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Abstract LLF (Least Laxity First) scheduling, which assigns a higher priority to
a task with a smaller laxity, has been known as an optimal preemptive scheduling
algorithm on a single processor platform. However, little work has been made to
illuminate its characteristics upon multiprocessor platforms. In this paper, we iden-
tify the dynamics of laxity from the system’s viewpoint and translate the dynamics
into LLF multiprocessor schedulability analysis. More specifically, we first character-
ize laxity properties under LLF scheduling, focusing on laxity dynamics associated
with a deadline miss. These laxity dynamics describe a lower bound, which leads
to the deadline miss, on the number of tasks of certain laxity values at certain time
instants. This lower bound is significant because it represents invariants for highly
dynamic system parameters (laxity values). Since the laxity of a task is dependent of
the amount of interference of higher-priority tasks, we can then derive a set of condi-
tions to check whether a given task system can go into the laxity dynamics towards
a deadline miss. This way, to the author’s best knowledge, we propose the first LLF
multiprocessor schedulability test based on its own laxity properties. We also de-
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velop an improved schedulability test that exploits slack values. We mathematically
prove that the proposed LLF tests dominate the state-of-the-art EDZL tests. We also
present simulation results to evaluate schedulability performance of both the original
and improved LLF tests in a quantitative manner.

Keywords Schedulability analysis · Laxity dynamics · LLF (Least Laxity First) ·
Multiprocessor platforms · Real-time scheduling

1 Introduction

Along with a recent trend towards multi-core architectures, real-time multi-core
(multiprocessor) scheduling has been receiving a growing attention. Multiprocessor
scheduling algorithms can be generally classified into two categories: partitioned and
global. While partitioned algorithms restrict each task to run only on a designated
processor, global algorithms allow each task to migrate from one processor to an-
other. Many studies for both categories have been developed in order to exploit ad-
vantages of each category (see an excellent survey Davis and Burns 2011 for detailed
comparison). In this paper, we restrict our attention to global scheduling.

Some multiprocessor studies in the past (e.g., Andersson et al. 2001; Cho et al.
2002; Srinivasan and Baruah 2002) have focused on adapting existing uniprocessor
scheduling to multiprocessors, and some others have developed novel policies spe-
cific to multiprocessors (e.g., Baruah et al. 1996; Anderson and Srinivasan 2000;
Cho et al. 2006; Andersson and Tovar 2006; Funaoka et al. 2008; Andersson and
Bletsas 2008; Easwaran et al. 2009; Lee et al. 2010, 2011; Levin et al. 2010). In spite
of some significant achievements of these studies, many important scheduling prob-
lems continue to pose challenges including the efficient scheduling of general task
systems such as those in which task deadlines differ from their periods. Although
optimal scheduling of general task systems has been shown to be impossible (Fisher
et al. 2010), we cannot rule out the existence of better scheduling algorithms.

Assigning priority to tasks according to their deadlines (or “urgency”) is a sim-
ple yet successful strategy for uniprocessor real-time scheduling. For example, EDF
(Earliest Deadline First) (Liu and Layland 1973) and DM (Deadline Monotonic) (Le-
ung and Whitehead 1982) are shown as optimal dynamic- and static-priority policies
for preemptive uniprocessor scheduling. However, the sole focus on deadline can be
no longer effective in multiprocessor scheduling. EDF and DM are thereby far from
optimality on multiprocessors. As multiple tasks can run simultaneously on multipro-
cessors, we believe it becomes equally important to consider task “parallelism” when
assigning priorities to tasks. Otherwise, a task may fail to meet a deadline even when
a larger amount of processing capacity is allocated to the task than its processing de-
mand, but it cannot fully utilize the allocations due to its own parallelism restriction
(i.e., a task cannot run simultaneously on more than one processor).

Considering that a task with smaller time to deadline is more urgent and a task
with larger execution time has more parallelism restriction (Lee et al. 2011), we be-
lieve that laxity is a good single parameter to capture both urgency and parallelism
at the same time, where laxity of a task at any time is defined as remaining time to
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deadline minus the amount of remaining execution. One successful example of laxity-
based algorithms is EDZL (Earliest Deadline first until Zero Laxity) (Lee 1994) that
is an extension of EDF with priority promotion in zero-laxity state. Since EDZL pro-
motes the priority of any task that would otherwise inevitably miss a deadline, it
dominates1 EDF (Park et al. 2005). This property also holds for FPZL (Fixed Prior-
ity until Zero Laxity) (Davis and Burns 2011), an example of another laxity-based
algorithm.

