
Time-Reversibility for Real-Time Scheduling
on Multiprocessor Systems

Jinkyu Lee,Member, IEEE

Abstract—The real-time systems community has widely studied real-time scheduling, focusing on how to guarantee schedulability

(i.e., timely execution) of a set of real-time tasks. However, there still exist a number of task sets that are actually schedulable by a

target scheduling algorithm, but proven schedulable by none of existing schedulability tests, especially on a multiprocessor. In this

paper, we propose a new paradigm for real-time scheduling, called time-reversibility, which views real-time scheduling under a change

in the sign of time, and present how to utilize the paradigm for schedulability improvement. To this end, we first define the notion of a

time-reversed scheduling algorithm and a time-reversible schedulability test; for example, the time-reversed scheduling algorithm

against Earliest Deadline First (EDF) is Latest Release-time First (LRF). Then, we develop time-reversibility theories for schedulability

improvement, which utilizes the definitions so as to compose schedulability. Finally, we generalize the definitions and theories to job-

level dynamic-priority scheduling in which the priority of a job may vary with time, such as Earliest Deadline first until Zero Laxity

(EDZL). Specifically, we accommodate time-varying job parameters to the time-reversibility definitions, and adapt the time-reversibility

theories for the additional necessary deadline-miss conditions specialized for a class of job-level dynamic-priority scheduling

algorithms. As case studies, we demonstrate that the time-reversibility theories help to find up to 13.6 percent additional EDF- and

EDZL-schedulable task sets.

Index Terms—Real-time scheduling, schedulability analysis, time-reversibility

Ç

1 INTRODUCTION

THE real-time systems community has addressed how to
guarantee timely execution of real-time tasks, by devel-

oping scheduling algorithms and their schedulability tests.
A scheduling algorithm decides the order of execution of
jobs periodically/sporadically invoked by a set of real-time
tasks, and its schedulability test judges whether all the jobs
scheduled by the algorithm finish their executions within
their deadlines.

Although multiprocessor systems have become popular
due to its potential for high performance at low cost, the
real-time scheduling theories for the systems have a long
way to go. For example, no exact (i.e., sufficient and neces-
sary) schedulability test that exhibits polynomial time-com-
plexity has been developed on a multiprocessor even for the
most popular preemptive scheduling algorithms: Earliest
Deadline First (EDF) and Rate Monotonic (RM) [1].1 Instead,
different sufficient schedulability tests have been devel-
oped, aiming at finding additional schedulable task sets
that are not deemed schedulable by any existing schedul-
ability tests. Although useful in covering additional task
sets, all the existing schedulability tests have shared the
common principle—investigating real-time scheduling as it
is in terms of a time order.

In this paper, we propose a new paradigm for real-time
scheduling, called time-reversibility, and exploit the paradigm
for schedulability improvement. Different from existing
studies that focus on scheduling of a series of jobs in a time-
ordered manner, we view real-time scheduling by tracing
back to time, i.e., under a change in the sign of time. To this
end, we construct a job J�qi that corresponds to a given job Jq

i

as follows: (i) J�qi ’s deadline is set to Jq
i ’s release time under

a change in the plus-minus sign, (ii) J�qi ’s release time is set

to Jq
i ’s deadline under a change in the sign, and (iii) the prior-

ity of J�qi is set to that of Jq
i . Fig. 1 shows an example; since

the release time and deadline of J2
i are 10 and 17, respec-

tively, the release time and deadline of J�2i are �17 and �10,
respectively. Then, for a given scheduling algorithm G that
prioritizes fJq

i g, a scheduling algorithm that prioritizes

fJ�qi g is said to be a time-reversed scheduling algorithm
againstG (denoted byG�). For example, since EDF gives the
highest priority to a job with the earliest deadline, a time-
reversed scheduling algorithm against EDF is Latest
Release-time First (LRF), which assigns the highest priority
to a jobwith the latest release time; the converse also holds.

For a connection between a time-reversed scheduling
algorithm against G (i.e., G�) and a schedulability test AG

for G, we define the notion of time-reversibility of AG with
respect to task-set-, task-, and execution-level schedulabil-
ity. For example, a schedulability test AG for a scheduling
algorithm G is said to be time-reversible with respect to task-
set-level schedulability, if all task sets deemed schedulable by
AG are also schedulable by G�. And, a schedulability test
for a scheduling algorithm G is said to be time-reversible with
respect to execution-level schedulability, if the following state-
ments holds: if the test guarantees that every job of a task
under G executes X time units between its release time and

1. There are some exact schedulability tests with exponential time-
complexity [2], [3].

� The author is with Department of Computer Science and Engineering, Sung-
kyunkwanUniversity, Republic of Korea. E-mail: jinkyu.lee@skku.edu.

Manuscript received 3 Sept. 2015; revised 18 Feb. 2016; accepted 19 Feb. 2016.
Date of publication 23 Feb. 2016; date of current version 14 Dec. 2016.
Recommended for acceptance by X. Wang.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2016.2533615

230 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 1, JANUARY 2017

1045-9219� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

the release time after ‘ time units, it is guaranteed that every
job of the task under G� executes X time units between its
deadline ahead of ‘ time units and the deadline (see Fig. 2).
As an example, we focus on EDF and its time-reversed
scheduling algorithm LRF, and prove that Response-Time
Analysis (RTA) and Deadline Analysis (DA) for EDF (devel-
oped in [4], [5]) and those for LRF (developed in this paper)
are time-reversible with respect to all the three levels of
schedulability.

To utilize the notion of time-reversibility for schedulabil-
ity improvement, we can exploit the time-reversibility defi-
nition as it is. That is, provided that a schedulability test AG

ofG is time-reversible with respect to task-set-level schedul-
ability, all task sets deemed schedulable by AG are actually
schedulable by G�, potentially finding additional task sets
schedulable by G�. For example, we show that RTA for LRF
(developed in this paper) finds additional EDF-schedulable
task sets that are not deemed schedulable by any existing
EDF schedulability tests.

Beyond simple application of the time-reversibility defini-
tions, we further improve schedulability by composing schedul-
ability using the notion of time-reversibility with respect to
task- and execution-level schedulability. For example, a task’
schedulability under G� can be composed by two schedul-
ability tests: (i) the first some execution directly guaranteed by
a schedulability test for G�, and (ii) the remaining execution
indirectly guaranteed by an execution-level time-reversible
schedulability test for G. As a case study, we demonstrate
that a collaboration between RTA for EDF and RTA for LRF
results in covering additional EDF-schedulable task sets,
which are not deemed schedulable by any single schedulabil-
ity tests including themselves.

While the above time-reversibility definitions and theo-
ries are confined to job-level fixed-priority scheduling, we
want to make them applicable even to job-level dynamic-
priority scheduling in which a priority of the same job may
vary with time. To this end, we generalize the time-revers-
ibility definitions by accommodating time-varying job
parameters. Then, we target a class of job-level dynamic-
priority scheduling algorithms called ZL-based (zero-laxity)
scheduling algorithms [6], which give the highest priority to
jobs with the zero-laxity state, where a laxity of a job at an
instant is defined as the difference between the time to its
deadline and the remaining execution at the instant. The

ZL-based scheduling algorithms have an additional neces-
sary deadline-miss condition; for a deadline miss, there
should be at least mþ 1 tasks that are capable of reaching
the zero-laxity state, where m is the number of processors.
By accommodating the necessary deadline-miss condition,
we adapt the time-reversibility theories for ZL-based sched-
uling algorithms, and demonstrate the application to a pop-
ular ZL-based scheduling algorithm Earliest Deadline first
until Zero Laxity (EDZL) [7], which gives the highest-prior-
ity to zero-laxity jobs and schedules other jobs by EDF.

We then demonstrate via extensive simulation that our
new EDF schedulability test derived from the time-revers-
ibility theories can find up to 13.6 percent additional EDF-
schedulable task sets that are not covered by the best exist-
ing EDF schedulability test on a multiprocessor platform.
We also show that our new EDZL schedulability test covers
additional EDZL-schedulable task sets.

In summary, this paper makes the following
contributions:

� Proposal of the new paradigm for real-time schedul-
ing, called time-reversibility.

� Establishment of the theoretical foundation of time-
reversibility for schedulability improvement.

� Application of the time-reversibility theories to a
popular scheduling algorithm EDF, demonstrating
the effectiveness of the notion in improving
schedulability.

� Generalization of the time-reversibility definitions
for job-level dynamic-priority scheduling and adap-
tation of the time-reversibility theories for EDZL,
demonstrating their wide applicability.

� Substantiation of quantitative schedulability imp-
rovement through extensive simulation.

The rest of this paper is structured as follows. Section 2
describes our systems model and notations. Section 3 gives
formal definitions of time-reversibility of a schedulability
test, and performs case studies for EDF and LRF schedulabil-
ity tests. Section 4 develops time-reversibility theories
towards schedulability improvement, and applies the theo-
ries to EDF schedulability tests. Section 5 generalizes the
time-reversibility definitions and theories to job-level
dynamic-priority scheduling, with a case study for EDZL.
Section 6 evaluates the new schedulability tests developed in
this paper, in terms of schedulability improvement and time-
complexity. Finally, this paper concludes with Section 7.

2 SYSTEM MODEL AND NOTATIONS

We consider a task set t consisting of jtj sporadic real-time
tasks tiðTi; Ci;DiÞ, where Ti is the minimum separation,Ci is
the worst-case execution time, and Di is the relative dead-
line [8]. We focus on implicit- and constrained-deadline
tasks, which satisfy Di ¼ Ti and Di � Ti, respectively. For
convenience’ sake, we assume a quantum-based time with
the quantum length equal to one time unit, without loss of
generality. All task parameters aremultiples of the quantum.

