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1  Abstract—Real-time systems (RTS) are characterized by 
tasks executing in a timely manner to meet its deadlines as a 
real-time constraint. Most studies of RTS have focused on these 
criteria as primary design points. However, recent increases in 
security threats to various real-time systems have shown that 
enhanced security support must be included as an important 
design point, retro-fitting such support to existing systems as 
necessary. In this paper, we propose a new pre-flush technique 
referred to as flush task reservation for FP scheduling (FTR-
FP) to conditionally sanitize the state of resources shared by 
real-time tasks by invoking a flush task (FT) in order to 
mitigate information leakage/corruption of real-time systems. 
FTR-FP extends existing works exploiting FTs to be applicable 
more general scheduling algorithms and security model. We 
also propose modifications to existing real-time scheduling 
algorithms to implement a pre-flush technique as a security 
constraint, and analysis technique to verify schedulability of 
the real-time scheduling. For better analytic capability, our 
analysis technique provides a count of the precise number of 
preemptions that a task experiences offline. Our evaluation 
results demonstrate that our proposed schedulability analysis 
improves the performance of existing scheduling algorithms in 
terms of schedulability and preemption cost. 
 

Index Terms—embedded software, real-time systems, 
scheduling algorithms, security, system analysis and design. 

I. INTRODUCTION 

Real-time systems (RTS) control multiple physical 
devices executing multiple real-time tasks in a timely 
manner. Since meeting deadlines of real-time tasks is the 
most important requirement of RTS, most conventional 
studies have focused on real-time aspects of RTS for several 
decades while security has not been considered as a first 
class principle of the design of RTS [1-15]. During this 
period of time, security has not been accorded sufficient 
attention at a level commensurate with scheduling algorithm 
design. However, recent attacks on various RTS have 

resulted in catastrophizes, including loss of life. We believe 
that, at this point in time, it is of paramount importance that 
security be added as a design point for inclusion in any re-
design of a RTS. There are many documented attacks on a 
variety of RTS including telematics units installed in 
modern automobiles [16-17], industrial control systems 
[18], and unmanned autonomous vehicles [19-20]. However, 
applying existing security techniques to RTS cannot be 
effective because most of these techniques were developed 
without consideration of the real-time requirements [21-30], 
and this explains, to a large extent, why RTS are easily 
compromised. 
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The lack of support for robust security as an indigenous 
component of RTS has recently generated a large amount of 
research. In recent three years, three studies [31-33] have 
proposed approaches that a pre-flush mechanism to invoke a 
flush task (FT) is included into real-time scheduling with a 
design point of real-time systems to eliminate or 
substantially reduce information leakage that occurs in real-
time tasks that share resources and execute with different 
levels of security.  

The initial work [31] first proposed a pre-flush 
mechanism that will invoke a FT to sanitize the state of all 
shared resources such as all caches, DRAM and I/O buses. 
Figure 1 describes an example how a FT is invoked between 
the executions of two tasks having different security levels; 
for two tasks A and B, A has a security level higher than B. 
If B is dispatched immediately subsequent to the dispatch of 
A, then B is more easily compromised by attackers due to its 
lower security level and can be used to remove, copy, or 
corrupt sensitive data that exist on the shared resources in 
use by A. To prevent this, a FT is invoked at the beginning 
of the execution of B  and executes non-preemptively. The 
work presented in [31] proposed a new fixed priority (FP) 
[34-35] real-time scheduling algorithm that includes security 
constraints regarding conditional invocations of FTs and an 
associated new response time analysis (RTA) [36-37]. 
However, this work is limited to non-preemptive FP 
scheduling and does not provide tight upper-bounds of the 
worst-case number of FTs thereby illustrating the limited 
analytic capability for schedulability.  

A subsequent work [32] extended the initial work to 
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include preemptive FP scheduling and to provide a tighter 
upper-bound of the worst-case number of FTs for 
schedulability analysis by transforming the problem of 
upper-bounding the worst-case number of FTs into a min-
cost flow problem [38]. However, this work did not suggest 
the exact schedulability analysis including the calculation of 
the exact preemption cost. 

Our previous work [33] extended the two works proposed 
in [31-32] by deriving a new schedulability analysis 
technique that can compute the exact number of FTs that a 
task under analysis will experiences during the life of a task. 
We proposed a new preemptive FP scheduling algorithm 
referred to as lowest security-level first (LSF). This 
algorithm employs a new pre-flush technique that invokes 
FTs in a more intelligent manner, referred as flush task 
reservation (FTR), which induces the exact schedulability 
analysis (i.e. sufficient and necessary analysis) that can 
compute the exact number of FTs hindering the execution of 
a task offline. However, FTR can be used only with LSF 
scheduling, and its performance is insufficient relative to 
rate monotonic (RM) [34-35] scheduling, the optimal 
scheduling algorithm deployed for preemptive FP 
uniprocessor scheduling. 

This paper also addresses the problem of information 
leakage, the subject of three prior studies, and we propose a 
new pre-flush mechanism referred to as flush task 
reservation for FP scheduling (FTR-FP) and a new 
schedulability analysis technique thereof. FTR-FP is not 
restricted to a specific FP scheduling algorithm, and will 
relax the limitation of a FTR that we described above. 
Unlike the results from three prior conventional [31-33], our 
new schedulability analysis can estimate not only the exact 
number of FTs but also the exact number of preemptions 
that a task will experience. Previous two studies [31], [33] 
considered introducing a security constraint that a FT is 
invoked during a context switch from a task with a higher 
security-level 

H to a task with a lower security-level 
L . 