LLF (Least Laxity First) (Leung 1989) is an interesting scheduling algorithm that
prioritizes tasks only according to their laxity; the smaller laxity, the higher priority.
In contrast to EDF and EDZL, LLF naturally considers both urgency and parallelism
through laxity all the time. Thereby, it is likely to perform better than EDF and EDZL
on multiprocessor platforms. Figure 1 shows an example, where LLF generates a suc-
cessful schedule for a task set while EDZL fails.2 While Figure 1(a) shows that τ6

misses a deadline at t = 10 under EDZL, the same task set is schedulable under LLF
scheduling as shown in Subfigure (b). This is because LLF is able to pay attention
to τ3 even when its laxity is not yet zero. In addition to this example, we performed
simulations for comparing the scheduling performance between LLF and other al-
gorithms (EDZL (Lee 1994), Pfair (Baruah et al. 1996), and EDF (Liu and Layland
1973)) over constrained deadline task systems3 (deadline no larger than task period).
The system density (λsys) often serves as a measure of the overall processing demands
of constrained deadline task systems, which will be formally defined in Sect. 2. When
the system density does not exceed the number of processors (i.e., λsys ≤ m), Pfair
is known as optimal (Baruah et al. 1996) as shown in Fig. 2(a). However, Fig. 2(b)
shows a different phenomenon that LLF significantly outperforms the others when
λsys > m, while Pfair performs quite poorly in this case.

As such, the above examples and simulation results indicate that LLF is quite
effective in multiprocessor scheduling, in particular, relatively more effective when
λsys > m. However, it has so far received very little attention to analyze the schedu-
lability of LLF on multiprocessors even though the optimality of LLF on a sin-
gle processor has been analyzed (Dertouzos and Mok 1989; Leung 1989). Study
of Phillips et al. (2002) shows that a task set feasible on m speed-1 processors
is schedulable under LLF scheduling on both (a) m speed-(2-1/m) processors and
(b) m+O(log(maxi Ci/mini Ci)) speed-1 processors. To use this test as a schedula-
bility test for LLF, however, a sufficient feasibility test is required. To our best knowl-
edge, the only known technique to check feasibility is to use schedulability tests such
as those described above. This means that any LLF test derived from Phillips et al.
(2002) will be only as good as these previously known schedulability tests. Hence,
in this paper, we aim to understand LLF multiprocessor scheduling and introduce the

1Scheduling algorithm (test) A dominates B if any task set deemed schedulable by B is also deemed
schedulable by A, but the vice-versa is not true.
2While there are many task sets which are not schedulable by EDF and EDZL, but schedulable by LLF,
there also exist a few task sets which have the opposite behavior (Bala Kalyanasundaram et al. 2000).
3Pfair is originally defined for implicit-deadline task systems such that each task’s period (equal to dead-
line) is split into sub-deadlines with execution time of one unit. To adapt Pfair for constrained deadline
task systems, we split each task’s deadline into sub-deadlines.
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Fig. 1 EDZL and LLF schedules with a feasible task set on a two-processor platform: τ4 = τ5 = (5,3,5),
and τ6 = (20,7,10), where (Ti ,Ci ,Di) specifies the minimum separation, the worst-case execution time,
and the relative deadline, respectively

Fig. 2 This figure shows simulation results of various scheduling algorithms (LLF (Leung 1989),
EDZL (Lee 1994), Pfair (Baruah et al. 1996), and EDF (Liu and Layland 1973)) over randomly generated
100,000 constrained deadline task sets on a four-processor platform (detailed set generation is described
in Sect. 5.2). We perform simulation of each task set during the first 100,000 time units for tractability,
and thus the results show necessary schedulability

first LLF-specific schedulability test for multiprocessor platforms. For this purpose,
we perform the following three steps.

1. We identify and define some properties associated with the LLF policy. We con-
sider the scenario that a task misses its deadline at some time instant t0, and com-
pute the number of tasks that can have certain laxity values at certain time instants
ahead of t0. Lower bounds on these numbers that ensure the deadline miss are
then used to define the properties. These properties are significant because they
represent invariants (lower bounds) for highly dynamic system parameters (task
laxity values).

2. We characterize these properties using conditions on the worst-case higher-
priority interference, because previous studies suggest that it is feasible to derive
multiprocessor schedulability tests using such conditions (e.g., Baker et al. 2008).
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3. Using upper bounds on the higher-priority interference, derived in this paper and
shown to be tighter than previously known bounds, we finally derive the LLF-
specific schedulability test. By exploiting slack values for LLF, we also develop
an improved LLF schedulability test.

To the best of our knowledge, these are the first LLF-specific schedulability tests
for multiprocessors, and we show that they dominate the state-of-the-art EDZL
schedulability tests (Baker et al. 2008). With these results, schedulability perfor-
mance is also evaluated through simulations.

Extended version This paper is an extension of “LLF Schedulability Analysis on
Multiprocessor Platforms” in the proceedings of the 31th IEEE Real-Time Sys-
tems Symposium (RTSS 2010) (Lee et al. 2010). In addition to re-organizing and
re-phrasing the entire paper for the clarity of presentation, this paper includes the
following new technical contributions, which have not presented in its preliminary
conference version.

– We have developed an improved LLF test by the use of slack values with its time-
complexity analysis. While existing approaches for other algorithms (e.g., EDF
and EDZL) focus only on the interval between the release time and deadline of a
task, we have developed a new way of calculating slack values for various interval
lengths, which can be incorporated into necessary deadline miss conditions for
LLF.

– We have evaluated the performance of our LLF schedulability tests with ana-
lytic and empirical comparison. In particular, we show average schedulability per-
formance of our first and improved tests compared to corresponding EDF’s and
EDZL’s tests under various parameters.

