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Abstract—We present a novel, linear programming (LP)-based scheduling algorithm that exploits heterogeneous multicore

architectures such as CPUs and GPUs to accelerate a wide variety of proximity queries. To represent complicated performance

relationships between heterogeneous architectures and different computations of proximity queries, we propose a simple, yet accurate

model that measures the expected running time of these computations. Based on this model, we formulate an optimization problem

that minimizes the largest time spent on computing resources, and propose a novel, iterative LP-based scheduling algorithm. Since our

method is general, we are able to apply our method into various proximity queries used in five different applications that have different

characteristics. Our method achieves an order of magnitude performance improvement by using four different GPUs and two hexa-

core CPUs over using a hexa-core CPU only. Unlike prior scheduling methods, our method continually improves the performance, as

we add more computing resources. Also, our method achieves much higher performance improvement compared with prior methods

as heterogeneity of computing resources is increased. Moreover, for one of tested applications, our method achieves even higher

performance than a prior parallel method optimized manually for the application. We also show that our method provides results that

are close (e.g., 75 percent) to the performance provided by a conservative upper bound of the ideal throughput. These results

demonstrate the efficiency and robustness of our algorithm that have not been achieved by prior methods. In addition, we integrate one

of our contributions with a work stealing method. Our version of the work stealing method achieves 18 percent performance

improvement on average over the original work stealing method. This result shows wide applicability of our approach.

Index Terms—Heterogeneous system, proximity query, scheduling, collision detection, ray tracing, motion planning

Ç

1 INTRODUCTION

PROXIMITY computation is one of the most fundamental
geometric operations, and has been studied in the last

two decades for various applications including games,
physically based simulations, ray tracing-based rendering,
motion planning in robotics, and so on [1].

There have been numerous attempts to accelerate the

queries. One of the most general approaches is adopting an

acceleration hierarchy such as kd-trees [2] or bounding

volume hierarchies (BVHs) [1], [3]. Even though this

method is general and improves the performance of various

proximity queries by several orders of magnitude, there are

ever growing demands for further improving the perfor-

mance of proximity queries, since the model complexities

are also ever growing. For example, proximity queries

employed in interactive applications such as games should

provide real-time performance. However, it may not meet

such requirement, especially for large-scale models that

consist of hundreds of thousands of triangles.

Recently, the number of cores on a single chip has
continued to increase to achieve a higher computing power,
instead of continuing to increase the clock frequency of a
single core [4]. Currently commodity CPUs have up eight
cores and GPUs have hundreds of cores [5]. Another
computing trend is that various heterogeneous multicore
architectures such as Sony’s Cell, Intel Sandy Bridge, and
AMD Fusion chips are available. The main common
ground of these heterogeneous multicore architectures is
to combine CPU-like and GPU-like cores in a single chip.
Such heterogeneity has been growing even more in the
cloud computing environment, which is currently a wide-
spreading trend in (high-performance computing) IT
industry [6]. However, prior acceleration techniques such
as using acceleration hierarchies do not consider utilizing
such parallel architectures and heterogeneous computing
systems. Since we are increasingly seeing more hetero-
geneous computing systems, it is getting more important to
utilize them for various applications, including proximity
queries, in an efficient and robust manner.

Main contributions: We present a novel, linear
programming (LP)-based scheduling algorithm that mini-
mizes the running time of a given proximity query, while
exploiting heterogeneous multicore architectures such as
CPUs and GPUs. We first factor out two common and
major job types of various proximity queries: hierarchy
traversal and leaf-level computation. We then describe a
general, hybrid parallel framework, where our scheduler
distributes the common proximity computations to the
heterogeneous computing resources (Section 3). To repre-
sent the performance relationship between jobs and
computing resources, we model the expected running
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time of those computations on the computing resource, by
considering setup costs, data transfer overheads, and the
amount of jobs. We then formulate our scheduling
problem, minimizing the largest time spent among
computing resources, as an optimization problem and
present an iterative LP-based scheduling algorithm (Sec-
tion 4), which shows high-quality scheduling results with
a small computational overhead. We further reduce the
overhead of our scheduling method by employing a
hierarchical scheduling technique, to handle a larger
number of independent computing resources.

We have applied our hybrid parallel framework and
scheduling algorithm to a wide variety of applications
(Section 5). In the tested benchmarks (see Fig. 1), we use
various combinations of a quad-core CPU, two hexa-core
CPUs, and four different types of GPUs. In various machine
configurations, our method achieves up to an order of
magnitude performance improvement over using a multi-
core CPU only. While other tested prior scheduling
methods show even lower performance as we add more
computing resources, our method continually improves
the performance of proximity queries. Moreover, we show
that our method achieves throughput that are close (e.g.,
75 percent) to a conservative upper bound of the ideal
throughput. In addition, we employ our expected running
time model to optimize a work stealing method, that is a
general workload balancing approach used in parallel
computing systems. The work stealing method optimized
by our expected running time model achieves performance
improvement (18 percent on average) over the basic one in
the tested benchmarks, while eliminating one of the
manually tuned parameters that strongly affect its perfor-
mance (Section 5.5).

Our method is a practical, optimization-based schedul-
ing algorithm that aims proximity computation in hetero-
geneous computing systems. For various proximity quires,
our method robustly provides performance improvement
with additional computing resources. To the best of our
knowledge, such results have been not acquired by prior
scheduling algorithms designed for parallel proximity
computations. We wish that our work takes a step toward
better utilization of current and future heterogeneous
computing systems for proximity computations.

2 RELATED WORK

Recently, general programming and execution models for
heterogeneous architectures have been proposed [7], [8], [9],
[10] and these models can be adopted in many different
applications. However, designing efficient workload balan-
cing algorithms is still left to users. We briefly discuss prior
work on scheduling and parallelization techniques de-
signed for general applications and proximity queries.

2.1 Scheduling for Unrelated Parallel Systems

Scheduling concerns allocating jobs to resources for achiev-
ing a particular goal, and has been extensively studied [11].
We are interested in finding the optimal job distribution
that maximizes the throughput of entire parallel system.
This is known as minimizing the makespan. At high level, a
parallel system can be classified as identical, related, or
unrelated. Unrelated parallel system consists of heteroge-
neous computing resources that have different character-
istics and thus performance varies. Related or identical
systems, on the other hand, are composed of resources that
are similar or the exactly same in terms of characteristics
and performance, respectively. Our scheduling method
aims for most general parallel systems, such as unrelated
parallel machines (i.e., heterogeneous computing systems).