Invoking a FT during a context switch in both directions, 

H  
L  and 

L  
H , can degrade the real-time 

scheduling performance due to the invocation of more FTs. 
However, the possibility of information leakage from 

L to 

H should not be ignored as it can also compromise the 

security of the RTS. We show our technique maintain 
reasonable performance even though we consider both 
directions of information leakage to better mitigate the 
possibility of information leakage. 

The primary contributions of this paper are the 
advantages of our proposed techniques compared to the 
prior techniques in [31-33]: 
• By proposing a FT invocation during the context switch 

in both directions of transition, 
H  

L and 
L  

H , as 

a security constraint, we enhance the system security 
relative to the conventional approaches [31], [33] that 
implement FT invocation at context switch time in a 
single direction, 

H 
L . 

• The new pre-flush technique and schedulability analysis 
are not limited to a specific FP scheduling, offering an 
advantage over the previous technique [33] that is 
restricted to LSF.  

• A new schedulability analysis can calculate the precise 

number of FTs and preemptions, but existing three 
schedulability analyses [31-33] can upper-bound 
maximum number of FTs only. 

II. ADVERSARY AND SYSTEM MODELS 

In this section, we present the adversary and system 
models. The design of our adversary and system models are 
based on production RTS examples in use in various fields 
as described in [31-33], e.g., an avionics system based on 
the DO-178B model [32]. Our models also include a new 
security constraint that extends the security constraints 
pursuant to [31], [33]. 

A. Adversary Model 

We assume that an adversary understands the nature of 
the task parameters as well as the RTS scheduling policy. 
The primary objective of the adversary is to retrieve or 
otherwise corrupt sensitive data stored in shared resources, 
e.g., files, databases, upon which real-time tasks are 
dependent. Tasks executing at a lower security-level have 
less protection from security threats, so that the probability 
of successful intrusion initiated by an attacker exceeds the 
probability of successful intrusion originating from tasks 
executing at a higher security level. For example, an 
adversary can launch a side-channel attack by hijacking a 
task executing at a low security-level to access sensitive data 
within the shared cache, concurrently accessed by a task 
executing at a higher security-level. 

These attacks against a RTS can be successful in a RTS 
that supports a multi-tier or hierarchical security level model. 
An example of such a model is an avionics RTS that 
implements the DO-178B standard. This model partitions 
the RTS into sub-systems with defined interfaces. Usually, 
the development of the sub-systems is contracted to 
different vendors such that each vendor possesses the 
necessary security level (clearance) to bid on the sub-system. 
For example, a sub-system that controls a camera that 
captures images to be sent to the command center can be 
designed by a vendor with the required security clearance to 
use and observe confidential data. On the other hand, the 
avionics navigation system may be developed by a vendor 
with less restrictive security credentials as the function of 
this sub-system is less critical relative to securing shared 
resources. If the navigation system, developed by a vendor 
at a low security level, is compromised or corrupts shared 
sensitive data, then the camera system, created by a vendor 
with a higher security level, can generate images that can be 
copied, deleted, or corrupted. 

B. System Model 

We consider the preemptive FP scheduling of a set of 
periodic task set  on a uni-processor [34-35]. A task 

 i
is characterized by a 3-tuple ( , , ), where  is 

the period of a task or minimum inter arrival time, is the 

worst-case execution time (WCET) and is the relative 

deadline. We assume implicit deadlines, i.
iD is equ l 

to
iT . A t sk 

i

iT iC iD

iD

e.

iT

iC

, a

a   releases its b 
ij periodically according to 

its period
iT . We use the notation f n

ij  if the job indicates 

the n-th released job of task
i

jo

o

  . The WCET of a FT is 
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den ed by
ftC . We assume the synchronous release of tasks, 

so that the first jobs of all tasks are released concurrently, 
i.e., at the time instant 0. We also assume quantum-based 
time for real-time scheduling and schedulability an

ot

alysis. 
Previous work [31], [33] considered the security-level of 

real time tasks and focused on the prevention of information 
leakage from the resources shared by a task executing at a 
higher security-level 

H  than a task executing at a lower 

security-level 
L . As defined by this security model, a FT 

should be invoked to sanitize the state of the shared 
resources only if a lower security-level task 

L  executes 

immediately after the execution of a higher security-level 
task

H . However, the possibility of information leakage 

attributed to a context switch from 
L  to 

H  should not be 

ignored because the change of execution state can also 
compromise the security of the RTS. Thus, we address the 
problem of information leakage that arises during both 
context switches, 

H 
L  and 

L  H , to better reduce the 

possibility of information leakage. We define a security 
constraint to be integrated within the real-time scheduling 
algorithm as follows: 

Definition 1: (Security Constraint). Before a job is 
scheduled, a timing penalty should be spent to cleanse 
the state of shared resource after another job is 
executed. 

To satisfy the security constraint, a real-time scheduler 
dispatches a FT when a context switch occurs from job 
  regardless of source and target task security-levels. 

