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Schedulability analysis has been widely studied to provide offline timing guarantees for a set of real-time
tasks. The so-called limited carry-in technique, which can be orthogonally incorporated into many differ-
ent multi-core schedulability analysis methods, was originally introduced for Earliest Deadline First (EDF)
scheduling to derive a tighter bound on the amount of interference of carry-in jobs at the expense of
investigating a pseudo-polynomial number of intervals. This technique has been later adapted for
Fixed-Priority (FP) scheduling to obtain the carry-in bound efficiently by examining only one interval,
leading to a significant improvement in multi-core schedulability analysis. However, such a successful
result has not yet been transferred to any other non-FP scheduling algorithms. Motivated by this, this
paper presents a generic limited carry-in technique that is applicable to any work-conserving algorithms.
Specifically, this paper derives a carry-in bound in an algorithm-independent manner and demonstrates
how to apply the bound to existing non-FP schedulability analysis methods for better schedulability.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Schedulability analysis determines whether a set of real-time
tasks can meet any given timing constraints (i.e., deadlines) under
a certain scheduling algorithm on a specific computing platform. A
substantial number of studies have been made to analyze schedu-
lability in multi-core scheduling, introducing some successful re-
sults such as optimal scheduling algorithms for certain types of
tasks (e.g., periodic tasks with implicit-deadlines). However, it
yet lacks full understanding of how tasks behave on multi-cores
under a given algorithm, particularly, for more general task types
(e.g., periodic/sporadic tasks with constrained-deadlines). This
leads to the development of many sufficient (but not exact) sched-
ulability analysis methods [1–3].

Many different analysis methods share the perspective of inves-
tigating interference – how long the execution of a job of interest
can be delayed due to the execution of other higher-priority jobs.
Different analysis methods differ in how to derive a tight bound
on the amount of such interference delay. Critical to this is how
to tightly compute the contribution of carry-in jobs to the interfer-
ence. A job is said to be a carry-in job for a given interval, if the job
is released before the interval and does not yet finish its execution
at the beginning of the interval.

A few studies have been made to compute the contribution of
carry-in jobs. Baruah [2] introduced the so-called limited carry-in
technique for Earliest Deadline First (EDF) [4] utilizing the concept
of busy intervals. This technique requires to examine a pseudo-
polynomial number of intervals for a tight carry-in bound. Guan
et al. suggested to obtain a carry-in bound efficiently by examining
only one interval under Fixed-Priority (FP) scheduling [4], taking
advantage of the critical instant of a job (that maximizes its re-
sponse time) under FP scheduling [5]. This technique yields reduc-
ing the carry-in bound substantially, resulting in a significant
improvement in schedulability analysis for FP. A recent study [6]
showed that such an FP-specific limited carry-in technique is
applicable to a subset of tasks even under a dynamic-priority
scheduling algorithm called Smallest Pseudo-Deadline First (SPDF),
when the subset of tasks exhibits FP-oriented priority relationships
between each other.

However, such an effective (in schedulability improvement) and
efficient (in time-complexity) limited carry-in technique has not
been utilized for other non-FP scheduling algorithms. Therefore,
this paper seeks to develop a generic limited carry-in technique
that can be applied to any work-conserving algorithms, under
which any core is not idle as long as there is an unfinished job.
To this end, we first recapitulate existing schedulability analysis
techniques (in Section 2). Then, we develop a new carry-in bound,
which can be applied to any work-conserving algorithm (in Sec-
tion 2). Finally, we show applications how the new bound can be
incorporated into existing schedulability analyses for better sched-
ulability (in Section 3).

System Model. In this paper, we focus on a sporadic task model
[7], in which a task si in a task set s is specified by the minimum
separation Ti, the worst-case execution time Ci, and the relative
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deadline Di. We focus on constrained deadline tasks, i.e.,
Ci 6 Di 6 Ti. A task si invokes a series of jobs, each separated from
its predecessor by at least Ti time units, and supposed to finish its
execution with Di time units. Each job cannot be executed in
parallel.

Also, we consider a multi-core system consisting of m identical
cores, and preemptive work-conserving global algorithms, under
which a higher-priority job can preempt a lower-priority job any
time (preemptive), any core cannot be idle if there is an unfinished
job (work-conserving), and a job can migrate from one core to an-
other (global). Without loss of generality, let one time unit denote
the quantum length, and all task parameters are assumed to be
specified as multiples of the quantum length.

2. Limited carry-in technique for any work-conserving
algorithm

Many schedulability analysis methods employ the concept of
interference. Let Ik iða; bÞ denote the interference of si on sk in
½a; bÞ, meaning the cumulative length of all intervals in ½a; bÞ such
that a job of si executes but the job of sk of interest cannot
although it is ready to execute.