A task ti invokes a series of sporadic jobs, each separated
from its predecessor by at least Ti time units. Each job of ti,
once released, should finish its execution within Di time
units. The qth job of ti is denoted by Jq

i , and the release

Fig. 1. Time-reversibility for real-time scheduling: jobs under a schedul-
ing algorithm G and the corresponding jobs under its time-reversed
scheduling algorithmG�.

LEE: TIME-REVERSIBILITY FOR REAL-TIME SCHEDULING ON MULTIPROCESSOR SYSTEMS 231

time and deadline of Jq
i are denoted by rqi and dqi , respec-

tively (where dqi ¼ rqi þDi).
In this paper, we consider a multiprocessor computing

platform consisting ofm identical processors, where m is an
integer value. For the ease of presentation, we will not spec-
ify the computing platform when no ambiguity arises in the
rest of the paper.

When it comes to scheduling algorithms, this paper focuses
on scheduling algorithms that are global, preemptive, and work-
conserving. That is, a job can execute at any core (global); a
higher-priority job can preempt a lower-priority job at any
time (preemptive); and no processor can be left idle as long as
there is an unfinished job in the system (work-conserving).

A schedulability test AG for a target scheduling algo-
rithm G judges schedulability of a task or a task set under
G, defined as follows. A task tk 2 t is said to be schedulable
by G, if no job invoked by tk triggers the first deadline miss
when t with any legal job arrival sequence is scheduled by
G [9]. Also, t is said to be schedulable by G, if every task tk
belonging to t is schedulable by G.

3 TIME-REVERSIBILITY DEFINITIONS

As a first step to exploit the notion of time-reversibility
towards schedulability improvement, this section presents
time-reversibility definitions for real-time scheduling. To
this end, this section introduces the notion of a time-reversed
scheduling algorithm. Followed by the notion, the section gives
a formal definition of a time-reversible schedulability test, with
respect to three different levels of schedulability. Finally, the
section checks time-reversibility of (i) existing schedulability
tests for EDF and (ii) newly-developed ones for LRF (i.e., a
time-reversed scheduling algorithm against EDF).

3.1 Definition of a Time-Reversed Scheduling
Algorithm

Suppose that a series of jobs invoked by t (denoted by
fJq

i gti2t) is executed by a scheduling algorithm G. We now

look at fJq
i gti2tunder a change in the sign of time. To this end,

we synthesize another series of jobs (denoted by fJ�qi gti2t),
which is a one-to-one mapping of fJq

i gti2t as follows.

R1. The release time of J�qi (i.e., r�qi) is set to �dqi , and the
deadline of J�qi (i.e., d�qi) is set to �rqi ; recall that dqi
and rqi denote the deadline and the release time of

Jq
i , respectively.

R2. Theworst-case execution time of J�qi is set to that of Jq
i .

R3. The priority of J�qi is set to that of Jq
i .

For example, since the release time of J2
i in Fig. 1 is

r2i ¼ 10, the deadline of J�2i (corresponding to J2
i)

is d�2i ¼ �10. Likewise, provided that the deadline of J2
i in

the same figure is d2i ¼ 17, the release time of J�2i is

r�2i ¼ �17.
Note that fJ�qi gti2t is also an instance of a series of jobs

invoked by t in that it conforms with all the task parame-
ters of t. We also note that R1-R3 provide mapping of static
job-parameters only (e.g., the release time, the deadline
and the worst-case execution time of a job), which are com-
ponents of job-level fixed-priority scheduling algorithms in
which the priority of a job cannot change over time.

Section 5 will generalize them for job-level dynamic-
priority scheduling algorithms.

If we pay attention to two corresponding job-level fixed-
priority scheduling algorithms that prioritize fJq

i gti2t and
fJ�qi gti2t, respectively, there is a relationship between the

two, defined as follows.

Definition 1. Suppose that for a given fJq
i gti2t which is priori-

tized by a job-level fixed-priority scheduling algorithm G,
fJ�qi gti2t is generated according to R1-R3. Then, we can derive

a corresponding scheduling algorithm G�, such that G�

directly assigns job priorities to fJ�qi gti2t . A scheduling algo-

rithm G� is said to be a time-reversed scheduling algo-
rithm against G.

Here we present two examples of G� for a given G.

Example 3.1. Since Jq
i ’s deadline matches J�qi ’s release time

under a change in the plus-minus sign, scheduling of
fJq

i gti2t by EDF (that gives the highest priority to a job

with the earliest deadline) corresponds to that of fJ�qi gti2t
by a scheduling algorithm that gives the highest priority
to a job with the latest release time, which is called Latest
Release-time First. In other words, LRF is a time-
reversed scheduling algorithm against EDF (denoted by
LRF ¼ EDF�). Similarly, EDF ¼ LRF� holds.

Example 3.2. Scheduling of fJq
i gti2t by RM corresponds that

of fJ�qi gti2t by the same scheduling algorithm RMbecause

the priority of a job does not depend on its release time and
deadline. In other words, RM ¼ RM� holds. The same
relationship holds for DeadlineMonotonic (DM) [10].

3.2 Definition of a Time-Reversible Schedulability
Test

Since we are interested in schedulability guarantees, we
need to establish a relationship between a schedulability
test AG for a scheduling algorithm G and its time-reversed
scheduling algorithm G� in terms of schedulability. Based
on the notion of a time-reversed scheduling algorithm, we
provide formal definitions of a time-reversible schedulabil-
ity test as for three different levels of schedulability,
recorded in the following definition.

Definition 2. A schedulability test AG for a scheduling algorithm
G is said to be time-reversible with respect to

� task-set-level schedulability, if the following state-
ment holds for every t:
- if t is deemed schedulable by AG, t is also

schedulable by G�;
� task-level schedulability: if the following statement

holds for every ti 2 t:
- if ti 2 t is deemed schedulable by AG, ti 2 t is

also schedulable by G�; and
� execution-level schedulability, if the following state-

ment holds for every ti 2 t, C0i 2 ½0; Ci�, and
‘ 2 ½0; Di�:
- if AG guarantees that the amount of execution

of every job of tk 2 t under G (denoted by Jq
k)

performed in ½rqk; rqk þ ‘Þ is C0k, that of every job

of tk 2 t underG� (denoted by J�qk) performed

232 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 1, JANUARY 2017

in ½d�qk � ‘; d�qk Þ is equal to either (a) at leastC0k if
the amount of the remaining execution of J�qk at

d�qk � ‘ is no smaller than C0k or (b) the amount

of the remaining execution of J�qk at d�qk � ‘

otherwise.

Fig. 2 illustrates time-reversibility of a schedulability test
with respect to execution-level schedulability.

Then, there exist relationships between the above time-
reversibility definitions, as stated in the following lemma.

Lemma 1. The following inclusive relationship holds among the
three time-reversibility definitions of a schedulability test AG

for a scheduling algorithm G.

I1. If AG is time-reversible with respect to task-level sched-
ulability, then it is also time-reversible with respect to
task-set-level schedulability.

I2. If AG is time-reversible with respect to execution-level
schedulability, then it is also time-reversible with
respect to task- and task-set-level schedulability.

Proof. By the definition of the schedulability of a task and a
task set in Section 2, I1 holds immediately.

If we substitute C0i with Ci and ‘ with Di, the time-
reversibility definition with respect to execution-level
schedulability is equivalent to that with respect to task-
level schedulability. Then, by I1, the remaining part of I2
holds. tu

3.3 Time-Reversibility of EDF Schedulability Tests

This section discovers time-reversibility of existing EDF
schedulability tests. To this end, we first recapitulate popu-
lar schedulability test frameworks for EDF, and then prove
their time-reversibility.

In order to judge whether every job invoked by a set of
real-time tasks finishes its execution within its deadline,
many schedulability test frameworks have been developed.
Among the frameworks, Response-Time Analysis [4] and
Deadline Analysis [5], [11] have been popular due to their
applicability and schedulability performance.

RTA focuses on a job of interest of tk (called Jq
k) and cal-

culates the length of cumulative intervals in ½rqk; rqk þ ‘Þ such
that jobs of ti execute while Jq

k cannot, where 0 < ‘ � Dk.

This is called interference of ti on tk in an interval
½rqk; rqk þ ‘Þ, and denoted by Ik iðrqk; rqk þ ‘Þ. Since a job can-

not execute in a time slot only when other m higher-priority

jobs execute, 1
m

P
ti2t�ftkg Ik iðrqk; rqk þ ‘Þ represents the

length of cumulative intervals in ½rqk; rqk þ ‘Þ such that Jq
k can-

not execute due to other jobs’ execution. Therefore, if the
value is no larger than ‘� Ck, the job Jq

k finishes its full exe-

cution (as much as Ck) at or before rqk þ ‘. Using the notion

of interference, RTA judges the schedulability of a task as
follows.