Thus, our scheduling and schedulability analysis techniques 
are not sensitive to the security ordering of tasks. We 
assume that a FT executes concurrently with a job  

whenever the job is dispatched by the scheduler in 
accordance with our pre-flush techniques, i.e., the remaining 
execution time of  is increased by  to allow adequate 

time to serialize the task execution followed by the FT 
execution. Every job must complete its execution within  

time units prior to its deadline to be schedulable since the 
proposed scheduling algorithm requires that a FT executes 
non-preemptively to completion at the preemption or 
completion of every task. 

ij jj

ij

ftC

ij ftC

III. SCHEDULING INCORPORATING SECURITY CONSTRAINTS 

In this section, we propose a preemptive real-time 
scheduling algorithm that includes a new pre-flush 
technique to satisfy the security constraint described in the 
previous section. We first provide a detailed discussion of 
the existing pre-flush algorithms introduced in [31] and [32] 
and then we present our algorithm as an improvement. 

 
Figure 1. Conventional flush task invocation case 

In the existing pre-flush scheme, a FT can be invoked at a 
time instant at which a job  starts its execution after 

release of the job or resume from any interference caused by 
higher priority jobs, and shared resource needs to be flushed. 
The FT executes non-preemptively with highest priority, 
and this will frequently block the scheduled job , 

increasing its time-to-completion. 

ij

ij

jj

Figure 1 illustrates the effect of interleaving execution of 
the FT with other jobs competing for the processor, 
characteristic of an existing pre-flush scheduling algorithm. 
Considering job  that begins or resumes execution at time 

instant t, let us assume that an earliest higher priority job  

will be released at time instant t' > t. As seen in Figure 1, the 
higher priority job  is preempted by the FT (this task has 

the highest priority) dispatched to prevent information 
leakage that may have occurred during the context switch, 

  . Thus, a higher priority task

ij

jj

ij jj j  can be subject to the 

execution of a lower priority task
i  if a FT is invoked 

between two tasks. Due to this property, it is not 
straightforward to apply conventional schedulability 
analysis techniques providing strong analytic capability to 
this scheduling scheme since most of those are based on the 
following property: 

Definition 2 (Priority Isolation): The execution 
behavior of higher priority tasks is independent of the 
execution behavior of lower priority tasks. 

For example, standard RTA approach for preemptive FP 
scheduling is an exact schedulability analysis based on 
priority isolation only considering interference from higher 
priority tasks, ignoring the execution behavior of lower 
priority tasks, to test schedulability of a given task. 

While the two documented pre-flush techniques [31-32] 
violate the principle of priority isolation and the associated 
schedulability analysis, we propose a new pre-flush 
technique, which we refer to as flush task reservation for FP 
scheduling (FTR-FP), accompanied by a new exact 
schedulability analysis that will conserve the principle of 
priority isolation. Considering a job  that begins or 

resumes its execution at time instant t and an earliest higher 
priority job  released at time t' > t, let e be the time instant 

at which

ij

ij

j

ftC

j  will finish its execution. FTR-FP determines an 

invocation of a FT in every scheduling (release of a job, or 
resume of a job from any preemption) and invokes FTs in a 
more intelligent manner creating three cases based on the 
value of t' - : 

(a) if e ≤ t' -  (the case of Figure 2 (a)), such thatC  is 

the WCET of a FT, the scheduler reserves a FT to 
prevent information leakage from  to  so that a FT 

will be invoked at the time instant e; 

ftC ft

j

ij jj

(b) in another case for t ≤ t' -  < e (the case of Figure 2 

(b)), a FT is reserved and will be invoked at time instant 
t' - ; and 

ftC

ftC

(c) if t' -  < t (the case of Figure 2 (c)), the execution 

of  is suspended, and CPU remains idle in the time 

space between t and t' so that a FT cannot interfere

ftC

ij

 .  

We refer to these cases as FTR case (a), FTR case (b) and 
FTR case (c) respectively. Note that if the sum of remaining 
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execution time of
ij  and

ftC  is smaller than the remaining 

time space until the de ine of j , then j  cannot be 

schedulable. Thus, FTR-FP tests schedulab y of
ij  in 

every scheduling, and then it considers three FTR cases 
for

ij . We assume that the schedulability of
ij  in Figure 2 is 

verified. 

adl
i i

ilit

 
Figure 2. There FTR cases corresponding to the positions of t' < t 

su

 is sm

 to any FP preemptive scheduling 
si

 -
ftC  

In FTR case (a), the time interval between t and t' is 
fficiently large for a FT to execute in the time space 

without interfering not only the job
ij  but also a higher 

priority job
ij . To satisfy the security constraint that we 

defined, a F  is invoked at time instant e as soon as
ij  

completes its execution. In FTR case (b), the time spa  
between t and t' is larger than

ftC , but it interferes
jj  if it is 

invoked at time instant e, whi violates priority isolation. 
Thus, FTR-FP reserves a FT so that it will invoke at time 
instant t' -

ftC  and not interfere
jj  but

ij . In FTR case (c), 

the time space between t and t' ler than
ftC . Thus, 

FTR-FP suspends
ij  and let CPU idle in the t  space 

between t and t' to revent
jj  from being interfered from a 

FT; a FT is not invoked in this case to conserve priority 
isolation. In both FTR cases (b) and (c), 

ij  is preempted and 

suspended respectively, and it resumes its execution at time 
instant t'' after it suffers interference from higher priority 
jobs including

jj , FTs or CPU idle time; higher priority jobs 

also can cause PU idle time due to another higher priority 
job. FTR-FP iteratively considers three cases for

ij  until
ij  

is in the FTR case (a) so that it completes its execu on. If  

has the highest priority, it executes without any interferenc  
and a FT is invoked as soon as

ij  completes its execution. 

For the job having the highest priority, t' is considered as +∞ 

since the job does not have higher priority jobs, and it is 
always in FTR case (a).  

