
Advances in Electrical and Computer Engineering Volume 17, Number 2, 2017

Real-Time Scheduling for Preventing
Information Leakage with Preemption

Overheads

Hyeongboo BAEK1, Jinkyu LEE1, Jaewoo LEE2, Pyung KIM3, Brent Byunghoon KANG4
1Department of Computer Science and Engineering, Sungkyunkwan University,

 Suwon, 16419, Republic of Korea
2Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104, USA

3Department of Industrial and Systems Engineering, Seoul National University of Science and Technology,
Seoul, 139743, Republic of Korea

4School of Computing, Korea Institute of Science and Technology, Daejeon, 305338, Republic of Korea
Corresponding author Brent Byunghoon Kang: brentkang@kaist.ac.kr

1 Abstract—Real-time systems (RTS) are characterized by
tasks executing in a timely manner to meet its deadlines as a
real-time constraint. Most studies of RTS have focused on these
criteria as primary design points. However, recent increases in
security threats to various real-time systems have shown that
enhanced security support must be included as an important
design point, retro-fitting such support to existing systems as
necessary. In this paper, we propose a new pre-flush technique
referred to as flush task reservation for FP scheduling (FTR-
FP) to conditionally sanitize the state of resources shared by
real-time tasks by invoking a flush task (FT) in order to
mitigate information leakage/corruption of real-time systems.
FTR-FP extends existing works exploiting FTs to be applicable
more general scheduling algorithms and security model. We
also propose modifications to existing real-time scheduling
algorithms to implement a pre-flush technique as a security
constraint, and analysis technique to verify schedulability of
the real-time scheduling. For better analytic capability, our
analysis technique provides a count of the precise number of
preemptions that a task experiences offline. Our evaluation
results demonstrate that our proposed schedulability analysis
improves the performance of existing scheduling algorithms in
terms of schedulability and preemption cost.

Index Terms—embedded software, real-time systems,
scheduling algorithms, security, system analysis and design.

I. INTRODUCTION

Real-time systems (RTS) control multiple physical
devices executing multiple real-time tasks in a timely
manner. Since meeting deadlines of real-time tasks is the
most important requirement of RTS, most conventional
studies have focused on real-time aspects of RTS for several
decades while security has not been considered as a first
class principle of the design of RTS [1-15]. During this
period of time, security has not been accorded sufficient
attention at a level commensurate with scheduling algorithm
design. However, recent attacks on various RTS have

resulted in catastrophizes, including loss of life. We believe
that, at this point in time, it is of paramount importance that
security be added as a design point for inclusion in any re-
design of a RTS. There are many documented attacks on a
variety of RTS including telematics units installed in
modern automobiles [16-17], industrial control systems
[18], and unmanned autonomous vehicles [19-20]. However,
applying existing security techniques to RTS cannot be
effective because most of these techniques were developed
without consideration of the real-time requirements [21-30],
and this explains, to a large extent, why RTS are easily
compromised.

1 This research was supported by Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry
of Education (NRF-2016R1D1A1B03930580, 2016R1A6A3A11930688)
and the Ministry of Science, ICT & Future Planning (NRF-
2017R1A2B2002458). This research was also supported by Institute for
Information & communication Technology Promotion (IITP) grant funded
by the Korea government (MSIP) (No. 11041244, Development of High
Reliable Communications and Security SW for Various Unmanned
Vehicles).

The lack of support for robust security as an indigenous
component of RTS has recently generated a large amount of
research. In recent three years, three studies [31-33] have
proposed approaches that a pre-flush mechanism to invoke a
flush task (FT) is included into real-time scheduling with a
design point of real-time systems to eliminate or
substantially reduce information leakage that occurs in real-
time tasks that share resources and execute with different
levels of security.

The initial work [31] first proposed a pre-flush
mechanism that will invoke a FT to sanitize the state of all
shared resources such as all caches, DRAM and I/O buses.
Figure 1 describes an example how a FT is invoked between
the executions of two tasks having different security levels;
for two tasks A and B, A has a security level higher than B.
If B is dispatched immediately subsequent to the dispatch of
A, then B is more easily compromised by attackers due to its
lower security level and can be used to remove, copy, or
corrupt sensitive data that exist on the shared resources in
use by A. To prevent this, a FT is invoked at the beginning
of the execution of B and executes non-preemptively. The
work presented in [31] proposed a new fixed priority (FP)
[34-35] real-time scheduling algorithm that includes security
constraints regarding conditional invocations of FTs and an
associated new response time analysis (RTA) [36-37].
However, this work is limited to non-preemptive FP
scheduling and does not provide tight upper-bounds of the
worst-case number of FTs thereby illustrating the limited
analytic capability for schedulability.

A subsequent work [32] extended the initial work to

 123
1582-7445 © 2017 AECE

Digital Object Identifier 10.4316/AECE.2017.02016

[Downloaded from www.aece.ro on Wednesday, July 19, 2017 at 07:06:08 (UTC) by 115.145.170.197. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 17, Number 2, 2017

include preemptive FP scheduling and to provide a tighter
upper-bound of the worst-case number of FTs for
schedulability analysis by transforming the problem of
upper-bounding the worst-case number of FTs into a min-
cost flow problem [38]. However, this work did not suggest
the exact schedulability analysis including the calculation of
the exact preemption cost.

Our previous work [33] extended the two works proposed
in [31-32] by deriving a new schedulability analysis
technique that can compute the exact number of FTs that a
task under analysis will experiences during the life of a task.
We proposed a new preemptive FP scheduling algorithm
referred to as lowest security-level first (LSF). This
algorithm employs a new pre-flush technique that invokes
FTs in a more intelligent manner, referred as flush task
reservation (FTR), which induces the exact schedulability
analysis (i.e. sufficient and necessary analysis) that can
compute the exact number of FTs hindering the execution of
a task offline. However, FTR can be used only with LSF
scheduling, and its performance is insufficient relative to
rate monotonic (RM) [34-35] scheduling, the optimal
scheduling algorithm deployed for preemptive FP
uniprocessor scheduling.

This paper also addresses the problem of information
leakage, the subject of three prior studies, and we propose a
new pre-flush mechanism referred to as flush task
reservation for FP scheduling (FTR-FP) and a new
schedulability analysis technique thereof. FTR-FP is not
restricted to a specific FP scheduling algorithm, and will
relax the limitation of a FTR that we described above.
Unlike the results from three prior conventional [31-33], our
new schedulability analysis can estimate not only the exact
number of FTs but also the exact number of preemptions
that a task will experience. Previous two studies [31], [33]
considered introducing a security constraint that a FT is
invoked during a context switch from a task with a higher
security-level

H to a task with a lower security-level
L .

Invoking a FT during a context switch in both directions,

H 
L and

L 
H , can degrade the real-time

scheduling performance due to the invocation of more FTs.
However, the possibility of information leakage from

L to

H should not be ignored as it can also compromise the

security of the RTS. We show our technique maintain
reasonable performance even though we consider both
directions of information leakage to better mitigate the
possibility of information leakage.