Lemma 2 (RTA: Theorem 3 in [4]). A task tk 2 t is schedu-
lable, if every job Jq

k invoked by tk satisfies Eq. (1) for some
Ck � ‘ � Dk:

Ck þ
�
1

m

X

ti2t�ftkg
min

�
Ik iðrqk; rqk þ ‘Þ; ‘� Ck þ 1

��
� ‘:

(1)

Proof. Here, we summarize the proof in [4]. Since a job can-
not execute in a time slot only when other m higher-

priority jobs execute, X ¼def: Ck þ b 1m
P

ti2t�ftkg Ik iðrqk;
rqk þ ‘Þc represents the duration between Jq

k ’s release and

finishing time. By the definition of Ik iðrqk; rqk þ ‘Þ, if

Ik iðrqk; rqk þ ‘Þ > ‘� Ck þ 1 holds for some ti, J
q
k cannot

finish its execution in ½rqk; rqk þ ‘Þ. Therefore, the following

relation holds: if X is strictly larger than ‘, the LHS is
also strictly larger than ‘. By the contraposition, the
lemma holds. tu
We will present how to find such ‘ later in this section.
Different from RTA, DA focuses only on ‘ ¼ Dk, as

recorded in the following lemma.

Lemma 3 (DA: Theorem 5 in [11]). A task tk 2 t is schedu-
lable, if every job Jq

k invoked by tk satisfies Eq. (1) for ‘ ¼ Dk.

Proof. Since the lemma is a special case of Lemma 2, the
lemma holds. tu
Since Ik iðrqk; rqk þ ‘Þ in Eq. (1) is algorithm-dependent,

the main issue to develop RTA and DA for a target schedul-
ing algorithm is to derive a tight upper-bound of
Ik iðrqk; rqk þ ‘Þ. Existing studies calculate two upper-bounds

of the interference: the one commonly applied to any work-
conserving scheduling algorithm and the other specialized
for the target scheduling algorithm.

Since the amount of interference of ti on tk in an interval
is upper-bounded by that of executions of jobs of ti in the
interval, existing studies found when the amount of execu-
tions of jobs of ti is maximized in a given interval. That is,
the first job of ti in the interval executes as late as possible
and other jobs in the interval execute as early as possible;
also, the interval starts when the first job starts its execution
as shown in Fig. 3a. In this situation, the number of jobs of
ti executed in the interval except the last job, denoted by
Nið‘; SiÞ, is calculated as follows [4]:

Nið‘; SiÞ ¼
�
‘þDi � Ci � Si

Ti

�
; (2)

where Si denotes a lower-bound of the interval between a
completion time and deadline of every job invoked by ti,
called slack value. In other words, every job Jq

i of ti finishes

Fig. 2. Time-reversibility of a schedulability test with respect to execution-
level schedulability.

LEE: TIME-REVERSIBILITY FOR REAL-TIME SCHEDULING ON MULTIPROCESSOR SYSTEMS 233

its execution until dqi � Si, and therefore does not execute

in ½dqi � Si; d
q
i Þ.

For instance, Nið‘; SiÞ ¼ 2 holds in Fig. 3a, and those
Nið‘; SiÞ jobs of ti fully execute in the interval of length ‘,
contributing to Nið‘; SiÞ � Ci. Considering the contribution
of the last job, the amount of maximum execution of jobs of
ti in an interval of length ‘ can be calculated by Wið‘; SiÞ as
follows [4]:

Wið‘; SiÞ ¼
Nið‘; SiÞ � Ci þmin

�
Ci; ‘þDi � Ci � Si �Nið‘; SiÞ � Ti

�
;

(3)

which is an upper-bound of Ik iðrqk; rqk þ ‘Þ for any work-
conserving scheduling algorithm.

On the other hand, if we focus on an interval ½rqk; rqk þDkÞ
between a release time and deadline of Jq

k of tk, we can

derive another upper-bound of Ik iðrqk; rqk þDkÞ tailored to

EDF. Under EDF, a job Jp
i can interfere with another job Jq

k

only when the deadline of Jp
i is no later than that of Jp

k .

Therefore, Ik iðrqk; rqk þDkÞ under EDF is maximized when

the deadline of a job of ti is aligned to the end of the inter-
val, and all jobs of ti execute as late as possible as shown in
Fig. 3b. This is calculated by EiðDk; SiÞ [4], where

Eið‘; SiÞ ¼
�
‘

Ti

�
� Ci þmax

�
0;min

�
Ci; ‘�

�
‘

Ti

�
� Ti � Si

��
:

(4)

Finally, by taking the minimum of the two upper-
bounds, RTA for EDF uses the following upper-bound of
interference Ik iðrqk; rqk þ ‘Þ,

Ik iðrqk; rqk þ ‘Þ under EDF with slack reclamation

� min
�
Wið‘; SiÞ; EiðDk; SiÞ

�
:

(5)

Then, RTA for EDF works as follows [4]. For each task
tk 2 t, Eq. (1) with applying Eq. (5) is investigated with the
initial value ‘ ¼ Ck. If the inequality holds, the task is
deemed schedulable. Otherwise, RTA for EDF resets ‘ to the
previous value of the LHS of the inequality, until the
inequality holds (schedulable task) or ‘ > Dk (unschedu-
lable task). If a task tk is deemed schedulable, the value of ‘
that satisfies the inequality is an upper-bound of the
response time of tk (denoted by Rk).

In this process, RTA for EDF exploits slack values Si as
follows. Initially, every Si in the LHS of Eq. (5) is set to
zero, and every task’s response time is calculated. Then,
we reset every schedulable task’s slack (i.e., Si) to Di �Ri

(if positive) and repeat to calculate every task’s response
time, until all tasks are deemed schedulable (schedulable
task set) or there is no slack value update (unschedulable
task set). This schedulability test is called RTA for EDF with
slack reclamation.

On the other hand, we skip the repetition for slack recla-
mation, by statically setting all slack values to zero as
recorded in Eq. (6). This schedulability test is called RTA for
EDF without slack reclamation

Ik iðrqk; rqk þ ‘Þ under EDF without slack reclamation

� min
�
Wið‘; 0Þ; EiðDk; 0Þ

�
:

(6)

Similar to RTA for EDF, DA for EDF employs Eqs. (5)
and (6) for ‘ ¼ Dk, yielding two different schedulability
tests with/without slack reclamation [11]. Here, the slack
value Si is calculated by the difference between Dk and the
LHS of Eq. (1), if Eq. (1) holds for ‘ ¼ Dk (otherwise 0) [11].

From now on, we investigate time-reversibility of RTA
and DA for EDF, starting from RTA for EDF without slack
reclamation, as stated in the following lemma.

Lemma 4. RTA for EDF without slack reclamation (i.e., Lemma 2
with applying Eq. (6)) is time-reversible with respect to execu-
tion-, task-, and task-set-level schedulability.

Proof. By Lemma 1, it suffices to prove the lemma for execu-
tion-level schedulability. Suppose that RTA for EDF
without slack reclamation guarantees that X amount of
execution is performed between each job’s release time
and the time after ‘ time units (i.e., ½rqk; rqk þ ‘Þ). Then, we

prove that X amount of execution is performed between
each job’s deadline ahead of ‘ time units and the deadline
(i.e., ½dqk � ‘; dqkÞ) under LRF.

Under LRF, a job of ti can interfere with another job Jq
k

only when the release time of the job of ti is no earlier
than Jq

k . Therefore, the amount of interference of jobs of

ti on Jq
k is maximized when the release time of the first

job of ti is aligned with that of Jq
k . Then, the scenario that

yields the maximum interference under LRF shown in
Fig. 5 is vertically symmetrical to the scenario of
EiðDk; 0Þ in Fig. 3b, where ½dqk �Dk; d

q
kÞ in Fig. 3b corre-

sponds to ½rqk; rqk þDkÞ in Fig. 5. This means, jobs of ti
under LRF interfere with Jq

k during at most EiðDk; 0Þ. We

also directly prove this upper-bound as follows. First, we

Fig. 3. Upper-bounds of interference Ik iðrqk; rqk þ ‘Þ: Wið‘; SiÞ under any
work-conserving scheduling algorithm and EiðDk; SiÞ under EDF.

234 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 1, JANUARY 2017

can calculate the number of jobs of ti that contribute the
full execution in ½rqk; rqk þDkÞ in Fig. 5, (i.e., the first two

jobs in the figure), which is
�Dk

Ti

	
. Second, the contribu-

tion of the last job of ti in ½rqk; rqk þDkÞ is

minðCi;Dk �
�Dk

Ti

	 � TiÞ (i.e., the third job in Fig. 5). There-

fore, the total interference of jobs of ti to Jq
k is upper-

bounded by EiðDk; 0Þ, which proves the lemma. tu
Different from RTA for EDF without slack reclamation,

that with slack reclamation (i.e., Lemma 2 with applying
Eq. (5)) is not time-reversible with respect to even task-set-
level schedulability, as demonstrated in the following
counter example.

Example 3.3. Suppose that t ¼ ft1ð4; 3; 4Þ ¼ t2; t3ð40; 3; 40Þg
is scheduled by EDF on two processors. Then, t is
deemed schedulable by RTA for EDF with slack reclama-
tion. However t is indeed not schedulable by LRF (i.e.,
time-reversed scheduling algorithm against EDF). This is
because, if t1 and t2 invoke their jobs at t ¼ 0 and t3
invokes its job at t ¼ 1, one of the jobs of either t1 or t2
misses its deadline since the job of t3 has a higher prior-
ity under LRF, as shown in Fig. 4.

We can explain non-time-reversibility of RTA for EDF
with slack reclamation as follows. Since the slack implies
that a job of interest Jq

i cannot execute just before its dead-
line under a scheduling algorithm G, it implies that the cor-
responding job J�qi cannot execute right after its release
time under G�, which does not necessarily hold under G�.
For example, a slack of Jq

i under EDF matches no execution

right after J�qi ’s release time under LRF; however, LRF itself
does not prevent a job’s execution right after its release time.

