
Preempt a Job or Not in EDF Scheduling of
Uniprocessor Systems

Jinkyu Lee, Member, IEEE, and Kang G. Shin, Life Fellow, IEEE

Abstract—The earliest-deadline-first (EDF) policy has been widely studied for the scheduling of real-time jobs for its effectiveness and
simplicity. However, since each preemption incurs an additional delay to the execution of jobs, the effectiveness of EDF is affected greatly
by the underlying preemption policy that determines if and when a higher-priority job is allowed to preempt a currently executing lower-
priority job. To address this problem, we propose a new and better (in meeting job deadlines) preemption policy of EDF, given a non-zero
preemption delay. Specifically, we propose a controlled preemption (CP) policy that controls the condition of preempting jobs, whereas
existing approaches focus on that of preempted jobs. We define cp-EDF in which the CP policy is applied to EDF, and analyze its
schedulability. This schedulability analysis is then utilized to develop an algorithm that assigns the optimal control parameters of cp-EDF.
Our in-depth evaluation has demonstrated that cp-EDFwith the optimal parameter assignment improves EDF schedulability over existing
preemption policies by up to 7.4%.

Index Terms—Preemption policy, earliest-deadline-first (EDF) policy, real-time uniprocessor scheduling, schedulability analysis,
real-time systems

1 INTRODUCTION

Areal-time scheduling algorithm can be characterized by
its prioritization and preemption policies. The prioriti-

zation policy determines each job’s priority, and numerous
prioritization policies have been proposed and deployed,
such as EDF (Earliest Deadline First) [18], FP (Fixed Priority)
[18], and LLF (Least Laxity First) [17]. The preemption policy
determines if and when a higher-priority job can preempt a
currently-executing lower-priority job. There are two types of
preemption policies: (1) the non-preemptive policy that dis-
allows preemption of an executing job, and (2) the fully-
preemptive policy that always allows a higher-priority job
to preempt a lower-priority executing job.

Of all prioritization policies, EDF has received significant
attention due to the following optimal properties on a uni-
processor platform.

The non-preemptive EDF (denoted by np-EDF) schedul-
ing algorithm can schedule any task set schedulable by
any other scheduling algorithm that employs the non-
preemptive policy [11], if the system cannot be left idle if
there is an unfinished, ready job, i.e., work-conserving job
scheduling.
The fully-preemptive EDF (denoted by fp-EDF) schedul-
ing algorithm can schedule any task set schedulable by

any other scheduling algorithm (that employs any
prioritization and preemption policies) [10], and hence,
fp-EDF always outperforms np-EDF in meeting job
deadlines.

However, the optimality of fp-EDF holds only if each
preemption does not incur any delay to the preempting and
preempted jobs. In reality, however, when a job preempts
another, it incurs a non-trivial preemption delay to the in-
volved jobs, e.g., context switching delay [5], [7], [25], [27]. In
the presence of this additional delay that occurs when a job is
preempted and then resumes its execution later, fp-EDF is not
always optimal, because the system “wastes” processor time
whenever a preemption occurs. On the other hand, np-EDF—
which is the opposite extreme to fp-EDF—is ineffective in that
a higher-priority job may miss its deadline when it is blocked
by a lower-priority executing job.

This observation calls for a new preemption policy that
regulatespreemptions tobalancebetween the systemutilization
wasted by preemptions and the low-priority jobs’ blocking of
high-priority jobs. In other words, we would like to develop a
new preemption policy for EDF, which can find more schedul-
able task sets that existing preemption policies cannot feasibly
schedule. To meet this goal, we propose controlled preemption
(denoted byCP), which controls the condition of preempting jobs
whereas existing approaches [7], [9] regulate that of preempted
jobs. In Section 2.3 we will elaborate why the control of pre-
empting jobs can be more effective than controlling the pre-
empted job.We then define cp-EDF that adopts EDF and CP as
its prioritization and preemption policies, respectively. Accord-
ing to the CP policy, cp-EDF specifies whether or not a job can
preempt any other lower-priority job using a simple parameter.
By assigning the parameter for each job, cp-EDF can express
various EDF scheduling algorithms under different preemption
policies, including fp-EDF and np-EDF. Then, we analyze the
schedulability of cp-EDF. This analysis also serves as a

• J. Lee is with Department of Computer Science and Engineering,
Sungkyunkwan University, Suwon, Gyeonggi-Do, South Korea.
E-mail: jinkyu.lee@skku.edu.

• K. G. Shin is with Department of Electrical Engineering and Computer
Science, The University of Michigan, Ann Arbor, MI, USA.
E-mail: kgshin@eecs.umich.edu.

Manuscript received 05 July 2012; revised 29 Sep. 2012; accepted 01Nov. 2012;
published online 25 Nov. 2012; date of current version 29 Apr. 2014.
Recommended for acceptance by D. Bader.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2012.279

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 5, MAY 2014 1197

0018-9340 © 2012 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

generalization of existing schedulability tests for fp-EDF (as-
suming no preemption delay) [4] and np-EDF [12].

This schedulability analysis is then used to find an optimal
preemption policy of cp-EDF for a given preemption delay,
which is associatedwith assignment of the parameter for each
job. For this, we first derive a property of the schedulability
analysis and then use it to introduce an optimal assignment
algorithm that reduces the search space. Since the algorithm
still needs to explore all possible assignments in the worst
case, we develop a heuristic algorithm that investigates only
some of these assignments. Using in-depth simulations, we
demonstrate that cp-EDFwith the optimal or heuristic assign-
ment is more effective than fp-EDF, np-EDF and existing
approaches [7].