The primary contributions of this paper are the
advantages of our proposed techniques compared to the
prior techniques in [31-33]:
• By proposing a FT invocation during the context switch

in both directions of transition,
H 

L and
L 

H , as

a security constraint, we enhance the system security
relative to the conventional approaches [31], [33] that
implement FT invocation at context switch time in a
single direction,

H 
L .

• The new pre-flush technique and schedulability analysis
are not limited to a specific FP scheduling, offering an
advantage over the previous technique [33] that is
restricted to LSF.

• A new schedulability analysis can calculate the precise

number of FTs and preemptions, but existing three
schedulability analyses [31-33] can upper-bound
maximum number of FTs only.

II. ADVERSARY AND SYSTEM MODELS

In this section, we present the adversary and system
models. The design of our adversary and system models are
based on production RTS examples in use in various fields
as described in [31-33], e.g., an avionics system based on
the DO-178B model [32]. Our models also include a new
security constraint that extends the security constraints
pursuant to [31], [33].

A. Adversary Model

We assume that an adversary understands the nature of
the task parameters as well as the RTS scheduling policy.
The primary objective of the adversary is to retrieve or
otherwise corrupt sensitive data stored in shared resources,
e.g., files, databases, upon which real-time tasks are
dependent. Tasks executing at a lower security-level have
less protection from security threats, so that the probability
of successful intrusion initiated by an attacker exceeds the
probability of successful intrusion originating from tasks
executing at a higher security level. For example, an
adversary can launch a side-channel attack by hijacking a
task executing at a low security-level to access sensitive data
within the shared cache, concurrently accessed by a task
executing at a higher security-level.

These attacks against a RTS can be successful in a RTS
that supports a multi-tier or hierarchical security level model.
An example of such a model is an avionics RTS that
implements the DO-178B standard. This model partitions
the RTS into sub-systems with defined interfaces. Usually,
the development of the sub-systems is contracted to
different vendors such that each vendor possesses the
necessary security level (clearance) to bid on the sub-system.
For example, a sub-system that controls a camera that
captures images to be sent to the command center can be
designed by a vendor with the required security clearance to
use and observe confidential data. On the other hand, the
avionics navigation system may be developed by a vendor
with less restrictive security credentials as the function of
this sub-system is less critical relative to securing shared
resources. If the navigation system, developed by a vendor
at a low security level, is compromised or corrupts shared
sensitive data, then the camera system, created by a vendor
with a higher security level, can generate images that can be
copied, deleted, or corrupted.

B. System Model

We consider the preemptive FP scheduling of a set of
periodic task set  on a uni-processor [34-35]. A task

 i
is characterized by a 3-tuple (, ,), where is

the period of a task or minimum inter arrival time, is the

worst-case execution time (WCET) and is the relative

deadline. We assume implicit deadlines, i.
iD is equ l

to
iT . A t sk

i

iT iC iD

iD

e.

iT

iC

, a

a  releases its b
ij periodically according to

its period
iT . We use the notation f n

ij if the job indicates

the n-th released job of task
i

jo

o

  . The WCET of a FT is

 124

[Downloaded from www.aece.ro on Wednesday, July 19, 2017 at 07:06:08 (UTC) by 115.145.170.197. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 17, Number 2, 2017

den ed by
ftC . We assume the synchronous release of tasks,

so that the first jobs of all tasks are released concurrently,
i.e., at the time instant 0. We also assume quantum-based
time for real-time scheduling and schedulability an

ot

alysis.
Previous work [31], [33] considered the security-level of

real time tasks and focused on the prevention of information
leakage from the resources shared by a task executing at a
higher security-level

H than a task executing at a lower

security-level
L . As defined by this security model, a FT

should be invoked to sanitize the state of the shared
resources only if a lower security-level task

L executes

immediately after the execution of a higher security-level
task

H . However, the possibility of information leakage

attributed to a context switch from
L to

H should not be

ignored because the change of execution state can also
compromise the security of the RTS. Thus, we address the
problem of information leakage that arises during both
context switches,

H 
L and

L  H , to better reduce the

possibility of information leakage. We define a security
constraint to be integrated within the real-time scheduling
algorithm as follows:

Definition 1: (Security Constraint). Before a job is
scheduled, a timing penalty should be spent to cleanse
the state of shared resource after another job is
executed.

To satisfy the security constraint, a real-time scheduler
dispatches a FT when a context switch occurs from job
 regardless of source and target task security-levels.

Thus, our scheduling and schedulability analysis techniques
are not sensitive to the security ordering of tasks. We
assume that a FT executes concurrently with a job

whenever the job is dispatched by the scheduler in
accordance with our pre-flush techniques, i.e., the remaining
execution time of is increased by to allow adequate

time to serialize the task execution followed by the FT
execution. Every job must complete its execution within

time units prior to its deadline to be schedulable since the
proposed scheduling algorithm requires that a FT executes
non-preemptively to completion at the preemption or
completion of every task.

ij jj

ij

ftC

ij ftC

III. SCHEDULING INCORPORATING SECURITY CONSTRAINTS

In this section, we propose a preemptive real-time
scheduling algorithm that includes a new pre-flush
technique to satisfy the security constraint described in the
previous section. We first provide a detailed discussion of
the existing pre-flush algorithms introduced in [31] and [32]
and then we present our algorithm as an improvement.

Figure 1. Conventional flush task invocation case

In the existing pre-flush scheme, a FT can be invoked at a
time instant at which a job starts its execution after

release of the job or resume from any interference caused by
higher priority jobs, and shared resource needs to be flushed.
The FT executes non-preemptively with highest priority,
and this will frequently block the scheduled job ,

increasing its time-to-completion.

ij

ij

jj

Figure 1 illustrates the effect of interleaving execution of
the FT with other jobs competing for the processor,
characteristic of an existing pre-flush scheduling algorithm.
Considering job that begins or resumes execution at time

instant t, let us assume that an earliest higher priority job

will be released at time instant t' > t. As seen in Figure 1, the
higher priority job is preempted by the FT (this task has

the highest priority) dispatched to prevent information
leakage that may have occurred during the context switch,

  . Thus, a higher priority task

ij

jj

ij jj j can be subject to the

execution of a lower priority task
i if a FT is invoked

between two tasks. Due to this property, it is not
straightforward to apply conventional schedulability
analysis techniques providing strong analytic capability to
this scheduling scheme since most of those are based on the
following property:

Definition 2 (Priority Isolation): The execution
behavior of higher priority tasks is independent of the
execution behavior of lower priority tasks.

For example, standard RTA approach for preemptive FP
scheduling is an exact schedulability analysis based on
priority isolation only considering interference from higher
priority tasks, ignoring the execution behavior of lower
priority tasks, to test schedulability of a given task.

