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Abstract—With the widespread adoption of multi-core architectures, it is becoming more important to develop software in ways that

takes advantage of such parallel architectures. This particularly entails a shift in programming paradigms towards fine-grained,

thread-parallel computing. Many parallel programming models have been introduced for targeting such intra-task thread-level

parallelism. However, most successful results on traditional multi-core real-time scheduling are focused on sequential programming

models. For example, thread-level parallelism is not properly captured into the concept of interference, which is key to many

schedulability analysis techniques. Thereby, most interference-based analysis techniques are not directly applicable to parallel

programming models. Motivated by this, we extend the notion of interference to capture thread-level parallelism more accurately. We

then leverage the proposed notion of parallelism-aware interference to derive efficient EDF schedulability tests that are directly

applicable to parallel task models, including DAG models, on multi-core platforms, without knowing an optimal schedule. Our

evaluation results indicate that the proposed analysis significantly advances the state-of-the-art in global EDF schedulability analysis

for parallel tasks. In particular, we identify that our proposed schedulability tests are adaptive to different degrees of thread-level

parallelism and scalable to the number of processors, resulting in substantial improvement of schedulability for parallel tasks on

multi-core platforms.

Index Terms—Real-time scheduling, parallel task, global EDF, interference

Ç

1 INTRODUCTION

WITH the advance of semiconductor technology, multi-/
many-core architectures are widely used to better

manage trade-offs between performance, power efficiency,
and reliability in deep submicron technology. As the size of a
CMOS transistor continuously shrinks, more cores are get-
ting integrated on a single die. For example, Intel introduced
the Intel Xeon Phi coprocessor with around 60 cores [1], and
Cavium designed ARM-based processors that scale up to 48
cores [2]. Given the increasing emphasis on multi-/many-
core chip design, software parallelism is likely to be one
of the greatest constraints on computer performance.
This inherently entails a shift in programming paradigms
towards fine-grained thread-parallel computing, rather than
relatively coarse-grained application-level parallelism.

A popular technique to achieve fine-grained, thread-level
parallelism operates on the principle of divide-and-conquer. It
breaks down a larger task into many smaller subtasks, runs
those subtasks in parallel, and synchronizes them to merge

the results once each subtask completes computation. Many
parallel programming models have been proposed to sup-
port such a principle for parallel computation, including
OpenMP [3], Cilk/Cilk++ [4], Intel Threading Building
Blocks [5], Wool [6], and Chapel [7]. Those parallel pro-
gramming models share a common scenario that some sub-
tasks (threads) in a program (task) can run in parallel to
produce partial results individually and certain threads
should synchronize to integrate the partial results1. Many
parallel task models have been considered to capture those
two important aspects: thread-level parallelism and synchroni-
zation. One popular parallel task model is the synchronous
parallel task model, where a task consists of a sequence of
parallel regions, called segments, and each segment includes
one or more threads. All the threads belonging to the same
segment are released at the same time and at most m
threads are able to run simultaneously, wherem is the num-
ber of available cores. Two consecutive segments are subject
to synchronization (precedence constraint); all the threads
belonging to one segment must complete their own execu-
tion in order to move onward to the next segment. Recently,
a growing research attention has been given to a more gen-
eral parallel task model, the DAG (Directed Acyclic Graph)
model, where a node represents a thread and an edge
describes a precedence dependence between two threads.
In the DAG model, the granularity of precedence constraint
becomes smaller to the level of thread to offer a more
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1. In terminology of some programming models, such as OpenMP,
Intel Threading Building Blocks, and Chapel, the term “task” is used to
represent a unit of parallel execution referred to as a “thread” in this
paper.
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flexible way of describing thread-level parallelism and syn-
chronization than the synchronous parallel task model.

A shift from uni-core to multi-core processors allows
inter-task parallelism, where several tasks can execute simulta-
neously on multi-core processors. In addition, a shift from
single-thread to multi-thread tasks allows intra-task parallel-
ism, where even a single task can have multiple threads run-
ning simultaneously to take full advantage of multi-core
processing. Despite the growing importance of intra-task
parallelism,most real-timemulti-core scheduling studies are
focused on inter-task parallelism of sequential tasks, and rel-
atively much less attention has been paid to understanding
intra-task parallelism towards the schedulability analysis of
parallel tasks. For example, a large number of studies exten-
sively investigated the schedulability analysis of sequential
tasks under EDF (earliest-deadline-first) and fixed-priority
global scheduling [8], producing many influential results.
Such results include the concept of problem window and
interference [9], [10], interference bounding techniques [11],
[12], response time computation methods [10], [13], and
optimal priority assignment [14]. Many other scheduling
algorithms have been proposed for sequential models in
order to take advantage of multi-core more effectively,
including optimal algorithms such as pfair [15], DP-
Fair [16], RUN [17], and U-EDF [18]. In addition, some
approaches [19], [20] have been also proposed for scheduling
tasks with pipeline precedence constraints in distributed
real-time systems. However, the insights behind those suc-
cessful results are not directly applicable to parallel tasks,
due to the unique characteristics of thread-level parallelism.

For example, the notion of interference has been well
defined in the sequential task case and serves as the basis
for many schedulability analysis methods [9], [10], [11].
However, the current notion of interference does not cap-
ture thread-level parallelism because it assumes that each
task has only a single thread to run at any time instant.
Hence, those analysis methods are not directly applicable or
easily extensible to parallel tasks.

Recently, a few schedulability analysis methods have been
proposed for parallel task systems (see Table 1). Those meth-
ods can broadly fall into two types: comparative and indepen-
dent. The analysis methods in the literature can be considered
as comparative, if they derive resource augmentation bounds;
the resource augmentation bound indicates how well a

scheduler performs relatively to an optimal scheduler. Thus,
such resource augmentation bounds serve as good measures
to assess the performance of a scheduler and compare differ-
ent schedulers. However, they can be hardly used to deter-
mine the schedulability of a set of given parallel tasks when
no optimal schedule is known. In particular, [33] proved that
it is impossible to find an optimal online multi-core scheduler
for sporadic task systems. On the other hand, analysis meth-
ods can be said to be independent, if they can serve as schedul-
ability tests directly even without having to find any optimal
schedule. Motivated by this, the goal of this paper is to
develop an efficient, independent schedulability test that can
determine the schedulability of parallel tasks, including DAG
tasks, directly in connection to no optimal schedule.

Contribution. The main contributions of this paper can be
summarized as follows:

� We identify a chain of threads, called a critical thread,
in a DAG task that makes the most significant impact
to a deadline miss, if exists. We then derive interfer-
ence-based schedulability analysis of global EDF
scheduling for sporadic DAG task systems with
novel notions of critical interference and p-depth critical
interference in order to capture thread-level parallel-
ism accurately (see Section 4).

� We develop a polynomial-time workload-based
schedulability test.We identify theworst-case interfer-
ence scenario for DAG tasks considering the structure
of a DAG in detail and derive tight upper bounds on
interference based onworkload (see Section 5).

� We also develop a pseudo-polynomial-time slack-
based iterative schedulability test to reduce pessimism
effectively in bounding interference (see Section 6).

� We present simulation results, showing that the pro-
posed schedulability analysis methods significantly
outperforms the state-of-the-art methods available
for DAG tasks even if no optimal schedule is known
(see Section 7).

In our earlier work [23], we presented interference-based
schedulability tests for a synchronous parallel task set
under global EDF scheduling. In this paper, we extend this
initial study towards a more expressive parallel task model,
DAG task model, with further improvements. In the syn-
chronous parallel task model, each task consists of a
sequence of segments with synchronization points at the
end of each segment. The DAG task model refines the gran-
ularity of synchronization from segment-level to thread-
level, allowing to describe more flexible way of thread-level
parallelism and synchronization. In order to generalize the
schedulability analysis techniques in [23] for the DAG task
model, this paper has the following new technical contribu-
tions in addition to re-organizing and re-writing the entire
paper for better and/or concise presentation:

� The notions of critical thread, critical interference,
and p-depth critical interference are extended
accordingly with the DAG task model. Building
upon those new notions, we extend the workload-
based schedulability test in [23] towards the DAG
task model, including a new way of calculating the
worst-case workload for DAG tasks.