Similar to Lemma 4, DA for EDF without slack reclama-
tion (i.e., Lemma 3 with applying Eq. (6)) is time-reversible
with respect to task- and task-set-level schedulability. This
is because, DA for EDF is a special case of RTA for EDF (i.e.,
applying ‘ ¼ Dk). Note that DA for EDF with slack reclama-
tion (i.e., Lemma 3 with applying Eq. (5)) is not time-revers-
ible with respect to even task-set-level schedulability.

3.4 Time-Reversibility of New LRF Schedulability
Tests

While the previous section focuses on EDF, this section
investigates time-reversibility of schedulability tests for LRF
(i.e., a time-reversed scheduling algorithm against EDF).
Since no schedulability test for LRF exists so far, we first
develop new LRF schedulability tests, and then investigate

time-reversibility of the LRF tests. These LRF schedulability
tests become a basis for improving EDF schedulability using
time-reversibility theories to be presented in Section 4.

Under LRF, a job Jp
i can interfere with another job Jq

k

only when the release time of Jp
i is no earlier than that of Jq

k .

Therefore, Ik iðrqk; rqk þ ‘Þ is maximized when the interval of
interest begins at the release time of the first job of ti in the
interval and all jobs of ti in the interval execute as early as
possible, as shown in Fig. 5. Then, the amount of maximum
interference of jobs of ti on Jq

k in ½rqk; rqk þ ‘Þ is calculated by

Lið‘Þ as follows:

Lið‘Þ ¼
�
‘

Ti

�
� Ci þmin

�
Ci; ‘�

�
‘

Ti

�
� Ti

�
: (7)

Combined with the upper-bound of interference under
any work-conserving scheduling algorithm Wið‘; SiÞ, the
interference of ti on tk under LRF is upper-bounded as fol-
lows:

Ik iðrqk; rqk þ ‘Þ under LRF � min
�
Wið‘; SiÞ; Lið‘Þ

�

¼ Lið‘Þ:
(8)

Note that since Lið‘Þ does not depend on Si, we have
only one RTA for LRF (without slack reclamation), which is
Lemma 2 with applying Eq. (8). When it comes to DA, DA
for LRF employs Eq. (8) for ‘ ¼ Dk, i.e., Lemma 3 with
applying Eq. (8).

Then, RTA for LRF is time-reversible as recorded in the
following lemma.

Lemma 5. RTA for LRF (i.e., Lemma 2 with applying Eq. (8)) is
time-reversible with respect to execution-, task-, and task-set-
level schedulability.

Proof. By Lemma 1, it suffices to prove the lemma for execu-
tion-level schedulability. We prove that Lið‘Þ is no larger
than the amount of time in ½dqk � ‘; dqkÞ jobs of ti can inter-

fere with Jq
k when the scheduling algorithm is EDF.

Then, it holds that any job of tk under EDF does not miss
its deadline as long as RTA for LRF guarantees the sched-
ulability of tk.

By definition, Lið‘Þ in Eq. (7) is equal to Eið‘Þ with
Si ¼ 0 in Eq. (4). Since Eið‘Þ with Si ¼ 0 is an upper-
bound of the amount of interference of jobs of ti on Jq

k in

½dqk � ‘; dqkÞ under EDF, the lemma holds. tu
Since DA for LRF (i.e., Lemma 3 with applying Eq. (8)) is

also a special case of RTA for LRF (i.e., applying ‘ ¼ Dk),

Fig. 5. An upper-bound of interference Ik iðrqk; rqk þ ‘Þ under LRF: Lið‘Þ.
Fig. 4. A counter example of time-reversibility of RTA for EDF with slack
reclamation: t ¼ ft1ð4; 3; 4Þ ¼ t2; t3ð40; 3; 40Þg on two processors.

LEE: TIME-REVERSIBILITY FOR REAL-TIME SCHEDULING ON MULTIPROCESSOR SYSTEMS 235

DA for LRF is also time-reversible with respect to task- and
task-set-level schedulability.

4 TIME-REVERSIBILITY THEORIES FOR

SCHEDULABILITY IMPROVEMENT

While the previous section introduces formal definitions of
time-reversibility of a schedulability test and discovers
time-reversible schedulability tests, we need to utilize the
notion of time-reversibility for schedulability improvement.
To this end, this section presents how to improve schedul-
ability using the time-reversibility definition as it is. Then,
the section develops ways to compose schedulability by uti-
lizing the definitions.

4.1 Schedulability Improvement Using
Time-Reversibility Definition as It Is

For schedulability improvement, we directly use Defini-
tion 2, as stated in the following theorem.

Theorem 1. Suppose that a schedulability test AG for a schedul-
ing algorithm G is time-reversible with respect to task-set-level
schedulability. Then, if AG deems a task set t schedulable by
G, t is schedulable by G�.

Proof. According to Definition 2, the theorem immediately
holds. tu
Although straightforward, Theorem 1 can be useful in

finding additional task sets schedulable byG�, which are not
deemed schedulable by any existing schedulability test for
G�. Here are two examples that demonstrate usefulness of
the theorem in discovering additional schedulable task sets.

Example 4.1. Suppose that t ¼ ft1ð3; 1; 3Þ; t2 ¼ t3 ¼ t4 ¼
ð2; 1; 2Þg is scheduled by EDF on a two-processor plat-
form. Then, while t is not deemed schedulable by any
single existing EDF schedulability test in a survey [12],
RTA for LRF (i.e., Lemma 2 with applying Eq. (8)) guar-
antees the task set’s schedulability under EDF due to its
time-reversibility proved in Lemma 5.

Example 4.2. Suppose that t ¼ ft1ð2; 1; 2Þ ¼ t2 ¼ t3g is
scheduled by LRF on a two-processor platform. Then, t
is deemed schedulable by RTA for EDF without slack
reclamation (i.e., Lemma 2 with applying Eq. (6)); by
time-reversibility proved in Lemma 4, RTA for EDF with-
out slack reclamation guarantees the task set’s schedul-
ability under LRF.

To the best knowledge of the author, no schedulability
test specialized for LRF has been developed. Therefore,
the best existing schedulability test to be applied to LRF
is the state-of-the-art schedulability test for any work-
conserving (WC) scheduling algorithm, which is RTA for
WC with slack reclamation (i.e., Lemma 2 with applying
Ik iðrqk; rqk þ ‘Þ �Wið‘; SiÞ). However, RTA for WC with
slack reclamation does not deem t schedulable.

4.2 Schedulability Composition Using
Time-Reversibility

While we can immediately improve schedulability using
the definition of time-reversibility with respect to task-set-
level schedulability as it is, we can compose schedulability
using time-reversibility regarding task- and execution-level

schedulability. The following theorem presents schedul-
ability composition2 using time-reversibility as for task-
level schedulability.

Theorem 2. Suppose that there exist two schedulability tests, one
for a scheduling algorithmG and the other for its time-reversed
scheduling algorithm G� (denoted by AG and BG� , respec-
tively), and AG is time-reversible with respect to task-level
schedulability. Then, a task set t is schedulable by G�, if
every task tk 2 t is deemed schedulable by either AG or BG� .

Proof. By Definition 2, all tasks deemed schedulable by
AG are also schedulable by G�. Therefore, the theorem
holds. tu
Beyond composition of task-set-level schedulability from

individual task-level schedulability, we can compose task-
level schedulability from the time-reversibility with respect
to execution-level schedulability, as recorded in the follow-
ing theorem.

Theorem 3. Suppose that there exist two schedulability tests, one
for a scheduling algorithmG and the other for its time-reversed
scheduling algorithm G� (denoted by AG and BG� , respec-
tively), andAG is time-reversible with respect to execution-
level schedulability. Then, a task tk 2 t is schedulable, if there
exist C0k 2 ½0; Ck� and ‘ 2 ½0; Dk� such that AG guarantees that
every job of tk 2 t under G (denoted by Jq

k) finishes its execu-
tion at least as much as C0k in ½rqk; rqk þ ‘Þ and BG� guarantees
that every job of tk 2 t under G� (denoted by J�qk) finishes its

execution at least as much asCk � C0k in ½r�qk ; d�qk � ‘Þ.
Proof. By Definition 2, AG guarantees that every job of ti

under G� (denoted by J�qi) finishes its execution at least

as much as C0i in ½d�qi � ‘; d�qi Þ (or the amount of the

remaining execution at d�qi � ‘ if it is less than C0i). Since
BG� guarantees Ci � C0i amount of execution of J�qi in

½r�qi ; d�qi � ‘Þ, we can guarantee that the full execution of

J�qi is finished in ½r�qi ; d�qi Þ. tu
Fig. 6 illustrates an example of Theorem 3. Suppose that a

time-reversible schedulability test AG guarantees three time
units execution of Jq

i in ½rqi ; rqi þ 5Þ under G and another
schedulability test BG� guarantees five time units execution

Fig. 6. Schedulability composition using time-reversibility with respect to
execution-level schedulability (Theorem 3).

2. The concept of schedulability composition has been introduced in
[9].

236 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 1, JANUARY 2017

of J�qi in ½r�qi ; d�qi � 5Þ under G�. Then, we can guarantee

eight time units execution of J�qi in ½r�qi ; d�qi): the first five
units execution by BG� and the next three units execution
by a time-reversible schedulability test AG.