In summary, this papermakes the following contributions.
Discovery of new preemption policies that control the
condition of “preempting” (as opposed to “preempted”)
jobs for better EDF schedulability for a given preemption
delay (in Section 2.3);
Development of a CP policy for the first time that controls
preempting (instead of preempted) jobs, and applies the
policy to EDF, resulting in the cp-EDF that is a generali-
zation of fp-EDF and np-EDF (Section 3.1);
Derivation of a schedulability analysis for cp-EDF for a
given preemption delay and a given task set, which also
generalizes existing schedulability tests for fp-EDF [4]
and np-EDF [12] (Section 3.2);
Development of an algorithm by using the schedulability
analysis for cp-EDF to find the optimal preemption
policy associated with the assignment of a parameter
(Section 4); and
Demonstration of the superior scheduling performance of
cp-EDFwith the optimal preemption policy over the EDF
with existing preemption policies (Section 5).

The rest of this paper is organized as follows. Section 2
presents our system model and discusses the related work
and existing EDF schedulability tests. Section 3 develops the
CP policy as well as cp-EDF and its schedulability analysis.
Section 4 derives the optimal preemption policy of cp-EDF.
Section5 evaluates cp-EDFusing simulation. Finally, Section6
concludes the paper.

2 BACKGROUND

In this section, we first introduce the system model and
assumptions, and discuss the relatedwork. Then, we describe
how existing studies have incorporated preemption delays
into schedulability tests for EDF and why we need to control
preempting (not preempted) jobs.

2.1 System Model and Assumptions
We focus on a sporadic task model [20] in which a task T
ismodeled as ,where is theminimumseparation
between two successive invocations, is the worst-case
execution time when it is executed exclusively (i.e., without
preemption), and is its relative deadline. Let be the total
number of tasks. Without loss of generality, tasks can be so
arranged that a task with a shorter relative deadline has a
smaller task index, i.e., . Each invokes a
series of jobs, each separated from its predecessor/successor
by at least time units.

We assume that a job can be preempted at any time, but
control preemptions for better schedulability. To do this, we
introduce a new additional parameter (or 1), for each

T . This parameter controls preemptions such that a job
invoked by task with () can (cannot) preempt
any other lower-priority job at any time. Section 3.1will give a
detailed account of this.

In this paper, we focus on a uniprocessor platform, which
can serve at most one job at a time. We introduce a new delay
parameter associated with each preemption where is the
worst-case delay inpreempting a job.We consider predictable
processors which do not have any cache [23], [27], [29], e.g.,
ARM2. These processors have already been deployed in em-
bedded systems for their low manufacturing cost and power
usage. Therefore, simply represents the time required for a
context switch for each preemption as assumed in [27].

We assume a quantum-based time and let the length of a
quantum be one time unit, without loss of generality. All task
parameters are specified inmultiples of the quantum lengthor
time unit.

2.2 Related Work
Numerous studies have been done to explore preemption
policies which are more general than the fully-preemptive
and non-preemptive policies [3], [6], [8], [24], [26]. A few of
them have tried to improve the schedulability of FP [8], [24]
since the fully-preemptive policy is not optimal for FP even
without preemption delay. On the other hand, several studies
have focused on the accommodation of non-preemptive exe-
cution parts in each job [3], [6], [26]. In particular, Baruah [3]
applied the limited preemption policy to EDF,which specifies
the maximum length of non-preemptive execution for each
job. However, all these studies assumed that each preemption
does not incur any additional delay. They also specified
conditions of preempted (not preempting) jobs.

Another categoryof the relatedwork is thepreemptiondelay
analysis (with the analysis incorporated into schedulability
tests) [1], [13]–[15], [21], [27]. However, they have focused on
the fully-preemptive policy with FP [1], [14], [15], [21], [27] and
EDF [13], and have not aimed at improving schedulability by
developing more suitable preemption policies.

Recently, researchers have started search for the best pre-
emption policies for given preemption delays [7], [9], with the
same goal as this paper. Bertogna et al. [7] adopted the limited
preemption policy [3], and determined the number of non-
preemptive chunks for each job where each non-preemptive
chunk is executed atomically. Then, for better schedulability,
they solved the problem of finding the “optimal” number of
chunks for each job. This solution was then extended to en-
vironments where preemption delays were specified for given
preemptionpoints [9]. In these studies, preemptiondelayswere
incorporated into preempted (not preempting) jobs, and this
may result in a pessimistic schedulability test due to over-
estimation of the number of preemptions. In the next subsec-
tion, we will detail this by presenting how existing studies
incorporate preemption delays into schedulability tests.

2.3 Incorporating Preemption Delays into EDF
Schedulability Tests

Baruah et al. [4] defined the demand bound function of for
an interval of length (denoted by DBF) that computes

1198 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 5, MAY 2014

the cumulative maximum execution requirements of all jobs
invoked by , each of whose release time and deadline are
within the interval as

DBF ≜

Using the demand bound function, a necessary and suffi-
cient schedulability analysis for fp-EDFhas beendeveloped in
[4] as follows. Task set T is schedulable by fp-EDF on a
uniprocessor platform if and only if the following is true for
all > [4]:

T

DBF

The above analysis is valid only when each preemption
does not incur any additional delay. Ifwe consider the delay
for each preemption, extra delays should be added to the LHS
of Eq. (2). Since a job can preempt any other job at most once
under fp-EDF [19], we incorporate preemption delays into
preempting jobs, and then calculate DBFP for the cumu-
lative preemption delays by preempting jobs invoked by ,
each ofwhose release time anddeadline arewithin an interval
of length as

DBFP ≜

Then, a task set is schedulable by fp-EDF on a uniprocessor
platform in the presence of the preemption delay if the
following inequality holds for all > :