Then, considering that a job of sk cannot be executed in a time
slot, only when m other jobs are executed, the interference-based
schedulability analysis framework has been developed in [1,3], as
follows.

Lemma 1. (Theorem 3 in [1], Theorem 6 in [3]) Every job of a task
sk 2 s finishes its execution within ‘ time units if the following
inequality holds for ‘ 6 Dk:

Ck þ
1
m
�max

t2T

X
si2s�fskg

min Ik iðt; t þ ‘Þ; ‘� Ck þ 1ð Þ
$ %

6 ‘; ð1Þ

where T,ftjthe release time of a job of skg. Then, if Eq. (1) holds
for all sk 2 s, we deem s is schedulable.

It is difficult to calculate the exact value of Ik iðt; t þ ‘Þ offline,
because the value depends not only on the scheduling algorithm,
but also on job release patterns before t. Hence, existing schedula-
bility analysis techniques have derived two types of upper-bounds
on Ik iðt; t þ ‘Þ: (i) algorithm-independent ones and (ii) algorithm-
specific ones.

Regarding (i), a release (and execution) pattern that maximizes
the execution of jobs of si has been identified [1]. As shown in
Fig. 1(a), this pattern allows a task si to have a carry-in job in the
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Fig. 1. A release pattern that maximizes the amount of execution of jobs of si in an
interval starting t1.
interval of interest. In the figure, the first (carry-in) job executes
as late as possible, and the following jobs execute as early as pos-
sible. Here Si means the slack value of si, a difference between the
finishing time and deadline of a job of si; it has been detailed in
[1,3] how to calculate Si with existing schedulability analyses.
Then, the amount of the maximum execution of jobs of si in an
interval of length ‘ is calculated by [1,3]

WCI
i ð‘Þ,NCI

i ð‘Þ � Ci þmin Ci; ‘þ Di � Si � Ci � NCI
i ð‘Þ � Ti

� �
; ð2Þ

where NCI
i ð‘Þ denotes the number of jobs of si whose deadlines are

within an interval of length ‘ (e.g., the first two jobs in Fig. 1(a)), and
calculated by ‘þDi�Si�Ci

Ti

j k
.

Since a job can interfere with another job only when it is exe-
cuted, Ik iðt; t þ ‘Þ 6WCI

i ð‘Þ holds for all t; ‘ P 0 and si 2 s. Then,
Eq. (1) with replacing Ik iðt; t þ ‘Þ by WCI

i ð‘Þ yields a safe schedula-
bility analysis of any work-conserving algorithm [1,3], and this
schedulability analysis assumes that all tasks can have carry-in
jobs.

In case that a task si cannot have any carry-in job in an interval
of length ‘, Fig. 1(b) illustrates a release and (execution) pattern
that maximizes the execution of jobs of si. Here the number of jobs
of si whose release time and deadline are in the interval is

NNC
i ð‘Þ, ‘

Ti

j k
, and the amount of the maximum execution of jobs

of si is calculated by [8,5]

WNC
i ð‘Þ,NNC

i ð‘Þ � Ci þmin Ci; ‘� NNC
i ð‘Þ � Ti

� �
: ð3Þ

We can easily check WNC
i ð‘Þ 6WCI

i ð‘Þ for all ‘ P 0 and si 2 s.
Since we do not know offline whether a task has its carry-in job

in the interval of interest, WNC
i ð‘Þ cannot be a safe upper-bound of

Ik iðt; t þ ‘Þ. Instead, Ik iðt; t þ ‘Þ 6WNC
i ð‘Þ holds only if si does not

have any carry-in job in ½t; t þ ‘Þ. However, we can derive a safe
upper-bound on the amount of execution with limited carry-in
jobs, as stated in the following lemma.

Lemma 2. Let C denote a set of intervals (not necessarily continuous)
of length ‘� a (a P 0) over ½t; t þ ‘Þ. Suppose there are at most m� 1
tasks which have their carry-in jobs in ½t; t þ ‘Þ. Then, the amount of
execution of jobs of tasks in s in any C is upper-bounded by Fð‘;aÞ,
where

Fð‘;aÞ,
X
si2s

min WNC
i ð‘Þ; ‘� a

� �
þ

X
m�1 largest si2s

min WCI
i ð‘Þ; ‘� a

� �

�min WNC
i ð‘Þ; ‘� a

� �
: ð4Þ
Proof. Recall that WCI
i ð‘Þ and WNC

i ð‘Þ represent the maximum
amount of execution of jobs of si in an interval of length ‘, respec-
tively when there is a carry-in job and no carry-in job of si in the
interval. Considering the length of C is ‘� a, min WCI

i ð‘Þ; ‘� a
� �

(likewise min WNC
i ð‘Þ; ‘� a

� �
) is an upper-bound on the maximum

amount of execution of jobs of si in C in case of the existence of a
carry-in job of si (likewise no carry-in job of si).