While the two documented pre-flush techniques [31-32]
violate the principle of priority isolation and the associated
schedulability analysis, we propose a new pre-flush
technique, which we refer to as flush task reservation for FP
scheduling (FTR-FP), accompanied by a new exact
schedulability analysis that will conserve the principle of
priority isolation. Considering a job that begins or

resumes its execution at time instant t and an earliest higher
priority job released at time t' > t, let e be the time instant

at which

ij

ij

j

ftC

j will finish its execution. FTR-FP determines an

invocation of a FT in every scheduling (release of a job, or
resume of a job from any preemption) and invokes FTs in a
more intelligent manner creating three cases based on the
value of t' - :

(a) if e ≤ t' - (the case of Figure 2 (a)), such thatC is

the WCET of a FT, the scheduler reserves a FT to
prevent information leakage from to so that a FT

will be invoked at the time instant e;

ftC ft

j

ij jj

(b) in another case for t ≤ t' - < e (the case of Figure 2

(b)), a FT is reserved and will be invoked at time instant
t' - ; and

ftC

ftC

(c) if t' - < t (the case of Figure 2 (c)), the execution

of is suspended, and CPU remains idle in the time

space between t and t' so that a FT cannot interfere

ftC

ij

 .

We refer to these cases as FTR case (a), FTR case (b) and
FTR case (c) respectively. Note that if the sum of remaining

 125

[Downloaded from www.aece.ro on Wednesday, July 19, 2017 at 07:06:08 (UTC) by 115.145.170.197. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 17, Number 2, 2017

execution time of
ij and

ftC is smaller than the remaining

time space until the de ine of j , then j cannot be

schedulable. Thus, FTR-FP tests schedulab y of
ij in

every scheduling, and then it considers three FTR cases
for

ij . We assume that the schedulability of
ij in Figure 2 is

verified.

adl
i i

ilit

Figure 2. There FTR cases corresponding to the positions of t' < t

su

 is sm

 to any FP preemptive scheduling
si

 -
ftC

In FTR case (a), the time interval between t and t' is
fficiently large for a FT to execute in the time space

without interfering not only the job
ij but also a higher

priority job
ij . To satisfy the security constraint that we

defined, a F is invoked at time instant e as soon as
ij

completes its execution. In FTR case (b), the time spa
between t and t' is larger than

ftC , but it interferes
jj if it is

invoked at time instant e, whi violates priority isolation.
Thus, FTR-FP reserves a FT so that it will invoke at time
instant t' -

ftC and not interfere
jj but

ij . In FTR case (c),

the time space between t and t' ler than
ftC . Thus,

FTR-FP suspends
ij and let CPU idle in the t space

between t and t' to revent
jj from being interfered from a

FT; a FT is not invoked in this case to conserve priority
isolation. In both FTR cases (b) and (c),

ij is preempted and

suspended respectively, and it resumes its execution at time
instant t'' after it suffers interference from higher priority
jobs including

jj , FTs or CPU idle time; higher priority jobs

also can cause PU idle time due to another higher priority
job. FTR-FP iteratively considers three cases for

ij until
ij

is in the FTR case (a) so that it completes its execu on. If

has the highest priority, it executes without any interferenc
and a FT is invoked as soon as

ij completes its execution.

For the job having the highest priority, t' is considered as +∞

since the job does not have higher priority jobs, and it is
always in FTR case (a).

 FTR-FP is applicable

T

ce

ij

e,

ch

al

ime

ti

 p

C

nce it invokes a FT on every transition
ij 

jj , and it does

not depend on a specific priority o erin . Figure 2
illustrates that FTR-FP satisfies the security constraint and
conserves the principle of priority isolation for two jobs

ij

and
jj from tasks

i

rd g

 and
j respectively. We now show th

FTR-FP also satisfies the security constraint and conserves
priority isolation for a task set τ containing more than two
tasks based on the following reasoning. As

ij begins its

execution at time instant t,
ij is the highest p rity job in

the scheduling queue at tim instant t. Also, as an earliest
higher priority job

jj releases at t', no jobs having higher

priorities than
ij execute in the time space between t and t'.

FTR-FP itera ely finds such time spaces at every
scheduling of every task. Since a FT is invoked on every
transition

ij 
jj (FTR cases (a) and (b)) or is not invoked

if
ij does not xecute (FTR case (c)), FTR-FP always

satisfies the security constraint. Also, since
ij and the FT

executing with
ij always execute in the time ace t and t',

priority isolatio is conserved; it is guaranteed that
ij and

the FT do not interfere higher priority job
jj .

at

ri

sp

o

e

tiv

n

 e

IV. SCHEDULAIBILITY ANALYSIS

Th lysis for our
ne

ity isolation, each task

is section presents a new schedulability ana
w FP preemptive scheduling employing FTR-FP. We

extend previous exact schedulability analysis proposed in
[39] aiming at calculating the exact number of preemptions
to be applicable our scheduling algorithm. We first
introduce the definitions and notations used for our
schedulability analysis based on those described in [32], and
then, we illustrate our schedulability analysis procedure. We
also show that our new schedulability analysis can calculate
the precise number of preemptions..

A. Definitions and Notations

As FTR-FP guarantees prior
i only

needs to consider interference from higher priority tasks
including executions, FTs and CPU idle time for its
schedulability test but not those from lower priority tasks.
As we assume periodic task model, for the schedulability
analysis of

i , we only need to investigate what happens in

the time space from 0 to the least common multiple of
periods of tasks including

i and higher priority tasks of
i .

Thus, we define hyperperiod at level i, denoted by
iH

)(}{
ij hepjTLCM  

, where }{ jTLCM is the least common

)(ihep

 =

multiple o andf
jT  is a set of tasks having a priority

higher than equa k
i

or l to tas  .
i releases its job

i times in

hyperperiod at level i, where
i is calculated by

i

hepjTL MH)(}{  

i

i
i T

C

T
ij  (1)

 126

[Downloaded from www.aece.ro on Wednesday, July 19, 2017 at 07:06:08 (UTC) by 115.145.170.197. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 17, Number 2, 2017

Also,
1i releases its job

i times in hyperperiod at level i,

where
i is calculated by

1

)(

1

}{ 



 hepj

i

i
i

TLCM

T

H ij  (2)
iT

We then defin -mesoid as an ordered set describing the

state of each job of a task

e
iT

ij
i .

iT -mesoid consis

ty
su

ts of three

pes of time u its: a time unit already executed or
spended by CP idle time, called consumption, a time

units for a FT invocation and a time unit still available. We
present consumptions by its cardinal inside brackets (c),
with c . We use another brackets [r], with r for
WCET of FTs. In addition, we enumerate the sequence of
available time units according to the natural numbers. Each
of th tural numbers is called availability. No the
natural numbers of consumptions and FTs present how
many availabilities it consumes while that of availability
presents its sequence. For example, {(3), [2], 1, 2, (4), [2], 3,
4} is the 15-mesoid containing two sets of consumptions
having length of 3 and 4 respectively, two FTs where

ftC is

2, and four availabilities represented by 1, 2, 3 and 4
respectively. Since each

iT -mesoid describes the state of

each job, there are
i

n
U

ese na te that

 iT -mesoid in
iH , which are the

sequences of
iT -mesoid. We define b

iL = { 1,b
iM , 2,b

iM , ··· ,

ib
iM , } as the sequ of

i
ence 

iT -mesoid before
i is

scheduled. For example, b
iL ={{(5), [1 1, 2, [{1, 2,

], 3, (3), [1]}} is a seq c of
i

], (2), 1]},

(3), [1 uen e  = 2 11-m id

where
ftC is 1.