– We have discussed context switch overheads of LLF, and how to reduce such over-
heads.

Also, we have strengthened existing technical contents with error correction and
details of omitted parts.

– We have extended the introduction with a discussion of why and how LLF is better
than some others for multiprocessor scheduling.

– We have explicitly derived basic properties of LLF, which form the basis for deriv-
ing laxity dynamics.

– We have corrected Theorem 1 (which corresponds to Lemma 3 in Lee et al. 2010),
one of the important principle in this paper. Then, we have presented the corrected
and detailed proof of the theorem and its follow-up lemma (i.e., Lemma 4 which
is also a core principle).

– We have presented a detailed procedure of reducing time-complexity of our
schedulability tests.

Organization The rest of this paper is organized as follows. Section 2 describes our
system model. Section 3 derives laxity dynamics when there is a deadline miss. Sec-
tion 4 develops an LLF schedulability test and an improved test by capturing highly
dynamic system parameters of laxity dynamics. Section 5 evaluates the performance
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of the proposed LLF schedulability tests with analytic and empirical comparison.
Section 6 discusses context switch overheads of LLF and how to reduce such over-
heads. Finally, Sect. 7 concludes this paper with discussion.

2 System model

Task model In this paper, we assume a sporadic task model (Mok 1983). In this
model, we specify task τi ∈ Γ as (Ti,Ci,Di), where Ti is the minimum separation,
Ci is the worst-case execution time requirement, and Di is the relative deadline. Task
τi invokes a series of jobs, each separated from its predecessor by at least Ti time
units. Further, we focus our attention to constrained (Ci ≤ Di ≤ Ti ) deadline task
systems. We also assume that a single job of a task cannot be executed in parallel.

We use Di(t) and Ci(t) to denote the remaining relative deadline and the remain-
ing execution time, respectively, of a job of τi at time t . Note that since we focus on
constrained deadline task systems, these quantities are well-defined. We express that
a job of τi is active at t when Ci(t) is non-zero. We use Li(t) to denote the laxity
of a job of τi at t , and it is defined as Li(t) = Di(t) − Ci(t). We denote the total
number of tasks by n, and define the system utilization by Usys = ∑

τi∈Γ Ci/Ti and
the system density by λsys = ∑

τi∈Γ Ci/Di .
In this paper, we assume quantum-based time and without loss of generality let one

time unit denote the quantum length. All task parameters are assumed to be specified
as multiples of this quantum length. In constrained deadline task systems, at most one
active job per task can exist in any time slot, and hence, for simplicity of presentation,
we use the term “task” also to refer to “active job of a task” in the rest of the paper.

Multiprocessor platform We assume that the platform comprises m identical unit-
capacity processors, and therefore restrict the system utilization Usys to at most m. It
has been previously shown that Usys ≤ m is a necessary condition for feasibility of the
task system considered here (Baker and Cirinei 2006). Like most existing studies in
multiprocessor scheduling (for example, see Baruah et al. 1996), we assume that the
system does not incur any penalty when a job is preempted or when a job is migrated
from one processor to another.

3 Laxity dynamics

In this section, we present the dynamics of laxity under LLF scheduling. We first
describe observations on the basic properties of LLF scheduling. Based on the prop-
erties, we then investigate how laxity values are changing over time when there is a
deadline miss. Such laxity dynamics form the basis for new LLF schedulability tests,
which are proposed in Sect. 4.

3.1 Basic properties of LLF

We first look at what happens to the laxity of task τi under LLF scheduling.
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Observation 1 The following properties hold under LLF scheduling.

P1. A job can be blocked only by jobs with the same or smaller laxity values;
P2. A job of τi satisfies Li(t + 1) = Li(t), if executed in [t, t + 1);
P3. A job of τi satisfies Li(t + 1) = Li(t) − 1, if not executed in [t, t + 1);
P4. A laxity value of a job is a non-increasing function of time; and
P5. A job with a negative laxity will miss its deadline eventually.

Since LLF assigns a higher priority to a job with a smaller laxity value, P1 holds.
Here we assume that a job can be blocked by jobs with even the same laxity values
since we aim at designing schedulability tests applied to LLF with any tie-breaking
rule. If a task is executed in the current time slot, both the remaining execution time
and the remaining relative deadline of the task decrease by one. On the other hand, if
not executed, only the remaining relative deadline of the task decreases. Therefore, a
task’s laxity value either stays the same or decreases by one in each time slot, resulting
in P2, P3, and P4. Since a job with a negative laxity has larger remaining execution
time than remaining relative deadline, P5 holds. Using the properties P1–P5, we now
derive laxity dynamics.

3.2 Laxity dynamics associated with deadline miss

For ease of presentation on laxity dynamics, we define a few notations. Let Sθ (t)

denote a set of tasks whose active jobs have a laxity of θ at time instant t , and let
Nθ(t) (≥0) denote the size of Sθ (t). Note that S−1(t) is defined to represent a set of
tasks whose active jobs have a negative laxity. Suppose there is a job that misses its
deadline, and let t0 denote the first time instant when there is a job with a negative
laxity. That is, t0 is the first time instant such that S−1(t) �= ∅.