TABLE 1
Schedulability Analysis Methods for Parallel Tasks

Comparative Independent

Fork-join [21]y
task model

Synchronous [22] [23]
parallel [24] [25]
task model [26] [27]y

[28]
DAG [28] [29]
task [30] [31]
model [29] [32]

This paper

yIndicates a Case Where the Proposed Analysis Method is
Applicable Only for Partitioned Scheduling

1332 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 5, MAY 2017



� We additionally propose an improved schedulability
test by the use of slack values.

� We include more evaluation results, including a
comparison with other related works for DAG tasks.

2 RELATED WORK

Many scheduling approaches have been introduced for
intra-task thread-level parallelism in the hard real-time con-
text. The schedulability tests developed in the literature can
be largely categorized into two types: (1) comparative ones
that determine the schedulability of a scheduler relatively
to an ideal scheduler, and (2) independent ones that deter-
mine the schedulability of a scheduler independently in
connection to no other scheduler. For example, according
to [28], resource and capacity augmentation bounds2 serve
as comparative and independent tests, respectively. Table 1
summarizes the scheduling approaches in the literature by
schedulability test types and parallel task models.

Fork-Join Task Model. One of the widely used parallel task
models is the fork-join model [21]. A fork-join task consists
of an alternate sequence of sequential and parallel regions,
called segments, and all the threads within each segment
should synchronize in order to proceed to the next segment.
Under the assumption that each parallel segment can have
at most as many threads as the number of processors, [21]
presented a resource augmentation bound of 3.42 for parti-
tioned DM (deadline-monotonic) scheduling of periodic
fork-join tasks with implicit deadlines.

Synchronous Parallel Task Model. Relaxing the restriction
that sequential and parallel segments alternate, several stud-
ies have considered a more general synchronous parallel
task model that allows each segment to have any arbitrary
number of threads. [22] presented a resource augmentation
bound of 4 for global EDF scheduling and 5 for partitioned
DM scheduling of periodic tasks with implicit deadlines.
Building upon this work, [34] presented a prototype schedul-
ing service for their RT-OpenMP concurrency platform. [26]
also showed a resource augmentation bound of 2 for a certain
class of global scheduling algorithms, such as PD2 [35],
LLREF [36], DP-Wrap [16], or U-EDF [18] to schedule spo-
radic tasks with constrained deadlines.

Those studies [21], [22], [26] share a common principle of
task decomposition for schedulability analysis. They
decompose a single synchronous parallel task into multiple
independent sequential sub-tasks through intermediate
deadline assignment. This approach is safe—satisfying the
intermediate deadlines of all sub-tasks leads to meeting the
deadlines of their aggregate synchronous parallel tasks.
They then employ existing schedulability analysis for those
sequential sub-tasks. [22] decomposes a parallel task into a

set of sequential sub-tasks such that the density of each seg-
ment is upper bounded by some value, and [26] decom-
poses a parallel task such that the maximum density among
all segments in a parallel task is minimized. However, such
an indirect analysis via task decomposition can be pessimis-
tic, because task decomposition can incur non-trivial over-
heads. Furthermore, it requires modifications to existing
operating systems to support task decomposition [34].

Recently, some studies [23], [24], [25], [27] developed
direct schedulability analysis without task decomposition
for synchronous parallel tasks. [24] showed a resource aug-
mentation bound of 2� 1=m for sporadic tasks with con-
strained deadlines under global EDF scheduling. [23]
introduced an interference-based analysis for global EDF
scheduling of sporadic tasks with constrained deadlines.
[25] and [27] presented a response-time analysis (RTA) for
sporadic tasks under global fixed-priority scheduling and
partitioned fixed-priority scheduling, respectively.

DAG Task Model. Refining the granularity of synchroniza-
tion from segment-level to thread-level, a Directed Acyclic
Graph (DAG) task model is considered, where a node repre-
sents a thread and an edge specifies a precedence depen-
dency between nodes. A thread can execute only after all of
its predecessors have been executed. [30] showed a resource
augmentation bound of 2 for a single DAG task with arbi-
trary deadlines under global EDF scheduling. For a set of
DAG tasks, a resource augmentation bound of 2� 1=m was
presented for global EDF scheduling [28], [29]. [29] also
derived a 3� 1=m resource augmentation bound for global
DM scheduling. In addition to those resource augmentation
bounds, which serve as comparative schedulability tests,
[28] introduced capacity augmentation bounds that can
work as independent schedulability tests for sporadic DAG
tasks with arbitrary deadlines under global EDF and rate-
monotonic (RM) scheduling. [31] later improved the capac-
ity augmentation bounds for global EDF and RM schedul-
ing and proposed a new scheduling policy, called federated
scheduling, for DAG tasks. [29] also presented a simple
polynomial-time independent schedulability test for global
EDF scheduling, and this work was later extended in [32] to
yield an improved pseudo-polynomial time independent
schedulability test. This paper proposes a new interference-
based, independent schedulability test for a DAG task set
under global EDF scheduling, significantly improving the
schedulability compared to the existing techniques.

3 SYSTEM MODEL

We consider a multi-core platform, where sporadic Directed
Acyclic Graph tasks run over m identical processors under
global EDF scheduling. A set of tasks is denoted by t. In the
sporadic DAG task model, a task ti 2 t is specified by (Gi,
Di, Ti), where Gi is a directed acyclic graph as shown in
Fig. 1, Di is the relative deadline, and Ti is the minimum
separation. The DAG Gi is specified as Gi ¼ ðVi; EiÞ, where
Vi is a set of nodes and Ei is a set of directed edges between
two nodes. Each node ui;u 2 Vi represents a sequential oper-
ation (a “thread”), and is characterized by the worst-case
execution time requirement (WCET) Ci;u. The number of
threads in ti is denoted by Ni. A directed edge
ðui;u; ui;vÞ 2 Ei represents the precedence dependency that
ui;v cannot start execution unless ui;u has finished execution.

2. The resource augmentation bound r of a scheduler S has the
property that if a task set is feasible on m unit-speed processors, then
the task set is schedulable under S on m processors of speed r. For a
scheduler S and its corresponding schedulability condition X, their
capacity augmentation bound c has the property that if the given condi-
tion X is satisfied with a task set, the task set is schedulable by S on m
processors of speed c. Since the resource augmentation bound is con-
nected to an ideal optimal schedule, it is hard (if not impossible) to use
it as a schedulability test due to the difficulty of finding an optimal
schedule in many multi-core scheduling domains. On the other hand,
the capacity augmentation bound has nothing to do with an optimal
schedule, and this allows it to serve as an easy schedulability test
(see [28] more details).
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A thread ui;u becomes ready for execution as soon as all of
its predecessors have completed their execution.

A path in the sporadic DAG task ti is a sequence of threads
ui;1; ui;2; . . . ; ui;f such that ðui;j; ui;jþ1Þ is an edge in Gi for
1 � j < f . The length of this path is defined as the sum of

the WCETs of all its threads:
Pf

j¼1 Ci;j. The length of a lon-

gest path, denoted by LCi can be computed in linear time in
the number of nodes and the number of edges inGi, when its
nodes are sorted and processed in a topological order. In
Fig. 1, the longest path of ti is the sequence of ui;1, ui;2 and ui;5,
with the longest path length LCi equal to 2þ 3þ 3 ¼ 8. We
also defineCi as the totalWCET of ti, and it is presented as

Ci ¼
X
ui;j2Vi

Ci;j: (1)

Note that LCi is the minimum amount of time needed to
execute all threads in ti assuming that it can use as many
processors as possible for its execution, and Ci is the maxi-
mum amount of time to complete the execution of all the
threads in ti on a single core.

A sporadic DAG task ti invokes a series of jobs, and suc-
cessive jobs are released with a duration of at least Ti time
units apart. If a job of ti is released at time instant t then all
jVij threads ui;u 2 Vi are released at time instant t and must
complete execution by the absolute deadline tþDi. We con-
sider a constrained deadline Di such that Di � Ti. It should
be LCi � Di but not necessarily Ci � Di. Let Ui denote the
utilization of ti and be defined as Ui ¼ Ci=Ti. We denote the

lth job of a task ti with Jl
i . We will omit the superscript in

the notation for simplicity when no ambiguity arises. For a

job Jl
i , r

l
i and dli are its release time and deadline. The execu-

tion window of a job Jl
i is then defined as interval ½rli; dliÞ.