In theoretical communities, minimizing the makespan
for unrelated parallel machines is formulated as an integer
programming (IP). Since solving IP is NP-hard, many
approximate approaches with quality bounds have been
proposed. These approximate methods achieve polynomial
time complexity by using a linear programming, which
relaxes the integer constraint on the IP [12], [13], [14].
Lenstra et al. [13] proved that no LP-based polynomial
algorithms guarantee an approximate bound of 50 percent
or less to the optimal solution, unless P ¼ NP . This
theoretical result applies to our problem too.

In addition to theoretical results, many heuristic-based
scheduling methods have been proposed for unrelated
parallel machines [15], [16]. Al-Azzoni and Down [16]
proposed approximated LP-based scheduling algorithms.
Since gathering various information from all the resources
incurs a significant overhead in their heterogeneous system,
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Fig. 1. This figure shows five different benchmarks, whose proximity queries are parallelized by using CPUs and GPUs within our hybrid parallel
framework. Different computations of these queries are automatically distributed by our LP-based scheduler without any parameter tuning.
Compared to using a hexa-core CPU with six CPU threads, our method achieves one order of magnitude performance improvement by using two
hexa-core CPUs and four different GPUs.



they considered information (e.g., the minimum completion
time) from only a subset of resources. These techniques
considered the scheduling problem in simulated environ-
ments or specific applications (e.g., an encryption algo-
rithm). Moreover, they focused on studying theoretical or
experimental quality bounds rather than a practical perfor-
mance on working heterogeneous computing systems.

Topcuoglu et al. [17] proposed an insertion-based task
scheduling method, heterogeneous-earliest-finish-time al-
gorithm (HEFT), that accounts for the execution time of all
tasks. Augonnet et al. [8] improved HEFT by considering
the data transfer overhead. HEFT assigns tasks to processors
one-by-one as it minimize the earliest finished time at each
step. The algorithm provide high-quality scheduling results
even if the types of jobs are different each other. However,
the computational overhead increases as the number of jobs
increases and it is unclear how much performance HEFT
realizes for proximity query computations. This is mainly
because we usually have hundreds of thousands of jobs at
each scheduling time. In comparison, our scheduling
algorithm finds how to distribute a set of jobs to multiple
computing resources by solving optimization problem and
its computational cost depends on the number of job types.
Therefore, our method is well suit to the proximity
computations that have a small number of job types.

Work stealing is a well-known workload balancing
algorithm in parallel computing systems [18], [19]. Kim
et al. [20] showed that the work stealing method achieved a
near-linear performance improvement up to eight CPU
cores for continuous collision detection. Hermann et al. [21]
employed a work stealing approach to parallelize the time
integration step of physics simulation with multi-GPUs and
multi-CPUs. They compute an initial task distribution
depending on a task graph to minimize inefficient inter-
device communication caused by the work stealing. In case
of proximity queries, however, it is hard to compute the
task graph, since tasks are sporadically generated during
processing prior tasks. To further improve the efficiency of
work stealing methods, various knowledge about applica-
tions or computations can be utilized [21], [22], [23].
Hermann et al. [21] employed a priority-guided stealing
approach and made GPUs steal time-consuming jobs first
and CPUs take opposite strategy since small jobs decreases
the efficiency of using GPUs. For fair comparison with those
prior work, we also apply the priority-guided stealing
approach to our basic work stealing implementation based
on knowledge of proximity computations (Section 5). We
compare our scheduling method with the basic work
stealing approach and improve the efficiency of the work-
ing stealing method based on one of our contributions
(Section 5.5).

2.2 Performance Models

For high-quality scheduling results, scheduling algorithms
commonly rely on performance models that predict how
much computational time a resource takes to finish tasks.
Literatures in the field of the scheduling theory often
assume that there is a mathematical performance model for
their scheduling problems [8]. Few works gave attention to
modeling overheads such as data communication costs [15].
Performance models for GPUs [24], [25] and heterogeneous

framework [26], [27] recently have been proposed. These
architectural performance models can be very useful to
accurately predict the computational time of jobs in a broad
set of GPUs.

In this paper, we use a simple performance model of jobs
occurred in different proximity queries (Section 4.1). Our
performance model can be efficiently computed with
observed performance data and can be effectively incorpo-
rated within our LP-based scheduling method.

2.3 Parallel Proximity Queries and Scheduling

Many scheduling methods have been proposed for various
proximity computations on parallel systems. Tang et al. [28]
group jobs into blocks and assign a block to each idle CPU
thread in a round robin fashion. Lauterbach et al. [29] check
the workload balance among cores on a GPU and perform
workload balancing (i.e., distributing jobs evenly) when the
level of workload balance is low.

Only a few works have proposed utilizing heterogeneous
multicore architectures for proximity queries. Budge et al.
[30] designed an out-of-core data management method for
ray tracing on hybrid resources including CPUs and GPUs.
They prioritize different jobs in ray tracing and assign them
into either a CPU or a GPU, by checking which processor
the jobs prefer and where the required data is stored. Kim
et al. [20] decompose continuous collision detection into
two different task types and manually dedicate all the tasks
of each job type into one of the CPU or GPU.

It is unclear, however, how well these techniques can
be applied to a wide variety of proximity queries, since
they use manually specified rules for a specific applica-
tion, or rely on application-dependent heuristics. Further-
more, their approaches do not rely on optimization
frameworks to maximally utilize available computing
resources. Departing from these prior scheduling meth-
ods, our method takes a general and robust approach to
minimize the makespan of a wide variety of proximity
queries with hybrid resources. We compare our method
with these prior methods in Section 5.

3 OVERVIEW

We give a background on hierarchy-based proximity
computation and then describe our hybrid parallel
framework.

3.1 Hierarchy-Based Proximity Computation

Proximity queries are commonly accelerated by using an
acceleration hierarchy (e.g., BVHs or kd-trees) constructed
from a mesh. For simplicity, we assume that we use BVHs
as the acceleration hierarchy for various proximity queries
in this paper; kd-trees or other acceleration hierarchies can
be used with our method as well.

To perform proximity queries, we traverse a BVH
starting from the root node of the BVH. For each inter-
mediate node, we perform computations based on the
bounding volume (BV) associated with the node. Depend-
ing on the result of the computations, we traverse the left
node, the right node, or both of the nodes in a recursive
manner. Once we reach leaf nodes, we also perform other
computations based on geometric primitives (e.g., triangles)
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associated with the leaf nodes. These two different types of
computations, hierarchical traversal and leaf-level computation,
are common jobs that can be found in many hierarchy-based
proximity computations.