We now derive laxity dynamics of a task set scheduled by LLF before t0. We first
look at what would happen at t0 − 1. By the definition of t0, there is no job with a
negative laxity at t0 − 1. Then a task with a negative laxity at t0 has a zero laxity at
t0 − 1, which implies the task is not scheduled in [t0 − 1, t0). This means, at t0 − 1,
there are at least m other zero-laxity tasks, which implies there are at least m + 1
zero-laxity tasks in total. We record this in the following observation.

Observation 2 The following condition holds under LLF:

N0(t0 − 1) > m. (1)

Note that the above observation holds generally for all zero-laxity based schedul-
ing algorithms (that give the highest priority to tasks with zero laxity, e.g., EDZL (Lee
1994), FPZL (Davis and Burns 2011)). The next step is to consider what would hap-
pen at t0 − 2 depending on what happens at t0 − 1. We first consider a case where
there is no job released or finished at t0 − 1. By definition, there are N0(t0 − 2)

tasks with a zero laxity at t0 − 2. We observe that N0(t0 − 2) ≤ m because otherwise
t0 − 1 should be the first instant when there is a task with a negative laxity, which
is a contradiction to the definition of t0. Thus, considering zero-laxity tasks have
the highest priority under LLF, N0(t0 − 2) zero-laxity tasks will be all scheduled in
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[t0 − 2, t0 − 1), and they will continue to have a zero laxity at t0 − 1. In addition,
some of the one-laxity tasks can be scheduled, and all the remaining tasks will not
be scheduled. That is, m − N0(t0 − 2) one-laxity tasks can be scheduled at t0 − 2 to-
gether with N0(t0 − 2) zero-laxity tasks. Hence, among N1(t0 − 2) one-laxity tasks,
N1(t0 − 2) − (m − N0(t0 − 2)) tasks will not be scheduled at t0 − 2, and their laxity
will become zero at t0 − 1. Here we observe that N1(t0 − 2) − (m − N0(t0 − 2)) > 0.
Suppose this is not true. Then, all tasks with a one or zero laxity at t0 −2 are scheduled
at [t0 − 2, t0 − 1), and this contradicts Observation 2. So the number of zero-laxity
tasks at t0 − 1 is given by

N0(t0 − 1) = N0(t0 − 2) + N1(t0 − 2) − (
m − N0(t0 − 2)

)

= 2 · N0(t0 − 2) + N1(t0 − 2) − m. (2)

Extending Observation 2, we derive the following relationship between N0(t0 −2)

and N1(t0 − 2) as follows:

Observation 3 If no job is released or finished at t0 − 1, the following condition
holds under LLF:

N0(t0 − 1) > m

⇐⇒ 2 · N0(t0 − 2) + N1(t0 − 2) − m > m

⇐⇒ 2 · N0(t0 − 2) + N1(t0 − 2) > 2 · m. (3)

It is worth noting that the above observation is specific to LLF, and in particular, does
not necessarily hold for other zero-laxity scheduling algorithms.

Now we consider the general case where there are jobs released and/or finished
at t0 − 1. We let Zθ(t0 − x) denote the number of tasks whose jobs are released at
t0 − x + 1 with a laxity of θ . We also let Wθ(t0 − x) denote the number of tasks
whose jobs are finished at t0 −x + 1 and have a laxity of θ at t0 −x. Like Nθ(t0 −x),
Zθ(t0 − x) and Wθ(t0 − x) for x = 1,2,3, . . . ,∞ are also all non-negative integer
values.

We consider two cases: (A) N0(t0 − 2) + N1(t0 − 2) > m and (B) N0(t0 − 2) +
N1(t0 −2) ≤ m. If Case (A) holds, we can calculate N0(t0 −1) similarly as in Eq. (2):

N0(t0 − 1) = 2 · N0(t0 − 2) + N1(t0 − 2) − m + Z0(t0 − 2) − W0(t0 − 2). (4)

In this case, once we apply Eq. (4) to Inequality (1), we can get the following
condition:

N0(t0 − 1) > m

⇐⇒ 2 · N0(t0 − 2) + N1(t0 − 2) − m + Z0(t0 − 2) − W0(t0 − 2) > m

⇐⇒ 2 · N0(t0 − 2) + N1(t0 − 2) + Z0(t0 − 2) − W0(t0 − 2) > 2 · m. (5)

On the other hand, if Case (B) holds (i.e., N0(t0 − 2) + N1(t0 − 2) ≤ m), all tasks
in S0(t0 − 2) and S1(t0 − 2) are scheduled in [t0 − 2, t0 − 1) and continue to have the
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same laxity values at t0 −1. This means no task in S1(t0 −2) will belong to S0(t0 −1),
and thus N0(t0 − 1) is given by

N0(t0 − 1) = N0(t0 − 2) + Z0(t0 − 2) − W0(t0 − 2). (6)

In this case, we also apply Eq. (6) to Inequality (1), and then we can get the fol-
lowing condition:

N0(t0 − 1) > m

⇐⇒ N0(t0 − 2) + Z0(t0 − 2) − W0(t0 − 2) > m

⇐⇒ 2 · N0(t0 − 2) + 2 · Z0(t0 − 2) − 2 · W0(t0 − 2) > 2 · m. (7)

To summarize, we present Inequalities (5) and (7) using a sufficient condition as
follows.