Since we do not know which task has its carry-in job, we

initially add min WNC
i ð‘Þ; ‘� a

� �
for all tasks in s. Then, we add the

difference between min WCI
i ð‘Þ; ‘� a

� �
and min WNC

i ð‘Þ; ‘� a
� �

for

m� 1 tasks with the largest difference. Then, for any combination
of at most m� 1 tasks with carry-in jobs, Fð‘;aÞ in Eq. (4) is a safe
upper-bound on the amount of execution of jobs of tasks in s in
any C, provided that there are at most m� 1 tasks with carry-in
jobs in ½t; t þ ‘Þ. h

Using the lemma, we finally present the main theorem of this
paper.
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Theorem 1. Under any work-conserving algorithm, the total amount
of interference in Eq. (1) is upper-bounded as follows:

max
t2T

X
si2s�fskg

min Ik iðt; t þ ‘Þ; ‘� Ck þ 1ð Þ in Eq: ð1Þ

6Fð‘;Ck � 1Þ in Eq: ð4Þ: ð5Þ
Proof. Suppose that Eq. (1) with replacing the LHS of Eq. (5) by the
RHS satisfies the following inequality for ‘ 6 Dk:

Ck þ
1
m
� Fð‘;Ck � 1Þ in Eq: ð1Þð Þ

� �
6 ‘

() Fð‘;Ck � 1Þ in Eq: ð4Þð Þ < m � ð‘� Ck þ 1Þ: ð6Þ

Then, we will prove that any job of sk finishes its execution within ‘
time units. Without loss of generality, we focus on a job of sk whose
release time and deadline are t0 and t0 þ Dk.

We choose a time instant t0 � x (x P 0) such that an interval
½t0 � x; t0Þ is the maximum busy interval, in which all m cores are
occupied in ½t0 � x; t0Þ, but at least one core is idle in
½t0 � x� 1; t0 � xÞ. Then, by definition, there are at most m� 1
tasks which have their carry-in jobs in an interval starting from
t0 � x.

We consider two cases: (i) 0 6 x < ‘� Ck þ 1 and (ii)
x P ‘� Ck þ 1.

In case of (i), we focus on ½t0 � x; t0Þ [ C0, where C0 denotes a
set of intervals (not necessarily continuous) of length
‘� Ck þ 1� x over ½t0; t0 � xþ ‘Þ; C0 is chosen such that the
amount of execution of jobs of tasks in s in C0 is maximized.
If we apply Lemma 2 with t ¼ t0 � x and C ¼ ½t0 � x; t0Þ [ C0,
Lemma 2 and Eq. (6) imply that the amount of execution of jobs
of tasks in s in ½t0 � x; t0Þ [ C0 is strictly less than m � ð‘� Ck þ 1Þ.
Since there are m � x execution of jobs of tasks in s in ½t0 � x; t0Þ
(because the interval is a busy interval), there are strictly less
than m � ð‘� Ck þ 1� xÞ executions in C0, which means at least
one time slot in C0 is a non-busy slot in which at least one core
is idle. Then, by the definition of C0, each time slot in
½t0; t0 � xþ ‘Þ n C0 is non-busy. Therefore, the job of interest can
be executed in all time slots in ½t0; t0 � xþ ‘Þ n C0 (whose length
is Ck � 1Þ and at least one slot in C0, which means the job of
interest finishes Ck amount of execution in ½t0; t0 � xþ ‘Þ.

In case of (ii), we focus on ½t0 � x; t0 � xþ ‘� Ck þ 1Þ. We apply
Lemma 2 with t ¼ t0 � x and C ¼ ½t0 � x; t0 � xþ ‘� Ck þ 1Þ.
Then, Lemma 2 and Eq. (6) imply that the amount of execution
of jobs of tasks in s in ½t0 � x; t0 � xþ ‘� Ck þ 1Þ is strictly less
than m � ð‘� Ck þ 1Þ. By the definition of ½t0 � x; t0Þ;
½t0 � x; t0 � xþ‘� Ck þ 1Þ is a busy interval, and therefore the
amount should be exactly as much as m � ð‘� Ck þ 1Þ. Therefore,
if Eq. (6) holds, ½t0 � x; t0 � xþ ‘� Ck þ 1Þ cannot be a busy
interval, which is a contradiction.
3. Applications of the limited carry-in technique

While Theorem 1 can be combined with most (if not all) inter-
ference-based schedulability analyses, we now present examples
of the application.