T

DBF DBFP

On the other hand, Bertogna et al. [7] incorporated pre-
emption delays into preempted jobs. Since known upper-
bounds on the number of times for a job to be preempted
under fp-EDF are pessimistic, they adopted the limited pre-
emption policy [3] to EDF (denoted by lp-EDF). Since lp-EDF
specifies the number of non-preemptive chunks of (denoted
by), the number of times for a job of to be preempted is
upper-bounded by . In this case, the total execution time
of each job of including preemption delays in case the job is
preempted, is upper-bounded by , and then the
length of each non-preemptive chunk with its preemption
delay is set to . Then, under lp-EDF, we compute
DBFlp for the cumulative preemption delays by pre-
empted jobs invoked by , each of whose release time and
deadline are within an interval of length as:

DBF ≜

Then, task setT is schedulable by lp-EDFonauniprocessor
platform in the presence of the preemption delay if the
following inequality holds for all > [7]:

Blocking
T

DBF DBFlp

where Blocking is the maximum blocking time of higher-
priority jobs by the execution of non-preemptive chunks of
lower-priority jobs, and it gets larger as gets smaller (or as

gets larger). Details can be found in [7].

The authors of [7] solved the problem of finding that
satisfies Eq. (6) for all > . However, this solution could be
ineffective due to over-estimation of the number of preemp-
tions in Eq. (5), as we discuss next.

Observe that the total demand for fp-EDF in the LHS of
Eq. (4) is equal to that for lp-EDF in the LHS of Eq. (6) when

for all tasks and Blocking . This means, in order for
lp-EDF to have better schedulability than that of fp-EDF, that
should be less than 2.0 on average. However, inmany cases

it is not possible for to be small. This is because a smaller
results in a largerBlocking, and a higher-priority jobmay then
miss its deadline due to the execution of a larger non-pre-
emptive chunk of a lower-priority job. We demonstrate this
with the following example.

Example 1. Suppose that there are two tasks, T
, and the preemption delay is

. Then, if , the length of each non-
preemptive chunk of is strictly larger than 2,
and then the execution of a non-preemptive chunk of
causes a job of to miss its deadline since ‘s worst-case
execution time (3) plus blocking time (>) is strictly larger
than its relative deadline (5). Therefore, the smallest
possible value of is 4, and then lp-EDF with
cannot satisfy Eq. (6) for (i.e., DBF
DBF DBFlp >). This means
that when , task set T is unschedulable by lp-EDF
with any [by Eq. (6)] while it is schedulable by fp-EDF
[by Eq. (4)]. This is because Eq. (5) over-estimates the
number of times for a job of to be preempted; this job
seems to be preempted times, but it can actually
be preempted only once.
The above example shows the limitation of a preemption

policy, which incorporates preemption delays into preempted
jobs. Therefore, instead of controlling the condition ofpreempted
jobs, we propose a new preemption policy that controls that of
preempting jobs. This policy can then be closely associated with
the schedulability analysis with a structure similar to Eq. (4) in
thatwe can totally remove the termDBFP whenwedecide
to disallow jobs of to preempt any other job. In Section 3, we
will detail this policy and analyze its schedulability.

3 cP-EDF SCHEDULING ALGORITHM AND ITS
SCHEDULABILITY ANALYSIS

Ourgoal is tofindabetterpreemptionpolicyofEDF for agiven
preemption delay. As shown in Section 2.3, we need a new
preemption policy that controls preemptions at the side of
preempting jobs. We first present a preemption policy that
meets this need, and then describe cp-EDF inwhich this policy
is applied toEDF. Second,wedevelop the schedulability test of
cp-EDF for a given preemption delay and a given task set. The
analysis will be used in Section 4 to find the best preemption
policyassociatedwith aper-task control parameter for cp-EDF.

3.1 The CP Policy and cp-EDF Scheduling Algorithm
We consider a preemption policy under which preemptions
are controlled by a parameter , i.e., whether or not a job of
is allowed to preempt any other lower-priority job. That is, if

(), a job of can (cannot) preempt any other
lower-priority job. We call this the controlled preemption (CP)

LEE AND SHIN: PREEMPT A JOB OR NOT IN EDF SCHEDULING OF UNIPROCESSOR SYSTEMS 1199

policy. The CP policy is concise but effective in that it controls
the number of preemptions allowed, and this control is closely
associated with its schedulability analysis.

Let cp-EDF denote a scheduling algorithm that adopts
controlled preemption (CP) and Earliest-Deadline-First (EDF)
as its preemption and prioritization policies, respectively.
Algorithm 1 shows a formal description of the cp-EDF sched-
uling algorithm. Note that as you can see in Step 9 of job
release, does not start its execution immediately, although
its priority is higher than that of and it is allowed to
preempt other lower-priority jobs (i.e., < and

). Instead, it checkswhether there is a jobwith an earlier
deadline than that of in the wait queue. This prevents a
jobwith fromblockingbymore thanone lower-priority
job while the job itself does not trigger any preemption (where
the preemption is activated by with , not by a
higher-priority job with in the wait queue).

Algorithm 1 cp-EDF scheduling algorithm

Job release: when a job of task is released,

1: Set the absolute deadline of : .

2: Check whether there is a currently executing job
(which has its absolute deadline of).

3: if does not exist then

4: Execute .

5: else

6: if or then

7: Put into the wait queue.

8: else

9: Stop executing andput and into the
wait queue, and perform the job completion
process.

10: end if

11: end if

Trivially, cp-EDF can represent both np-EDF and fp-EDF,
as stated in the following lemma.

Job completion: when the currently executing job
finishes its execution,

1: Start to execute a jobwith the earliest deadline in thewait
queue.

Lemma 1. The cp-EDF scheduling algorithm subsumes both np-
EDF and fp-EDF.

Proof. The proof is trivial as follows.
np-EDF is equivalent to cp-EDF with T ;
and
fp-EDF is equivalent to cp-EDF with T .