 FTR-FP is applicable

T

ce

ij

e,

ch 

al

ime

ti

 p

 

C

nce it invokes a FT on every transition
ij  

jj , and it does 

not depend on a specific priority o erin . Figure 2 
illustrates that FTR-FP satisfies the security constraint and 
conserves the principle of priority isolation for two jobs

ij  

and
jj  from tasks

i

rd g

  and
j  respectively. We now show th  

FTR-FP also satisfies the security constraint and conserves 
priority isolation for a task set τ containing more than two 
tasks based on the following reasoning. As

ij  begins its 

execution at time instant t, 
ij  is the highest p rity job in 

the scheduling queue at tim instant t. Also, as an earliest 
higher priority job

jj  releases at t', no jobs having higher 

priorities than
ij  execute in the time space between t and t'. 

FTR-FP itera ely finds such time spaces at every 
scheduling of every task. Since a FT is invoked on every 
transition

ij  
jj  (FTR cases (a) and (b)) or is not invoked 

if
ij  does not xecute (FTR case (c)), FTR-FP always 

satisfies the security constraint. Also, since
ij  and the FT 

executing with
ij  always execute in the time ace t and t', 

priority isolatio  is conserved; it is guaranteed that
ij  and 

the FT do not interfere higher priority job
jj . 

at

ri

sp

o

e 

tiv

n

 e

IV. SCHEDULAIBILITY ANALYSIS 

Th lysis for our 
ne

ity isolation, each task

is section presents a new schedulability ana
w FP preemptive scheduling employing FTR-FP. We 

extend previous exact schedulability analysis proposed in 
[39] aiming at calculating the exact number of preemptions 
to be applicable our scheduling algorithm. We first 
introduce the definitions and notations used for our 
schedulability analysis based on those described in [32], and 
then, we illustrate our schedulability analysis procedure. We 
also show that our new schedulability analysis can calculate 
the precise number of preemptions.. 

A. Definitions and Notations 

As FTR-FP guarantees prior
i  only 

needs to consider interference from higher priority tasks 
including executions, FTs and CPU idle time for its 
schedulability test but not those from lower priority tasks. 
As we assume periodic task model, for the schedulability 
analysis of

i , we only need to investigate what happens in 

the time space from 0 to the least common multiple of 
periods of tasks including

i  and higher priority tasks of
i . 

Thus, we define hyperperiod at level i, denoted by
iH  

)(}{
ij hepjTLCM  

, where }{ jTLCM  is the least common 

)( ihep

 =

multiple o  andf
jT   is a set of tasks having a priority 

higher than  equa k
i

or l to tas  . 
i  releases its job 

i  times in 

hyperperiod at level i, where
i  is calculated by 

i

hepjTL MH )(}{  

i

i
i T

C

T
ij   (1) 
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Also, 
1i  releases its job

i  times in hyperperiod at level i, 

where
i  is calculated by 

1

)(

1

}{ 



 hepj

i

i
i

TLCM

T

H ij   (2) 
iT

We then defin -mesoid as an ordered set describing the 

state of each job of a task

e
iT

ij  
i . 

iT -mesoid consis

ty
su

ts of three 

pes of time u its: a time unit already executed or 
spended by CP  idle time, called consumption, a time 

units for a FT invocation and a time unit still available. We 
present consumptions by its cardinal inside brackets (c), 
with c . We use another brackets [r], with r  for 
WCET of FTs. In addition, we enumerate the sequence of 
available time units according to the natural numbers. Each 
of th tural numbers is called availability. No  the 
natural numbers of consumptions and FTs present how 
many availabilities it consumes while that of availability 
presents its sequence. For example, {(3), [2], 1, 2, (4), [2], 3, 
4} is the 15-mesoid containing two sets of consumptions 
having length of 3 and 4 respectively, two FTs where

ftC  is 

2, and four availabilities represented by 1, 2, 3 and 4 
respectively. Since each 

iT -mesoid describes the state of 

each job, there are
i

n
U

ese na te that

 iT -mesoid in
iH , which are the 

sequences of 
iT -mesoid. We define b

iL = { 1,b
iM , 2,b

iM , ··· , 

ib
iM , } as the sequ of

i
ence   

iT -mesoid before
i  is 

scheduled. For example, b
iL ={{(5), [1  1, 2, [ {1, 2, 

], 3, (3), [1]}} is a seq c of
i

],  (2), 1]}, 

(3), [1 uen e   = 2 11-m id 

where
ftC  is 1. 

We define the cell of b
iL  as a set of con cutive available 

time u ts between a FT 
definiti

eso

se

ni and consumption. With the 
on of cell of -mesoid, the above example is 

re

wher  denotes th  cell in -mesoid of . 

The nu of time un  the cell  is denot

C
xce

s

i

written as 

{[

]},1[),2(},2,1{,]1[],1[),5{{(
22

1 b
iL

    (3) 

T

]}}1[),3(},3{]2[],1[),3(},2,1{]1  ii

i

e j
im][

mber 

e thm

its in

thj  

m[

iT
j
i]

 b
iL

ed by 

| j[ im] |. 