These two components have different characteristics
from a computational point of view. The hierarchical traversal
component generates many computational branches and
thus requires random memory access on the mesh and the
BVH. Moreover, its workload can vary a lot depending on
the geometric configuration between BVs of intermediate
nodes. On the contrary, the leaf-level computation follows
mostly a fixed work flow and its memory access pattern is
almost regular. Because of these different characteristics, we
differentiate computations of various proximity queries into
these two types of jobs. This job differentiation is also
critical for modeling an accurate performance model and
finding an optimal workload distribution algorithm in
heterogeneous computing systems (Section 4).

3.2 Our Hybrid Parallel Framework

Fig. 2 shows our overall hybrid parallel framework for
various proximity queries. Our hybrid parallel framework
consists of four main components:

1. initial job generator,
2. computing resources,
3. scheduler, and
4. data communication interface.

Before performing a proximity query, we first share basic
data structures (e.g., meshes and their BVHs) among
different computing resources, to reduce the data transfer
time during the process of the proximity query. Then the
initial job generator computes a set of initial jobs and feeds it
into the scheduler. The scheduler distributes initial jobs into
computing resources (e.g., CPUs or GPUs). The scheduler runs
asynchronously in a separate, dedicated CPU thread, while
computing resources process their jobs. Data transfer among
the scheduler and computing resources is performed through
the data communication interface. Each computing resource
has two separate queues, incoming and outgoing job queues,
as the data communication interface. The scheduler places
distributed jobs into the incoming job queues. Then, each
computing resource fetches jobs from its incoming job queue
and starts to process the fetched jobs. If a computing resource
generates additional jobs while processing them, it places
new jobs into its outgoing job queue; a hierarchical traversal
job dynamically creates multiple jobs of the leaf-level
computation depending on geometric configurations. Once
there is no job in the incoming job queue of a computing
resource, it notifies the scheduler. At each time the scheduler
gets such a notification, it collects available jobs from all the

outgoing job queues of the computing resources and
distributes them into incoming job queues. The main goal
of our scheduler is to compute a job distribution that
minimizes the makespan. More low-level implementation
details about our hybrid parallel framework are available in
Appendix A, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TVCG.2013.72, as a supplementary material.

4 LP-BASED SCHEDULING

In this section, we describe our formulations of the problem
and present our scheduling algorithm.

Notations: We define a job to be an atomic unit that our
scheduling method handles. To denote each computing
resource (e.g., CPU or GPU), we use Ri, where i is the
resource ID. R is a set of all Ri and we use jRj to denote the
number of available resources. To indicate the type of each
job (e.g., hierarchical traversal and leaf-level computation),
we use Jj, where j is the job type ID. J is a set of all Jj and
jJ j refers to the number of different job types. We use nj to
denote the number of jobs that have a particular job type Jj,
while we use nij to denote the number of jobs of Jj allocated
to Ri. We also use the term makespan to denote the largest
running time spent among all the computing resources.

4.1 Expected Running Time of Jobs

Since many factors on both computing resources and
computations of proximity queries influence the perfor-
mance, it is hard to consider all the factors separately when
we decide a job distribution. To abstract such complex
performance relationship and to model our scheduling
problem as a mathematical optimization problem, we
propose to formulate an expected running time of proces-
sing jobs on a particular computing resource.

To formulate the expected running time of jobs, we
measure how much time it takes to process jobs on different
computing resources. As shown in Fig. 3, an overall trend is
that the processing time of jobs on each computing resource
linearly increases as the number of jobs increases. However,
the performance difference among computing resources
varies depending on characteristics of each job type. For
leaf-level computation a GPU shows much higher perfor-
mance than a multicore CPU, while a multicore CPU shows
a little lower or similar performance with a GPU for
hierarchical traversal. To efficiently utilize heterogeneous
computing resources, we need to consider these relation-
ship between job types and computing resources. Another
interesting observation is that a certain amount of setup
cost, especially higher for GPUs, is required to launch a
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Fig. 2. Overview of our hybrid parallel framework. Fig. 3. This figure shows observed processing time of two different job
types on five different computing resources as a function of the number
of jobs.



module (or kernel for GPU) that processes at least a single
job on computing resources.

To fully utilize the available computing power, it is also
important to minimize communication overheads between
computing resources. For example, two identical computing
resources show different processing throughput for a same
job depending on which computing resource generates
the job since another one needs to wait for data transfer.
To accommodate such data transfer overhead, we differ-
entiate the types of jobs depending on which computing
resource those jobs were created at, even though they
perform the same procedure (e.g., the hierarchical traversal
created from a CPU or a GPU).

We reflect these observations in our formulation of the
expected running time of jobs. More specifically, given nij
jobs with a job type Jj that are created at a computing
resource Rk, the expected time, T ðk! i; j; nijÞ, of complet-
ing those jobs on a computing resource Ri is defined as
the following:

T ðk! i; j; nijÞ ¼
0; if nij is 0;

Tsetupði; jÞ þ Tprocði; jÞ � nij
þ Ttransðk! i; jÞ � nij; otherwise:

8><
>:

ð1Þ

Tsetupði; jÞ represents the minimum time, i.e., setup cost,
required to launch a module that processes the job type Jj
on the computing resource Ri. Tprocði; jÞ is the expected
processing time for a single job of Jj on the Ri, while
Ttransðk! i; jÞ is the transfer time of the data about a
single job of Jj from Rk to Ri. In the remainder of this
paper, we simply use T ði; j; nijÞ instead of T ðk! i; j; nijÞ
since we differentiate the types of jobs depending on the
producer resources and the job type Jj inherently contains
the information.

Measuring constants: To accurately measure constants
Tsetupð�Þ, Tprocð�Þ, and Ttransð�Þ of (1), we measure the running
time of performing jobs in each computing resource and the
transfer time between computing resources, as we vary the
number of jobs. We then fit our linear formulation with
the observed data, and compute the three constants for each
job type on each computing resource by using sample jobs.
This process is performed at a preprocessing stage and takes
a minor time (e.g., a few seconds). Computed constants for
our linear formulation in one of our tested machines are in
Table 1. The constants are measured for each proximity
query, not for each experiment.

Our formulation of the expected running time shows
linear correlations, which range from 0.81 to 0.98 (0.91 on
average) with the observed data. This high correlation
validates our linear formulation for the expected running
time of jobs.