Observation 4 The following condition holds under LLF:

2 · N0(t0 − 2) + N1(t0 − 2) + (1 + 1t0−2) · (Z0(t0 − 2) − W0(t0 − 2)
)
> 2 · m,

(8)

where 1t0−x =
{

0, if
∑x−1

j=0 Nj(t0 − x) > m

1, if
∑x−1

j=0 Nj(t0 − x) ≤ m.
(9)

Now we wish to generalize the above observation for all time instants before t0,
and present the following theorem.

Theorem 1 Each of the following condition holds under LLF for x = 1,2,3, . . . ,∞:

x−1∑

j=0

(x − j) · Nj(t0 − x)

+
x∑

k=2

(
x∏

p=k

(

1 + 1t0−p

p − 1

)

·
k−2∑

j=0

(k − j − 1) · (Zj (t0 − k) − Wj(t0 − k)
)
)

> x · m.

(10)

Proof The basic idea of the proof is to use mathematical induction, and we consider
two cases for each inductive step at t0 − x: 1t0−x = 1 and 1t0−x = 0. A detailed proof
is given in Appendix A. �

Based on these laxity dynamics, we will derive schedulability tests for LLF in the
next section.
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4 Schedulability test for LLF

In the previous section, we derived necessary conditions for a task to have a negative
laxity at t0 under LLF, in terms of the number of tasks with certain laxity values
prior to t0 (i.e., Nθ(t0 − x)) and the number of tasks released and finished prior to
t0 (i.e., Zθ(t0 − x) and Wθ(t0 − x), respectively). However, we cannot calculate the
highly dynamic system parameters Nθ(t0 − x), Zθ(t0 − x) and Wθ(t0 − x) without
tracking all sporadic jobs’ release times. In this section, we propose schedulability
tests for LLF, which do not require such knowledge of release times. To do this, we
first investigate whether a task can have a certain laxity or not. Based on this laxity
qualification of each task, we investigate how to incorporate the necessary conditions
into a LLF schedulability test by abstracting the parameters. Then, we propose an
improved LLF schedulability test, which exploits slack values. Finally, we analyze
time-complexity of our tests.

4.1 Laxity qualification

In this subsection, we derive sufficient conditions for a job of a given task to have a
certain laxity value at a certain time unit ahead of its deadline. These conditions form
the basis for abstracting Nθ(t0 −x), Zθ(t0 −x) and Wθ(t0 −x) for all possible values
of θ and t0 − x in Sect. 4.2. To do this, we first derive the worst-case interference
bound of jobs of task τi on a job of task τk in a time interval [ta, tb), where ta is the
release time of τk’s job, and tb is some time instant no later than the deadline of the
job (i.e., tb ≤ ta + Dk).

In order to check whether a job of task τk can have a certain laxity at a certain
time instant, we use the concept of the worst-case interference of higher-priority exe-
cutions on the execution of a job of task τk between its release time and any arbitrary
time instant before its deadline. Following the notations similar to existing studies
(Bertogna et al. 2005, 2009; Baker et al. 2008; Lee et al. 2010, 2011), we denote
the total interference of jobs of task τi on a job of task τk in an interval [t1, t2)
as I k←i (t1, t2). It represents the cumulative length of all intervals within [t1, t2) in
which a job of task τk is ready to execute and any job of task τi is executing while the
job of task τk is not. The worst-case interference of jobs of task τi on a job of task τk

in any interval of length l is then defined as

Ik←i (l) = max
t

I k←i (t, t + l), (11)

and the overall worst-case higher priority interference on τk is defined as

∑

τi∈Γ −{τk}
Ik←i (l). (12)

Although the previously known interference bound for any work-conserving al-
gorithm (Eq. (6) in Bertogna et al. 2009 and Eq. (4) in Lee et al. 2010) can also be
used for LLF, we present a tighter LLF-specific interference bound. To derive such
interference bound, we first introduce following lemmas.
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Lemma 1 Suppose task τi and task τk have the same laxity at t (i.e., Lk(t) = Li(t)),
and each task has a positive remaining execution time at t ′ (> t). Then, −1 ≤ Lk(t

′)−
Lk(t) ≤ 1.

Proof Suppose that Lk(t
′) + 2 ≤ Li(t

′). Since Lk(t) = Li(t), there exists t ≤ t ′′ ≤ t ′
such that Lk(t

′′) + 1 = Li(t
′′). Since LLF gives a higher priority to a task with the

same or smaller laxity, task τk cannot have higher priority than task τi as long as it
has a larger laxity than τk . Therefore, Lk(t

′) + 2 ≤ Li(t
′) contradicts the prioritizing

policy of LLF, and this proves the lemma. �

Lemma 2 Suppose task τk has a laxity of θ or less at tb , and the release time and the
deadline of a carry-out job4 of τi are tb + α − Di and tb + α, respectively (α ≥ 0).
Then, the job of τi interferes with τk during at most Ci − max(0, α − min(θ + 1,

Di − Ci)).