As we can see from the example, the W ET of the first 
job 1j  and the second job 2j  should not e ed 1; otherwise 

ta
i

k
i

i  cannot be schedul . We call = {  ··· able  aLi i i

, iaM , } the sequence of
i

1,aM , 2,aM ,

i  iT -mesoid of task
i  after

i  is 

sche led. a
iL  is resulted from b

iL  as the vaila ti nits 

will ave been consumed up by execu s of
i
 and FTs 

associated it to the response tim  within each mesoid k
iM , 

k = 1, ···, 
i

du

h

 a

tion

ble 

j

me u

e b,

  of task
i  after

i  is scheduled. The process of 

building a
iL  from b

iL , and 1b
iL  from a

iL  respectively w  

detailed in the next section. To sum up, for every task
i

ill be

 , we 

have 








},,,{

},,,{
:

,2,1,

,2,1,

i

i

a
i

a
i

a
i

a
i

b
i

b
i

b
i

b
i

i
MMML

MMML








      (4) 

B. Schedulability Analysis 

 analysis approach for FP 
pr

 of

Our new schedulabililty
eemptive scheduling employing FTR-FP tests 

scheduability of each task in a top-down manner from the 
highest priority task to the lowest priority task. As FTR-FP 
conserves priority isolation, our schedulability analysis only 
needs to consider interference from higher priority tasks. 
The analysis conducts two phases for each task: inheritance 
phase and FTR phase. 
•In inheritance phase,  inherits a

iL 1 i   b
iL i times so that 

all availabilities in bL   filled with th e units of aL  

in a cyclic manner. In detail, (x*| a
iL 1 |+y) th time unit in  

is filled with thy  time unit in aL whe e | aL | is t  

number of time units in aL , 0 ≤

i
are e tim

 r

i

i 1

b
iL

he
i 1 ,

x<

i 1

i1
  , and 1≤ a |. 

In FTR phase, availab ties in  are consum  by 

y<| Li 1

• ili edb
iL

executions of jobs of
i , CPU idle e, and FTs reserved 

according to the policy of FTR-FP investigating which 

case each job of i

tim

  is in among three FTR cases, and then 
a
iL  is constructed or a

iL 1 of
1i f   if any. 

fore we generalize our schedulabilityBe  analysis process 
to support for n tasks, we describe the procedure of 
schedulaility analysis for two tasks, 

1  and
2 , assuming 

that
1  has higher priority than

2 . We fu her a ume that 1rt ss   

and
2  have task parameters (8, 1, 8) and (12, 3, 1  

respectively, and the WCET of a FT
ftC  is 2. As

1

2)

  has the 

highest priority, schedulability analysis does not conduct 
inheritance phase for

1

 
  since it does not have higher priority 

tasks. In FTR phase, 
1  produces

1C consumptions, a FT 

and
1T  − (

1C  +
ftC ) ava abilities in ach 

iT -mesoid since 

each job j f

il  e

1
 o

1  c

pte

an consume any availa ility in
1T  and 

never be preem d. Thus, 
1T -mesoid of

1

b

  are describe  as 

  }}8,7,6,,4,3,2,1{}{ 1,bb ML

d




 }}5,4,3,2,1],2[),1{{(}{

5{
:

1,
11

11
1 aa ML
        (5) 

Then, the inheritance phase and the FTR phase are 
conducted for task

2 . As
1T  and

2T  are 8 and 12 respectively, 

2H = LCM{8, 12} i  24.  inhe tance phase of 
2

s In ri  , as
2  = 

nd
2

2 a   = 3, we construct bL2
 composed of a se uenc of 

two 12 esoids by inheriting ime units of aL1
 three times as 

described above. Based on the mechanism, we have 

},{ 2,
2

1,
22 

bba MML

q e 

-m  t

}}9,8,7,6,5],2[),1(,4,3,2,1{

},6],2[),1(,5,4,3,2,1],2[),1{{(          (6) 

With the definition of cell, can also be written as  bL2
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}}}9,8,7,6,5{]2[],2[),1(},4,3,2,1{]1{[

}},6{]2[],2[),1(},5,4,3,2,1{]1[],2[),1{{(
2
2

2
2

1
2

1
2

2





aL

(7) 

We then perform FTR phase satisfying the security 
constraint and priority isolation. In FTR phase, we 
investigate each cell sequentially and see which case each 
job starting or resuming its execution is in among three FTR 
cases. According to the policy of FTR-FP for each case, 
time units of each cell are consumed by execution of each 
job and FTs. In detail, FTR phase is conducted by following 
policies: 
•A single job is released in a -mesoid; 

iT

•Consumptions of a job begin with the first availability in a 
cell; 

•Availabilities are consumed by executions of , FTs and 

CPU idle time by the policy of corresponding case that 
each job is in among three FTR cases until the job 
completes its execution. 

ij

Subsequent to the FTR phase of our schedulability 
analysis, ofbL2 2 becomes 

 
,1,2}}[2](1),[2],(1),,[2](2),{

[2],1},(1),,[2](3),[2],{{(1),2 
aL

          (8) 

New consumptions of jobs of
2  and consumed time units 

by FTs are underlined. The first job of  consumes three 

availabilities from the first availability to the third 
availability in , and then a FT follows as the job is in 

the FTR case (a). The second job of  is in the FTR case 

(b) first resulting in two consumptions and consumed time 
units by a FT, and then it is preempted. After preemption 
from a single consumption and a FT, it resumes its 
execution and it completes its execution producing a single 
consumption and a FT, which is in the FTR case (a). 

bL2

1,
2
bM

bL2

After the completion of both phases, the schedulability of 
the task

2  is verified as schedulabilities of all jobs in the 

hyper period  are tested. In the above example, 
2H 2  is 

schedulable since all jobs in complete its execution 

within its deadline . 
2H

2

Our schedulability analysis also can calculate the exact 
number of preemptions by counting preemption whenever a 
job  

D

ij

,
2
bM

does not complete its execution in a cell; it is in the 

FTR case (b). For example, the second job in  experiences 

a preemption by a FT following the job at the third time unit 
in , which is in the FTR case (b). Assuming that the 

cost of preemption denoted by  is 1, the resulted  is 

rewritten as 

bL2

2

pC bL2

}}[2],1(2),[2],(1),,[2](2),{

[2],1},(1),,[2](3),[2],{{(1),2 
bL

         (9) 

If the cost of preemption exceeds 2, the second job cannot 
be schedulable. 