In EDF scheduling, threads are assigned priorities accord-
ing to their absolute deadline: the earlier the deadline of a
thread, the higher its priority. Thereby, threads in different
jobs may have different priorities, but all threads within a sin-
gle job have the same priority since they share the same abso-
lute deadline. With global EDF, each thread ready to execute
is placed in a system-wide queue, ordered by non-decreasing
absolute deadline, and the first m threads are extracted from
the queue to execute on the available processors at every time
instant. In this paper, we assume quantum-based time and
without loss of generality, let one time unit denote the quan-
tum length. All task parameters are assumed to be specified
asmultiples of this quantum length.

We summarize the notation used throughout the paper
in the supplement, which can be found on the Computer

Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2016.2614669.

4 SCHEDULABILITY ANALYSIS FOR DAG TASKS

In this section,we derive schedulability analysis of global EDF
scheduling for sporadic DAG task systems with constrained
deadlines. To this end, we extend the concept of interference
towards the DAG task model and introduce a new concept
called critical interference. With the notion of critical interfer-
ence, we investigate what happens if there is a deadline miss
and identify a necessary condition for a job to miss its dead-
line, which serves as a basis for schedulability analysis. In this
section, a run-time schedule of a task set is assumed to be
known. However, a worst-case situation where a task suffers
the worst possible interference is generally unknown for
global scheduling of sporadic task systems. This prevents cal-
culation of the exact interference without knowledge of run-
time schedule. Therefore, in later sections, we derive a safe
upper bound on the interference and transform the necessary
condition into an efficient schedulability test.

4.1 The Concept of Critical Interference

In the real-time scheduling literature, the notion of interfer-
ence has been employed in many schedulability analysis
methods [10], [11], [37], [38], [39], using the following
definitions:

� Interference Ikða; bÞ: the sum of all intervals in which
tk is ready for execution but cannot execute due to
other higher-priority tasks in ½a; bÞ.

� Interference Ii;kða; bÞ: the sum of all intervals in
which ti is executing and tk is ready to execute but
not executing in ½a; bÞ.

With the above definitions, the relation between Ikða; bÞ
and Ii;kða; bÞ serves as an important basis for deriving sched-
ulability analysis. In the single-thread task case, it is intuitive
to construct such a relation onm processors as follows [10]:

Ikða; bÞ ¼ 1

m

X
ti2t

Ii;kða; bÞ: (2)

However, it is not straightforward to build such a relation in
the multi-thread task case, as illustrated in the following
example.

Example 4.1. As an example, suppose that two threads of
higher-priority task ti and one thread of lower-priority
task tk are ready for execution on two processors at time
t. Then, the two threads of ti will run on two processors
in ½t; tþ 1Þ, delaying the execution of tk. According to the
above definitions, ti imposes interference on tk in
½t; tþ 1Þ, yielding Ikðt; tþ 1Þ ¼ 1 and Ii;kðt; tþ 1Þ ¼ 1.
However, Eq. (2) no longer supports such definitions.

The above example suggests a need for extending the
concept of interference for the parallel task model, and this
raises three problems: (i) how to calculate the interference
on tk when only some (but not all) threads of tk are inter-
fered, (ii) how to calculate the interference of ti on tk when
only some (but not all) threads of ti interfere with tk, and
(iii) how to calculate the intra-task interference of threads of
tk on other threads of the same task tk.

Fig. 1. A DAG task ti:
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To address problem (i), we represent the concept of inter-
ference of a task tk by considering the interference on a
chain3 of its threads. This chain is called a critical chain, and
threads belonging to a critical chain are called critical
threads. The detailed description of a critical chain is pro-
vided in Section 4.2. With the notion of critical threads, we
can now extend the traditional definition of interference
towards the DAG task model and introduce a new concept
called critical interference as follows:

� Critical interference Ikða; bÞ: the sum of all intervals
in which a critical thread of tk is ready for execution
but cannot execute due to other higher-priority
threads in ½a; bÞ.

� Critical interference I i;kða; bÞ: the sum of all intervals
in which at least one thread of ti is executing and the
critical thread of tk is ready to execute but not execut-
ing in ½a; bÞ.

Note that when all tasks have a single thread, then the sin-
gle thread is equal to the critical thread and our definition is
the same as the traditional definition of interference.

To address problem (ii), we introduce a new concept
called p-depth critical interference. The p-depth critical inter-
ference of a task ti on tk characterizes not only the length of
the delay ti causes to tk but also the number of threads of ti
that cause the delay.

To address problem (iii), we incorporate the notion of
intra-task interference into both the critical interference and
the p-depth critical interference such that they include inter-
ference on a critical thread by other non-critical threads of
the same task.

In the remainder of this section, we describe the notion of
critical threads and address the problems raised the above
in detail.

4.2 Necessary Condition for the First Deadline Miss
of a DAG Task

In this section we formally define a critical chain of a job. We
first seek to identify a necessary condition for any DAG task
to miss a deadline on m processors. Let a last-completing
thread of a job be a thread that completes last among the
job’s threads. A job misses deadline if its last-completing
thread misses deadline. A thread is said to be a last-complet-
ing predecessor of uk;u if it finishes last among all of the prede-
cessors of uk;u.

4 A thread can only be ready when its last-
completing predecessor completes. If we recursively track
all the concatenating last completing predecessors from a
last completing thread until there is no predecessor, we can

construct a critical chain �l
k of job Jl

k. Each thread in the criti-
cal chain is defined as a critical thread, and the length of the

critical chain of Jl
k, denoted by CPl

k, is defined as the sum of
the WCETs of all its critical threads. A DAG task is then con-
sidered as complete as soon as its critical threads complete
execution.

We define interference on a critical thread uk;u 2 �k over
interval ½a; bÞ (denoted as I <k;u> ða; bÞ) as the cumulative

length of all intervals in which the critical thread uk;u is
ready to execute but not executing due to the execution of
higher-priority threads that belong to not only other tasks
but also the same task. To avoid any confusion, it is worth
noting that I <k;u> ða; bÞ includes intra-task interference that
a critical thread uk;u 2 �k receives from other threads
uk;v =2 �k of the same task tk. According to our definition,
Ikða; bÞ is a total interference imposed collectively on all the
critical threads of tk, i.e.,

Ikða; bÞ ¼
X

uk;u2�k
I <k;u> ða; bÞ: (3)

In order to derive schedulability analysis using the concept of
critical interference, we investigate what happens when the
“first” deadlinemiss occurs and identify necessary conditions
for a job to miss its deadline. Generally, a deadline miss hap-
pens since there is a large amount of higher priority execution
that blocks the remaining execution of critical threads of a job
until its deadline. We consider any legal sequence of job
requests of task set t, on which EDF misses a deadline. Sup-
pose that a job of task tk, denoted by J�k , is the first job to miss
a deadline among all the jobs of all tasks. Then, by definition,
all the jobs of earlier deadlines than the deadline of J�k com-
plete execution before their deadlines, and the task system
remains underloaded until the first deadline miss. For J�k , r

�
k

and d�k are its release time and deadline. Then, one can see
that at least one critical thread uk;u 2 ��k of J

�
k must execute for

less thanCk;u time units, and the total execution time taken by
all critical threads must be less than CP �k time units. In order
for all critical threads of J�k to execute for strictly less thanCP �k
time units over ½r�k; d�kÞ, it is necessary that its critical interfer-
ence Ikðr�k; d�kÞ be strictly more than ðDk � CP �k Þ time units.
This observation yields a necessary condition for job J�k to
miss a deadline, i.e.,

Ikðr�k; d�kÞ > Dk � CP �k : (4)

Fig. 2 illustrates a situation where a job of DAG task ti
misses a deadline. Fig. 2a shows the thread structure of task
ti and its parameters that we will consider throughout this

paper. In Fig. 2b, a job Jl
i of ti is released at 0 with a deadline

Fig. 2. An example of DAG task ti on 3 processors. (a) Task ti consists
of 6 threads with Ti ¼ 11 and Di ¼ 10. (b) A job Jl

i of task ti misses a
deadline at 10. Here, critical threads are ui;1, ui;3, and ui;6, and those criti-
cal threads were blocked in 3 time intervals (i.e., [0,2), [4,7), and [8,9)),
respectively. This yields I ið0; 10Þ > Di � CPl

i , where CPl
i is the sum of

the execution times of all critical threads in job Jl
i .