We define the cell of b
iL as a set of con cutive available

time u ts between a FT
definiti

eso

se

ni and consumption. With the
on of cell of -mesoid, the above example is

re

wher denotes th cell in -mesoid of .

The nu of time un the cell is denot

C
xce

s

i

written as

{[

]},1[),2(},2,1{,]1[],1[),5{{(
22

1 b
iL

 (3)

T

]}}1[),3(},3{]2[],1[),3(},2,1{]1  ii

i

e j
im][

mber

e thm

its in

thj

m[

iT
j
i]

 b
iL

ed by

| j[im] |.

As we can see from the example, the W ET of the first
job 1j and the second job 2j should not e ed 1; otherwise

ta
i

k
i

i cannot be schedul . We call = { ··· able aLi i i

, iaM , } the sequence of
i

1,aM , 2,aM ,

i  iT -mesoid of task
i after

i is

sche led. a
iL is resulted from b

iL as the vaila ti nits

will ave been consumed up by execu s of
i
 and FTs

associated it to the response tim within each mesoid k
iM ,

k = 1, ···,
i

du

h

 a

tion

ble

j

me u

e b,

 of task
i after

i is scheduled. The process of

building a
iL from b

iL , and 1b
iL from a

iL respectively w

detailed in the next section. To sum up, for every task
i

ill be

 , we

have








},,,{

},,,{
:

,2,1,

,2,1,

i

i

a
i

a
i

a
i

a
i

b
i

b
i

b
i

b
i

i
MMML

MMML








 (4)

B. Schedulability Analysis

 analysis approach for FP
pr

 of

Our new schedulabililty
eemptive scheduling employing FTR-FP tests

scheduability of each task in a top-down manner from the
highest priority task to the lowest priority task. As FTR-FP
conserves priority isolation, our schedulability analysis only
needs to consider interference from higher priority tasks.
The analysis conducts two phases for each task: inheritance
phase and FTR phase.
•In inheritance phase, inherits a

iL 1 i b
iL i times so that

all availabilities in bL filled with th e units of aL

in a cyclic manner. In detail, (x*| a
iL 1 |+y) th time unit in

is filled with thy time unit in aL whe e | aL | is t

number of time units in aL , 0 ≤

i
are e tim

 r

i

i 1

b
iL

he
i 1 ,

x<

i 1

i1
  , and 1≤ a |.

In FTR phase, availab ties in are consum by

y<| Li 1

• ili edb
iL

executions of jobs of
i , CPU idle e, and FTs reserved

according to the policy of FTR-FP investigating which

case each job of i

tim

 is in among three FTR cases, and then
a
iL is constructed or a

iL 1 of
1i f  if any.

fore we generalize our schedulabilityBe analysis process
to support for n tasks, we describe the procedure of
schedulaility analysis for two tasks,

1 and
2 , assuming

that
1 has higher priority than

2 . We fu her a ume that 1rt ss 

and
2 have task parameters (8, 1, 8) and (12, 3, 1

respectively, and the WCET of a FT
ftC is 2. As

1

2)

 has the

highest priority, schedulability analysis does not conduct
inheritance phase for

1

 since it does not have higher priority

tasks. In FTR phase,
1 produces

1C consumptions, a FT

and
1T − (

1C +
ftC) ava abilities in ach

iT -mesoid since

each job j f

il e

1
 o

1 c

pte

an consume any availa ility in
1T and

never be preem d. Thus,
1T -mesoid of

1

b

 are describe as

  }}8,7,6,,4,3,2,1{}{ 1,bb ML

d




 }}5,4,3,2,1],2[),1{{(}{

5{
:

1,
11

11
1 aa ML
 (5)

Then, the inheritance phase and the FTR phase are
conducted for task

2 . As
1T and

2T are 8 and 12 respectively,

2H = LCM{8, 12} i 24. inhe tance phase of
2

s In ri  , as
2 =

nd
2

2 a  = 3, we construct bL2
 composed of a se uenc of

two 12 esoids by inheriting ime units of aL1
 three times as

described above. Based on the mechanism, we have

},{ 2,
2

1,
22 

bba MML

q e

-m t

}}9,8,7,6,5],2[),1(,4,3,2,1{

},6],2[),1(,5,4,3,2,1],2[),1{{( (6)

With the definition of cell, can also be written as bL2

 127

[Downloaded from www.aece.ro on Wednesday, July 19, 2017 at 07:06:08 (UTC) by 115.145.170.197. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 17, Number 2, 2017

}}}9,8,7,6,5{]2[],2[),1(},4,3,2,1{]1{[

}},6{]2[],2[),1(},5,4,3,2,1{]1[],2[),1{{(
2
2

2
2

1
2

1
2

2





aL

(7)

We then perform FTR phase satisfying the security
constraint and priority isolation. In FTR phase, we
investigate each cell sequentially and see which case each
job starting or resuming its execution is in among three FTR
cases. According to the policy of FTR-FP for each case,
time units of each cell are consumed by execution of each
job and FTs. In detail, FTR phase is conducted by following
policies:
•A single job is released in a -mesoid;

iT

•Consumptions of a job begin with the first availability in a
cell;

•Availabilities are consumed by executions of , FTs and

CPU idle time by the policy of corresponding case that
each job is in among three FTR cases until the job
completes its execution.

ij

Subsequent to the FTR phase of our schedulability
analysis, ofbL2 2 becomes

,1,2}}[2](1),[2],(1),,2,{

[2],1},(1),,[2](3),[2],{{(1),2 
aL

 (8)

New consumptions of jobs of
2 and consumed time units

by FTs are underlined. The first job of consumes three

availabilities from the first availability to the third
availability in , and then a FT follows as the job is in

the FTR case (a). The second job of is in the FTR case

(b) first resulting in two consumptions and consumed time
units by a FT, and then it is preempted. After preemption
from a single consumption and a FT, it resumes its
execution and it completes its execution producing a single
consumption and a FT, which is in the FTR case (a).

bL2

1,
2
bM

bL2

After the completion of both phases, the schedulability of
the task

2 is verified as schedulabilities of all jobs in the

hyper period are tested. In the above example,
2H 2 is

schedulable since all jobs in complete its execution

within its deadline .
2H

2

Our schedulability analysis also can calculate the exact
number of preemptions by counting preemption whenever a
job

D

ij

,
2
bM

does not complete its execution in a cell; it is in the

FTR case (b). For example, the second job in experiences

a preemption by a FT following the job at the third time unit
in , which is in the FTR case (b). Assuming that the

cost of preemption denoted by is 1, the resulted is

rewritten as

bL2

2

pC bL2

}}[2],1(2),[2],(1),,2,{

[2],1},(1),,[2](3),[2],{{(1),2 
bL

 (9)

If the cost of preemption exceeds 2, the second job cannot
be schedulable.