 
Figure 3. Algorithm for Schedulability Analysis 

 
Figure 4. Algorithm for Inheritance phase( , ) a

iL 1
b
iL

 
Figure 5. Algorithm for FTR phase( , b

iL i ) 

Figure 3 presents the procedure of our schedulability 
analysis using functions of inheritance phase (Figure 4) and 
FTR phase (Figure 5) for n tasks in detail. Since both our 
schedulability analysis and existing one proposed in [33] are 
extended from the top-down based exact schedulability 
analysis introduced in [39], to consider a FT invocation, two 
approaches share the similar framework; they investigate 
what happens in the interval of hyperperiod at level i and 
inherits the schedules of higher priority tasks since they 
target FP scheduling in inheritance phase (Figures 3 and 4). 
However, our approach has the following two main 
advanced parts from the existing one: we support different 
flush task reservation mechanism preventing information 
leakages in both directions

H 
L and

L  H while the 

existing one is only applicable to
H 

L only, and we can 

calculate the preemption cost exactly by counting the 
number of preemption happened exactly, which are 
implemented in FTR phase (Figures 5). 
Since the highest priority task 

1  is never preempted, the 

loop starts from the index of the second priority task
2 as we 

conduct analysis towards lower priority task. The 
schedulability analysis for

i  has following steps: 
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(1) It first computes hyperperiod at level i and the number 
of instance within hyperperiod (Line 2 in Figure 3);  

(2) Then it builds -mesoid where all time units are 

available composing  (Lines 3-5 in Figure 3); 
iT

b
iL

(3) The sequence  is derived by inheriting  b
iL b

iL 1 i  times 

in inheritance phase (Line 6 in Figure 3); 
(4) It builds all cells based on the availabilities in  (Line 

7 in Figure 3); 

b
iL

(5) Then, availabilities in cells in  b
iL are filled with 

consumptions and FTs according to the policies of FTR 
cases (Lines 8-9 in Figure 3). In this step, schedulability 
of a job is tested; 

(6) It constructs  by duplicating  for the next task if 

any (Line 10 in Figure 3); and 

a
iL b

iL

(7) If all tasks satisfy the schedulability condition, then it 
concludes that the task set is schedulable (Line 13 in 
Figure 3). 

The detail procedures of inheritance phase and FTR phase 
are presented in Figure 4 and 5 respectively. In inheritance 
phase, the time units in  are filled with the time units in 

in a cyclic manner as we described previously (Lines 1-

5 in Figure 4). In FTR phase, one of the policies of three 
FTR cases is applied as many times as the number of cells in 

, for a job in L ; FTR cases (a), (b) and (c) are 

corresponding to Lines 4-7, 8-11 and 12-14 in Figure 5 
respectively. Note that preemption cost is added only in 
FTR case (b) where preemption occurs (Line 11 in Figure 5). 
If any job does not complete its execution even when all 
cells are consumed by executions, CPU idle time or FTs, 
then the job is unschedulable (Lines 16-17 in Figure 5) 
otherwise it is schedulable (Line 20 in Figure 5). 

b
iL

b
i

b
iL 1

xb
iM ,

V. EVALUATION 

In this section, we evaluate our analysis technique 
compared to the conventional approaches. We first illustrate 
the simulation environment of our evaluation, and then we 
discuss the simulation results of considered techniques. For 
the main metric of performance, we use the schedulability 
ratio defined as the number of task sets deemed schedulable 
by an analysis to the total number of generated task sets. 

A. Simulation environment 

We randomly generate task sets implemented by our own 
JAVA program, which are based on the task sets generation 
method used in [31-33]. Then, we investigate how many 
tasks are deemed schedulable by each considered 
schedulability analysis technique (also implemented by 
JAVA program). Note that as our interest is the 
schedulability ratio of each considered technique, the 
evaluation results are independent on our computing 
capability of simulation environment, e.g., CPU or memory; 
it only depends on the mathematical calculation of each 
considered schedulability analysis technique. The base 
utilization groups [0.02 + 0.1 · i, 0.08 + 0.1 · i] for i = 0, … , 
9, are generated, and each group has 200 task sets.  For 
example, the first group of base utilization has a range from 
0.02 to 0.08, and the last group has a range from 0.92 to 

0.98. Then, each base utilization group contains task sets 
whose total sum of task utilizations (i.e., sum of TiC /

i  of 

tasks in each task set) belonging to its range of base 
utilization. 