3. A chain indicates a particular path at run-time.
4. We note that if there are multiple threads that finish last among all

of the predecessors of uk;u at the same time, we can choose any of them.
Without loss of generality, we choose the one that has the lowest index
among them.
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of 10. Thread ui;6 is the last completion thread in ti, and it is
released when ui;3 has finished at time instant 8 (i.e., ui;3 is a
last completing predecessor of ui;6Þ. ui;1 is a last completing
predecessor of ui;3. Since ui;1 has no predecessor, critical

threads of Jl
i are ui;1, ui;3, and ui;6. The execution of those crit-

ical threads were delayed in interval [0,2), [4,7), and [8,9),
leading to I < i;1> ð0; 10Þ ¼ 2, I <i;3> ð0; 10Þ ¼ 3, and
I < i;6> ð0; 10Þ ¼ 1. Then, the critical interference Ikð0; 10Þ on
ti during interval [0,10) is 2þ 3þ 1 ¼ 6, resulting in

Ikð0; 10Þ > Di � CPl
i . This makes it infeasible for the last

thread ui;6 to fully execute for Ci;6 time units before the
deadline of 10. This leads to the deadline miss of task ti.

As shown in Example 4.1, it is not as straightforward as
Eq. (2) to build the relation between Ikða; bÞ and I i;kða; bÞ.
This is mainly because I i;kða; bÞ does not capture how many
threads of ti interfere with the critical threads of tk. We
thereby introduce a new concept of p-depth critical interfer-
ence that characterizes the number of interfering threads,
and this new notion will bridge Ikða; bÞ and I i;kða; bÞ effec-
tively for DAG tasks. Let us define the p-depth critical inter-
ferenceI i;kðp; a; bÞ of task ti on task tk during interval ½a; bÞ as
the cumulative length of all intervals in which (1) a critical
thread of tk is ready to execute but does not execute and (2)
exactly p number of threads of ti are executing (see Fig. 3).
It is worth noting that when it comes to the intra-task inter-
ference case, Ik;kðp; a; bÞ corresponds to a case where a criti-
cal thread of tk is not executing while exactly p number of
other non-critical threads of tk are executing. The p-depth
critical interference enables to represent the behavior of par-
allel execution in more detail, allowing to figure out exactly
how many threads of a task ti are executing simultaneously
when ti delays the execution of another task tk. A total criti-
cal interference I i;kða; bÞ can be decomposed into individual
p-depth critical interferences as follows:

I i;kða; bÞ ¼
Xm
p¼1
I i;kðp; a; bÞ: (5)

The p-depth critical interference also makes it easy to
constitute a total interference Ikða; bÞ out of individual inter-
ferences of each task on task tk onm processors as follows.

Lemma 1. For any work-conserving algorithm, the total critical
interference Ikða; bÞ imposed on task tk in interval ½a; bÞ is
equal to the total amount of contribution of individual threads

to the interference on each critical thread divided by the number
of processors, i.e.,

Ikða; bÞ ¼ 1

m

X
ti2t

Xm
p¼1
I i;kðp; a; bÞ � p: (6)

Proof. Since the scheduling algorithm is work-conserving,
in the time instants in each of which a critical thread of a
task is ready but not executing, each processor must be
occupied by all the other threads of another task and
including itself. The total amount of the contribution
to the critical interference on tk is

P
ti2t

Pm
p¼1 I i;kðp;

a; bÞ � p. If it is divided by the number of processors, we
get exactly the length of cumulative intervals in which a
critical thread of tk is ready to execute but cannot in an
interval ½a; bÞ. tu
Building upon the notion of p-depth critical interference

and Lemma 1, the necessary condition for task tk to miss a
deadline (presented in Eq. (4)) can be rewritten as follows:

1

m

X
ti2t

Xm
p¼1
I i;kðp; r�k; d�kÞ � pþ CP �k > Dk: (7)

Conversely, in order for a task to be schedulable, it is suf-
ficient to demonstrate that for all of its jobs, Eq. (7) cannot
be satisfied. Hence to show that task set t is schedulable
under global EDF scheduling, this condition must be
checked for each task in t, which serves as a basis of a
schedulability condition. In order to leverage the condition
for schedulability analysis properly, we need to calculate
the terms in the left-hand side (LHS) of Eq. (7) accurately.
Unfortunately, it is hard to compute those terms precisely
without knowledge of run-time schedule. Thereby, we wish
to derive safe but tight upper bounds on the terms and
transform the necessary condition into schedulability tests
based on those upper bounds.

5 WORKLOAD-BASED EDF SCHEDULABILITY TEST

This section derives a polynomial-time schedulability test of
global EDF scheduling for DAG tasks. We note that any spo-
radic task systemhas infinitelymanydifferent legal job arrival
sequences. Hence, checking Eq. (7) for all such sequences is
computationally intractable.Moreover, it is generally difficult
to calculate the interference terms of I i;kðp; r�k; d�kÞ � p and the
critical chain term of CP �k , since they are decided at run-time
according to the schedules of other tasks that interfere with
the job. Therefore, we instead seek to derive upper bounds on
the LHS of Eq. (7) for each task.

To this end, we first consider a job Jk having a particular
length of its critical chain and derive an upper bound on the
interference term I i;kðp; rk; dkÞ imposed on the job. By defi-
nition, a critical chain of a job in tk is determined as one of
all possible paths in Gk, and its length ranges between the
shortest path length in Gk (denoted by SCk) and the longest
path length in Gk (i.e., LCk). When we derive an upper
bound on interference, we use the concept of workload that
has been widely used in the literature [10], [12], [38], [39],
[40]: the workload Wiða; bÞ of ti is the sum of all intervals in
which ti is executing in interval ½a; bÞ. The interference
imposed on a job can be divided into inter-task interference

Fig. 3. The notion of p-depth critical interference. Suppose that task tk
has a lower priority than ti. A job of tk is released at time instant a, but it
cannot execute in ½a; aþ 6Þ due to the execution of other higher priority
tasks. In this example, ti executes a single thread in interval
½aþ 5; aþ 6Þ, which corresponds to 1-depth critical interference on tk.
This yields I i;kð1; a; bÞ ¼ 1. ti executes two threads in intervals ½a; aþ 2Þ
and ½aþ 3; aþ 5Þ, leading to I i;kð2; a; bÞ ¼ 4. And I i;kð3; a; bÞ ¼ 1.
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received from threads of other tasks and intra-task interfer-
ence received from threads of the same task tk. We note that
bounding inter-task interference is independent of the
length of a critical chain, but bounding intra-task interfer-
ence is dependent on it. We derive upper bounds on inter-
task and intra-task interferences, respectively, based on
workload. Then, in order to ensure that there exists no job
that causes the first deadline miss, we need to check Eq. (7)
for all possible lengths of critical chains that a task can have.
To this end, we will show that our proposed schedulability
test needs to be conducted for only one case, rather than
exploring all the possible cases, to get the upper bound of
the LHS of Eq. (7) for all jobs.

5.1 Bounding Interference

We define the workload W<i;v> ða; bÞ of thread ui;v in ti is
the sum of all intervals in which ui;v is executing in interval
½a; bÞ. Then, the following inequality holds for any Jk of tk:Xm

p¼1
I i;kðp; rk; dkÞ � p �

X
ui;v2hpiðJkÞ

W<i;v> ðrk; dkÞ

¼def: dWi;k;

(8)

where hpiðJkÞ is a set of threads in ti that have a priority
higher than or equal to a critical thread of Jk.

According to Inequality (8), an upper-bound on the inter-
ference term can be obtained by finding an upper-bound ondWi;k in any scheduling window of a job of tk. Note that

when the upper-bound of dWi;k is calculated, we assume that
there is no deadline miss. This is because our schedulability
test aims to derive necessary conditions for the first dead-
line miss. Therefore, we will assume this for derivation of

the upper-bound of dWi;k in the rest of the paper. In addition,
we are not relying on any particular execution behavior of a
task as well as the number of processors when deriving the

upper bound on dWi;k. We next consider two cases to discuss

a worst-case release pattern for maximizing dWi;k: inter-task
(i 6¼ k) and intra-task cases (i ¼ k).