Proof We consider two cases: (A) there exists tb +α −Di ≤ t ≤ tb such that Li(t) =
Lk(t); and (B) there does not exist such t .

(Case A) By Lemma 1, Li(tb) can be θ −1, θ , or θ +1. At tb , Di(tb) = α, and then,
Ci(tb) can be α − θ +1, α − θ , or α − θ −1. This means that the amount of execution
of τi done in [tb + α − Di, tb) can be Ci − α + θ − 1, Ci − α + θ , or Ci − α + θ + 1,
which are upper-bounded by Ci − max(0, α − min(θ + 1,Di − Ci)). Therefore, the
job of τi interfere with τk during at most Ci − max(0, α − min(θ + 1,Di − Ci)).

(Case B-1) Li(t) > Lk(t) for all tb +α −Di ≤ t ≤ tb . Since τk’s priority is always
higher than τi ’s one, the amount of interference of τi on τk in [tb + α − Di, tb) is
zero.

(Case B-2) Li(t) < Lk(t) for all tb + α − Di ≤ t ≤ tb . Then, Li(tb) is at most
θ − 1, which implies Ci(tb) is at least α − θ + 1, and then the amount of execution
of τi done in [tb + α − Di, tb) is at most Ci − α + θ − 1, which is upper-bounded by
Ci − max(0, α − min(θ + 1,Di − Ci)).

By Case (A), (B-1) and (B-2), the job of τi interfere with τk during at most Ci −
max(0, α − min(θ + 1,Di − Ci)). �

Thus, if we align the carry-out job of task τi such that α = min(θ + 1,Di − Ci),
the carry-out job of task τi can interfere with task τk during Ci time units. Figure 3
depicts such release patterns that result in the worse-case interference of task τi on
task τk in [ta, tb). That is, in Fig. 3, a job of τk is released at ta and has a laxity of θ at
tb , and the carry-out job of τi in [ta, tb) has its deadline at tb + min(θ + 1,Di − Ci).
We formally express the pattern as a function of l and θ , where l is the interval length
and θ is a laxity value, which task τk has at the end of the interval.

Ik←i (l, θ) =
⌊

l′

Ti

⌋

Ci + min

(

Ci, l
′ −

⌊
l′

Ti

⌋

Ti, l

)

, (13)

where l′ def.= l + min(θ + 1,Di − Ci).

4Here a carry-out job means it is released within the given interval, but its deadline is after the interval.
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Fig. 3 Situation of the
maximum interference of task τi
on task τk in [ta, tb) when
Lk(tb) = θ

Then, using Eq. (13), we derive a sufficient condition for different possible laxity
values of task τk and interval lengths as follows.

Lemma 3 If task τk has a laxity of θ or less at y time units ahead of its deadline,
then the following condition holds:

∑

τi∈Γ −{τk}
Ik←i (Dk − y, θ) ≥ m · (Dk − Ck − θ). (14)

By Lemma 4 in Bertogna et al. (2005), the above inequality can be further tightened
as:

∑

τi∈Γ −{τk}
min

(
Ik←i (Dk − y, θ),Dk − Ck − θ

) ≥ m · (Dk − Ck − θ). (15)

Proof We prove this lemma by contraposition. That is, assuming
∑

τi∈Γ −{τk} Ik←i ×
(Dk − y, θ) < m · (Dk −Ck − θ), we prove that task τk must have a laxity larger than
θ at y time units ahead of its deadline.

Note that τk cannot execute at some time instant only when m other tasks execute
at that instant, and now the total interference on task τk is less than m · (Dk −Ck − θ).
Thus, during the interval [ta, ta + Dk − y) (where ta is the release time of τk’s job),
τk is prevented from executing for less than m · (Dk − Ck − θ)/m time units due to
interference. This means that τk executes for at least Dk − y − (Dk − Ck − θ − 1) =
Ck + θ + 1 − y time units in that interval. Then, the laxity of τk at ta + Dk − y can
be computed as follows:

Dk(ta + Dk − y) = y

Ck(ta + Dk − y) ≤ Ck − (Ck + θ + 1 − y) = y − θ − 1

Lk(ta + Dk − y) ≥ y − (y − θ − 1) = θ + 1.

(16)

Therefore, task τk’s laxity at y time units ahead of its deadline is strictly larger
than θ . �
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4.2 LLF schedulability test

By Lemma 3, we know whether a task has a certain laxity at a certain time units ahead
of its deadline. We now investigate how to incorporate a set of necessary conditions
of Inequality (10) into LLF schedulability tests using Lemma 3.

For a given remaining relative deadline y (≤Dk), we define the following indicator
function δ∗

k (θ, y) for task τk based on Lemma 3. This function indicates whether τk

can reach a laxity of exactly θ at y time units ahead of its deadline.

δ∗
k (θ, y) =

{
1, if this is the smallest θ for which Inequality (15) is true,

0, otherwise.
(17)

Also, we define δ∗
k (θ, y) for y > Dk as follows:

δ∗
k (θ, y) =

{
1, if θ = Dk − Ck ,

0, otherwise.
(18)

Incorporating δ∗
k (θ, y) into Theorem 1 we get the following lemma.