One may wonder how we can find a proper C0i that
yields schedulability guarantee, efficiently. Although we
do not have any optimal way, the time-complexity is not
critical because of two reasons. First, since we are usually
interested in offline schedulability guarantee, we can test
all possible integer C0i in ½1; Ci�, whose time-complexity
will be discussed in Section 6. Second, if time-complexity
really matters, we can test only some of candidates, e.g.,
C0i 2 f0:1 � Ci; 0:2 � Ci; . . . ; Cig, which does not compromise
correctness; instead, the more candidates to be tested, the
higher probability to find C0i that yields schedulability
guarantee.

While Theorem 3 has enormous potential in improving
schedulability, the theorem does not exploit slack reclama-
tion for the time-reversed scheduling algorithm. For exam-
ple, if we use RTA for LRF (i.e., Lemma 2 with applying
Eq. (8)) to guarantee schedulability for EDF, we cannot uti-
lize the slack value under EDF. This is because, Eq. (8) cannot
accommodate the slack value under EDF. This potentially
loses the chance of deriving a tighter schedulability test by
slack reclamation. To this end, we need to accommodate the
slack value under a time-reversed scheduling algorithm.

Let S�i denote the reversed slack value; a job Jq
i does not

executes S�i amount of time from its release time as shown

in Fig. 7 (shown in the upper figure). Then, Ik iðrqk; rqk þ ‘Þ
under LRF when Jq

i does not execute S�i amount of time
from its release, is calculated by Lið‘; S�i Þ as follows:

Lið‘; S�i Þ ¼
�
‘

Ti

�
� Ci þmax

�
0;min

�
Ci; ‘�

�
‘

Ti

�
� Ti � S�i

��
:

(9)

By definition, Lið‘; S�i Þ can be an upper-bound of
Ik iðrqk; rqk þ ‘Þ under LRF only when jobs of ti do not execute

S�i amount of time from their release. Therefore, Lið‘; S�i Þ
cannot be an upper-bound of Ik iðrqk; rqk þ ‘Þ under vanilla

LRF, because LRF does not restrict the execution from each

job’s release time. Instead, we can use Lið‘; S�i Þ for EDF.

That is, Lið‘; SiÞ can be an upper-bound of Ik iðdqk � ‘; dqkÞ
under EDF when Si is the slack value of jobs of ti under
EDF; note that the interval of interest for EDF is ½dqk � ‘; dqkÞ,
not ½rqk; rqk þ ‘Þ. This is because, Ik iðrqk; rqk þ ‘Þ under LRF

with S�i (shown in the upper figure of Fig. 7) corresponds to

Ik iðdqk � ‘; dqkÞ under EDF with Si (shown in the lower

figure). Therefore, Ik iðdqk � ‘; dqkÞ under EDF is upper-

bounded as follows:

Ik iðdqk � ‘; dqkÞ under EDF � min
�
Wið‘; SiÞ; Lið‘; SiÞ

�

¼ Lið‘; SiÞ:
(10)

Applying the above inequality to Theorem 3, we can
develop an EDF schedulability test as follows.

Lemma 6. A task set t is schedulable by EDF, if for every tk 2 t,
there exist C0k 2 ½0; Ck� and ‘ 2 ½0; Dk� such that the following
two inequalities hold:

Ck � C0k þ�
1

m

X

ti2t�ftkg
min

�
Wið‘; SiÞ; EiðDk; SiÞ; ‘� ðCk � C0kÞ þ 1

��
� ‘;

(11)

C0kþ�
1

m

X

ti2t�ftkg
min

�
LiðDk � ‘; SiÞ; ðDk � ‘Þ � C0k þ 1

��
� Dk � ‘:

(12)

Proof. We divide the interval of interest ½rqk; dqkÞ of length Dk

into two: ½rqk; rqk þ ‘Þ and ½rqk þ ‘; dqkÞ. Then, we prove that

(a) Ck � C0k amount of execution is performed in the for-
mer interval, and (b) C0k amount of execution is per-
formed in the latter interval.

Case (a): A job cannot execute only when there are
other m jobs whose priorities are higher than the job of
interest. Therefore, from Eq. (1), we guarantee Ck � C0k
amount of execution performed in ½rqk; rqk þ ‘Þ of length ‘,

if the following inequality holds:

Ck � C0k þ
�
1

m

X

ti2t�ftkg
Ik iðrqk; rqk þ ‘Þ; ‘� ðCk � C0kÞ þ 1

��
� ‘:

Since Ik iðrqk; rqk þ ‘Þ � min
�
Wið‘; SiÞ; EiðDk; SiÞ

�
holds

under EDF (from Eq. (5)), Eq. (11) implies that we can
guarantee Ck � C0k amount of execution performed in

½rqk; rqk þ ‘Þ.
Case (b): Similar to Eq. (1), we also guarantee C0k

amount of execution performed in ½rqk þ ‘; dqkÞ of length

Dk � ‘, if the following inequality holds:

C0k þ
�
1

m

X

ti2t�ftkg
min

�
Ik iðrqk þ ‘; dqkÞ; ðDk � ‘Þ � C0k þ 1

��
:

� Dk � ‘:

Since Ik iðrqk þ ‘; dqkÞ � LiðDk � ‘; SiÞ holds under EDF
(from Eq. (10)), Eq. (12) implies that we can guarantee C0k
amount of execution performed in ½rqk þ ‘; dqkÞ.

Fig. 7. An upper-bound of interference Ik iðdqk � ‘; dqkÞ under EDF:
Lið‘; SiÞ.

LEE: TIME-REVERSIBILITY FOR REAL-TIME SCHEDULING ON MULTIPROCESSOR SYSTEMS 237

The lemma holds by Cases (a) and (b). tu
Section 6 will demonstrate via simulation that Lemma 6

is effective in finding additional EDF-schedulable task sets.
The section will also discuss time-complexity of Lemma 6.

5 GENERALIZATION OF TIME-REVERSIBILITY FOR

JOB-LEVEL DYNAMIC-PRIORITY SCHEDULING

In the previous sections, we gave formal definitions of time-
reversibility and developed theories thereof for schedulabil-
ity improvement. However, the definitions cannot accom-
modate dynamic job-parameters that vary with time such as
the time to deadline and the remaining execution time at an
arbitrary time instant. In this section, we generalize the defi-
nitions of time-reversibility for job-level dynamic-priority
scheduling. Then, we perform cases studies—investigating
time-reversibility of schedulability tests for a job-level
dynamic-priority scheduling algorithm and adapting the
time-reversibility theories to the tests.

5.1 Generalization of Time-Reversibility Definitions

For job-level dynamic-priority scheduling under which a
job priority may vary with time, we need to address
dynamic job-parameters such as the time to deadline and
the remaining execution time at an arbitrary instant. To this
end, we investigate and generalize R1–R3 in Section 3 so as
to accommodate dynamic job-parameters.

If we focus on R1, it matches the job release time and
deadline only. Beyond matching the simple parameters, we
need to map every instant within an interval between the
release time and deadline of each job as follows:

R01. A time instant�rqi þ a (0 � a � Di) for J
�q
i ismapped

to dqi � a for Jq
i .

For example, since t ¼ 6 of J1
i in Fig. 8 is expressed by

d1i � a ¼ 15� 9, t ¼ 6 of J1
i is mapped to t ¼ �r1i þ a ¼

�15þ 9 ¼ �6 of J�1i . Similarly, t ¼ 10 of J1
i is mapped to

t ¼ �10 of J�1i .

To address dynamic states of each job regarding the
remaining/performed execution, R02 should be generalized
as follows.

R02. The worst-case execution time of J�qi is set to that of
Jq
i . And, the amount of remaining execution (likewise

performed execution) at �rqi þ a (0 � a � Di) for J
�q
i

is mapped to the amount of performed execution
(likewise remaining execution) at dqi � a for Jq

i .
For example, the amount of performed execution of J1

i at

t ¼ 6 (three units in Fig. 8) in Fig. 8 is mapped to the

amount of remaining execution of J�1i at t ¼ �6 (three

units in the figure).

Finally, the priority of a job should be expressed for an
arbitrary instant as follows:

R03. The priority of J�qi at �rqi þ a (0 � a � Di) is set to
that of Jq

i at d
q
i � a.

Similar to Definition 1, we can define a time-reversed
scheduling algorithm using R01–R

0
3 as follows.

Definition 3. Suppose that for a given fJq
i gti2t which is priori-

tized by a scheduling algorithm G, fJ�qi gti2t is generated

according to R01-R
0
3. Then, we can derive a corresponding

scheduling algorithm G�, such that G� directly assigns job
priorities to fJ�qi gti2t. A scheduling algorithm G� is said to

be a time-reversed scheduling algorithm against G.

While Definition 1 is valid only for job-level fixed-prior-
ity scheduling algorithms, Definition 3 can accommodate
both job-level fixed-priority and job-level dynamic-priority
scheduling algorithms. In order words, Definition 3 is a
generalization of Definition 1 as follows. First, if we
apply a to 0 and Di, R

0
1 is equivalent to R1. Second, R

0
2

literally subsumes R2. Finally, since the priority of a job
under any job-level fixed-priority scheduling does not
change over time, R03 subsumes R3.

Among job-level dynamic-priority scheduling algo-
rithms, many of them (e.g., EDZL [7], RMZL [13],
DMZL [13], and LLF [14]) prioritize jobs using a notion
of laxity. The laxity of a job at a time instant is defined
as the difference between the time to its deadline and
the remaining execution of the job at the instant. By R01
and R02, the time to the deadline of Jq

i matches the time

from the release time of J�qi , and the remaining execu-

tion at a ahead of the deadline of Jq
i maps to the per-

formed execution at a after the release time of J�qi .
Therefore, we can define reversed-laxity under a schedul-
ing algorithm as opposed to laxity under its time-
reversed scheduling algorithm as follows. The reversed-
laxity of a job at a time instant is defined as the differ-
ence between the time from its release time and the per-
formed execution at the instant. For example, while the

laxity of J�1i at t ¼ �6 in Fig. 8 is 6 (time to the deadline)
�3 (the remaining execution) = 3, the reversed-laxity of

J1
i at t ¼ 6 in the figure is 6 (time from the release time)
�3 (the performed execution) = 3.