◽

3.2 Schedulability Analysis of cp-EDF
To determine if a given task set is schedulable with a sched-
uling algorithm, most schedulability tests find necessary

conditions for a job tomiss its deadline. Then, a task is deemed
schedulable if the task set avoids such conditions. We also
follow this to develop a schedulability test of cp-EDF for a
given preemption delay and a given task set.

Let us consider what happens if there is a deadline miss
under cp-EDF. Let be the first time instant at which a job
misses its deadline, and (<) be the latest time instant at
which any jobwhosedeadline is no later than , doesnot have
any remaining execution. By definition of and , is a
busy interval and there should be at most two types of jobs
occupying theprocessor during : a set,J , of jobswhose
release times and deadlines arewithin ; and another set,
J , of jobs which do not belong to J . Then, each job in J
should meet the following conditions.

1) The release time is before and the deadline is after
(otherwise, the job cannot occupy the processor in
or belongs to J);

2) By condition 1, the priority of the job is lower than that
of any job in J , and therefore, the job can occupy
the processor only in where is a time
instant at which the job is preempted or finishes its
execution; and

3) By condition 2, there exists only one job in J . Then, we
calculate the amount of system occupancy by jobs in J
and J , and this amount is necessarily larger than

≜ for a job to miss its deadline. Therefore, if
this amount is not larger than , > , then the task set
avoids the necessary condition for missing deadlines,
i.e., the task set is schedulable.

We first calculate the amount of system occupancy by the
job in J . By condition 1, the job should be invoked by
whose relative deadline is strictly larger than (i.e., >).
Then, we can calculate the longest duration for the job in J
occupying the system in (an interval of length
≜) by choosing themaximum execution times among

all tasks that satisfy > as

B ≜ T > <

Note that the duration is upper-bounded by the interval
length . The duration is zero unless < : when < ,
there is no job in J (i.e., no deadline miss at), and when
> , there is no job in J .
We now calculate how long jobs in J occupy the system.

Suppose that the amount of systemoccupancyby the job inJ
in is (B). Since each job invoked by inJ has
higher priority than the job in J by condition 2, any job
invoked by with in J cannot be released in

. Otherwise, the job in J is preempted before
. Considering each job can cause at most one preemp-

tion, the amount of system occupancy by jobs invoked
by with in is upper-bounded by
DBF DBFP , where ≜ , and
DBF and DBFP are defined in Eqs. (1) and (3). On the
other hand, if , a job invoked by cannot preempt any
other job, and it can be released any time before (by
definition of J) without triggering any preemption. There-
fore, the amount of systemoccupancyby jobs of with
in is upper-bounded by DBF . Therefore, if the
amount of system occupancy by the job in J is (B),

1200 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 5, MAY 2014

the total amount of system occupancy by jobs in J is upper-
bounded by

T

DBF
T

DBFP

T

DBF

Finally, we complete the calculation of the amount of
system occupancy by jobs in J and J in . Using the
information, the following theorem formally describes a
schedulability test of cp-EDF for a given preemption delay
and a given task set.

Theorem 1. A task set T is schedulable by cp-EDF on a
uniprocessor platform in the presence of the preemption delay
if the following inequality holds for all > :

T

DBF

T

DBFP

T

DBF

whereB,DBF andDBFP are defined as in Eqs. (7), (1) and
(3), respectively.

Proof. We prove the contraposition: if T is not schedulable by
cp-EDF, Eq. (9) does not hold. We follow the definitions of

J and J in the second paragraph of Section 3.2.
For a job to miss its deadline, the amount of occupancy

by jobs in J and J should be larger than (≜).
Since the amount is upper-bounded by the LHS of Eq. (9),
the LHS is necessarily larger than . Thus, the contraposi-
tion is true. ◽

Compared to the classic schedulability analysis of fp-EDF
in Eq. (4), Theorem 1 requires investigating all for
given . Due to the investigation, one may wonder whether it
is tractable to perform a schedulability analysis in Theorem 1.
The following lemma states that the time-complexity is
pseudo-polynomial, which is regarded tractable in real-time
schedulability analyses [4].

Lemma2. Theorem 1 for a task set with given can be tested in
pseudo-polynomial time in the task parameters, if

T T is upper-bounded
by a constant that is strictly smaller than 1.

Proof. The proof is given in Appendix, which can be found
in the Computer Society Digital Library at https://doi.
ieeecomputersociety.org/10.1109/TC.2012.279. ◽

The above schedulability analysis for cp-EDF in the pres-
ence of a given preemption delay generalizes the existing
schedulability analyses for both fp-EDF and np-EDF. This is
formalized in the following lemma.

Lemma 3. The schedulability analysis for cp-EDF in Theorem 1 is
a generalization of the schedulability analyses for both fp-EDF
[4] (assuming no preemption delay) and np-EDF [12].

Proof. The proof is trivial as follows.

The schedulability analysis for fp-EDF [4] under the as-
sumption of no preemption delay is equivalent to that for
cp-EDF in Theorem 1with , T and ; and
The schedulability analysis for np-EDF [12] is equivalent
to that for cp-EDF in Theorem 1 with T .
Note that under np-EDF (or cp-EDF with

T), the preemption delay does not affect the sche-
dulability of each task set since no preemption is allowed
under np-EDF. ◽

4 OPTIMAL PREEMPTION FOR CP-EDF
We now present how to find an “optimal” preemption policy
for cp-EDF for given preemption delay and task set, where an
optimal preemption policy for task set T represents an in-
stance of that satisfies Eq. (9) > .

A naive approach to finding an optimal preemption policy
for cp-EDF is to test Eq. (9) for the entire search space
≜ T , in which there are
candidates. To reduce the search space, we first explore

the property of Eq. (9).

Lemma 4. does not affect the LHS of Eq. (9) for < .