Lemma 4 The following conditions hold under LLF for x = 1,2,3, . . . ,∞:

x−1∑

j=0

(x − j)
∑

τk∈Γ

δ∗
k (j, x) > x · m. (19)

Proof The basic idea of the proof is to show that the LHS of Inequality (19) is equal
to or larger than the LHS of Inequality (10). Then Inequality (19) is a necessary con-
dition of Inequality (10), and therefore this theorem holds. To do this, we investigate
how much each task contributes to the LHS of Inequality (19) and that of Inequal-
ity (10). A detailed proof is given in Appendix B. �

Intuitively, the above lemma gives necessary conditions at t0 − x for a job to miss
its deadline at t0. For example, Eq. (19) for x = 1 means there should be more than m

jobs which can have a zero laxity at one (i.e., x = 1) time unit ahead of its deadline.
Similarly, Eq. (19) for x = 2 means it should hold that 2a+b > 2m, where a (b) is the
number of jobs which can have a zero (one) laxity at two (i.e., x = 2) time unit ahead
of its deadline. Here note that Inequality (19) in Lemma 4, unlike Inequality (10) in
Theorem 1, only depends on the task parameters and nothing else; in particular it is
independent of time instant t0.

Recall that the necessary conditions for a deadline miss in Lemma 4 are derived
using constraints on the number of tasks with a certain laxity value at time instants
t0 − 1, t0 − 2, . . . , where t0 denotes the time instant when there exists at least one
task with a negative laxity. Therefore the conditions in Lemma 4 can be further aug-
mented with one more necessary condition characterizing one negative-laxity task at
t0 (i.e., N−1(t0) ≥ 1). This condition can be also obtained by Lemma 3 with y = 0
and θ = −1. Thus, incorporating this condition into Lemma 4, we formally express
our LLF schedulability test as follow.
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Theorem 2 (LLF schedulability test) A task set is schedulable by LLF if at least one
of Inequality (19) for x = 1,2,3, . . . ,Dmax, and Condition (20) is not true, where
Dmax = maxτi∈Γ {Di}.

At least one task satisfies Inequality (15) with y = 0 and θ = −1. (20)

Proof This theorem holds from Lemma 4. The difference between Lemma 4 and this
theorem is the range of x. Since satisfying Inequality (19) in a limited range of x is a
necessary condition for satisfying it in a more general range of x, correctness of this
theorem holds trivially. Nevertheless, we now show that there is no need to investigate
Inequality (19) for x > Dmax. That is, assuming (19) holds for all x ≤ Dmax, we show
that Inequality (19) holds for all x > Dmax by mathematical induction.

(The basis) Inequality (19) holds for all x ≤ Dmax.
(The inductive step) We will prove that if Inequality (19) for x holds, then In-

equality (19) for x + 1 also holds when x ≥ Dmax. Since x ≥ Dk for all τk , only
δ∗
k (θ = Dk − Ck,y) terms are equal to 1 for both y = x and y = x + 1. Thus, the

LHS of Inequality (19) for x + 1 is increased by n (the number of tasks) compared to
that of Inequality (19) for x, while the RHS of Inequality (19) for x + 1 is increased
by m (the number of processors). It holds that n > m to meet Inequality (19) for x = 1
is true, so Inequality (19) for x + 1 is also true.

We conclude that we do not need to investigate Inequality (19) for x > Dmax. �

4.3 Improved LLF schedulability test

Using Lemma 3, we check whether the amount of interference on a task is large
enough to have a certain laxity at a certain time instant before its deadline. How-
ever, the interference calculation function (Eq. (13)) contains pessimism in com-
puting the worst-case interference. In particular, Eq. (13) does not consider the
fact that a task can finish its execution earlier than its deadline. Once we iden-
tify such an early completion of a task’s execution, we can reduce interference of
a task using slack values, where the slack Sk of task τk is defined as a length
of the minimum time interval between finishing time and deadline of a job of
task τk . The idea of exploiting slack values is similar to those in Baker et al.
(2008), Bertogna et al. (2009), but we extend previous techniques (Baker et al. 2008;
Bertogna et al. 2009) to compute a lower bound on slack values. Those previous tech-
niques consider only a single interval length (equal to the relative deadline of a task),
while our technique explores various intervals of different lengths to obtain a tighter
bound. From now on, we derive an improved LLF schedulability test by taking ad-
vantage of slack values. To do this, we first introduce how to calculate slack values
for each task in the following lemma.