5.1.1 Bounding Inter-Task Workload

To simplify the presentation, we use the following terms. A
job is said to be a carry-in job of an interval ½a; bÞ if it is
released before a but has a deadline within ½a; bÞ or a body
job if its release time and deadline are both within ½a; bÞ.

Worst-Case Release Pattern. Fig. 4 shows aworst-case release
pattern, inwhich task ti has themaximumamount of dWi;k that
interferes with job Jk over interval ½rk; dkÞ under global EDF
scheduling. As shown in the figure, all the jobs of ti are
released periodically, and its last body job (J 0i) of the interval
½rk; dkÞ has a deadline equal to that of Jk (i.e., d0i ¼ dk). All indi-
vidual threads in ½rk; dkÞ have a priority higher than or equal
to Jk and then execute as long as their WCETs. For the carry-
in job, we consider a worst-case situation in which all threads
of the carry-in job are executed as late as possible subject to
satisfying the deadline of the carry-in job. With this release
pattern we can include the largest number of threads of ti
having higher priority than Jk in the interval ½rk; dkÞ, thus
bounding the value of dWi;k. We recapitulate the above result
in the following lemma:

Lemma 2. For any task ti under the assumption that all jobs meet
their deadlines as long as all threads in a job execute at most their

WCETs, a release pattern of ti that maximizes dWi;k is: (a) ti
releases jobs with a minimum inter-arrival time of Ti time units,
(b) the deadline of a job of ti aligns with the deadline of the job of
tk, and (c) all threads of the carry-in job of ti are executed as late
as possible (right before the deadline of the carry-in job).

Proof. Fig. 4 illustrates a worst-case release pattern in which
task ti satisfies requirements (a), (b) and (c).

First of all, the contribution of jobs to dWi;k cannot be
larger than when the release times of jobs are exactly
periodic. That is, moving the release times of some jobs

farther apart cannot increase dWi;k.
In Fig. 4, we then consider what happens to the contri-

bution if we simultaneously shift all the release times and
deadlines of ti earlier or later. Themaximum shift we need
to consider in either direction is Ti, since for longer shifts
the effect occurs periodically. From Fig. 4, if we shift their
deadlines earlier, the contribution of carry-in and body

jobs to dWi;k cannot increase. The job having its deadline
after dk cannot achieve higher priority than Jk, so it cannot

contribute to dWi;k. Therefore, shifting their deadline earlier

cannot increase the maximum contribution to dWi;k. If we
shift their deadlines later, the absolute deadline of the last
body job J 0i becomes later than the one of Jk, so it cannot

contribute to dWi;k. Thereby, dWi;k is decreased by Ci. The
shift may increase the contribution of the carry-in job, but
by at most Ci. Therefore, shifting their deadline later can-

not increase the maximum contribution to dWi;k. From the
two cases, we can see that the maximum contribution of
the body jobs is achieved when a deadline of a job of ti
aligns with the deadline of the job of tk, and the interval of
a carry-in job in ½rk; dkÞ ismaximized.

For the carry-in job of ti, only threads executing in

½rk; dkÞ can contribute to dWi;k. If all threads of the carry-in

job are executed as late as possible right before the dead-
line, it can maximize the number of threads executing in
½rk; dkÞ. It is worthy noting that we assume that all jobs
meet their deadlines. Thus, each thread must complete
execution so that all of its successive threads are guaran-
teed to finish before the deadline of the carry-in job
although all threads execute for their WCETs. The maxi-
mum contribution of the carry-in job is achieved with the
release pattern shown in Fig. 4. tu
Calculating an Upper Bound on Worst-Case Workload. By

using a worst-case release pattern, we can now determine
the interval of length Dk which maximizes dWi;k. Define
W <i;v> ðDkÞ as the value of W<i;v> ðrk; dkÞ in such an

Fig. 4. A worst-case release pattern in which dWi;k is maximized.
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interval. Under a worst-case release pattern, there exist only
body and carry-in jobs in any interval of length Dk, and all
of the threads in those jobs have higher priority than tk.

The interval ½rk; dkÞ of length Dk can be partitioned into
body and carry-in intervals, and the length of the intervals
are denoted as BDiðDkÞ and CIiðDkÞ, respectively, and
described as

BDiðDkÞ ¼ Dk

Ti

� �
� Ti; (9)

CIiðDkÞ ¼ Dk �BDiðDkÞ: (10)

Let us consider a bound WBD
<i;v> ðDkÞ on the body job

workload in any interval of length Dk. The maximum num-

ber of body jobs of ti over an interval of length Dk is
j
Dk
Ti

k
,

and each thread ui;v in a body job can fully execute for its

WCET. Then,WBD
< i;v> ðDkÞ is calculated as

WBD
<i;v> ðDkÞ ¼ Dk

Ti

� �
� Ci;v: (11)

Now, we consider a boundWCI
< i;v> ðL0Þ on the carry-in job

workload in any carry-in interval of lengthL0. For the carry-in
job case, only some of threads can contribute toWCI

< i;v> ðL0Þ in
an interval of length L0, and their execution can partially fit
into the carry-in interval due to the precedence relation.
Thereby, we need to figure out the execution interval of each
thread under the worst-case release pattern. Under a worst-
case release pattern, all threads of the carry-in job are executed
as late as possible as long as all the threads finish their execu-
tion before the deadline of the job. We assume that all threads
can use as many processors as possible for their execution

when we calculate WCI
< i;v> ðL0Þ. Then, when each thread

begins to execute, it exclusively occupies one processor with-
out any interruption until executing for its WCET. We note

that contribution of each thread onWCI
< i;v> ðL0Þ is maximized

under the assumption. If we know each thread’s WCET and
precedence dependency between threads, we can calculate

WCI
< i;v> ðL0Þ for each thread ui;v.

Algorithm 1 shows how to calculate WCI
< i;v> ðL0Þ for a

carry-in job under the worst-case release pattern shown in
Fig. 5b. It computes each thread’s starting time and finish-
ing time under the worst-case release pattern. At first, the
starting and finishing time of each thread are initialized to
Di (lines 1-3). We reverse the direction of all edges in Ei

(denoted by ET
i ) and define DAG GT

i as GT
i ¼ ðVi; E

T
i Þ

(line 4). Algorithm 1 then performs a topological sort of GT
i

(line 5). The topological sort is a linear ordering of all

threads such that if GT
i contains a directed edge from ui;u to

ui;v, then ui;u appears before ui;v in the ordering. It traverses
each thread in topologically sorted order and calculates its
starting and finishing time (lines 6-13). The finishing time
f ½u� of thread ui;u is determined as the earliest one among
the starting times of the threads that have the edge to ui;u in

GT
i . The starting time s½u� of thread ui;u is then determined

as its finishing time minus its WCET. We note that this
presents the worst-case release pattern for a carry-in job in
which all threads of the carry-in job are executed as late as

possible. If we compare each thread’s starting time and fin-
ishing time with the carry-in interval, we can calculate the

contribution onWCI
< i;v> ðL0Þ for each thread ui;v (lines 14-24).

In the example shown in Fig. 5a, the threads in ti are topo-

logically sorted according to GT
i . The finishing time f ½1� of

ui;1 is determined as 4, which is the starting time of ui;2, and
the finishing time s½1� is determined as 2, which is
f½1� � Ci;1. In Fig. 5b, each thread in ti executes its WCET
from its starting time to its finishing time.