Proof. If < , for any .
Therefore, does not contribute anything to the LHS of
Eq. (9) via DBF or DBFP terms. Thus, the LHS is
independent of . ◽

By the above lemma, the examination of < shows
that the LHS of Eq. (9) only depends on . So, we investigate
whether Eq. (9) holds for < when and

, respectively. If the equation does not hold for given
, we can rule out all the combinations that include the given
in . Generally, the LHS of Eq. (9) for < only

depends on . Algorithm 2 shows an algorithm that
finds an optimal preemption policy associated with , and
the following lemma proves its correctness.

Algorithm 2 Optimal algorithm (T)

1: The search space is ≜ T .

2: for ; ; do

3: Find all combinations of that do not
satisfy Eq. (9) for any < , and remove
any instance that contains these combinations in the
search space .

4: if there is no remaining instance in then

5: return INFEASIBLE.

6: end if

7: end for

8: if there exists at least one instance in that satisfies Eq. (9)
then

9: return FEASIBLE with one of the instances.

10: else

11: return INFEASIBLE.

12: end if

LEE AND SHIN: PREEMPT A JOB OR NOT IN EDF SCHEDULING OF UNIPROCESSOR SYSTEMS 1201

Lemma 5 (Correctness of the Optimal Algorithm). The
optimality of Algorithm 2 is correct.

Proof. Since Steps 2-7 and 8 in Algorithm 2 check whether
the resulting instance satisfies Eq. (9) < and

, respectively, the algorithm is correct if the task set
is deemed feasible.

Now, we show that there exists no which satisfies
Eq. (9) > if the algorithm finds the task set infeasible.

Suppose that there isan instance that satisfiesEq. (9)
> while the algorithm finds T infeasible. We have to

consider two cases: the feasible instance is excluded by Step
3 and Step 8. By Lemma 4, a feasible instance cannot be
excluded by Step 3, and it is trivial that a feasible instance
cannot be excluded by Step 8. This is a contradiction. ◽

Even though Algorithm 2 can significantly reduce the
search space on average, it may still require consideration of
all combinations (i.e.,) in theworst case. In otherwords, the
total time-complexity for Algorithm 2 is , which is
exponential, where denotes pseudo-polynomial time-com-
plexity of testing Theorem 1 for a given task set with given

(see Eq. (11) in the Appendix).

Algorithm 3 Heuristic algorithm (T)

1: T .

2: for ; ; do

3: for ; ; do

4: if and Eq. (9) does not hold for any
< then

5: .

6: else

7: , i.e., exit the inner-loop of Step 3.

8: end if

9: end for

10: end for

11: if Eq. (9) is satisfied > then

12: return FEASIBLE.

13: else

14: return INFEASIBLE.

15: end if

To reduce the number of to be considered in theworst
case,wemayuse aheuristic as shown inAlgorithm3. Initially,

is set to 0 for all T . Whenever Eq. (9) for <
is not satisfied, the algorithm chooses one of the tasks such
that and (tasks that can affect the LHS of Eq. (9)
by Lemma 4), and set for the task. Once is set to 1, it
does not change any more. Therefore, the heuristic algorithm
explores at most combinations. Then, the total time-
complexity of Algorithm 3 is pseudo-polynomial in the task
parameters (i.e.,). Since schedulability analysis can
be performed offline, a pseudo-polynomial time-complexity
is regarded tractable in real-time schedulability analyses [4].

Todemonstrate the effectiveness of the heuristic algorithm,
wewill compare the performance of the heuristic and optimal
algorithms in Section 5. For better understanding, we now
give an example how Algorithm 3 works.

Example 2. We consider a task set with three tasks T
, with the preemption

delay of .
By Step 1 in Algorithm 3, T is initially set to 0.

Then, when in Step 2, the inner-loop is examined only
for . The if-phrase in Step4 is true since andEq. (9)
does not hold for (i.e., >). Therefore, is set to 1 in
Step 5. Next, when in Step 2, the inner-loop is checked
for and then . When , the if-phrase in Step 4
holds, i.e., and the LHS of Eq. (9) is equal to 5 for .
Therefore, is also set to 1 in Step 5. For , the if-phrase in
Step 4 does not hold. After escaping the outer-loop, Step 11 is
performed; Eq. (9) is satisfied for all > when
and , and therefore the final is feasible.

5 EVALUATION

In this section, we evaluate the scheduling performance of
cp-EDF with assigned by the optimal and heuristic
algorithms. We first describe how task sets are generated,
and then compare cp-EDFwith EDF under different preemp-
tion policies.

5.1 Generation of Task Sets
We generate task sets based on the technique proposed in [2],
which has been widely used before [16], [22]. There are three
input parameters: (a) the task system (constrained or implicit
deadlines), (b) individual task utilization () distributions
(bimodal with parameter1: 0.1, 0.3, 0.5, 0.7, or 0.9, or expo-
nential with parameter2: 0.1, 0.3, 0.5, 0.7, or 0.9), and (c) indi-
vidual task period () distribution (uniform distribution in

or trimodal distribution in which is uniformly
selected in , , and with equal proba-
bility). For each task, is chosen based on the given period
distribution, is chosen based on the given bimodal or
exponential parameter for , and is uniformly distrib-
uted in for constrained deadline task systems or is
equal to for implicit deadline task systems.

For each combination of (a), (b) and (c), we repeat the
following procedure and generate 10,000 task sets.

1) Initially, we generate a set of 2 tasks.
2) In order to exclude unschedulable sets, we checkwheth-

er the generated task set can satisfy the necessary and
sufficient feasibility condition [4]. This condition means
the schedulability of a task set under fp-EDF in the
absence of preemption delay.

3) If it fails to pass the feasibility test, we discard the
generated task set and return to Step 1. Otherwise, we
include this set for evaluation. Then, this task set serves
as a basis for the next new set; we create a new set by

1. For a given bimodal parameter , a value for is uniformly
chosen in with probability , and in with probability .

2. For a given exponential parameter , a value for is chosen
according to an exponential distribution whose probability density func-
tion is .