4.2 Constrained Optimization

There are many different ways of distributing jobs into
available computing resources. Our goal is to find a job
distribution that minimizes the makespan.

We run our scheduler when no more jobs are left in
the incoming job queue of a computing resource. When the
scheduler attempts to distribute unassigned jobs, some
computing resources may be busy with processing already
assigned jobs. Therefore, our scheduler considers how much
time each computing resource would spend more to finish
all jobs allocated to the resource. We use TrestðiÞ to denote
such time for each computing resource Ri. We estimate
TrestðiÞ as the difference between the expected running
time of the jobs on Ri computed based on (1) and the time
spent on processing the job so far; if we already have spent
more time than its expected running time to process the jobs,
we recompute the expected running time of the computing
resource with remaining jobs.

We formulate the problem of minimizing the makespan
for performing a proximity query, as the following
constrained optimization:

Minimize L;

subject to TrestðiÞ þ �
jJ j
j¼1T ði; j; nijÞ � L; 8i 2 R

ð2Þ

�
jRj
i¼1nij ¼ nj; 8j 2 J ð3Þ

nij 2 ZZþðzero or positive integersÞ: ð4Þ

This optimization formulation leads to find values of nij
that minimize L under the three constraints, from (2) to (4).
The first constraint (see (2)) defines L as the makespan. The
second constraint of (3) makes sure that there is neither
missing nor redundant jobs. Finally, the third constraint
(see (4)) ensures that the result values of nij are restricted to
zero or positive integer numbers.

4.3 Scheduling Algorithm

Our optimization formulation falls into the category of
minimizing the makespan, which is known as NP-hard.
To design an efficient scheduling algorithm, we first remove
the integer constraint (see (4)) for the values of nij. Instead,
we allow a floating value for nij and choose an integer value
that is closest to the floating value. We found that this
relaxation affects very little (less than 1 percent) to the
quality of scheduling results, since we have hundreds of
thousands of jobs on average across all the tested bench-
marks. With this relaxation and if we do not consider
setup costs, we can solve the optimization problem in a
polynomial time by using linear programming [31]. When
we consider setup costs, our optimization formulation
becomes a piece-wise linear function. If nij ¼ 0, the setup
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cost Tsetupði; jÞ should be zero. Otherwise, the setup cost can
have a non-zero value. Thus, our formulation becomes a
piece-wise LP problem, which has been known as NP-hard
as well [32].

Instead of checking all the possible cases (2jRkJ j) of
distribution of job types into computing resources, we
present an iterative LP solver that checks only jRkJ j
distribution cases. Our scheduling algorithm has the
following two main steps: 1) initial assignment and
2) refinement steps.

Initial assignment step: Assume that we always have
setup costs in the expected running time formulation (see
(1)). By running the LP solver, we compute a job
distribution that gives a smallest L, given the assumption.
However, we observe that the initial assignment can have
larger L than optimal solution because of the relaxation to
the piece-wise condition of setup costs. This can result in
inefficient utilization of computing resources.

As a simple example, assume that we have only two job
types (J1; J2) and the same number of jobs for both job
types, i.e., n1 ¼ n2 ¼ 100. Also, we have two computing
resources (R1; R2) that have identical capacities and show
the same performance for both job types, i.e., Tprocði; 1Þ ¼
Tprocði; 2Þ ¼ 0:01s, but setup costs are different:

R1 : Tsetupð1; 1Þ ¼ 2s; Tsetupð1; 2Þ ¼ 0s;

R2 : Tsetupð2; 1Þ ¼ 0s; Tsetupð2; 2Þ ¼ 2s:

In the initial assignment step, the LP solver assumes that
all the computing resources have setup costs for all the job
types irrespective of the number of jobs. The LP solver,
therefore, considers that the setup cost is same (i.e.,
2 seconds) for both computing resources, and distributes
the same number of jobs to both computing resources
regardless of job types. As a result, the example parallel
system consisting of R1 and R2 takes more than 2 seconds,
since each computing resource already takes 2 seconds for
its setup cost. However, if we allocate all the jobs of J2 to
R1 and all the jobs of J1 to R2, both computing resources
do not incur setup costs and thus we can complete all the
jobs in 1 second.

Refinement step with an application-independent
heuristic: To address the underutilization issue of comput-
ing resources in the initial assignment step, we iteratively
improve assignment solutions in refinement steps. Since we
relax the piece-wise condition of setup costs in the initial
assignment, we consider its negative effects and reassign
jobs to reduce such negative effects. To perform this
strategy, we define a job-to-resource ratio (nij=nj) for each
job type. Given a job type, this ratio describes the portion of
jobs that are being processed on the resource Ri. The ratio
can be an approximate indicator of the benefit obtained by
using Ri to process jobs of Jj, since the overhead of the
setup cost is constant and thus amortized when the number
of jobs increases.

We treat a computing resource that has the smallest job-
to-resource ratio to be most underutilized given a job type.
If there are multiple candidates, we choose the one that has
a larger setup cost than the others. We thus reassign jobs of
the job type assigned to the computing resource to other
computing resources. To implement this heuristic within

our LP-based scheduler, we set Tsetupði; jÞ as zero and
Tprocði; jÞ as 1 for the Ri that has the smallest job-to-
resource for jj. Note that even though Ri does not get any
jobs given the job type Jj, it can get more jobs of other job
types. As a result, it can better utilize different capacities of
heterogeneous computing resources.

We perform the refinement step until one of the
following three conditions are met: 1) the LP solver cannot
find a solution, 2) we cannot further reduce the L value, the
makespan, or 3) the LP-solver takes more time than the
smallest value of TrestðiÞ, the expected running time for
completing tasks that are under processing in each resource
among all the resources, to prevent a long idle time of
computing resources (i.e., time-out condition). Through this
iterative refinement steps, we can achieve better assignment
results that are close to the optimal solution. A detailed
work-flow of our iterative LP solver on an example of
scheduling problem is available in Appendix B, which is
available in the online supplemental material.

Note that this is an application-independent heuristic,
which can be used in various different proximity queries. In
addition to this heuristic, we can also have query-
dependent heuristics for a particular proximity query.