TABLE I. PARAMETERS FOR  EXPERIMENTS 
Parameter Value 

Number of task,  N N {3, 4, ···, 10} 

Task period,  
iT iT {50, 100, ···, 1000} 

Task execution time,  
iC iC {5, 6, ···, 50} 

FT overhead,  
ftC ftC {0, 1, ···, 10} 

 
 Table I describes the task parameters used for our 

evaluation. Each task set can contain at least 3 tasks and at 
most 10 tasks. Each task has a period {50, 100, ··· , 

1000} and an execution time {5, 6, ··· , 50}. The 

deadline of each task  is equal to its period. The values 

are based on actual resources in actual architecture (e.g. the 
core i7 or Tegra 3 device) as described in [33]. We generate 
2,000 task sets for each value of , and therefore, 20,000 

tasks sets are generated in total. 

iT

iC

ftC

iD

B. Simulation results 

For our evaluation, we consider RM for scheduling 
algorithm and RTA for schedulability analysis as techniques 
for comparison since those are the de facto standards 
techniques, which are the optimal preemptive FP scheduling 
and exact schedulability analysis on uni-processor. We also 
consider LSF schedulability analysis proposed in [33] for 
comparison to FTR-FP since, likewise our mechanism, it is 
also extends the schedulability analysis suggested in [39], 
and it supports LSF, one of the preemptive scheduling 
algorithms.  Following five schedulability analyses designed 
for FP preemptive scheduling algorithm on uniprocessor are 
considered: 
•RTA approach for preemptive RM scheduling algorithm 

not considering a security constraint (RM−RTA), 
•RTA approach with the obviously bounded number of FT 

invocations (the number of FT invocation is 2* +1, 

where  is the number of higher or equal priority 

jobs for each task

)(ihepN

)(ihepN

i ) for preemptive RM scheduling, 

proposed in [31-32] (RM−RTA−ob), 
•RTA approach for preemptive LSF scheduling algorithm 

not considering a security constraint (LSF-RTA), 
•LSF schedulability analysis exactly counting the 

maximum number of FT invocations proposed in [33] 
(LSF−FTR), and 

•the schedulability analysis introduced in Section 4 (RM-
FTR−FP). 
Note that RM-RTA and LSF-RTA do not consider a 

security constraint and the rest techniques consider the 
security constraint. RM-RTA-ob upper-bounds the 
maximum number of FTs, and LSF-FTR and RM-FTR-FP 
exactly count that. The performances of all techniques 
except RM-RTA-ob are corresponding to those of 
scheduling algorithms respectively since the techniques are 
the exact schedulability analyses providing exact 
predictability.  

We first investigate how performances of three RM 
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schedulability analyses change according to the varying 
value of FT overhead. Figure 6 shows the changing 
schedulable ratio of RM-FTR-FP compared to those of RM-
RTA and RM-RTA-ob with the varying value of overheads 
of FT ranging from 0 to 10. As shown in Figure 6, RM-RTA 
makes most task sets schedulable, and it is not affected by 
the varying value of FT overhead since it does not consider 
a security constraint. On the other hands, the schedulable 
ratio of RM-RTA-ob drops sharply due to its pessimistic 
bound on the maximum number of FT; it is below 50% for 
an FT overhead of 10. In the case of RM-FTR-FP that is the 
proposed technique in this paper, it maintains a high 
schedulable ratio in spite of the increasing value of FT 
overhead as it can calculates the exact number of FT; the 
ratio is approximately 79% even with an FT overhead of 10. 
Thus, Figure 6 demonstrates that our proposed technique 
can enhance security while reducing performance 
degradation.   

 
Figure 6. Schedulability ratio of three RM schedulability analyses 
according to varying value of FT overhead 

In our second simulation, we compare our technique (i.e. 
RM-FTR-FP) with two existing LSF schedulability analyses 
(i.e. LSF-RTA and LSF-FTR). As both LSF-FTR and RM-
FTR-FP are based on the schedulability analysis technique 
proposed in [39], initially designed to calculate the exact 
number of preemptions, both mechanisms are also capable 
to calculate the exact number of preemptions. However, due 
to the performance gap between LSF and RM scheduling 
algorithms, LSF-FTR shows limited analytic capability as 
LSF-FTR is for LSF scheduling algorithm whose 
performance is inferior to the performance of the RM 
scheduling algorithm. Figure 7 compares the schedulability 
ratio of three schedulability analyses: RM-FTR-FP, LSF-
RTA and LSF-FTR. As show in Figure 7, LSF-RTA shows 
constant performance in spite of varying values of FT 
overhead as it does not consider a security constraint. Even 
though RM-FTR-FP considers a security constraint, it 
outperforms LSF-RTA and LSF-FTR as it is based on RM 
scheduling algorithm.  

As shown in Figure 6 and 7 there is about 23% gap of 
schedulable ratio between RM-RTA and LSF-RTA. 
Although LSF-FTR shows similar performance degradation 
rate to RM-FTR-FP for increasing value of FT overhead, its 
schedulable ratio is limited to below that of LSF-RTA 
(about 76%). Therefore, as we made FTR to be applicable to 
any FP scheduling algorithm including RM that is the de 
facto standard FP scheduling algorithm in uni-processor, we 

significantly improved the performance of FTR compared to 
LSF-FTR; we improved the scheduability ratio by 23% 

for = 0 and 11% for = 10 respectively. ftC ftC

 
Figure 7. Schedulable ratio of proposed schedulability analysis compared to 
two LSF schedulability analyses 