1202 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 5, MAY 2014

adding a new task into an already created and tested set,
and return to Step 2.

For any given task system, 10,000 task sets are created for
each task utilization and period model, thus resulting in
100,000 task sets in total.

5.2 Scheduling Performance
The scheduling performance of cp-EDF is evaluated in com-
parison with EDF under other preemption policies. For this,
we test 100,000 constrained deadline task sets and another
100,000 implicit task sets over varying preemption delays
(and 1024) and the two
different period distributions using the following schedul-
ability tests: (i) cp-EDF with the optimal assignment
(Algorithm 2), (ii) cp-EDF with the heuristic assignment
(Algorithm 3), (iii) lp-EDFwith its optimal assignment in
[7], (iv) fp-EDF schedulability analysis [Eq. (4)], and (v) np-
EDF schedulability analysis in [12]. These are respectively
annotated as cp EDF o, cp EDF h, lp EDF o, fp DEF, and
np EDF. For simplicity, a schedulability test or a scheduling
algorithm is said to dominate another test or algorithm if
any task set schedulable by is schedulable by . To repre-
sent average performance, we also say that a schedulability
test or scheduling algorithm is better than if the number of
schedulable task sets by is larger than that by .

One may think that some values for are unrealistic since
the preemption delay is too high compared to the task execu-
tion time. However, our setting from to
generalizes the degree of preemption allowance of each task.
While means a job can be preempted anytime without
any overhead, represents the other extreme case—
each task cannot be preempted due to its transactional opera-
tions. Through the case of , we want to verify that
cp EDF o as well as cp EDF h correctly chooses for all

T , i.e., np EDF, in case that the non-preemptive policy is
the best.

Figs. 1(a)–1(d) show the number of constrained and im-
plicit deadline task sets deemed schedulable by (ii), (iii), (iv)
and (v) while varying preemption delays. In the figures, we
commonly observe the behavior of fp EDF as follows: it
deems all task sets schedulable when , reflecting the
optimality of fp-EDF in the absence of preemption delay; the
number of schedulable task sets gets smaller as becomes
larger; and it deems no task sets schedulable when preemp-
tions are disallowed, i.e., when . On the other hand,
the number of task sets are deemed schedulable by np EDF is
independent of . Then, when the preemption delay is small
(), fp EDF is better than np EDF. However, a large
preemption delay () entails the opposite behavior. This
implies an intuitive remark: if we have only two extreme pre-
emption policies, we should apply fp-EDF (np-EDF) in some
environments where the preemption delay is small (large).

If we focus on cp EDF o and cp EDF h, we cannot distin-
guish between them, and therefore, we do not draw the line
for cp EDF o in all the figures. This means, the heuristic in
Algorithm 3 is so effective that it is comparable to the optimal
one, Algorithm 2. More specifically, the difference between
schedulable task sets by cp EDF o and cp EDF h is less than
0.01% in any case, and the following example shows a task set
for such a rare case.

Example 3. Consider a task set with three tasks
T , and the
preemption delay is . While cp EDF o finds the
task set schedulable with , and ,
cp EDF h deems the task set unschedulable because it
does not investigate the feasible to reduce time-
complexity.
Now, we compare cp EDF h with lp EDF o. One of the

important observations is that they are incomparable;
while cp EDF h is better for constrained deadline task sets
in Figs. 1(a) and 1(c), lp EDF o is better for implicit deadline
task sets in Figs. 1(b) and 1(d). This is because, while schedul-
ing a new task set, in which the relative deadline of each task
is reduced, is in general more difficult than scheduling the
original task set, such a difficulty is more pronounced for
lp EDF o. Under lp EDF o, a smaller relative deadline causes
a shorter length of each non-preemptive chunk as shown in
Example 1, which entails a larger number of non-preemptive
chunks and then a more pessimistic upper-bound on the
number of preemptions. Therefore, the performance of lp
EDF o is degraded more for constrained deadline task sets.

Thisway, cp EDF h (lp EDF o) is favorable for constrained
(implicit) deadline tasks, as the following numeric values
demonstrate. In Fig. 1(a), cp EDF h finds up to 11.4% more
schedulable constrained deadline task setswhich are schedul-
able by neither fp EDF nor np EDF. In addition, cp EDF h
deems at most 7.4% more constrained deadline task sets
schedulable, which are not schedulable by any other schedul-
ability tests. We also observe a similar trend in Fig. 1(c).
Likewise, in Figs. 1(b) and 1(d), lp EDF o covers up to 6.7%
more schedulable implicit deadline task sets, which are not
schedulable by fp EDF, np EDF and cp EDF h.

To see how the number of tasks affects the improvement by
cp EDF h, we plot schedulable task set ratio according to the
different number of tasks in Figs. 2(a) and 2(b). The two
figures correspond to Fig. 1(a) for and , respec-
tively. As shown in the figures, we cannot say that there is a
clear relationship between the number of tasks and the
amount improvement by cp EDF h; instead, cp EDF h suc-
cessfully finds additional schedulable task sets that are not
covered by lp EDF o, regardless of the number of tasks in
each task set. We do not plot figures for other settings, but
this trend for constrained deadline task sets is observed for
other values and the trimodal period distribution.

Another important observation is that cp EDF h is always
better than both fp EDF and np EDF in Figs. 1(a)–1(d). In fact,
we can show that cp EDF h dominates them. This is because
cp-EDF and its schedulability test are generalizations of np-
EDF and fp-EDF, and their schedulability tests, respectively,
as we stated in Lemmas 1 and 3, and cp EDF o finds an
optimal assignment based on the cp-EDF schedulability
analysis. Unlike cp EDF o, we observe that lp EDF o can be
inferior to fp EDF for some in Fig. 1(a). This is because the
number of preemptions can be over-estimated in lp EDF o
as mentioned in Section 2.3. In fact, lp EDF o dominates
np EDF, but does not dominate fp EDF due to such over-
estimation.