Figure 3. Algorithm for Schedulability Analysis

Figure 4. Algorithm for Inheritance phase(,) a

iL 1
b
iL

Figure 5. Algorithm for FTR phase(, b

iL i)

Figure 3 presents the procedure of our schedulability
analysis using functions of inheritance phase (Figure 4) and
FTR phase (Figure 5) for n tasks in detail. Since both our
schedulability analysis and existing one proposed in [33] are
extended from the top-down based exact schedulability
analysis introduced in [39], to consider a FT invocation, two
approaches share the similar framework; they investigate
what happens in the interval of hyperperiod at level i and
inherits the schedules of higher priority tasks since they
target FP scheduling in inheritance phase (Figures 3 and 4).
However, our approach has the following two main
advanced parts from the existing one: we support different
flush task reservation mechanism preventing information
leakages in both directions

H 
L and

L  H while the

existing one is only applicable to
H 

L only, and we can

calculate the preemption cost exactly by counting the
number of preemption happened exactly, which are
implemented in FTR phase (Figures 5).
Since the highest priority task

1 is never preempted, the

loop starts from the index of the second priority task
2 as we

conduct analysis towards lower priority task. The
schedulability analysis for

i has following steps:

 128

[Downloaded from www.aece.ro on Wednesday, July 19, 2017 at 07:06:08 (UTC) by 115.145.170.197. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 17, Number 2, 2017

(1) It first computes hyperperiod at level i and the number
of instance within hyperperiod (Line 2 in Figure 3);

(2) Then it builds -mesoid where all time units are

available composing (Lines 3-5 in Figure 3);
iT

b
iL

(3) The sequence is derived by inheriting b
iL b

iL 1 i times

in inheritance phase (Line 6 in Figure 3);
(4) It builds all cells based on the availabilities in (Line

7 in Figure 3);

b
iL

(5) Then, availabilities in cells in b
iL are filled with

consumptions and FTs according to the policies of FTR
cases (Lines 8-9 in Figure 3). In this step, schedulability
of a job is tested;

(6) It constructs by duplicating for the next task if

any (Line 10 in Figure 3); and

a
iL b

iL

(7) If all tasks satisfy the schedulability condition, then it
concludes that the task set is schedulable (Line 13 in
Figure 3).

The detail procedures of inheritance phase and FTR phase
are presented in Figure 4 and 5 respectively. In inheritance
phase, the time units in are filled with the time units in

in a cyclic manner as we described previously (Lines 1-

5 in Figure 4). In FTR phase, one of the policies of three
FTR cases is applied as many times as the number of cells in

, for a job in L ; FTR cases (a), (b) and (c) are

corresponding to Lines 4-7, 8-11 and 12-14 in Figure 5
respectively. Note that preemption cost is added only in
FTR case (b) where preemption occurs (Line 11 in Figure 5).
If any job does not complete its execution even when all
cells are consumed by executions, CPU idle time or FTs,
then the job is unschedulable (Lines 16-17 in Figure 5)
otherwise it is schedulable (Line 20 in Figure 5).

b
iL

b
i

b
iL 1

xb
iM ,

V. EVALUATION

In this section, we evaluate our analysis technique
compared to the conventional approaches. We first illustrate
the simulation environment of our evaluation, and then we
discuss the simulation results of considered techniques. For
the main metric of performance, we use the schedulability
ratio defined as the number of task sets deemed schedulable
by an analysis to the total number of generated task sets.

A. Simulation environment

We randomly generate task sets implemented by our own
JAVA program, which are based on the task sets generation
method used in [31-33]. Then, we investigate how many
tasks are deemed schedulable by each considered
schedulability analysis technique (also implemented by
JAVA program). Note that as our interest is the
schedulability ratio of each considered technique, the
evaluation results are independent on our computing
capability of simulation environment, e.g., CPU or memory;
it only depends on the mathematical calculation of each
considered schedulability analysis technique. The base
utilization groups [0.02 + 0.1 · i, 0.08 + 0.1 · i] for i = 0, … ,
9, are generated, and each group has 200 task sets. For
example, the first group of base utilization has a range from
0.02 to 0.08, and the last group has a range from 0.92 to

0.98. Then, each base utilization group contains task sets
whose total sum of task utilizations (i.e., sum of TiC /

i of

tasks in each task set) belonging to its range of base
utilization.

TABLE I. PARAMETERS FOR EXPERIMENTS
Parameter Value

Number of task, N N {3, 4, ···, 10}

Task period,
iT iT {50, 100, ···, 1000}

Task execution time,
iC iC {5, 6, ···, 50}

FT overhead,
ftC ftC {0, 1, ···, 10}

 Table I describes the task parameters used for our

evaluation. Each task set can contain at least 3 tasks and at
most 10 tasks. Each task has a period {50, 100, ··· ,

1000} and an execution time {5, 6, ··· , 50}. The

deadline of each task is equal to its period. The values

are based on actual resources in actual architecture (e.g. the
core i7 or Tegra 3 device) as described in [33]. We generate
2,000 task sets for each value of , and therefore, 20,000

tasks sets are generated in total.

iT

iC

ftC

iD

B. Simulation results

For our evaluation, we consider RM for scheduling
algorithm and RTA for schedulability analysis as techniques
for comparison since those are the de facto standards
techniques, which are the optimal preemptive FP scheduling
and exact schedulability analysis on uni-processor. We also
consider LSF schedulability analysis proposed in [33] for
comparison to FTR-FP since, likewise our mechanism, it is
also extends the schedulability analysis suggested in [39],
and it supports LSF, one of the preemptive scheduling
algorithms. Following five schedulability analyses designed
for FP preemptive scheduling algorithm on uniprocessor are
considered:
•RTA approach for preemptive RM scheduling algorithm

not considering a security constraint (RM−RTA),
•RTA approach with the obviously bounded number of FT

invocations (the number of FT invocation is 2* +1,

where is the number of higher or equal priority

jobs for each task

)(ihepN

)(ihepN

i) for preemptive RM scheduling,

proposed in [31-32] (RM−RTA−ob),
•RTA approach for preemptive LSF scheduling algorithm

not considering a security constraint (LSF-RTA),
•LSF schedulability analysis exactly counting the

maximum number of FT invocations proposed in [33]
(LSF−FTR), and

•the schedulability analysis introduced in Section 4 (RM-
FTR−FP).
Note that RM-RTA and LSF-RTA do not consider a

security constraint and the rest techniques consider the
security constraint. RM-RTA-ob upper-bounds the
maximum number of FTs, and LSF-FTR and RM-FTR-FP
exactly count that. The performances of all techniques
except RM-RTA-ob are corresponding to those of
scheduling algorithms respectively since the techniques are
the exact schedulability analyses providing exact
predictability.