4.4 Analysis

At the worst case, our iterative solver can perform up to
OðjRkJjÞ iterations, since it can assign all the jobs into only
one computing resource. In practice, however, our LP-based
iterative scheduling algorithm takes only a few iterations.
When jRj and jJ j are 6 and 12, respectively, our methods runs
7.5 iterations on average in our experiments. Each iteration of
our LP-based scheduling method takes only 0.3 ms on
average. Also, the expected running time is reduced up to
59 percent (19 percent on average) by the refinement step
over the initial solution of the initial assignment step. Table 2
shows the benefit of our iterative solver. As we will see later
our method achieves higher improvement from the initial
solution through refinement iterations, as a heterogeneous
level of computing resources increases.

We have also studied the quality of our scheduler by
comparing its quality over the optimal result computed
with the exhaustive method. In the exhaustive method, we
check all the possible (2jRkJ j) assignments of job types into
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TABLE 2
This Table Shows the Average Number of Iterations in the

Refinement Step and the Average Time of an Iteration

We also compare the quality of the iteratively refined solution
(makespan, Lfin) with the initial solution (Linit) computed from initial
assignment step. In this analysis, for each configuration of jRj, we run
our algorithm for 500 of randomly generated job sets with the constants
in Table 1. We add four different GPUs to two hexa-core CPUs one by
one as jRj is increased. To focus more on showing benefits of our
iterative solver, we turn off the time-out condition in the refinement step
in this experiment.



computing resources and find the job distribution that gives
the smallest expected running time. We run the exhaustive
method only for the configuration of jRj ¼ 3 because of the
high computational overhead. We found that our scheduler
has a minor computational overhead (e.g., less than 1 ms)
and compute a job distribution that achieves a near-optimal
expected running time, which is on average within 6 percent
from the optimal expected running time computed with the
exhaustive method that takes 30 seconds.

Hierarchical scheduling: Even though the computa-
tional overhead of our LP solver is low with a small number
of computing resources, it increases with OðjRj2jJ j3Þ
theoretically in the worst case [33]. However, we found
that it increases almost linearly as a function of the number
of resources in practice. Nonetheless, the overhead of our
scheduling algorithm becomes a nonnegligible cost in
interactive applications when we employ many resources,
since the number of iterations is also increased linearly. For
example, if we do not terminate the refinement step by the
time-out condition, the overhead becomes 29 ms on
average, when we have sixteen computing resources
(Machine 2 in Table 3) for a collision detection application.

Interestingly, we found that simple workload balancing
methods designed for identical parallel systems comparably
work well or even better than our LP-based method for
identical cores in a device. It is due to simplicity of the
methods and low intercore communication cost under
shared memory systems. Multiple cores in a multicore
CPU is a typical example. Based on this observation, we
group computing units in a device (e.g., cores in a single
multicore CPU) as a big computing resource and treat it as
one computing resource for our LP-based scheduling; we
measure the expected running time of different job types
with the big computing resource and use that information
for our LP-based scheduling. Once tasks are allocated to the
one big resource, we run a simple scheduling (e.g., work
stealing) method. We found that this two-level hierarchical
scheduling method improves the performance of proximity
queries in tested benchmarks 38 percent on average over
running without the hierarchical scheduling in Machine 2
(see Table 3).

5 RESULTS AND DISCUSSIONS

We have implemented our hybrid parallel framework and
scheduling algorithm (Ours(Exp.+LP)) in three different
machine configurations (see Table 3). As we discussed in
the hierarchical scheduling method (Section 4.4), we treat the
identical computing units in a device as a single computing
resource. We then use simple work stealing method [20]
within a multicore CPU, and even distribution method [29]
within a GPU for tasks allocated to the single computing
resource. In the case of using two hexa-core CPUs and four
GPUs together, we have six different computing resources
(i.e., jRj ¼ 6). Initially, we have two different job types
(hierarchy traversal and leaf-level computation) for all the
tested proximity queries. We differentiate these two job
types depending on which computing resource generates
such type of jobs (Section 4.1). Therefore, jJ j becomes 12.

We use the axis-aligned bounding box as bounding
volumes for BVHs because of its simplicity and fast update
performance. We construct a BVH for each benchmark in
precomputation time in a top-down manner [1]. For
dynamic scenes, we simply refit BVs at the beginning of
every new frame [34]. The hierarchy refit operation takes a
minor portion (e.g., about 1 percent) of the whole proximity
query computation. Therefore, we just use the fastest
computing resource in the machine to update BVHs rather
than parallelizing the operation. We have implemented
CPU and GPU versions of hierarchical traversals and leaf-
level computations based on prior CPU and GPU imple-
mentations [29], [20]. We use the OpenMP library [35] and
CUDA [5] to implement CPU- and GPU-based parallel
proximity queries, respectively. Also, we use the LINDO
LP1 solver for our LP-based scheduling algorithm.

For comparison, we have implemented three prior
scheduling methods designed for proximity queries. The
first one (Lau10) is a scheduling algorithm proposed by
Lauterbach et al. [29]. When the level of workload balance
among computing resources is low, this scheduling method
distributes available jobs into computing resources evenly
in terms of the number of jobs. The second method is the
block-based round-robin method (Tan09), proposed by
Tang et al. [28]. Also, we have implemented a work stealing
(WS) algorithm [20] as the third method. In WS, once a
computing resource becomes idle, it steals a portion (e.g.,
half) of the remaining jobs from a busy computing resource
(victim). To further optimize the implementation of WS, we
allocate initial jobs according to the relative capacity of
different computing resources computed by our expected
running time formulation. We also employ the priority
based stealing strategy. We give high priority to leaf-level
jobs for GPUs and hierarchical traversal jobs for multicore
CPUs while accounting the characteristics of jobs and
computing resources (Section 4.1). For Tan09 and WS
methods, we found that the block size and stealing
granularity are strongly related with the performance. We
have tested various block sizes (e.g., from 1K jobs to 20K
jobs) for Tan09 and stealing granularity (e.g., 30-70 percent
of remaining jobs of the victim) for WS. Then, we reported
the best result among them for each benchmark on each
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TABLE 3
The Upper Table Shows Three Different Machine

Configurations We Use for Various Tests

The quad-core CPU is Intel i7 (3.2 GHz) chip and each hexa-core CPU
is Intel Xeon (2.93 GHz) chip. The bottom table shows the throughput of
each computing resource for the tested benchmarks (see Fig. 1).

1. LINDO systems (http://www.lindo.com).



resource combination. Note that while the best results of
these techniques are manually acquired, we do not perform
any manual tuning for our method.