In summary, from the performance evaluation thus far, we
make the following observations. First, cp-EDF with the
optimal assignment can always be an alternative to both

LEE AND SHIN: PREEMPT A JOB OR NOT IN EDF SCHEDULING OF UNIPROCESSOR SYSTEMS 1203

fp-EDF and np-EDF, and to lp-EDF with the optimal
assignment in some environments. Second, since cp-EDF and
lp-EDF with the optimal assignment of the corresponding
parameters do not dominate each other, depending on task
sets, we improve the scheduling performance by testing

offline each task set and then selecting the best. Finally, at
only a negligible performance loss, cp-EDF with the optimal
parameter assignment can be replaced by that with the
heuristic one, which requires a lower time-complexity—pseudo
polynomial in the task parameters.

Fig. 1. The number of schedulable sets by EDF under different preemption policies.

Fig. 2. Schedulable task set ratio according to the different number of tasks (for constrained task sets with uniform period distribution).

1204 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 5, MAY 2014

6 CONCLUSION

In this paper, we have identified the need of new preemption
policies that control preempting jobs for better EDF schedul-
ability under a givenpreemptiondelay, anddeveloped theCP
policy. Then, we have demonstrated that cp-EDF finds addi-
tional schedulable task sets,which are deemedunschedulable
by EDF under existing preemption policies.

We have focused on predictable processors without any
cache, which have already been deployed in embedded com-
puting systems, and thus abstracted thepreemptiondelay as a
unified value . However, if we consider general-purpose
processors, the preemption delay includes the time required
to save and reload cache, and then can be differentiated by
(i) which job preempts and (ii) which job is preempted, or
(iii) both of (i) and (ii) [5], [7], [13], [25]. As of now, cp-EDF and
lp-EDF can immediately accommodate a preemption delay
specifiedby (i) and (ii), respectively, but each of them is to deal
with (iii) in a pessimistic manner in that cp-EDF and lp-EDF
do not differentiate a preemption delay specified by (ii) and
(i), respectively. In future, we plan to develop a new preemp-
tion policy that controls both preempting and preempted jobs
so effective that it dominates EDF under all preemption
policies including cp-EDF and lp-EDF.

ACKNOWLEDGMENT

Jinkyu Lee is the corresponding author. This work was
supported in part by the NSF under Grants CNS-0930813
and CNS-1138200 and in part by the National Research
Foundation of Korea Grant funded by the Korean Govern-
ment (Ministry of Education, Science and Technology) [NRF-
2011-357-D00186].

REFERENCES

[1] S.Altmeyer, R.Davis, andC.Maize,“Cache relatedpreemptiondelay
aware response time analysis for fixed priority preeptive systems,” in
Proc. IEEE Real-Time Syst. Symp. (RTSS), 2011, pp. 261–271.

[2] T. P. Baker, “Comparison of empirical success rates of global vs.
paritioned fixed-priority and EDF scheduling for hand real time,”
Dept. Comput. Sci., Florida State Univ., Tallahasee, FL, Tech. Rep.
TR-050601, 2005.

[3] S. Baruah, “The limited-preemption uniprocessor scheduling of
sporadic task systems,” in Proc. Euromicro Conf. Real-Time Syst.
(ECRTS), 2005, pp. 137–144.

[4] S. Baruah, A. Mok, and L. Rosier, “Preemptively scheduling hard-
real-time sporadic tasks on one processor,” in Proc. IEEE Real-Time
Syst. Symp. (RTSS), 1990, pp. 182–190.

[5] A. Bastoni, B. B. Brandenburg, and J. H. Anderson, “Cache-related
preemption, and migration delays: Empirical approximation, and
impact on schedulability,” in Proc. 6th Int. Workshop Oper. Syst.
Platforms Embedded Real-Time Appl., 2010, pp. 33–44.

[6] M. Bertogna and S. Baruah, “Limited preemption EDF scheduling
of sporadic task systems,” IEEE Trans. Ind. Informat., vol. 6, no. 4, pp.
579–591, Nov. 2010.

[7] M. Bertogna, G. Buttazzo,M.Marinoni, andM. Caccamo, “Preemp-
tion points placement for sporadic task sets,” inProc. EuromicroConf.
Real-Time Syst. (ECRTS), 2010, pp. 251–260.

[8] M.Bertogna,G.Buttazzo, andG.Yao,“Improving feasibility offixed
priority tasks using non-preemptive regions,” in Proc. IEEE Real-
Time Syst. Symp. (RTSS), 2011, pp. 251–260.

[9] M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, and G. Buttazzo,
“Optimal selection of preemption points to minimize preemption
overhead,” in Proc. Euromicro Conf. Real-Time Syst. (ECRTS), 2011,
pp. 217–227.

[10] M. Dertouzos, “Control robotics: The procedural control of physical
processors,” in Proc. IFIP Congr., 1974, pp. 807–813.

[11] L. George, P. Muhlethaler, and N. Rivierre, “Optimality and non-
preemptive real-time scheduling revisited,” Tech. Rep.: RR-2516,
INRIA, 1995.

[12] L. George, N. Rivierre, and M. Spuri, “Preemptve and non-
preemptive real-time uniprocessor scheduling,” Tech. Rep.:
RR-2966, INRIA, 1996.

[13] L. Ju, S. Chakraborty, and A. Roychoudhury, “Accounting for
cache-related preemption delay in dynamic priority schedulability
analysis,” in Proc. Des. Autom. Test Eur. Conf. Exhib. (DATE), 2007,
pp. 1623–1628.