We first investigate how performances of three RM

 129

[Downloaded from www.aece.ro on Wednesday, July 19, 2017 at 07:06:08 (UTC) by 115.145.170.197. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 17, Number 2, 2017

schedulability analyses change according to the varying
value of FT overhead. Figure 6 shows the changing
schedulable ratio of RM-FTR-FP compared to those of RM-
RTA and RM-RTA-ob with the varying value of overheads
of FT ranging from 0 to 10. As shown in Figure 6, RM-RTA
makes most task sets schedulable, and it is not affected by
the varying value of FT overhead since it does not consider
a security constraint. On the other hands, the schedulable
ratio of RM-RTA-ob drops sharply due to its pessimistic
bound on the maximum number of FT; it is below 50% for
an FT overhead of 10. In the case of RM-FTR-FP that is the
proposed technique in this paper, it maintains a high
schedulable ratio in spite of the increasing value of FT
overhead as it can calculates the exact number of FT; the
ratio is approximately 79% even with an FT overhead of 10.
Thus, Figure 6 demonstrates that our proposed technique
can enhance security while reducing performance
degradation.

Figure 6. Schedulability ratio of three RM schedulability analyses
according to varying value of FT overhead

In our second simulation, we compare our technique (i.e.
RM-FTR-FP) with two existing LSF schedulability analyses
(i.e. LSF-RTA and LSF-FTR). As both LSF-FTR and RM-
FTR-FP are based on the schedulability analysis technique
proposed in [39], initially designed to calculate the exact
number of preemptions, both mechanisms are also capable
to calculate the exact number of preemptions. However, due
to the performance gap between LSF and RM scheduling
algorithms, LSF-FTR shows limited analytic capability as
LSF-FTR is for LSF scheduling algorithm whose
performance is inferior to the performance of the RM
scheduling algorithm. Figure 7 compares the schedulability
ratio of three schedulability analyses: RM-FTR-FP, LSF-
RTA and LSF-FTR. As show in Figure 7, LSF-RTA shows
constant performance in spite of varying values of FT
overhead as it does not consider a security constraint. Even
though RM-FTR-FP considers a security constraint, it
outperforms LSF-RTA and LSF-FTR as it is based on RM
scheduling algorithm.

As shown in Figure 6 and 7 there is about 23% gap of
schedulable ratio between RM-RTA and LSF-RTA.
Although LSF-FTR shows similar performance degradation
rate to RM-FTR-FP for increasing value of FT overhead, its
schedulable ratio is limited to below that of LSF-RTA
(about 76%). Therefore, as we made FTR to be applicable to
any FP scheduling algorithm including RM that is the de
facto standard FP scheduling algorithm in uni-processor, we

significantly improved the performance of FTR compared to
LSF-FTR; we improved the scheduability ratio by 23%

for = 0 and 11% for = 10 respectively. ftC ftC

Figure 7. Schedulable ratio of proposed schedulability analysis compared to
two LSF schedulability analyses

As one of the major advantage of our schedulability
analysis compared to the existing three techniques in [31-
33] is a capability to exactly calculate the number of
preemption that occurs in the scheduling of preemptive
scheduling algorithm. Note that although the schedulability
analysis technique proposed in [33] has the similar
framework of ours that is advantageous to calculate the
number of preemptions, the method to calculate the
preemption was not implemented in [33]. In following
evaluation, we measure the average actual number of
preemptions incurred by each task sets during 100,000 time
units. Since existing three techniques are not capable to
calculate the exact number of preemptions, we calculate the
number of jobs actually released during scheduling as the
upper-bound of the number of preemptions since the number
of preemption is no larger than the number of jobs actually
released in preemptive scheduling. As we considered RM
scheduling algorithm for the comparison with techniques in
[31-32] and LSF scheduling algorithm for the comparison
with the technique in [33], in the previous two evaluation,
we measures the number of jobs actually released and
preemptions actually incurred during scheduling of RM and
LSF. Table II present the average actual number of jobs
released and preemptions incurred during 100,000 time units
of the scheduling of RM and LSF. Note that two scheduling
algorithms are based on the same set of tasks having the
same take parameters, and therefore the average actual
numbers of jobs actually released thereof during 100,000
time units are the same, e.g., 1234.8. As shown in Table II,
two scheduling algorithm incurs similar number of
preemptions; each average actual number of preemptions
incurred during RM and LSF is 542.8 and 579.3 respectively.
The ratio of jobs to preemptions of RM and LSF are 227.4%
and 213.1% respectively. This indicates that our
schedulability analysis can be performed much better than
the existing three techniques when the cost of preemption
increases.

TABLE II. AVERAGE ACTUAL NUMBER OF JOBS AND PREEMPTIONS

RELEASED AND INCURRED BY EACH TASK SETS DURING 100,000 TIME

UNITS
 jobs preemptions Jobs/preemptions

RM 1234.8 542.8 227.4%
LSF 1234.8 579.3 213.1%

 130

[Downloaded from www.aece.ro on Wednesday, July 19, 2017 at 07:06:08 (UTC) by 115.145.170.197. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 17, Number 2, 2017

VI. RELATED WORK

Previous studies dealt with the security problem by
combining the real-time requirement and security
mechanisms. Xie and Lin considered periodic task
scheduling requiring security service which has the varying
overhead in relation to the level of service [40-41]. They
extended the conventional scheduler to satisfy the real-time
requirement and proposed new scheduler while maximizing
the level of security service. On the other hand, we focused
on a more concreate security problem, i.e., information
leakage on shared resources and security solution, i.e., FT,
and aimed at improving schedulability of FP scheduling
while meeting security constraint that we defined in this
paper.

Some works have addressed the information leakage
problem within real-time database systems with embedded
security constraints [42-44]. Son [43] proposed transaction
scheduling and a concurrency control algorithm satisfying
security and real-time requirements. This work included
definitions of metrics that will measure the extent to which
the security requirements and the concurrency control
algorithm are satisfied, allowing a trade-off between the
security and real-time requirements [42]. Son [44] also
proposed a concept of partial security to enable a trade-off
between the two functions cited above. While these studies
focused on the area of real-time database system, we aimed
at developing new real-time scheduling algorithm and
schedulability analysis thereof.

There have been works that suggested architectural
frameworks to solve problems of intrusion detection in real-
time or cyber physical systems [45-48]. The key idea is to
develop hardware/software mechanisms using
characteristics of real-time or cyber physical systems to
protect against security vulnerabilities. While these studies
aimed at detecting of intrusion in real-time systems, we
focused on preventing information leakage on the shared
resources.

As a FT is invoked on the transition between executions
of two jobs, the number of FT invocations interfering with a
job under analysis is closely related to the number of
preemptions occurring during the execution of a job. An
existing work suggested a new schedulability analysis that
can exactly count the number of preemptions for preemptive
FP scheduling algorithms [39]. Thus, the previous work
provided many hints regarding the computation of the
precise number of FTs in schedulability analysis. However,
the approach in [39] did not consider security constraint.

The recent three works in [31-33] are most closely related
to our study, which aim at preventing information leakage
by conditionally cleansing the state of shared resource in
real-time systems. The initial work [31] first proposed the
pre-flush mechanism to invoke a FT, the following work
[32] extended it to be applicable more general scheduling
model, the latest one [33] proposed exact schedulability
analysis that can calculate the exact number of FTs.
However those studies are not capable to calculate the exact
number of preemptions, and show limited analytical
performance or applicability to a single direction of
information leakage.