In [3], a schedulability analysis for any work-conserving algo-
rithm has been developed, by using WCI

i ð‘Þ as an upper-bound of
Ik iðt; t þ ‘Þ as follows:
1 Due to the necessary condition for jobs to enter the zero-laxity state, Ek i is also
n upper-bound under EDZL; details are given in [10].
max
t2T

X
si2s�fskg

min Ik iðt; t þ ‘Þ; ‘� Ck þ 1ð Þ in Eq: ð1Þ

6

X
si2s�fskg

min WCI
i ð‘Þ; ‘� Ck þ 1

� �
: ð7Þ
In [1], a schedulability analysis for a given scheduling algorithm has
been developed, by deriving an algorithm-specific upper-bound on
Ik iðt; t þ ‘Þ as follows:

max
t2T

X
si2s�fskg

min Ik iðt; t þ ‘Þ; ‘� Ck þ 1ð Þ in Eq: ð1Þ

6

X
si2s�fskg

min WCI
i ð‘Þ; Ek i; ‘� Ck þ 1

� �
; ð8Þ

where Ek i is an algorithm-specific upper-bound on Ik iðt; t þ ‘Þ for
any ‘ 6 Dk. For example, under EDF and Earliest Deadline first until
Zero-Laxity (EDZL) [9], Ek i is calculated by NNC

i ðDkÞ � Ci þmin
Ci;maxð0;Dk � NNC

i ðDkÞ � Ti � SiÞ
� �

[1,10], considering a job with
later deadline cannot interfere with another job with earlier dead-
line under EDF, and the former can interfere with the latter only
when the former enters the zero-laxity state under EDZL.1

If we apply Theorem 1, we can derive tighter upper-bounds
than the ones presented in Eqs. (7) and (8). For the schedulability
analysis for any work-conserving algorithm, we use the following
upper-bound:

LHS of Eq: ð7Þ 6 min RHS of Eq: ð7Þ; RHS of Eq: ð5Þð Þ: ð9Þ

Similarly, for the schedulability analysis for a given scheduling algo-
rithm, we use the following upper-bound:

LHS of Eq: ð8Þ 6 min RHS of Eq: ð8Þ; RHS of Eq: ð5Þð Þ: ð10Þ

Here we present two task sets which are not schedulable with the
upper-bound in the RHS of Eq. (7) or (8), but schedulable with the
upper-bound in the RHS of Eq. (9) or (10).

Example 1. Consider a set of three tasks s ¼ fs1ðT1 ¼ 4;
C1 ¼ 1;D1 ¼ 4Þ; s2ð4;2;4Þ; s3ð4;2;4Þg on a two-core platform, and
its schedulability is tested by the state-of-the-art schedulability
analysis framework, i.e., response-time analysis [1]. Using the RHS
of Eq. (7), we cannot guarantee that s1 finishes its execution within
4 time units under any work-conserving algorithm. However, with
the RHS of Eq. (9), we can guarantee that all three tasks meet their
deadlines under any work-conserving algorithm.
Example 2. Consider a set of four tasks s ¼ fs1ðT1 ¼ 2;C1 ¼ 1;
D1 ¼ 2Þ; s2ð2;1;2Þ; s3ð7;3;7Þ; s4ð10;1;10Þg on a two-core platform,
with the same schedulability analysis framework as Example 1.
Using the RHS of Eq. (8), we cannot guarantee that s1 and s2 finish
their execution within 2 time units under EDF [1]; note that the
limited carry-in technique in [2] also cannot guarantee the
schedulability of s. However, with the RHS of Eq. (10), we can
guarantee that all four tasks do not miss their deadlines under
EDF. The same holds for EDZL; the state-of-the-art EDZL test in
[10] cannot guarantee that s is schedulable, but we can do with
the RHS of Eq. (10).

As shown in the examples, Theorem 1, once incorporated into
existing schedulability analyses (e.g., Eqs. (9)), covers additional
schedulable task sets which are not deemed schedulable by the
existing ones.

4. Conclusion

In this paper, we derived a new upper-bound on the amount of
execution under any work-conserving algorithm by limiting carry-
in jobs, and demonstrated how to utilize this upper-bound to im-
prove existing schedulability analyses. Extending the idea of the
limited carry-in, it would be interesting to derive tighter,
a
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algorithm-specific upper-bounds. In particular, since Theorem 1
can be applied even to work-conserving non-preemptive schedul-
ing, we expect to improve the state-of-the-art schedulability anal-
yses for non-preemptive scheduling [11–14]. Another direction of
future work is to explore other properties of our limited carry-in
techniques (e.g., sustainability [15]) and extend the technique to-
wards other systems (e.g., time-triggered embedded systems [16]).
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