Benchmarks: We have applied our hybrid parallel
framework and its scheduling algorithm into the following
five benchmarks that have different characteristics and use
different proximity queries. Three of our benchmarks are
well-known standard benchmarks2: cloth simulation (92 K
triangles, Fig. 1a), N-body simulation (146 K triangles,
Fig. 1b), and fracturing simulation (252 K triangles, Fig. 1c).
For these benchmarks, we perform continuous collision
detection and find all the inter- and intracollisions. Our
fourth benchmark is a roadmap-based motion planning
problem (137 K triangles, Fig. 1d) [36], where we attempt to
get a sofa out of a living room. We use discrete collision
detection for the benchmark. However, this query does not
need to identify all the contacts, and thus terminates right
away when we find a single collision. We generate 50 K
random samples in its configuration space. Our final
benchmark is a path tracing where a living room (436 K
triangles, Fig. 1e) is ray traced with incoherent rays
generated by a Monte Carlo path tracer [37]. For the
benchmark, we generate 80 million rays in total.

Work granularity: Atomic scheduling granularities for
leaf-level computation are a triangle-triangle overlap test
for the first four benchmarks and a ray-triangle intersection
test for the path tracing benchmark. These leaf-level jobs are
dynamically generated, when we reach leaf nodes during
the hierarchical traversal. For collision queries, a pair of
nodes of BVHs is an atomic unit for the hierarchical
traversal job. For a pair of two nodes, we perform a subtree
traversal that starts with performing a bounding volume
overlap test between the two nodes and traverse hierarchies
recursively depending on the overlap test result until we
reach leaf nodes. In the motion planning benchmark, we
need to check whether a randomly generated configuration
sample is in a free space or not. This operation is essentially
the same as collision detection, and thus we use similar
traversal jobs to collision detection. For the path tracing
benchmark, an atomic traversal job consists of a ray and the
root of a BVH. We perform ray-BV intersection tests in a
recursive way until reaching a leaf node. In all the tested
benchmarks, each leaf node has a single primitive (e.g., a
triangle). If we have multiple primitives at a leaf node, a
pair of leaf nodes generates multiple atomic leaf-level jobs.
Since our framework and scheduling algorithm are inde-
pendent to the number of generated jobs, our methods are
also compatible with other types of hierarchies that have
multiple primitives at leaf nodes.

Initial jobs: To generate initial jobs for our scheduling
methods, we identify jobs that are independent and thus
can be parallelized naively. These initial jobs can be
constructed in an application-dependent manner. In the
motion planning and path tracing benchmarks, indepen-
dent rays and samples are set as initial jobs. For all the other
benchmarks, we traverse the BVH of each benchmark in a
breadth-first manner and set independent collision detec-
tion pairs as initial jobs, as suggested by prior parallel

methods [20], [29]. This step takes less than 1 ms in the
tested benchmarks.

5.1 Results and Analysis

Figs. 4 and 5 show the performance of various proximity
queries that are parallelized with different scheduling
methods in two machine configurations (Machine 1 and 2
in Table 3). We use the line plot instead of bar graph to
highlight the performance trend as we add more computing
resources. For the graph, we measure processing through-
put (i.e., frames per second). To see how the performance of
each query behaves with various combinations of comput-
ing resources, we measure the capacity of each computing
resource (see Table 3), and combinations of these comput-
ing resources in various ways.

On average, our scheduling method shows higher
improvement over all the other prior methods. A more
interesting result is that as we add more computing
resources, our LP-based method continually improves the
performance across all the tested benchmarks. This demon-
strates the robustness of our method. Compared to the
result achieved by using only a hexa-core CPU, our method
achieves up to 19 times improvement by using two hexa-
core CPU and four different GPUs (see Fig. 5).

On the other hand, all the other methods often show
even lower performance for additional computing re-
sources, especially when we add lower capacity computing
resources. For example, Lau10 shows significantly lower
performance (42 percent), when we use an additional quad-
core CPU (C) to GTX285 and GTX 480 (lG+hG) system for
the fracturing benchmark (see Fig. 4). In this case, C has
relatively lower capacity than other GPUs. However, Lau10
does not consider the relative capacity difference and
assigns jobs evenly, which leads to a lower performance.
Surprisingly, Tan09, an efficient version of the round-robin
scheduling that naturally considers different capacities of
computing resources, also shows lower a performance,
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Fig. 4. This figure shows the throughput, frames per second, of our
hybrid parallel framework, as we add a CPU and two GPUs, in the tested
benchmarks. (C ¼ a quad-core CPU, lG ¼ GTX285 (i.e., low-perfor-
mance GPU), hG ¼ GTX480 (i.e., high-performance GPU)).

2. UNC dynamic benchmarks (http://gamma.cs.unc.edu/DYNAMICB).



when we add lG to C+hG in the motion planning
benchmark (see Fig. 4). This lower performance is mainly
caused by their lack of mechanism for considering different
running times of jobs.

The WS shows a relatively stable performance com-
pared with other two prior approaches. However, it also
gets a lower performance (6 percent) when we use an
additional lG to C+hG for the motion planning benchmark
(see Fig. 4). On average, our LP-based algorithm shows
22 and 36 percent higher performance than WS in Figs. 4
and 5, respectively. We found that since WS does not
consider the relative capacity of heterogeneous computing
resources, stealing operations occur more frequently than
in homogeneous computing systems. In addition, commu-
nication cost in distributed memory systems is much
higher than in shared memory systems [38]. Such a large
number of stealing operations and high data communica-
tion overhead lower the utilization of heterogeneous
computing systems. In our continuous collision detection
benchmarks, the work stealing method launches 11 times
more data transfer operations on average than our LP-
based algorithm when we use six computing resources.
Interestingly, for the path tracing benchmark, WS shows
comparable performance with Ours(Exp.+LP). It is due to
the fact that the communication cost is relatively smaller

than the large computation time of proximity query for the
benchmark. Nonetheless, Ours(Exp.+LP) achieves better
performance over WS, even though we manually calibrate
the stealing granularity of WS for each combination of
resource configuration and benchmark.

Scalability: In Fig. 5, all the scheduling methods
generally achieve higher throughputs with more computing
resources, since we intentionally add more powerful
resources. Nonetheless, Ours(Exp.+LP) shows the highest
throughput among all the other prior scheduling methods
in heterogeneous computing systems. Also, the perfor-
mance gap between ours and prior methods becomes larger
as the computing system has higher heterogeneity. Note
that heterogeneity is increased as we employ more
computing resources, since added computing resources
have different capacity from those of prior computing
resources. On the other hand, our LP-based method adapts
well to high heterogeneity, since it naturally considers the
capacity difference of computing resources.