VII. CONCLUSION

In this paper, we defined a new security constraint to
mitigate the possibility of information leakage arisen on
real-time tasks sharing resources in real-time systems. We
then proposed a new pre-flush mechanism referred to as
FTR-FP relaxing the limitation of FTR [33] that its
schedulability analysis is limited to LSF. We show that our
techniques are applicable to all FP scheduling including RM
which is the de facto scheduling algorithm on uni-processor.
We also showed that FTR-FP invokes FT during the context
switch in both directions of transition,

H 
L and

L  H ,

as it meet security constraint that we defined, FR-FP
enhances the system security relative to the conventional
approaches [31], [33] that implement FT invocation at
context switch time in a single direction,

H 
L .

Moreover, our schedulability analysis can calculate not
only the exact number FTs hindering the execution of a job
but also the exact number of preemptions while existing
three studies [31-33] focused on bounding the maximum
number of FTs only. Our experimental results showed that
our mechanism maintains reasonable performance in terms
of schedulability and preemption cost.

For the future works, we would like to extend our
approach into multi-processor platform. We are also
planning to implement our scheduling algorithm
incorporating FTR-FP and schedulability analysis
techniques into real-time operating system and demonstrate
how our approach is working well practically.

REFERENCES
[1] A. Biondi, G. Buttazzo, M. Bertogna, “Schedulability analysis of

hierarchical real-time systems under shared resources,” IEEE
Transactions on Computers, vol. 65, issue. 5, pp. 1593 – 1605, 2016.
doi:10.1109/TC.2015.2444833.

[2] A. Melani, et al., “Exact response time analysis for fixed priority
memory-processor co-scheduling,” IEEE Transactions on Computers,
vol. PP, issue. 99, pp. 1 – 110, 2016. doi:1109/TC.2016.2614819.

[3] A. Melani, M. Bertogna, V. Bonifaci, A. M. Spaccamela, G. Buttazzo,
“Schedulability analysis of conditional parallel task graphs in
multicore systems,” IEEE Transactions on Computers, vol. 66, issue.
2, pp. 339 – 353, 2017. doi:10.1109/TC.2016.2584064.

[4] X. Hua, C. Guo, H. Wu, D. Lautner, S. Ren, “Analysis for real-time
task set on resource with performance degradation and dual-level
periodic rejuvenations,” IEEE Transactions on Computers, vol. 66,
issue. 3, pp. 553 – 559, 2017. doi:10.1109/TC.2016.2602833.

[5] M. Bambagini, M. Marinoni, H. Aydin, G. Buttazzo, “Energy-aware
scheduling for real-time systems: a survey,” ACM Transactions on
Embedded Computing Systems, vol. 15, no. 7, issue. 1, pp. 1 – 33,
2016. doi:10.1145/2808231.

[6] M. Haque, H. Aydin, D. Zhu, “On reliability management of energy-
aware real-time systems through task replication,” IEEE Transactions
on Parallel and Distributed Systems, vol. 28, issue. 3, pp. 813 – 825,
2017. doi:10.1109/TPDS.2016.2600595.

[7] S. Mittal, “A survey of techniques for improving energy efficiency in
embedded computing systems,” International Journal of Computer
Aided Engineering and Technology, vol. 6, issue. 4, pp. 1 – 12, 2014.
doi: 10.1504/IJCAET.2014.065419.

[8] C. Krishna, “Fault-tolerant scheduling in homogeneous real-time
systems,” ACM Computing Surveys, vol. 46, issue. 4, no. 48, pp. 1 –
48, 2014. doi:10.1145/2534028.

[9] H. M. Mora, D. Gil, J. F. C. López, M. T. S. Pont, “Flexible
framework for real-time embedded systems based on mobile cloud
computing paradigm,” Mobile Information Systems, vol. 2015, id.
652462, pp. 1 – 14, 2015. doi: 10.1155/2015/652462.

[10] A. Saifullah, et al., “Parallel real-time scheduling of DAGs,” IEEE
Transactions on Parallel and Distributed Systems, vol. 25, issue. 12,
pp. 3242 – 3252, 2014. doi:10.1109/TPDS.2013.2297919.

 131

[Downloaded from www.aece.ro on Wednesday, July 19, 2017 at 07:06:08 (UTC) by 115.145.170.197. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 17, Number 2, 2017

 132

[11] J. Leung, J. Whitehead, “On the complexity of fixed-priority
scheduling of periodic real-time tasks,” Performance Evaluation, vol.
2, pp. 237 – 250, 1982. doi:10.1016/0166-5316(82)90024-4.

[12] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” IEEE Real-Time
Systems Symposium (RTSS), 2007, pp. 239 – 243.
doi:10.1109/RTSS.2007.35.

[13] H. Chwa, et al., “Extending Task-level to Job-level Fixed Priority
Assignment and Schedulability Analysis Using Pseudo-deadlines,”
IEEE Real-Time Systems Symposium (RTSS), pp. 51 – 62, 2012.
doi:10.1109/RTSS.2012.58.

[14] N. C. Audsley, “On priority assignment in fixed priority scheduling,”
Information Processing Letters, vol. 79-1, pp. 39 – 44, 2001. doi:
10.1016/S0020-0190(00)00165-4

[15] N. Guan, M. Stigge, W. Yi, Ge Yu, “New Response Time Bounds
for Fixed Priority Multiprocessor Scheduling,” IEEE Real-Time
Systems Symposium (RTSS), pp. 51 – 62, 2009.
doi:10.1109/RTSS.2009.11

[16] K. Koscher, et al., "Experimental security analysis of a modern
automobile," IEEE Symposium on Security and Privacy (SP), pp. 447
– 462, 2010. doi:10.1109/SP.2010.34.

[17] K. Koscher, A. Czeskis, F. Roesner, "Experimental Security Analysis
of a Modern Automobile," IEEE Symposium on Security and Privacy
(SP), pp. 447 – 462, 2010. doi: 10.1109/SP.2010.34.

[18] K. Fisher, " Using formal methods to enable more secure vehicles:
DARPA's HACMS program," ACM SIGPLAN international
conference on Functional programming, pp. 1 – 1, 2014.
doi:10.1145/2628136.2628165.

[19] J. Pleban, R. Band, R. Creutzburg, "Hacking and securing the
AR.Drone 2.0 quadcopter: Investigations for improving the security
of a toy," SPIE - The International Society for Optical Engineering,
pp. 1 – 12, 2014. doi:10.1117/12.2044868.

[20] J. Son, J. Alves-Foss, "Covert timing channel analysis of rate
monotonic real-time scheduling algorithm in mls systems," IEEE
Information Assurance Workshop, pp. 361 – 368, 2006. doi:
10.1109/IAW.2006.1652117.

[21] J. Li, et al., “Analysis of federated and global scheduling for parallel
real-time tasks,” Euromicro Conference on Real-Time Systems
(ECRTS), pp. 85 – 96, 2014. doi:10.1109/ECRTS.2014.23.