Algorithm 1. Calculate-CarryinJob-Workload (ti; L
0)

1: for each thread ui;u 2 Vi do
2: s½u�  Di; f ½u�  Di

3: end for
4: GT

i  ðVi; E
T
i Þ

5: topologically sort the threads in GT
i

6: for each thread ui;u, taken in topologically sorted order do
7: for each thread ui;v 2 Parent½u� do
8: if s½v� < f ½u� then
9: f ½u�  s½v�
10: end if
11: end for
12: s½u�  f ½u� � Ci;u

13: end for
14: for each thread ui;u in GT

i do
15: if s½u� 	 Di � L0 then
16: WCI

< i;u> ðL0Þ ¼ Ci;u

17: else
18: if s½u� < Di � L0 and f ½u� > Di � L0 then
19: WCI

< i;u> ðL0Þ ¼ f½u� � ðDi � L0Þ
20: end if
21: else
22: WCI

< i;u> ðL0Þ ¼ 0
23: end if
24: end for

A bound on the workload W<i;v> ðrk; dkÞ that will con-
tribute to the worst case as shown in Fig. 4, for i 6¼ k, is
expressed as follows:

W < i;v> ðDkÞ ¼ WCI
< i;v> ðCIiðDkÞÞ þWBD

<i;v> ðBDiðDkÞÞ:
(12)

Fig. 5. Calculation of an upper bound on carry-in job workload under a
worst-case release pattern.
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Wenote that bothWCI
< i;v> ðCIiðDkÞÞ andWBD

< i;v> ðBDiðDkÞÞ in
Eq. (12) are independent of a critical chain of a job of tk. This

means thatwe always get the same result ofWCI
< i;v> ðCIiðDkÞÞ

and WBD
<i;v> ðBDiðDkÞÞ, no matter what a critical chain of

length is. We can then compute bounds on the amount of
inter-task interference on any job of tk as follows:dWi;k �

X
ui;v2Vi

W < i;v> ðDkÞ: (13)

5.1.2 Bounding Intra-Task Workload

The critical threads in a critical chain of a job of tk can get
interference from the other threads belonging to the same
job. For the intra-task interference, the worst-case release
pattern is already determined as the execution window of a
job of tk. Then, all threads within a single job except the crit-
ical threads can interfere on the critical threads, and it is
clear that the interference of a single thread uk;v on the criti-
cal threads is upper bounded by Ck;v. Thereby, the sum of
WCETs of all threads within a single job except the ones of

critical threads can contribute on dWk;k.
Unlike inter-task workload, intra-task workload is

dependent on the length of a critical chain of a job. We
define WkðxÞ as a bound on intra-task workload of a job
with a critical chain of length x. The sum of WCETs of all
threads within a single job of tk except the ones of the criti-
cal threads can contribute toWkðxÞ. We recall that the criti-
cal chain length x is the sum of WCETs of the critical
threads, soWkðxÞ is computed as

WkðxÞ ¼ Ck � x: (14)

We can then compute bounds on the amount of intra-task
interference on a job with a critical chain of length x asdWk;k � WkðxÞ: (15)

5.2 Deriving a Schedulability Test

Putting together inter-task and intra-task workloads as an
upper-bound on the interference on a job of tk with a critical
chain of length x (SCk � x � LCk), we can check the sched-
ulability of the job for a given task set under global EDF
scheduling as follows.

Lemma 3. Suppose that a task set t is scheduled by global EDF
scheduling on m identical processors. Then, a job invoked by
tk 2 t having a critical chain length x (SCk � x � LCk) does
not cause the first deadline miss, if the following inequality holds:

1

m

�X
i6¼k

X
ui;v2Vi

W < i;v> ðDkÞ þWkðxÞ
�
þ x � Dk: (16)

Proof. From Lemma 2 and Inequality (8), the following
inequality holds for a job of tk having a critical chain
length of x:

1

m

X
ti2t

Xm
p¼1
I i;kðp; rk; dkÞ � pþ x

� 1

m

�X
i6¼k

X
ui;v2Vi

W < i;v> ðDkÞ þWkðxÞ
�
þ x: (17)

Then, if Eq. (16) is satisfied for the job, the job fails to sat-
isfy the necessary condition of Eq. (7) that triggers the
first deadline miss. tu
In order to derive a schedulability test for a task set, it

should be guaranteed that all individual jobs satisfy
Lemma 3. Then, we need to check Eq. (16) for all possible
critical chain lengths of each task tk ranging between SCk

and LCk. We claim that our workload-based schedulability
test needs to be conducted for only one critical chain length,
which is the longest path length (i.e., LCk).

Lemma 4. For a given task set t, a task tk satisfies the followings:

1

m

�X
i6¼k

X
ui;v2Vi

W <i;v> ðDkÞ þWkðxÞ
�
þ x

� 1

m

�X
i6¼k

X
ui;v2Vi

W <i;v> ðDkÞ þWkðLCkÞ
�
þ LCk: (18)

Proof. The term 1
m

P
i6¼k

P
ui;v2ViW <i;v> ðDkÞ is included in

both LHS and RHS of inequality (18). Therefore, we show

that 1
mWkðxÞ þ x � 1

mWkðLCkÞ þ LCk as follows.

1

m
WkðxÞ þ x

¼ 1

m
ðCk � xþmxÞ
ðFrom Eq. (14ÞÞ

¼ 1

m
ðCk � xþmxþ LCk � LCk þmLCk �mLCkÞ

¼ 1

m
ðCk � LCk þmLCk þ ðLCk � xÞ �mðLCk � xÞÞ
ðRe-arrange the termsÞ

� 1

m
ðCk � LCk þmLCkÞ
ð{ ðLCk � xÞ � mðLCk � xÞÞ
ð{ By definition, x � LCk and m > 0Þ

¼ 1

m
WkðLCkÞ þ LCk

ðFrom Eq. (14ÞÞ:
tu

Finally, we develop a workload-based schedulability test
for DAG tasks under global EDF scheduling.

Theorem 1. A task set t is schedulable under global EDF sched-
uling on m identical processors if for each task tk 2 t, the fol-
lowing inequality holds:X

i6¼k

X
ui;v2Vi

W < i;v> ðDkÞ þWkðLCkÞ � mðDk � LCkÞ: (19)

Proof. From Lemmas 3 and 4, 1
m

�P
i6¼k

P
ui;v2ViW <i;v>

ðDkÞ þWkðLCkÞ
�
þ LCk is an upper bound on the LHS of

Eq. (7) for all jobs of a task tk. Then, if Eq. (19) is satisfied
for all tasks in a task set t, no job can trigger the first dead-
line miss, and the task set is schedulable under global
EDF scheduling onm identical processors. tu
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Complexity. We denote the number of tasks in a task set
by n. For each task ti, Algorithm 1 is performed in
OðjVij þ jEijÞ time to calculate an upper bound on carry-in
workload. The longest path length LCi can be calculated in
OðjVij þ jEijÞ time. This repeats n times for all tasks in a task
set to calculate LCi. Independently, it requires OðnÞ time to
calculate Eq. (19) for a given tk, and it repeats n times for all
tasks in a task set to check schedulability of a task set. There-
fore, the schedulability test in Theorem 1 requires

maxfOðnðjVmaxj þ jEmaxjÞÞ; Oðn2Þg time for a task set, where
jVmaxj and jEmaxj represents the largest jVij and jEij among
all tasks ti 2 t.

6 SLACK-BASED ITERATIVE SCHEDULABILITY

TEST

In general, the computation of workload bounds in Section 5
involves much pessimism due to the overestimation on cal-
culating the worst-case workload of a carry-in job. In partic-
ular, the worst-case release pattern for a carry-in job shown
in Fig. 5b does not consider the fact that a task can finish its
execution earlier than its deadline. Once we identify such
an early completion of a task’s execution, we can reduce the
amount of workload of a carry-in job using slack values,
where the slack Sk of task tk is defined as a length of the
minimum time interval between finishing time and dead-
line of a job of task tk. The idea of exploiting slack values is
introduced to reduce such pessimism effectively for the
sequential task model [11], [37]. In this section, building
upon our workload-based schedulability test, we derive an
improved schedulability test by taking advantage of slack
values for DAG tasks. To this end, we first introduce how to
calculate slack values for each task in the following lemma.