Now, we present two examples of time-reversed sched-
uling algorithms of job-level dynamic-priority scheduling
algorithms.

Example 5.1. Since Jq
i ’s laxity matches J�qi ’s reversed-laxity,

scheduling of fJq
i gti2t by the zero-laxity policy (that

gives the highest priority to a job with the zero-laxity state)
corresponds to that of fJ�qi gti2t by a scheduling policy

that gives the highest priority to a job with the zero-
reversed-laxity state. Therefore, Earliest Deadline first until

Fig. 8. Time-reversibility for job-level dynamic-priority scheduling: map-
ping an arbitrary instant with remaining/performed execution.

238 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 1, JANUARY 2017

Zero-Laxity that gives the highest priority to a job with
the zero-laxity state and schedules other jobs by EDF cor-
responds to LRZRL (Latest Release-time first until Zero-
Reversed-Laxity) that gives the highest priority to a job
with the zero-reversed-laxity state and schedules other
jobs by LRF. In other words, LRZRL is a time-reversed
scheduling algorithm against EDZL (denoted by
LRZRL ¼ EDZL�). Similarly, EDZL ¼ LRZRL� holds.

Example 5.2. Since RM ¼ RM� holds and the zero-laxity
policy matches the zero-reversed-laxity policy, schedul-
ing of fJq

i gti2t by Rate Monotonic until Zero Laxity

(RMZL) corresponds that of fJ�qi gti2t by the scheduling

algorithm Rate Monotonic until Zero Reversed-Laxity
(RMZRL). In other words, RMZL ¼ RMZRL� and
RMZRL ¼ RMZL� hold. Similarly, the same relationship
holds for Deadline Monotonic until Zero Reversed-Lax-
ity and Deadline Monotonic until Zero Reversed-Laxity
(DMZRL).

Once we find a time-reversed job-level dynamic-priority
scheduling algorithm, we can apply Definition 2 to a sched-
ulability test for a job-level dynamic-priority scheduling
algorithm. In the next sections, we investigate time-revers-
ibility of schedulability tests for EDZL and its time-reversed
scheduling algorithm LRZRL, and demonstrate how to
adapt time-reversibility theories for EDZL schedulability
improvement.

5.2 EDZL and LRZRL Schedulability Tests

Earliest Deadline first until Zero Laxity deploys the zero-
laxity policy on top of EDF. Different from EDF, EDZL
exhibits an additional necessary deadline-miss condition,
which potentially makes its schedulability tighter. In this
section, we develop RTA for EDZL that employs the neces-
sary deadline-miss condition tailored to EDZL, and then
develop RTA for LRZRL (i.e., a time-reversed scheduling
algorithm against EDZL) and show its time-reversibility.

The first step to derive RTA for EDZL is to derive an
upper-bound of Ik iðrqk; rqk þ ‘Þ under EDZL, which was
derived from existing DA for EDZL [15]. That is, a job Jp

i

can interfere with another job Jq
k only when (i) the deadline

of Jp
i is no later than that of Jq

k or (ii) Jq
i has the zero laxity.

The former was already addressed by EiðDk; SiÞ in Eq. (4)
as EDF interference upper-bound. Even under the latter sit-
uation, a tighter upper-bound of interference is still
EiðDk; SiÞ as explained in [15]. Therefore, we use the same
upper-bound as EDF, i.e., Eqs. (5) and (6) for EDZL with
and without slack reclamation, respectively.

Using the above upper-bounds, Lemmas 2 and 3 can
guarantee the schedulability of a task set, by checking
whether a task’s jobs can trigger the first deadline miss. In
addition, the zero-laxity-based scheduling algorithm that
gives the highest priority to zero-laxity jobs has an addi-
tional necessary deadline miss condition. That is, a deadline
miss occurs only when there are at most mþ 1 jobs with the
zero-laxity state under any zero-laxity-based scheduling
algorithm [6]. While the condition was incorporated into
DA [6], [15], it has not been into RTA. Now we develop a
way to check the capability for a task to reach the zero-laxity
state, to be incorporated into RTA for EDZL.

Lemma 7 (Implicitly presented in [15]). Suppose that t is
scheduled by a zero-laxity-based scheduling algorithm that
gives the highest-priority to zero-laxity jobs. A task tk 2 t can-
not reach the zero-laxity state, if its slack value Sk is positive.

Proof. By the definition, the slack value Sk means a lower-
bound of the interval between a completion time and
deadline of every job invoked by tk. Therefore, a positive
slack Sk implies that tk cannot reach the laxity smaller
than Sk, which proves the lemma. tu
Using Lemma 7, RTA for EDZL with/without slack rec-

lamation operates as follows. Initial procedures are the
same as those for RTA for EDF. After checking all tasks’
schedulability by calculating their response times, we deem
the task set schedulable if either all tasks are deemed sched-
ulable (the same condition as RTA for EDF) or there are at
most m tasks whose slack values are not positive by
Lemma 7 (i.e., whose response times are strictly smaller
than their relative deadlines).

When it comes to LRZRL, a time-reversed scheduling
algorithm against EDZL, it gives the highest priority to
zero-revered-laxity jobs and prioritizes other jobs by LRF.
To develop RTA for LRZRL, we need to calculate an upper-
bound of interference. Since a job Jp

i can interfere with
another job Jq

k only when (i) the release time of Jp
i is no ear-

lier than that of Jq
k or (ii) Jp

i has the zero-reversed-laxity.

The former situation is the same as LRF, and therefore the
interference is upper-bounded by Lið‘Þ as presented in
Eq. (8). For the latter, we need to figure out the condition for
a job to have the zero-reversed-laxity. By definition, a job Jp

i

has the zero reversed-laxity at t, only when it performs its
execution during ½rpi ; tÞ. Therefore, if we shift the release
times of jobs of ti earlier than the situation that yields Lið‘Þ
in Fig. 5, the first job should continue to perform its execu-
tion from its release time. This yields exclusion of some exe-
cution of the first job from the interference, and therefore
the shift does not increase the interference. Therefore, under
LRZRL, an upper-bound of Ik iðrqk; rqk þ ‘Þ is still Lið‘Þ.

Thus, RTA for LRZRL is the same as RTA for LRF (i.e.,
Lemma 2 with applying Eq. (8)). This implies that RTA for
LRZRL is also time-reversiblewith respect to execution-, task-
and task-set-level schedulability aswe proved in Lemma 5.

5.3 EDZL Schedulability Improvement Using
Time-Reversibility

In this section, we show how to compose schedulability from
a schedulability test for EDZL and a time-reversible schedul-
ability test for LRZRL. In order to utilize EDZL’s own neces-
sary deadline-miss conditions related to zero-laxity tasks,
we need to develop a way to compose a guarantee for every
job of a task not to reach the zero-laxity state, which is differ-
ent from Theorem 3 that composes a guarantee for every job
of a task to finish its executionwithin its deadline.

To this end, we apply a simple necessary condition for a
job not to reach the zero-laxity state: a job Jq

k cannot reach
the zero laxity if it finishes its execution at or before dqk � 1.

That is, as long as Jq
k finishes its execution before dqk � 1, the

job’s laxity at any instant in ½rk; dk � 1� is at least one
(because the time to deadline is always strictly larger than
the remaining execution).

LEE: TIME-REVERSIBILITY FOR REAL-TIME SCHEDULING ON MULTIPROCESSOR SYSTEMS 239

In order to adapt Theorem 3 so as to check each task’s
capability in reaching the zero-laxity state, we need to
upper-bound Ik iðdqk � ‘; dqk � 1Þ under EDZL. To utilize
existing results of RTA for LRZRL, we first upper-bound
Ik iðdqk � ‘; dqkÞ under EDZL. As wementioned in Section 5.2,

a job Jp
i can interfere with another job Jq

k under EDZL only

when (i) the deadline of Jp
i is no later than that of Jq

k or (ii)

Jq
i has the zero laxity. The interference upper-bound for

Case (i) was already addressed by Lið‘; SiÞ in Eq. (10) as
EDF interference upper-bound, and that for Case (ii) is also
Lið‘; SiÞ in that shifting the release pattern later than Fig. 7
(shown in the lower figure) cannot increase the amount of
interference. Therefore, Ik iðdqk � ‘; dqkÞ under EDZL is

upper-bounded as follows:

Ik iðdqk � ‘; dqkÞ under EDZL � min
�
Wið‘; SiÞ; Lið‘; SiÞ

�

¼ Lið‘; SiÞ:
(13)

Using the above inequality, Ik iðdqk � ‘; dqk � 1Þ can be
upper-bounded as follows:

Ik iðdqk � ‘; dqk � 1Þ under EDZL

�min
�
‘� 1; Ik iðdqk � ‘; dqkÞ under EDZL

�

�minð‘� 1; Lið‘; SiÞÞ:
(14)

Note that ‘� 1 comes from the fact that Ik iðt0; t1Þ under
any scheduling algorithm is upper-bounded by the interval
length t1 � t0.

Incorporating Eq. (14) to the necessary deadline-miss
condition for EDZL, we can develop an improved EDZL
schedulability test as follows.