Benefits of LP-based scheduling: To measure benefits
caused only by our LP-based scheduling formulation, we
implemented a simple scheduling method based on the
expected running time of jobs. This simple algorithm
assigns jobs according to the relative capacity of different
computing resources, while considering our expected
running time of jobs. For example, if R1 is two times faster
than R2 given a particular job type Ji in terms of their
expected running time, we then assign two times more jobs
to R1 than R2. On average, our LP-based scheduling
method (Ours(Exp.+LP)) shows 26 percent higher perfor-
mance over the simple method for the tested benchmarks
in Machines 1 and 2. Since the simple method considers
only the relative performance of computing resources for
each job type and does not look for more optimized job
distributions among all the job types, it shows lower
performance than the LP-based algorithm. We also
measure benefits of considering setup costs (Tsetup). When
we ignore setup costs in our LP-based scheduler, it shows
up to 38 percent (9 percent on average) performance
degradation compared to considering the setup costs in the
tested benchmarks.

Benefits of hierarchical scheduling: Fig. 6 shows the
benefits of our hierarchical scheduling method. By incor-
porating hierarchical scheduling, our method achieves
35 percent improvement on average over the one without
using hierarchical scheduling. This improvement is caused
mainly by two factors. First, the hierarchical approach
lowers down the number of resources that we need to
consider, and reduces the computational overhead for
scheduling. As the computational time for scheduling is
decreased, the idle time of computing resources spent on
waiting for jobs is reduced and thus we achieve a higher
utilization of the computing system. For example, at 2C þ
4G our LP-based scheduling takes 1.1 ms for each iteration
without hierarchical scheduling (jRj ¼ 16). It reduces to
0.3 ms when we use hierarchical scheduling (jRj ¼ 6) and
the average portion of idle time of computing resources is
decreased by 11 percent (see Table 4). Second, hierarchical
scheduling reduces the data transfer overhead. In our tested
benchmarks, the number of data transfer operations is
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Fig. 5. This figure shows the throughput, frames per second, of ours
and prior scheduling algorithms, as we add more computing
resources. (1C ¼ a hexa-core CPU, 1G ¼ GTX285, 2G ¼ 1G þ
Tesla2075, 3G ¼ 2G þ GTX480, 4G ¼ 3G þ GTX580).



decreased by 30 percent with our hierarchical scheduling
method. Interestingly the hierarchical approach also im-
proves the efficiency of WS by 29 percent on average.
Nonetheless, our LP-based scheduling combined with
hierarchical scheduling shows an even higher performance.

5.2 Optimality

To look into the optimality of our method, we compute an
upper bound of the ideal scheduling result in terms of real
(not expected) running time that we can achieve for the
tested proximity queries; it goes beyond the scope of our
paper to derive the ideal scheduling result for our problem,
where jobs are dynamically created depending on results of
other jobs.

We compute an upper bound of the ideal throughput
that can be achieved with multiple heterogeneous comput-
ing resources in the following manner. While running a
proximity query we gather and dump all the generated
jobs. Then with all the gathered jobs, we compute the
highest throughput by considering all the possible job
distributions in an offline manner. For computing the
highest throughput, we ignore all the dependencies among
jobs and computational overheads (e.g., data communica-
tion and scheduling time); we have computed this upper
bound only for the cloth and N-body benchmarks, since
computing the upper bound for a benchmark takes a few
weeks with our tested machine. Note that it is infeasible for
a scheduling method to achieve such upper bound, since it
is impossible to exactly predict which jobs will be generated
at runtime and we assume that there are no job depen-
dences to derive the upper bound. As a result, this upper
bound is rather loose.

The computed upper bounds are shown for the cloth and
N-body benchmarks in Fig. 4. For both benchmarks, our
method shows throughputs that are within 75 percent of the
performance provided by the upper bounds of ideal
throughputs on average. On the other hand, Lau10, Tan09,
and WS show within only 45, 54, and 61 percent of the ideal
throughput on average, respectively. Note that no prior
methods discussed this kind of optimality, and our work is
the first to look into this issue and achieves such high
throughput close to the ideal throughput.

To see if our method can be improved further, we
investigated the underutilization of each computing re-
source with our LP-based algorithm. We measured how
long computing resource stays in the idle status; a
computing resource is defined as idle when it completes
all assigned jobs or waits for required data during assigned
jobs. We found that the idle time takes a small portion
(13 percent on average) of total running time when we use
our LP-based algorithm with hierarchical scheduling (see
Table 4). We also found that the idle time due to data
waiting takes less than 10 percent of whole idle time since
we overlap the data transfer and computations. To check
the overhead of our scheduler, we measured how much
time our scheduler running on the CPU takes, compared to
other working threads running on the same CPU; the
measured time includes not only the time for solving LP but
also communication cost for checking the size of output
queues and dispatching the scheduling results to comput-
ing resources. It takes about 7 percent of total running time
of those working threads. This indicates that our scheduling
method has low computational overhead.

5.3 Near-Homogeneous Computing Systems

Although our method is designed mainly for heterogeneous
computing systems, we can apply our method for homo-
geneous computing systems. To check usefulness of our
approach even in these systems, we compare ours and prior
approaches in a near-homogeneous system consisting of
two hexa-core CPUs and four identical GPUs. Fig. 7 shows
throughputs with different scheduling algorithms in the
near-homogeneous computing system for our tested bench-
marks. Prior approaches show better scalability in the near-
homogeneous system over in heterogeneous computing
configurations. Tan09, Lau10, and WS methods on the near-
homogeneous system show improved performance by 11, 5,
and 10 percent over the heterogeneous computing, respec-
tively, in terms of a relative throughput compared with
Ours(Exp.+LP). Nonetheless, our approach still achieves
higher throughputs than the prior methods. On average
Ours(Exp.+LP) shows 39, 54, and 12 percent higher
throughputs over the three prior methods, respectively, in
the tested benchmarks. This result demonstrates the
generality and robustness of our LP-based algorithm.

5.4 Comparison to a Manually Optimized Method

Only a few works [30], [20] have been proposed to utilize
heterogeneous multicore architectures, such as CPUs and
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Fig. 6. This figure shows frames per second of our LP-based scheduling
and work stealing method with/without hierarchical scheduling
on Machine 2.