Lemma 5. The slack of task tk is given by

Sk ¼ Dk � CP �k �
P

ti2t
Pm

p¼1 I i;kðp; r�k; d�kÞ � p

m

& ’
;

if Sk > 0:

(20)

Proof.We re-arrange Eq. (20) as follows:P
ti2t

Pm
p¼1 I i;kðp; r�k; d�kÞ � p

m

& ’
¼ Dk � CP �k � Sk

)
P

ti2t
Pm

p¼1 I i;kðp; r�k; d�kÞ � p

m
� Dk � CP �k � Sk

, Ikðr�k; d�kÞ � Dk � CP �k � Sk

ð{ By Lemma 1Þ
, Ikðr�k; d�kÞ þ CP �k � Dk � Sk:

(21)

According to Eq. (21), the sum of the critical interfer-
ence and total execution time taken by all critical threads
is less than or equal to Dk � Sk. Since we assume that
Sk > 0, task tk has already finished its execution at Sk

time units ahead of its deadline. tu
By exploiting the bounds on the interference derived in

Section 5, a lower bound Slb
k on the slack Sk of a task tk

under global EDF scheduling is then given by

Slb
k ¼ Dk � LCk � 1

m

�X
i6¼k

X
ui;v2Vi

W < i;v> ðDkÞ þWkðLCkÞ
�2666
3777;

(22)

when this term is positive.
We now exploit slack values for reducing the pessimism

calculating theworst-case carry-in jobworkload of tk. When a
lower bound on the slack of a task is available, it is possible to

give a tighter upper bound on interference. If the value of Slb
k

is positive, every job of tk will complete at least Slb
k time units

before its deadline. Using this information, we can reduce
pessimism on calculating the worst-case carry-in job work-
load of tk shown in Algorithm 1. It can be easily incorporated
by replacing the initial starting and finishing times of each

thread (line 2 in Algorithm 1) with s½u�  Di � Slb
i and

f½u�  Di � Slb
i . Then, a worst-case workload can be calcu-

lated in a similar way to Eq. (12), andwe denote the workload
incorporating a lower bound on the slack of task ti by

W <i;v> ðDk; S
lb
i Þ. Note that when a lower bound on Slb

i is not

known, we can simply use Slb
i ¼ 0. Finally, a lower bound on

the slack of a task tk under global EDF scheduling onm iden-
tical processors is given by

Slb
k ¼ Dk � LCk � 1

m

�X
i6¼k

X
ui;v2Vi

W <i;v> ðDk; S
lb
i Þ þWkðLCkÞ

�2666
3777;

(23)

when this term is positive.

Algorithm 2. Slack-Based Iterative Schedulability Test (t)

1: Updated true;Nround 0
2: for each task tk 2 t do
3: Slb

k  0
4: end for
5: repeat
6: Feasible true
7: Updated false
8: for k 1 to jtj do
9: NewBound Eq. (23)
10: if NewBound < 0 then
11: Feasible false
12: else
13: if NewBound > Slb

k then
14: Slb

k  NewBound
15: Updated true
16: end if
17: end if
18: end for
19: Nroundþþ
20: if Feasible is true then
21: return schedulable
22: end if
23: until Updated is true andNround � NroundLimit
24: return unschedulable

Then, the approaches [11], [37] of exploiting a slack value
can be adopted into our workload-based schedulability test
presented in Theorem 1. Therefore, we derive a slack-based
iterative schedulability test of a task set under global EDF
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scheduling, and it is presented in Algorithm 2. As shown
in Algorithm 2, for every task in a task set, a lower bound
value on the slack of the task is initialized to zero (line 3).
Eq. (23) is used to compute a new value of the lower
bound on the slack of a task (line 9). If the computed value
is negative, the task is considered to be unschedulable
(line 11). If it is positive, the lower bound is accordingly
updated (lines 13-15). It is repeated for every task in the
task set until the lower bound on the slack for every task is
not updated (lines 5-23). If no computed value is negative,
the task set is deemed schedulable. If the iteration stops,
the task set is deemed unschedulable (line 24).

Complexity. Similar to the workload-based schedulability
test in Section 4, the slack-based iterative schedulability test
requires OðnðjVmaxj þ jEmaxjÞÞ time to calculate LCi for all
tasks. Additionally, the complexity of the iterative test
depends on the number of iterations of slack updates. A

single iteration of slack updates requiresOðn2Þ time. The total
number of iterations of the repeat cycle at line 5 is upper-
bounded byOðn �maxti2tDiÞ [37]. Therefore, the overall time

complexity ismaxfOðnðjVmaxj þ jEmaxjÞÞ; Oðn3 �maxti2tDiÞg.
We note that the complexity can be significantly reduced if
the test is stopped after a finite numberNroundLimit of itera-
tions. If this is the case, the overall complexity becomes

maxfOðnðjVmaxj þ jEmaxjÞÞ; Oðn2 �NroundLimitÞg. However,
limiting the number of iterations may reduce the number of
schedulable task sets, rejecting some feasible task set that
could be deemed schedulable after a few more iterations. We
examine such schedulability loss for different values of
NroundLimit in Section 7.

7 EVALUATION

In this section, we present simulation results to evaluate our
global EDF schedulability analysis that is directly applicable
to a set of parallel tasks.

7.1 Simulation Environment

We generate DAG tasks mainly based on the method used
in [41]. For a DAG task ti, its parameters are determined as
follows. Period and deadline of ti (Ti ¼ Di)

5 are uniformly
chosen in ½100; 1000�. The number of nodes (threads) Ni is
uniformly chosen in ½1; 30�. For each pair of nodes, an edge
is generated with the probability of Pr; for each edge, its

orientation is chosen to ensure acyclicity. For individual
threads ui;u, the WCET (Ci;u) is randomly selected in the
range of ½1; Ti=Ni�.

In order to understand how our proposed approaches
perform with DAG tasks, we experiment by varying the fol-
lowing parameters: the degree of parallelism in a DAG task
and the number of processors. In addition, we examine the
effect of NroundLimit in our slack-based iterative schedul-
ability test presented in Section 6. Other experiments when
varying the number of threads and variation of WCETs
among threads in a DAG task are reported in the supple-
ment, available online.

In each experiment, we compare our proposed sched-
ulability tests with some related methods (shown in
Table 1) for the DAG task model under global EDF sched-
uling. More specifically, we consider the following sched-
ulability tests:

� our workload-based schedulability test in Theorem 1
(denoted by OUR)

� our slack-based iterative schedulability test allowing
the maximum number of iterations in Algorithm 2
(denoted by OUR-I)

� the EDF schedulability test in [32] (denoted by BAR).
� the capacity augmentation bound (i.e., Theorem 4)

in [31] (denoted by LCA)
� the EDF schedulability test (i.e., Theorem 21) in [29]

(denoted by BMS).
As mentioned in Section 2, the five schedulability tests

shown in Fig. 6 are classified as independent schedulability
analysis. OUR-I and BAR are of pseudo-polynomial time
complexity, while OUR, LCA, and BMS are of polynomial
time complexity.

We note that other related analysis techniques are not
included in our evaluation, because the one in [30] is appli-
cable only to the single DAG task case, while the multiple
parallel task case is of our interest. The capacity augmenta-
tion bound in [28] is excluded in our evaluation, because
LCA is the best known capacity augmentation bound of
EDF. In [29], a pseudo-polynomial time schedulability test
was also proposed in addition to BMS, but it is not included
in this comparison because BAR strictly dominates the
pseudo-polynomial test. We also note that the resource aug-
mentation bounds in [28], [29] are not included in this com-
parison, because those bounds can serve as schedulability
tests only when an optimal schedule is known. However,
no optimal schedule for parallel tasks has been developed
so far, and therefore, it is difficult (if not impossible) to
check the feasibility of a task set through simulation.

Fig. 6. Schedulability with different values of Pr for DAG tasks.

5. In this section, we only show the results of implicit deadline DAG
tasks because some of related works consider the implicit deadline task
case only, but our proposed analysis shows similar behaviors in con-
strained deadline DAG tasks compared to those of implicit ones.
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7.2 Simulation Results

Effect of the Degree of Parallelism. Our first simulations were
performed to evaluate our approaches with different
degrees of intra-task parallelism. We generate 4,000 task
sets for m ¼ 8, 16, and 32, where m is the number of pro-
cessors, yet leaving Pr undetermined, as follows.

S1 We first generate a seed task set with two tasks with
the parameters determined as described above.

S2 If the system utilization Usys (i.e., Usys ¼
P

ti2t Ui) of
the seed task set is greater than m, we discard this
seed set and go to Step S1.

S3 We include this seed set for simulation. We then add
m=4 more task into the seed set and go to Step S2
until 4,000 task sets are generated.