Lemma 8. A task set t is schedulable by EDZL, if at least one of
the two following conditions holds:

� For every tk 2 t, there exists C0k 2 ½0; Ck� and
‘ 2 ½0; Dk� such that Eqs. (11) and (12) hold; or

� For at most jtj �m tasks tk 2 t, there exist
C0k 2 ½0; Ck� and ‘ 2 ½0; Dk � 1� such that Eqs. (11)
and (15) hold, where

C0k þ
�
1

m

X

ti2t�ftkg
min

�
LiðDk � ‘; SiÞ; ðDk � 1� ‘Þ � C0k þ 1

��

� Dk � 1� ‘:

(15)

Proof. Since all task sets schedulable by EDF are also sched-
ulable by EDZL [6], the first condition holds (which is
the same as Lemma 6).

The second condition addresses the necessary dead-
line-miss condition for EDZL: a deadline miss occurs
only when there exist at least mþ 1 tasks which can
reach the zero-laxity. Therefore, the remaining step is to
prove that if there exist C0k 2 ½0; Ck� and ‘ 2 ½0; Dk � 1�
such that Eqs. (11) and (15) hold, tk cannot reach the
zero-laxity state.

Then, the remaining proof is similar to that of
Lemma 6, as follows. We divide the interval of interest
½rqk; dqk � 1Þ of length Dk � 1 into two: ½rqk; rqk þ ‘Þ and

½rqk þ ‘; dqk � 1Þ. Then, we prove that (a) Ck � C0k amount

of execution is performed in the former interval (length
‘), and (b) C0k amount of execution is performed in the lat-
ter interval (length Dk � 1� ‘). Since Case (a) is the same
as that of Lemma 6, here we cover Case (b) only.

Case (b): By applying Eq. (1), we can guarantee C0k
amount of execution performed in ½rqk þ ‘; dqk � 1Þ of

lengthDk � 1� ‘, if the following inequality holds:

C0k þ
�
1

m

X

ti2t�ftkg
min

�
Ik iðrqk þ ‘; dqkÞ; ðDk � 1� ‘Þ � C0k þ 1

��

� Dk � 1� ‘:

Since
Ik iðrqk þ ‘; dqk � 1Þ � minðDk � 1� ‘; LiðDk � ‘; SiÞÞ
holds under EDZL (from Eq. (14)), Eq. (15) implies that
we can guarantee C0k amount of execution performed in

½rqk þ ‘; dqk � 1Þ.
This completes the proof. tu

6 EVALUATION

In this section, we evaluate the schedulability tests derived
from the notion of time-reversibility. For quantitative sched-
ulability improvement, we generate a number of task sets,
and check that each task set is deemed schedulable by exist-
ing schedulability tests as well as the new ones derived in
this paper. Then, we compare time-complexity of the sched-
ulability tests.

Schedulability tests to be evaluated. This section focuses on
the following six schedulability tests.

� RTAEDF: RTA for EDF with slack reclamation, which
is the state-of-the-art EDF schedulability test, i.e.,
Lemma 2 with applying Eq. (5) in this paper,

� TREDF: Lemma 6 developed in this paper, which is
an EDF schedulability test derived from the time-
reversibility theories,

� RTAEDZL: RTA for EDZL with slack reclamation,
which is the state-of-the-art EDZL schedulability
test, presented Section 5.2 in this paper,3

� TREDZL: Lemma 8 developed in this paper, which is
an EDZL schedulability test derived from the time-
reversibility theories,

� RTAWC: RTA for any work-conserving scheduling
algorithm with slack reclamation, which is the state-
of-the-art schedulability test for any work-conserv-
ing scheduling algorithm, i.e., Lemma 2 with apply-
ing Ik iðrqk; rqk þ ‘Þ �Wið‘; SiÞ in this paper, and

� RTALRF: Lemma 2 with applying Eq. (8) developed
in this paper, which is an LRF schedulability test
developed in this paper. Note that RTALRF is the
same as RTA for LRZRL, as mentioned in Section 5.2.

Note that it is known that all task sets deemed schedu-
lable by DA are also deemed schedulable by the corre-
sponding RTA [12]; for example, every task set deemed

3. Since no one developed RTA for EDZL, RTA for EDZL is our con-
tribution. However, for fair comparison, we choose RTA for EDZL with
slack reclamation as a base schedulability test, which dominates exist-
ing DA for EDZL with slack reclamation.

240 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 1, JANUARY 2017

schedulable by DA for EDF with slack reclamation is also
deemed schedulable by RTA for EDF with slack reclama-
tion. Therefore, this section presents the best schedulability
performance—that of RTAs, not DAs. We also note that
since there was no LRF (as well as LRZRL) schedulability
test so far, RTAWC is the state-of-the-art LRF (as well as
LRZRL) schedulability test.

Task set generation. To demonstrate the effectiveness of
time-reversibility in improving schedulability, we generate
real-time task sets based on a popular technique [16], used
in many multiprocessor scheduling papers such as [11],
[17]. We consider three task parameters: (a) the number of
processors m (2, 4, 8 or 16), (b) the type of tasks in each task
set (constrained deadline: Di � Ti or implicit deadline:
Di ¼ Ti), and (c) task utilization (Ci=Ti) distribution of indi-
vidual tasks (bimodal with parameter: 0.1, 0.3, 0.5, 0.7 or 0.9,
or exponential with parameter: 0.1, 0.3, 0.5, 0.7 or 0.9),
detailed in [17]. For each task, Ti is uniformly chosen in
½1;1;000�, Ci is chosen based on the bimodal or exponential
parameter, and Di is uniformly selected in ½Ci; Ti� for con-
strained-deadline tasks or is equal to Ti for implicit-dead-
line tasks. To meet the quantum length requirement, we set
all task parameters to the closest integer values.

For each combination of (a), (b) and (c), we repeat the fol-
lowing steps, and generate 100,000 task sets. As a result,
1,000,000 task sets are generated, for given m (i.e., the num-
ber of processors) and the type of tasks in each task set (i.e.,
either implicit- or constrained-deadline task).

1) We generate a set of mþ 1 tasks, because a task set
withm or less tasks is trivially schedulable.

2) We check whether the generated task set can pass an
exact feasibility condition (i.e.,

P
t2t Ci=Ti � m) [18]

for implicit-deadline task sets and a necessary feasi-
bility condition in [19] for constrained-deadline ones.

3) If it fails to pass the feasibility test, we discard the gen-
erated set and return to Step 1). Otherwise, we include

this set for evaluation. This valid task set serves as a
basis for the next new set; we add a new task into the
valid task set, and return to Step 2) with this new set.

Schedulability improvement. In Tables 1 and 2, we present
the number of schedulable task sets by the six schedulability
tests and the ratio between the corresponding schedulability
tests, on 2, 4, 8 and 16 processors. In particular, Tables 1 and
2 deal with constrained- and implicit-deadline task sets,
respectively.

If we compare RTAEDF with TREDF, TREDF covers up to
13.6 percent additional EDF-schedulability task sets, and
the largest improvement is achieved for constrained-
deadline task sets on m ¼ 16. The improvement ratio
increases as m increases, and the improvement for con-
strained-deadline task sets is larger than that for implicit-
deadline task sets. To show the schedulability improvement
according to task set utilization (i.e.,

P
ti2t Ci=Ti), we draw

Figs. 9a and 9b for the case of constrained-deadline tasks on
m ¼ 16. The X-axis and Y-axis of the figures represent task
set utilization and the ratio of schedulable task sets. While
Fig. 9a illustrates all range of task set utilization, Fig. 9b
focuses on task set utilization between 3:0 and 7:0, where
the improvement is significant. As seen in the figures, the
improvement is highlighted when task set utilization is
between 3.0 and 7.0. This is because task sets with low (like-
wise high) utilization is inherently easy (likewise difficult) to
schedule, yielding small room for further improvement. In
the supplement, we show more graphs with different m
and task type (i.e., implicit- and constrained-deadline task),
which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/2533615.

When it comes to EDZL schedulability improvement,
TREDZL yields up to 1.4 percent schedulability improvement
compared to RTAEDZL. The amount of schedulability
improvement for EDZL is less significant than that for EDF.
This is because, RTAEDZL utilizes the necessary deadline-
miss condition specialized for EDZL effectively, and

TABLE 1
The Number of Constrained-deadline Task Sets Proven Schedulable by RTAEDF, TREDF, RTAEDZL, TREDZL, RTAWC, and RTALRF

The number of
schedulable task sets Ratio

The number of
schedulable task sets Ratio

The number of
schedulable task sets Ratio

m RTAEDF TREDF
TREDF
RTAEDF

RTAEDZL TREDZL
TREDZL
RTAEDZL

RTAWC RTALRF
RTALRF
RTAWC

2 342,813 351,966 102.7% 552,968 556,911 100.7% 91,000 97,687 107.3%
4 197,068 207,454 105.3% 417,651 420,494 100.7% 43,903 45,909 104.6%
8 119,199 130,188 109.2% 350,361 352,152 100.5% 20,282 20,850 102.8%
16 74,741 84,891 113.6% 317,569 318,600 100.3% 9,006 9,176 101.9%

TABLE 2
The Number of Implicit-deadline Task Sets Proven Schedulable by RTAEDF, TREDF, RTAEDZL, TREDZL, RTAWC, and RTALRF

The number of sched-
ulable task sets

Ratio
The number of sched-

ulable task sets
Ratio

The number of
schedulable task sets

Ratio

m RTAEDF TREDF
TREDF
RTAEDF

RTAEDZL TREDZL
TREDZL
RTAEDZL

RTAWC RTALRF
RTALRF
RTAWC

2 469,330 483,458 103.0% 613,284 621,851 101.4% 176,238 208,941 118.6%
4 327,386 339,693 103.8% 500,895 505,713 101.0% 103,320 113,717 110.1%
8 238,768 253,407 106.1% 445,316 448,277 100.7% 58,553 62,076 106.0%
16 176,414 192,963 109.4% 418,609 420,378 100.4% 32,373 33,680 104.0%

LEE: TIME-REVERSIBILITY FOR REAL-TIME SCHEDULING ON MULTIPROCESSOR SYSTEMS 241

therefore the test is already tight enough, yielding small
room for further improvement. However, the notion of
time-reversibility can result in schedulability improvement
even for EDZL, in spite of small quantity.

