasks (C f t = 5, CF = 2).

Fig. 8 Varying the overhead of flush task (CF = 2, CM = 0.5).

to 20, weighted schedulability of AMC-ob-p sharply drops
from about 1.0 to 0.1. On the other hand, those of AMC-mf
and AMC-ob decrease at relatively lower rates both from
about 0.68 but to 2.5 and 0.12 respectively, which outper-
form AMC-ob-p for a value of C f t larger than 7 and that
of 13 respectively. This trend is shown because AMC-ob-p
upper-bounds the number of FTs much naively (2·Nhep(i)+1)

than AMC-mf and AMC-ob, enlarging the performance gap
between AMC-ob-p, and AMC-mf and AMC-ob as a value
of C f t increases.

7.3 Discussion

We discuss how to improve performance of AMC-mf and
AMC-ob-p independently. As we presented in previous sec-
tion, our proposed schedulablity analysis (represented by
AMC-mf) upper-bounds the maximum number of FTs af-
ter a mode change with Ia

f t, which is the most pessimistic
factor of the analysis. That is, since Ia

f t considers interfer-

ing jobs in hepH(i) in the interval [0,RHI+
i ) to construct a

FT graph while Ib
f t does it in the interval [0,RLO+

i ) inde-
pendently, some jobs in hepH(i) in the intersected interval
of [0,RHI+

i ) and [0,RLO+
i ) are considered twice. We will

achieve a significant improvement of AMC-mf if we can
exclude as many jobs in hepH(i) as possible from the con-
sideration of Ia

f t via much detailed reasoning regarding Ia
f t.

When it comes to preemptive FP scheduling for the
AMC scheme, which incorporates a security constraint,
we believe that a similar underlying principle of AMC-mf
(bounding the maximum number of FTs occurring before
and after a mode change separately) is applicable to de-
rive a better performing schedulabilty analysis than AMC-
ob-p. Such schedulablity analysis may need a new type
of FT graph that can captures characteristics of preemptive
scheduling to upper-bound the maximum number of FTs. A
study proposed in [2] exploiting another FT graph well cap-
ture such characteristics gives a hint to extend our work into
a class of preemptive scheduling. We leave it as a future
work.

8. Related Work

A body of studies for which the real-time requirement and
security mechanisms are combined already exists [5], [6].
Xie and Lin considered periodic task scheduling for which
security service is required whereby varying overheads were
applied in relation to the level of service. They improved
the conventional scheduler to satisfy the real-time require-
ment and proposed a new scheduler to maximize the level
of security service. The problem of information leakage in
real-time database systems has also been studied [25], [26].

In early work, the leakage of information through
shared resource in real-time systems was addressed [2], [3].
They suggested a flushing mechanism to clean up the state
of the shared resource to prevent the information leakage
and real-time scheduling techniques recognizing such secu-
rity mechanisms. The initial research [3] proposed a restric-
tive security model and was aimed at a study of the initial
tradeoffs between security requirements and real-time guar-
antees. The initial work was extended to a more general
model, and a realistic application case study (for UAVs) was
studied [2].

The number of FT invocations hindering a job under
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analysis is closely related to the number of preemptions oc-
curred during the execution of a job. A previous study pro-
posed a mechanism exactly counting the number of preemp-
tions for preemptive FP scheduling [27]. When a task is pre-
empted by a higher priority task, a FT should be invoked if
the higher priority task has lower security-level to prevent
information leakage. Thus, the previous work gave many
hints to calculate the exact number of FTs in a schedulabil-
ity analysis.

In our previous study [4], we improved the existing
mechanism proposed in [27] to be able to count the exact
number of FTs. We suggested a new FP scheduling algo-
rithm called Lowest Security-level First (LSF) and an in-
telligent FT invocation mechanism reserving FTs not in a
greedy manner, which is called FT reservation. The com-
bination of these two mechanisms derives an exact schedu-
lability analysis. However, the proposed analysis is applied
to LSF scheduling algorithm only, which shows limited an-
alytic capability.

9. Conclusion

In this paper, we addressed the problem of the information
leakage that can occur between real-time tasks having differ-
ent levels of security in an MCS. We first defined the concept
of a security constraint for an MCS employing the mecha-
nism of FT and then proposed a new real-time scheduling
algorithm and a new schedulability analysis for the AMC
scheme incorporating the constraint. From the experimental
results, our proposed mechanisms showed acceptable per-
formance overheads while satisfying a security constraint to
mitigate information leakage.

In the future, we will relax the restriction of non-
preemptiveness of this work since our proposed work is
limited to non-preemptive scheduling; we intend to extend
this work to be applicable to both of preemptive and non-
preemptive scheduling. We also plan to consider scheduling
and analysis mechanisms for the multi-processor platforms.
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