We now consider constructing edges between nodes (i.e., pre-

cedence dependency between threads) with the probability

parameter 0 � Pr � 1. When Pr ¼ 0, there is no edge and

thereby no thread has predecessors, maximizing the degree of

intra-task parallelism. In contrast, with Pr ¼ 1, each node is

fully connected to all the other nodes, representing no single

thread can execute in parallel with any other threads in the

same task. An increasing value of Pr generates a growing num-

ber of edges in each DAG task, leading to a greater degree of

precedence constraints between nodes but a smaller degree of

intra-task parallelism. Thereby, as Pr increases, each task is

highly likely to have a larger longest path length LCi. We

define LUmax as the maximum LCi=Ti among the tasks ti 2 t,

and Fig. 7 shows a tendency for LUmax as Pr increases. In

order to run simulation for different degrees of intra-task par-

allelism, we perform simulation with 4,000 task sets in 11 dif-

ferent cases in terms of Pr, where we increase Pr from 0.0 to

1.0 in the step of 0.1, resulting in 44,000 simulations.

Fig. 6 compares different schedulability tests (OUR,
OUR-I, BAR, LCA, and BMS) in terms of the number of task
sets deemed schedulable with different values of Pr for
m ¼ 8, 16, and 32. The figure shows that OUR-I outperforms
the other existing methods throughout all the values of Pr.
In cases of m ¼ 8, 16, and 32, OUR-I finds 47, 54, and 65 per-
cent more schedulable task sets than BAR does, and OUR-I
is also shown to improve schedulability, compared to OUR,
by 75, 80, and 89 percent more, respectively. OUR finds 35,
60, and 90 percent additional task sets, which are deemed
unschedulable by LCA for m ¼ 8, 16, and 32, respectively.
We note that OUR-I finds almost all task sets deemed

schedulable by the other tests except only 124, 12, and 1 task
sets for m ¼ 8, 16, and 32, respectively. We also note that
OUR-I shows better performance compared to other tests
for cases with a larger number of processors.6

Looking at pseudo-polynomial-time schedulability tests
(OUR-I and BAR), it is interesting to see that the perfor-
mance gap between OUR-I and BAR becomes larger with a
smaller value of Pr. Looking at polynomial-time schedul-
ability tests (OUR, LCA, and BMS), when Pr increases the
two methods of LCA and BMS are shown to perform worse,
while OUR is relatively much insensitive to the value of Pr.
Thereby, the performance gap between OUR and those two
methods (LCA and BMS) becomes larger as the degree of
precedence constraint increases.

To understand such performance results of OUR and
OUR-I as Pr varies, we examine the effect of the degree of
parallelism on schedulability with respect to our interfer-
ence-based analysis. (i) In the perspective of a task tk receiv-
ing interference from other tasks in a task set, LCk generally
decreases when the degree of parallelism increases (i.e.,
when Pr decreases). This gives task tk more room to accom-
modate larger interference from other tasks, likely leading
to better schedulability. (ii) On the other hand, in the per-
spective of a task ti imposing interference on tk, the larger
number of threads of ti has a chance to delay execution of
tk at the same time when the degree of parallelism
increases, leading to an increase in interference on tk. More-
over, to derive a safe upper bound of the interference suf-
fered by tk, OUR assumes that every higher priority task ti
has carry-in. This is an over-pessimistic assumption, since
in a real scheduling sequence, it may be the case that some
task ti’s carry-in job has finished before the beginning of the
execution window of tk, thus it actually does not contribute
any carry-in to the interference on tk. Such pessimism on
bounding interference increases when the degree of paral-
lelism increases. Statements (i) and (ii) are conflicting with
each other in terms of schedulability. Fig. 6 shows that the
performance of OUR stays insensitive to Pr with Statements
(i) and (ii) having comparable impacts on schedulability.

The figure also shows that OUR-I can compensate for the
loss of performance from the pessimism involved in bound-
ing interference, and the benefit of slack-based iterative
method is getting bigger with a smaller value of Pr. Based
on statement (i), it is highly likely to have larger slack values
of tk when the degree of parallelism increases. Then, those
slack values effectively reduce the pessimism associated
with the estimation of the carry-in of an interfering task
according to statement (ii), which leads to better schedul-
ability. Such an effect makes a larger performance gap
between OUR-I and BARwith a smaller value of Pr.

The two existing polynomial-time tests (LCA andBMS) are
sensitive to LUmax due to their schedulability analysis, since
those two methods share in common that their schedulability
tests check whether LUmax is smaller than or equal to some

threshold (e.g., (3+
ffiffiffi
5
p

)/2 in LCA, 1/3 in BMS). A larger value
of Pr generally increases the maximum LUmax for a task set
(as shown in Fig. 7), leading toworse schedulability.

Fig. 7. LUmax as Pr changes.

6. We also conducted simulations for m ¼ 48, but the results are
shown in the supplement, available online, since the trends are similar.
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Effect of the Number of Processors. Our second simulations
were performed to show schedulability with a different num-
ber of processors. We generate 4,000 task sets whose utiliza-
tion Usys is in ½3:9; 4:1�. Each task set is obtained by repeatedly
adding tasks until the system utilization is in ½3:9; 4:1� while
each individual task is generated with the parameters
described in Section 7.1 and the value ofPr fixed as 0.5.7

Fig. 8 shows the number of task sets deemed schedulable
when the number of processors (m) is varied from 4 to 50.
OUR-I significantly outperforms the other tests. OUR-I
requires a much lower number of processors (around 12) to
schedule 90 percent of the task sets while OUR and BAR
require more than 30 processors to do so. LCA and BMS
behave even worse in the sense that they cannot admit a
large portion of the generated task sets even with a very
large number of processors. This is because their schedul-
ability analysis is highly dependent on the value of LUmax

irrelevant to the number of processors, as discussed in the
first simulation results. We note that the running time of
BAR increases asm increases by reflecting its analytical pro-
cedure shown in [32] while the running time of other tests
including OUR-I and OUR is relatively stable to the number
of processors. In particular, the average running time of
OUR-Iwas 0.5 ms for all values ofm, while the average run-
ning time of BAR was increased from 1 to 121 ms when
changingm from 4 to 50.

Effect of NroundLimit in OUR-I. Our third simulations
were performed to investigate the schedulability loss of
OUR-I for different values of NroundLimit: 1, 2, 4, 8, 16. We
ran simulations on the same task sets used for Figure 6 with
m ¼ 8, 16, and 32, and Table 2 shows the schedulability ratio
of OUR-I with different values of NroundLimit relative
to the case of the maximum value of NroundLimit
(i.e., NroundLimit ¼ n �maxti2tDi). For example, for

NroundLimit ¼ 1, OUR-I finds a solution 73.9, 70.0, and
66.4 percent close to the case of the maximum value of
NroundLimit when m ¼ 8, 16, and 32, respectively. When
two slack updates for each task are allowed (i.e.,
NroundLimit ¼ 2), the number of task sets deemed schedu-
lable by OUR-I increases rapidly. With NroundLimit ¼ 16,
OUR-I finds every task set that can be detected using an

unbounded NroundLimit for all m ¼ 8, 16, and 32. We
note that the average running time of OUR-I with
NroundLimit ¼ 16 was 0.4 ms to check the schedulability of
a task set, while the average running time of BAR was
11.1 ms whenm ¼ 8.

Summary. In summary, OUR outperforms the other exist-
ing polynomial-time schedulability tests. In addition, OUR-I
significantly improves the schedulability of EDF with good
efficiency and thus shows the best performance compared
to the state-of-the-art independent schedulability tests avail-
able for DAG tasks. We identify that our proposed schedul-
ability tests are adaptive to different degrees of intra-task
parallelism and scalable to the number of processors in
terms of both performance and complexity.

8 CONCLUSION

The motivation for our work was the desire to understand
the thread-level parallelism of DAG tasks in the context of
hard real-time multi-core scheduling. In this paper, we
extended the notion of interference formalizing it at a finer-
grained thread level and building a connection to the notion
at a task level. We then generalized interference-based anal-
ysis methods according to the new proposed notion of inter-
ference, introducing global EDF schedulability conditions
that are directly applicable to a set of DAG tasks. Our evalu-
ation results showed that it significantly improves the state-
of-the-art analysis techniques available for parallel tasks.

This paper incorporated thread-level parallelism directly
into schedulability analysis focusing on the global EDF algo-
rithm. However, we believe the schedulability of parallel
tasks can be advancedmuchmore significantly if thread-level
parallelism is directly reflected into scheduling algorithms as
well. Hence, a direction of our future work includes develop-
ing new real-time scheduling algorithms that support intra-
task parallelism and synchronization directly.
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