[22] R. Pathan, “Real-time scheduling algorithm for safety-critical systems
on faulty multicore environments,” Real-Time Systems, vol. 53, issue.
1, pp 45 – 81, 2017. doi:10.1007/s11241-016-9258-z.

[23] A. Melani, R. Mancuso, D. Cullina, M. Caccamo, L. Thiele,
“Optimizing resource speed for two-stage real-time tasks,” Real-Time
Systems, vol. 53, issue. 1, pp 82 – 120, 2017. doi: 10.1007/s11241-
016-9259-y.

[24] J. Goossens, E. Grolleau, L. Grosjean, “Periodicity of real-time
schedules for dependent periodic tasks on identical multiprocessor
platforms,” Real-Time Systems, vol. 52, issue. 6, pp. 808 – 832, 2016.
doi:10.1007/s11241-016-9256-1.

[25] J. Chen, “Federated scheduling admits no constant speedup factors for
constrained-deadline DAG task systems,” Real-Time Systems, vol. 52,
issue. 6, pp. 833 – 838, 2016. doi:10.1007/s11241-016-9255-2.

[26] E. Massa, G. Lima, P. Regnier, G. Levin, S. Brandt, “Quasi-
partitioned scheduling: optimality and adaptation in multiprocessor
real-time systems,” Real-Time Systems, vol. 52, issue 5, pp. 566 –
597, 2016. doi:10.1007/s11241-016-9251-6.

[27] S. Altmeyer, R. Douma, W. Lunniss, R. Davis, “On the effectiveness
of cache partitioning in hard real-time systems,” Real-Time Systems,
vol. 52, issue. 5, pp. 598 – 643, 2016. doi:10.1007/s11241-015-9246-
8.

[28] M. Xu, et al., “Cache-aware compositional analysis of real-time
multicore virtualization platforms,” Real-Time Systems, vol. 51, issue.
6, pp. 675 – 723, 2015. doi:10.1007/s11241-015-9223-2.

[29] H. Zeng, M. Natale, “Computing periodic request functions to speed-
up the analysis of non-cyclic task models,” Real-Time Systems, vol.
51, issue 4, pp. 360 – 394, 2015. doi:10.1007/s11241-014-9209-5.

[30] Jing Li, et al., “Global EDF scheduling for parallel real-time tasks,”
Real-Time Systems, vol. 51, issue 4, pp. 395 – 439, 2015.
doi:10.1007/s11241-014-9213-9.

[31] S. Mohan, M. Yoon, R. Pellizzoni, R. Bobba, "Real-time systems
security through scheduler constraints," Euromicro Conference on
Real-Time Systems (ECRTS), pp. 129 – 140, 2014.
doi:10.1109/ECRTS.2014.28.

[32] R. Pellizzoni, et al., "A generalized model for preventing information
leakage in hard real-time systems," IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pp. 271 – 282,
2015. doi:10.1109/RTAS.2015.7108450.

[33] H. Baek, J. Lee, Y. Lee, H. Yoon, "Preemptive real-time scheduling
incorporating security constraint for cyber physical systems," IEICE
Transactions on Information and Systems, vol. E99-D, no. 8, pp. 2121
– 2130, 2016. doi:10.1587/transinf.2015EDP7493.

[34] C. Liu, J. Layland, "Scheduling algorithms for multiprogramming in a
hard-real-time environment," Journal of ACM, vol. 20 – 1, pp. 46–61,
1973. doi:10.1145/321738.321743.

[35] M. Stigge, W. Yi, “Combinatorial abstraction refinement for
feasibility analysis of static priorities,” Real-Time Systems, vol. 51,
issue. 6, pp. 639 – 674, 2015. doi:10.1007/s11241-015-9220-5.

[36] M. Jeseph, P. Pandya, "Finding response times in a real-time system,"
BCS Computer Journal, vol. 29-55, pp. 390 – 395, 1986.
doi:10.1093/comjnl/29.5.390.

[37] W. Kang, J. Chung, “Energy-efficient response time management for
embedded databases,” Real-Time Systems, vol. 53, issue. 2, pp. 228 –
253, 2017. doi:10.1007/s11241-016-9264-1.

[38] A. Erlebach, "Np-hardness of broadcast scheduling and
inapproximability of single-source unsplittable min-cost flow," Jornal
of Scheduling, vol. 7, pp. 233–241, 2004.
doi:10.1023/B:JOSH.0000019682.75022.96.

[39] P. Yomsi, Y. Sorel, "Extending rate monotonic analysis with exact
cost of preemptions for hard real-time systems," Euromicro
Conference on Real-Time Systems (ECRTS), pp. 280 – 290, 2007.
doi:10.1109/ECRTS.2007.15.

[40] T. Xie, X. Qin, “Improving security for periodic tasks in embedded
systems through scheduling,” ACM Transactions on Embedded
Computing Systems, vol. 6-3, 2007. doi:10.1145/1275986.1275992.

[41] M. Lin, et al., "Static security optimization for real-time systems,"
IEEE Transactions on Industrial Informatics, vol. 5-1, pp. 22 – 37,
2009. doi:10.1109/TII.2009.2014055.

[42] Q. Ahmed, S. Vrbsky, "Maintaining security in firm real-time
database systems," Conference on Computer Security Applications,
pp. 83 – 90, 1998. doi:10.1016/S0164-1212(01)00111-X.

[43] S. Son, "Supporting timeliness and security in real-time database
systems," Euromicro Workshop on Real-Time Systems, 1997, pp. 266
– 273. doi:10.1109/EMWRTS.1997.613794.

[44] S. Son, C. Chaney, N. Thomlinson, "Partial security policies to
support timeliness in secure real-time databases," IEEE Symposium
on Security and Privacy (SP), pp. 136 – 147, 1998.
doi:10.1109/SECPRI.1998.674830.

[45] S. Mohan, et al., "S3a: secure system simplex architecture for
enhanced security and robustness of cyber physical systems," ACM
international conference on High confidence networked systems, pp.
65 – 74, 2013. doi:10.1145/2461446.2461456.

[46] G. Suh, J. Lee, D. Zhang, S. Devadas, "Secure program execution via
dynamic information flow tracking," International conference on
Architectural support for programming languages and operating
systems, pp. 85 – 96, 2004. doi:10.1145/1024393.1024404.

[47] M. Yoon, S. Mohan, J. Choi, J. Kim, L. Sha, "Securecore: A
multicore based intrusion detection architecture for real-time
embedded systems view document," Real-Time and Embedded
Technology and Applications Symposium (RTAS), pp. 21 – 31, 2013.
doi:10.1109/RTAS.2013.6531076.

[48] C. Zimmer, B. Bhat, F. Mueller, S. Mohan, "Time-based intrusion
detection in cyber-physical systems," ACM/IEEE International
Conference on Cyber-Physical Systems, pp. 109 – 118, 2010.
doi:10.1145/1795194.1795210.

[Downloaded from www.aece.ro on Wednesday, July 19, 2017 at 07:06:08 (UTC) by 115.145.170.197. Redistribution subject to AECE license or copyright.]