RTALRF, the first schedulability test tailored to LRF,
significantly improves the state-of-the-art schedulability
test, RTAWC. For example, if we focus on implicit-deadline
tasks onm ¼ 2, there is 18.6 percent schedulability improve-
ment. Similar to Figs. 9a and 9b, we draw Figs. 10a and 10b
for the case of constrained-deadline tasks on m ¼ 2. The fig-
ures show that schedulability improvement stands out
when task set utilization is in ½0:7; 1:5Þ, as task sets with
middle utilization have much room for further improve-
ment, compared to those with low and high utilization.

Time-complexity. One may wonder additional time-com-
plexity incurred by the notion of time-reversibility, but it
depends on schedulability tests that the notion is applied
to. Therefore, we compare time-complexity of TREDF and
TREDZL, with corresponding existing schedulability tests.
For time-complexity, it is known that RTA without and

with slack reclamation requires O
�
n2 �maxti2tDi

�

and O
�
n3 � ðmaxti2tDiÞ2

�
computations, respectively [4].

The former includes RTALRF, and the latter includes
RTAEDF, RTAEDZL, and RTAWC. When it comes to TREDF

and TREDZL, they requires Ci þ 1 values to be checked for

each task’s C0i, yielding O
�
n3 � ðmaxti2tDiÞ2 �maxti2tCi

�

time-complexity. Considering these schedulability tests are
usually designed for offline schedulability guarantees, all
the schedulability tests derived in this paper RTALRF,
TREDF and TREDZL are practical in terms of time-
complexity.

7 CONCLUSION

In this paper, we proposed a new paradigm for real-time
scheduling, called time-reversibility, and demonstrated
how to exploit the paradigm for schedulability improve-
ment. We also showed wide applicability of time-reversibil-
ity; it can be applied to not only simple scheduling
algorithms such as EDF, but also job-level dynamic-priority
scheduling algorithms such as EDZL.

While the target system model was limited to preemptive
scheduling algorithms and sequential tasks, we believe that
the notion of time-reversibility can be applied to more gen-
eral system models. In the future, we would like to study
how to adapt time-reversibility for other system models,
such as non-preemptive scheduling algorithm, parallel
tasks [20], mixed-criticality tasks [21], and end-to-end peri-
odic tasks [22].

ACKNOWLEDGMENTS

An earlier (shorter) version of this paper was presented
at the IEEE RTSS 2014 [23]. This research was supported

Fig. 9. The ratio of schedulable constrained-deadline task sets by TREDF and RTAEDF whenm ¼ 16.

Fig. 10. The ratio of schedulable implicit-deadline task sets by RTALRF and RTAWC whenm ¼ 2.

242 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 1, JANUARY 2017

by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the
Ministry of Science, ICT & Future Planning (NRF-
2014R1A1A1035827).

REFERENCES

[1] C. Liu and J. Layland, “Scheduling algorithms for multi-program-
ming in a hard-real-time environment,” J. ACM, vol. 20, no. 1,
pp. 46–61, 1973.

[2] T. P. Baker and M. Cirinei, “Brute-force determination of multi-
processor schedulability for sets of sporadic hard-deadline tasks,”
in Proc. 11th Int. Conf. Principles Distrib. Syst., 2007, pp. 62–75.

[3] V. Bonifaci and A. Marchetti-Spaccamela, “Feasibility analysis of
sporadic real-time multiprocessor task systems,” Algorithmica,
vol. 63, no. 4, pp. 763–780, 2012.

[4] M. Bertogna and M. Cirinei, “Response-time analysis for globally
scheduled symmetric multiprocessor platforms,” in Proc. IEEE
Real-Time Syst. Symp., 2007, pp. 149–160.

[5] M. Bertogna, M. Cirinei, and G. Lipari, “Improved schedulability
analysis of EDF on multiprocessor platforms,” in Proc. Euromicro
Conf. Real-Time Syst., 2005, pp. 209–218.

[6] J. Lee, A. Easwaran, I. Shin, and I. Lee, “Zero-laxity based real-
time multiprocessor scheduling,” J. Syst. Softw., vol. 84, no. 12,
pp. 2324–2333, 2011.

[7] S. Cho, S.-K. Lee, S. Ahn, and K.-J. Lin, “Efficient real-time sched-
uling algorithms for multiprocessor systems,” IEICE Trans. Com-
mun., vol. E85–B, no. 12, pp. 2859–2867, 2002.

[8] A. Mok, “Fundamental design problems of distributed systems
for the hard-real-time environment,” Ph.D. dissertation, Massa-
chusetts Inst. Technol., Cambridge, MA, USA, 1983.

[9] J. Lee, K. G. Shin, I. Shin, and A. Easwaran, “Composition of
schedulability analyses for real-time multiprocessor systems,”
IEEE Trans. Comput., vol. 64, no. 4, pp. 941–954, Apr. 2015.

[10] J. Leung and J. Whitehead, “On the complexity of fixed-priority
scheduling of periodic real-time tasks,” Perform. Eval., vol. 2,
pp. 237–250, 1982.

[11] M. Bertogna, M. Cirinei, and G. Lipari, “Schedulability analysis of
global scheduling algorithms on multiprocessor platforms,” IEEE
Trans. Parallel Distrib. Syst., vol. 20, no. 4, pp. 553–566, Apr. 2009.

[12] M. Bertogna and S. Baruah, “Tests for global EDF schedulability
analysis,” J. Syst. Archit., vol. 57, no. 5, pp. 487–497, 2011.

[13] R. I. Davis and A. Burns, “FPZL schedulability analysis,” in Proc.
IEEE Real-Time Tech. Appl. Symp., 2011, pp. 245–256.

[14] J. Y.-T. Leung, “A new algorithm for scheduling periodic, real-
time tasks,” Algorithmica, vol. 4, pp. 209–219, 1989.

[15] T. P. Baker, M. Cirinei, andM. Bertogna, “EDZL scheduling analy-
sis,” Real-Time Syst., vol. 40, pp. 264–289, 2008.

[16] T. P. Baker, “Comparison of empirical success rates of global vs.
partitioned fixed-priority EDF scheduling for hard real-time,”
Dept Comput. Sci., Florida State Univ., Tallahassee, FL, USA,
Tech. Rep. TR–050601, 2005.

[17] J. Lee, A. Easwaran, and I. Shin, “Laxity dynamics and LLF sched-
ulability analysis on multiprocessor platforms,” Real-Time Syst.,
vol. 48, no. 6, pp. 716–749, 2012.

[18] S. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel,
“Proportionate progress: A notion of fairness in resource
allocation,” Algorithmica, vol. 15, no. 6, pp. 600–625, 1996.

[19] T. P. Baker and M. Cirinei, “A necessary and sometimes sufficient
condition for the feasibility of sets of sporadic hard-deadline
tasks,” in Proc. IEEE Real-Time Syst. Symp., 2006, pp. 178–190.

[20] H. S. Chwa, J. Lee, K.-M. Phan, A. Easwaran, and I. Shin, “Global
EDF schedulability analysis for synchronous parallel tasks on
multicore platforms,” in Proc. Euromicro Conf. Real-Time Syst.,
2013, pp. 25–34.

[21] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in Proc. IEEE Real-
Time Syst. Symp., 2007, pp. 239–243.

[22] J. Yao, X. Liu, Z. Gu, X. Wang, and J. Li, “Online adaptive utiliza-
tion control for real-time embedded multiprocessor systems,”
J. Syst. Archit., vol. 56, no. 9, pp. 463–473, 2010.

[23] J. Lee, “Time-reversibility of schedulability tests,” in Proc. IEEE
Real-Time Syst. Symp., 2014, pp. 294–303.

Jinkyu Lee received the BS, MS, and PhD
degrees in computer science from the Korea
Advanced Institute of Science and Technology
(KAIST), Korea, in 2004, 2006, and 2011, respec-
tively. He is an assistant professor in the Depart-
ment of Computer Science and Engineering,
Sungkyunkwan University (SKKU), Korea, where
he joined in 2014. He has been a visiting scholar/
research fellow in the Department of Electrical
Engineering and Computer Science, University of
Michigan, MI, USA, in 2011-2014. His research

interests include system design and analysis with timing guarantees,
QoS support, and resource management in real-time embedded sys-
tems, mobile systems, and cyber-physical systems. He received the
Best Student Paper Award from the 17th IEEE Real-Time and Embed-
ded Technology and Applications Symposium in 2011, and the Best
Paper Award from the 33rd IEEE Real-Time Systems Symposium in
2012. He is member of IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LEE: TIME-REVERSIBILITY FOR REAL-TIME SCHEDULING ON MULTIPROCESSOR SYSTEMS 243

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