[14] C.-G. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park,
M. Lee, and C. S. Kim, “Analysis of cache-related preemption delay
in fixed-priority preemptive scheduling,” IEEE Trans. Comput., vol.
47, no. 6, pp. 700–713, Jun. 1998.

[15] C.-G. Lee, K. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong, C. Y.
Park, M. Lee, and C. S. Kim, “Bounding cache-related preemption
delay for real-time systems,” IEEE Trans. Softw. Eng., vol. 27, no. 9,
pp. 805–826, Sep. 2001.

[16] J. Lee, A. Easwaran, and I. Shin, “Maximizing contention-free ex-
ecutions in multiprocessor scheduling,” in Proc. IEEE Real-Time
Technol. Appl. Symp. (RTAS), 2011, pp. 235–244.

[17] J. Y.-T. Leung, “A new algorithm for scheduling periodic, real-time
tasks,” Algorithmica, vol. 4, pp. 209–219, 1989.

[18] C. L. Liu and J. Layland, “Scheduling algorithms for multi-
programming in a hard-real-time environment,” J. ACM, vol. 20,
no. 1, pp. 46–61, 1973.

[19] J. Liu. Real-Time Systems. Englewood Cliffs, NJ: Prentice-Hall, 2000.
[20] A. Mok, “Fundamental design problems of distributed systems for

the hard-real-time environment,” Ph.D. dissertation, Massachusetts
Instit. Technol., Cambridge, MA, 1983.

[21] J. Staschulat, S. Schliecker, andR. Ernst, “Scheduling analysis of real-
time systems with precise modeling of cache related preemption
delay,” in Proc. Euromicro Conf. Real-Time Syst. (ECRTS), 2005,
pp. 41–48.

[22] M. Bertogna, M. Cirinei, and G. Lipari, “Schedulability analysis of
global scheduling algorithms on multiprocessor platforms,” IEEE
Trans. Parallel Distrib. Syst., vol. 20, no. 4, pp. 553–566, Apr. 2009.

[23] L. Thiele and R. Wilhelm, “Design of systems with predictable
behavior,” in Proc. Abstracts Collect. Perspectives Workshop 03471
(Dagstuhl Seminars), 2004, pp. 1–8.

[24] Y. Wang and M. Saksena, “Scheduling fixed-priority tasks with
preemption threshold,” in Proc. IEEE Int. Conf. Embedded Real-Time
Comput. Syst. Appl. (RTCSA), 1999, pp. 318–335.

[25] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D.Whalley,G.Bernat,C.Ferdinand,R.Heckmann,T.Mitra,F.Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The worst-case
executoin-time problem - overview of methods and survey of tools,”
ACM Trans. Embedded Comput. Syst., vol. 7, no. 3, pp. 36:1–36:53, 2008.

[26] G. Yao, G. Buttazzo, and M. Bertogna, “Feasibility analysis under
fixedpriority schedulingwith limitedpreemptions,”Real-TimeSyst.,
vol. 47, no. 3, pp. 198–223, 2011.

[27] P. M. Yomsi and Y. Sorel, “Extending rate monotonic analysis with
exact cost of preemptions for hard real-time systems,” in Proc.
Euromicro Conf. Real-Time Syst. (ECRTS), 2007, pp. 280–290.

[28] F. Zhang and A. Burns, “Schedulability analysis for real-time
systems with EDF scheduling,” IEEE Trans. Comput., vol. 58,
no. 9, pp. 1250–1258, Sep. 2009.

[29] L. Zhang, “Predictable architecture for real-time systems,” in Proc.
Int. Conf. Inf. Commun. Signal Process., 1997, pp. 1761–1765.

Jinkyu Lee received the BS, MS, and PhD
degrees in computer science from the Korea
Advanced Institute of Science and Technology
(KAIST), Daejeon, in 2004, 2006, and 2011,
respectively. He is an assistant professor in De-
partment of Computer Science and Engineering,
Sungkyunkwan University, South Korea, where
he joined in 2014. He has been a research fellow/
visiting scholar in the Department of Electrical
Engineering and Computer Science, University
of Michigan until 2014. His research interests

include system design and analysis with timing guarantees, QoS support,
and resource management in real-time embedded systems and cyber-
physical systems. He won the best student paper award from the 17th
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS) in 2011, and the Best Paper Award from the 33rd IEEE
Real-Time Systems Symposium (RTSS) in 2012.

LEE AND SHIN: PREEMPT A JOB OR NOT IN EDF SCHEDULING OF UNIPROCESSOR SYSTEMS 1205

Kang G. Shin is the Kevin & Nancy O’Connor
professor of Computer Science with the Depart-
ment of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor. His
current research interests include QoS-sensitive
computing and networking as well as embedded
real-time and cyber-physical systems. He has
supervised the completion of 74 PhDs, and
authored/coauthored about 800 technical articles
(about 300 of these are in archival journals), a
textbook and more than 20 patents or invention

disclosures, and received numerous best paper awards, including the
Best Paper Awards from the 2011 ACM International Conference on
Mobile Computing and Networking (MobiCom’11), the 2011 IEEE Inter-
national Conference on Autonomic Computing, the 2010 and 2000
USENIX Annual Technical Conferences, as well as the 2003 IEEE
Communications Society William R. Bennett Prize Paper Award and the
1987 Outstanding IEEE Transactions of Automatic Control Paper Award.
He has also received several institutional awards, including the Research
Excellence Award in 1989, Outstanding Achievement Award in 1999,
Distinguished Faculty Achievement Award in 2001, and Stephen Attwood
Award in 2004 from The University of Michigan (the highest honor
bestowed toMichiganEngineering faculty); aDistinguishedAlumniAward
of the College of Engineering, Seoul National University in 2002; 2003
IEEE RTC Technical Achievement Award; and 2006 Ho-Am Prize in
Engineering (the highest honor bestowed to Korean-origin engineers).

▽ For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1206 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 5, MAY 2014