TABLE 4
This Table Shows the Average Portions of Idle Time of

Computing Resources in Our LP-Based Method with/without
Hierarchical Scheduling at Machine 2



GPUs, in the field of computer graphics. It is very hard to
directly compare ours against them in a fair ground.
However, these techniques are designed specifically for
particular applications (e.g., continuous collision detection
or ray tracing). They also assign jobs into either CPUs or
GPUs according to manually defined rules (i.e., application-
dependent heuristics) that are only valid for a specific
application. Unlike these prior works, our method formu-
lates the scheduling problem as an optimization problem
based on common components of various proximity
queries, to achieve wide applicability. Although we have
not explored in this paper, we can also adopt application-
dependent heuristics of these prior methods in the refine-
ment step of our LP-based scheduling algorithm, to further
improve the performance for a specific application.

We compared the performance of our method over the
hybrid parallel continuous collision detection (HPCCD)
[20]. HPCCD is designed specifically for continuous
collision detection, by manually assigning jobs to more
suitable computing resources (e.g., primitive tests for
GPUs). For a fair comparison, we have used the same
benchmarks and machine configurations (i.e., a quad-core
CPU and two GTX285s) used in their paper. Our method-
iterative LP scheduling method without any modification to
the application-shows similar or a slightly higher (e.g., 1.3
times higher) performance when we use a GPU with a
quad-core CPU. However, when we add one more GPU,
our algorithm achieves much higher (e.g., two times)
performance than HPCCD (see Fig. 8). This is mainly
because our LP-scheduling method considers different
capabilities of computing resources and achieves a better
distribution result than that computed by HPCCD’s
application-dependent heuristic. This result further demon-
strates the efficiency and robustness of our algorithm, since
we achieve even higher performance than the method
specifically designed for the application, even though ours
is not optimized at all for the application.

5.5 Work Stealing with Expected Running Time

In heterogeneous computing systems, the work stealing
method requires a large number of stealing operations and

high communication overhead as we discussed in Section 5.1.
It is, therefore, hard to achieve a high performance with work
stealing methods in heterogeneous computing systems.

If each computing resource steals an appropriate amount
of jobs from a victim, we can reduce the number of stealing
operations and improve the utilization of the heterogeneous
computing systems. We found that we can employ one of
our contributions, the expected running time formulation,
to determine the suitable stealing granularity automatically.
In our version of work stealing method, we first calculate
the relative capacity among computing resources based on
our expected time model for each job type. We then
normalize the relative capacities to a range between 0 and 1.
Finally, we assign different stealing granularities to com-
puting resources by scaling a basic granularity (e.g., half of
remaining jobs in the victim) with the normalized values. At
runtime, each computing resource steals jobs from a victim
according the assigned stealing granularity.

We found that our method decreases the number of data
transfer by 71 percent on average compared with the basic
work stealing method when we use six computing resources.
As a result, our work stealing method achieves 11, 20, and
23 percent higher performance on average in Machine 1, 2,
and 3 (see Table 3), respectively, over the basic work stealing
method. Also, in the near-homogeneous computing system
(Machine 3) it shows compatible performance (0.6 percent
higher on average) with our LP-based method. This result
shows the generality and a wider applicability of our
expected running time formulation. Nonetheless, in hetero-
geneous computing systems (Machines 1 and 2), our LP-
based method achieves up to 45 percent (12 percent on
average) higher performance than our version of work
stealing method.

6 CONCLUSION

We have presented a novel, LP-based scheduling method,
to maximally utilize more widely available heterogeneous
multi-core architectures. To achieve wide applicability, we
factored out common jobs of various proximity queries and
formulate an optimization problem that minimizes the
largest time spent on computing resources. We have
designed a novel, iterative LP solver that has a minor
computational overhead and computes a job distribution
that achieves near-optimal expected running time. We then
have further improved the efficiency of our scheduling
method with hierarchical scheduling to handle a larger
number of resources. To demonstrate the benefits of our
method, we have applied our hybrid parallel framework
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Fig. 8. This figure compares the performance of our method with

HPCCD, which is optimized specifically for the tested application,

continuous collision detection. The throughput, frames per second,

includes hierarchy update time.

Fig. 7. This figure shows the performance of tested scheduling
approaches on a near-homogeneous computing system consisting of
two hexa-core CPUs and four identical GPUs (Machine 3 in Table 3).



and scheduling algorithm into five different applications.
With two hexa-core CPUs and four different GPUs, we were
able to achieve an order of magnitude performance
improvement over using a hexa-core CPU. Furthermore,
we have shown that our method robustly improves the
performance in all the tested benchmarks, as we add more
computing resources. In addition, we improved a basic
work stealing method with our expected running time
model and it shows 18 percent higher performance on
average in the tested benchmarks.

6.1 Limitations and Future Work

It is evident that future architectures will have more
computing resources. We have demonstrated the perfor-
mance with machines consisting of up to six different
computing resources and discussed its optimality with up
to three different computing resources. It is one of the most
challenging problems to maintain a near-optimal through-
put, even though we have more than six computing
resources. To address this challenge, it is critical to lower
the underutilization of computing resources and is required
to design a better communication method among the
computing resources and the scheduler in terms of
algorithmic and architectural aspects. We have designed
our LP-based iterative scheduler to achieve a high-quality
scheduling result with a low computational overhead.
Nonetheless, our iterative solver does not guarantee
optimality of the solution and can lapse into a local
minimum. Also, its overhead can be nonnegligible depend-
ing on chosen benchmarks and machine configurations.
A further investigation is required to minimize the over-
head and robustly handle local minimum issues.

In addition, we plan to study more on hierarchical
scheduling and would like to extend it to a multiresolution
scheduling method for large-scale heterogeneous comput-
ing systems like cloud computing. In this case, it is very
important to group similar, not identical, parallel cores
since those systems consist of thousands of computing
resources that have different computational capacities.
Another challenging problem is to have a more accurate
modeling for the expected running time of jobs. Although
our linear formulation matches very well with the observed
data, there are many other factors (e.g., geometric config-
urations) that give useful intuitions for workload predic-
tion. We conjecture that by considering those factors, we
can have a better model for expecting the workload of jobs
[39]. Also, our method currently assumes that all the data
(e.g., geometry and BVH) is in each computing resource.
For large data sets that cannot fit into a device memory, we
need to consider a better data management across different
computing resources. Finally, we would like to extend our
method to other general applications that have more
variety of jobs.

We believe that our work makes a step toward this in
the context of proximity computation. We wish that our
work makes a step toward it in the context of proximity
computation.
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