As one of the major advantage of our schedulability 
analysis compared to the existing three techniques in [31-
33] is a capability to exactly calculate the number of 
preemption that occurs in the scheduling of preemptive 
scheduling algorithm. Note that although the schedulability 
analysis technique proposed in [33] has the similar 
framework of ours that is advantageous to calculate the 
number of preemptions, the method to calculate the 
preemption was not implemented in [33]. In following 
evaluation, we measure the average actual number of 
preemptions incurred by each task sets during 100,000 time 
units. Since existing three techniques are not capable to 
calculate the exact number of preemptions, we calculate the 
number of jobs actually released during scheduling as the 
upper-bound of the number of preemptions since the number 
of preemption is no larger than the number of jobs actually 
released in preemptive scheduling. As we considered RM 
scheduling algorithm for the comparison with techniques in 
[31-32] and LSF scheduling algorithm for the comparison 
with the technique in [33], in the previous two evaluation, 
we measures the number of jobs actually released and 
preemptions actually incurred during scheduling of RM and 
LSF. Table II present the average actual number of jobs 
released and preemptions incurred during 100,000 time units 
of the scheduling of RM and LSF. Note that two scheduling 
algorithms are based on the same set of tasks having the 
same take parameters, and therefore the average actual 
numbers of jobs actually released thereof during 100,000 
time units are the same, e.g., 1234.8.  As shown in Table II, 
two scheduling algorithm incurs similar number of 
preemptions; each average actual number of preemptions 
incurred during RM and LSF is 542.8 and 579.3 respectively. 
The ratio of jobs to preemptions of RM and LSF are 227.4% 
and 213.1% respectively. This indicates that our 
schedulability analysis can be performed much better than 
the existing three techniques when the cost of preemption 
increases.  

TABLE II. AVERAGE ACTUAL NUMBER OF JOBS AND PREEMPTIONS 

RELEASED AND INCURRED BY EACH TASK SETS DURING 100,000 TIME 

UNITS 
 jobs preemptions Jobs/preemptions 

RM 1234.8 542.8 227.4% 
LSF 1234.8 579.3 213.1% 
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VI. RELATED WORK 

Previous studies dealt with the security problem by 
combining the real-time requirement and security 
mechanisms. Xie and Lin considered periodic task 
scheduling requiring security service which has the varying 
overhead in relation to the level of service [40-41]. They 
extended the conventional scheduler to satisfy the real-time 
requirement and proposed new scheduler while maximizing 
the level of security service. On the other hand, we focused 
on a more concreate security problem, i.e., information 
leakage on shared resources and security solution, i.e., FT, 
and aimed at improving schedulability of FP scheduling 
while meeting security constraint that we defined in this 
paper.  

Some works have addressed the information leakage 
problem within real-time database systems with embedded 
security constraints [42-44]. Son [43] proposed transaction 
scheduling and a concurrency control algorithm satisfying 
security and real-time requirements. This work included 
definitions of metrics that will measure the extent to which 
the security requirements and the concurrency control 
algorithm are satisfied, allowing a trade-off between the 
security and real-time requirements [42]. Son [44] also 
proposed a concept of partial security to enable a trade-off 
between the two functions cited above. While these studies 
focused on the area of real-time database system, we aimed 
at developing new real-time scheduling algorithm and 
schedulability analysis thereof.  

There have been works that suggested architectural 
frameworks to solve problems of intrusion detection in real-
time or cyber physical systems [45-48]. The key idea is to 
develop hardware/software mechanisms using 
characteristics of real-time or cyber physical systems to 
protect against security vulnerabilities. While these studies 
aimed at detecting of intrusion in real-time systems, we 
focused on preventing information leakage on the shared 
resources. 

As a FT is invoked on the transition between executions 
of two jobs, the number of FT invocations interfering with a 
job under analysis is closely related to the number of 
preemptions occurring during the execution of a job. An 
existing work suggested a new schedulability analysis that 
can exactly count the number of preemptions for preemptive 
FP scheduling algorithms [39]. Thus, the previous work 
provided many hints regarding the computation of the 
precise number of FTs in schedulability analysis. However, 
the approach in [39] did not consider security constraint. 

The recent three works in [31-33] are most closely related 
to our study, which aim at preventing information leakage 
by conditionally cleansing the state of shared resource in 
real-time systems. The initial work [31] first proposed the 
pre-flush mechanism to invoke a FT, the following work 
[32] extended it to be applicable more general scheduling 
model, the latest one [33] proposed exact schedulability 
analysis that can calculate the exact number of FTs. 
However those studies are not capable to calculate the exact 
number of preemptions, and show limited analytical 
performance or applicability to a single direction of 
information leakage. 

VII. CONCLUSION 

In this paper, we defined a new security constraint to 
mitigate the possibility of information leakage arisen on 
real-time tasks sharing resources in real-time systems. We 
then proposed a new pre-flush mechanism referred to as 
FTR-FP relaxing the limitation of FTR [33] that its 
schedulability analysis is limited to LSF. We show that our 
techniques are applicable to all FP scheduling including RM 
which is the de facto scheduling algorithm on uni-processor. 
We also showed that FTR-FP invokes FT during the context 
switch in both directions of transition, 

H 
L and

L  H , 

as it meet security constraint that we defined, FR-FP 
enhances the system security relative to the conventional 
approaches [31], [33] that implement FT invocation at 
context switch time in a single direction, 

H 
L . 

Moreover, our schedulability analysis can calculate not 
only the exact number FTs hindering the execution of a job 
but also the exact number of preemptions while existing 
three studies [31-33] focused on bounding the maximum 
number of FTs only. Our experimental results showed that 
our mechanism maintains reasonable performance in terms 
of schedulability and preemption cost. 

For the future works, we would like to extend our 
approach into multi-processor platform. We are also 
planning to implement our scheduling algorithm 
incorporating FTR-FP and schedulability analysis 
techniques into real-time operating system and demonstrate 
how our approach is working well practically.   
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