Lemma 5 The slack of task τk is given by

Sk = Dk − Ck − θ −
⌊∑

τi∈Γ −{τk} min(Ik←i (Dk − y, θ),Dk − Ck − θ)

m

⌋

,

if Sk ≥ 1 and Sk ≥ y − θ. (21)
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Proof We re-arrange Eq. (21) as follows:

⌊∑
τi∈Γ −{τk} min(Ik←i (Dk − y, θ),Dk − Ck − θ)

m

⌋

· m = m · (Dk − Ck − θ − Sk)

=⇒
∑

τi∈Γ −{τk}
min

(
Ik←i (Dk − y, θ),Dk − Ck − θ

)

− m < m · (Dk − Ck − θ − Sk)

⇐⇒
∑

τi∈Γ −{τk}
min

(
Ik←i (Dk − y, θ),Dk − Ck − θ

)

< m · (Dk − Ck − θ − Sk + 1)

=⇒
∑

τi∈Γ −{τk}
min

(
Ik←i (Dk − y, θ),Dk − Ck − θ − Sk + 1

)

< m · (Dk − Ck − θ − Sk + 1). (22)

The contraposition of Lemma 3 implies that if Inequality (22) is true, then task
τk cannot have a laxity of θ + Sk − 1 or less at y time units ahead of its deadline
(denoted by t1). Therefore, task τk can have at least θ +Sk laxity at t1. At t1, we obtain
Ck(t1) ≤ y−θ −Sk , by Dk(t1) = y, and Lk(t1) ≥ θ +Sk . Since we assume Sk ≥ y−θ

in this Lemma, it holds that Ck(t1) ≤ 0, which means task τk has already finished its
execution at t1. We consider two cases: (A) Sk ≤ y and (B) Sk > y. We let t2 denote
Sk time units ahead of τk’s deadline. If Case (A) holds, t1 ≤ t2, and then at t2, τk

does not have remaining execution time. If Case (B) holds (i.e., t2 < t1), and then
Lk(t2) ≥ Lk(t1) ≥ θ + Sk by P 4 in Observation 1. Here Dk(t2) = Sk by definition,
which implies Ck(t2) ≤ −θ . Therefore τk does not have remaining execution time
at t2. Therefore, task τk finishes its execution at Sk time units ahead of its deadline. �

We now exploit slack values for reducing interference of task τi on task τk . Con-
sidering that no execution of task τi is performed between Si time units before its
deadline, and its deadline, we substitute l′′ in Fig. 4 for l′ in Fig. 3. Here Fig. 4
depicts the release patterns for the worst-case interference of task τi on task τk in
[ta, tb). That is, in the figure, a job of τk is released at ta and has a laxity of θ at tb . In

Fig. 4 Situation of the
maximum interference of task τi
on task τk in [ta, tb) when
Lk(tb) = θ and there exists a
positive slack value of task τi
(Si )
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1. Si ← 0, for all τi ∈ Γ .
2. Do {
3. isHalt ← true.
4. If Theorem 2 holds provided that Eq. (23) is applied to Inequality (15), return schedulable.
5. When Theorem 2 is tested, for each Inequality (15) with τi , θ , and y:
6. S′

i
← the RHS of Eq. (21) if Si ≥ 1 and Si ≥ y − θ .

7. If S′
i
> Si , then Si ← S′

i
and isHalt ← false.

8. } While isHalt = false.
9. Return unschedulable.

Fig. 5 Improved LLF schedulability test

addition, the carry-out job of τi in [ta, tb) has its deadline at tb +min(θ +1,Di −Ci),
and finishes its execution Si ahead of its deadline. Then we derive a less pessimistic
interference function than Eq. (13) by replacing l′ with l′′ as follows:

I ′
k←i (l, θ) =

⌊
l′′

Ti

⌋

Ci + min

(

Ci, l
′′ −

⌊
l′′

Ti

⌋

Ti, l

)

, (23)

where l′′ def.= max(0, l + min(θ + 1,Di − Ci) − Si).
Then, we reduce interference in an iterative manner, by increasing slack val-

ues. That is, at the first iteration, we calculate {Si}τi∈Γ based on Eq. (23) with
{Si = 0}τi∈Γ , and we continue updating {Si}τi∈Γ based on Eq. (23) with the previ-
ous {Si}τi∈Γ until there is no change between the previous and current {Si}τi∈Γ . This
iterative interference reduction is valid because I ′

k←i (l, θ) is a monotonically non-
decreasing function of Si for any given τi , τk , l and θ . Incorporating this technique
to our LLF schedulability test, we develop an improved iterative LLF schedulability
test. The detailed procedure of the improved test is described in Fig. 5.

4.4 Time-complexity

When we apply Theorem 2, calculation of the LHS of Inequality (15) for a given
task τk , θ , and y has time-complexity O(n). Given task τk , we need to calculate
Inequality (15) for all pairs (θ, y) marked as

√
in Table 1 in the worst-case, where

the number of pairs is O(Ck · (Dk − Ck)). Therefore, overall, the LLF schedulability
test has time-complexity O(n2 · maxτi∈Γ Ci · (Di − Ci)). In fact, this complexity can
be reduced to O(n2 · maxτi∈Γ Di), if we take advantage of properties associated with
δ∗
k (θ, y).

Before we describe how to reduce time-complexity, we define the following indi-
cator function δk(θ, y) of task τk , to indicate whether task τk may reach a laxity of θ

at y ahead of its deadline:

δk(θ, y) =
{

1, if Inequality (15) is true,

0, otherwise.
(24)

We use the following relations; (A) if δk(θ, y) is equal to 1, then δk(θ + 1, y) and
δk(θ + 1, y + 1) are equal to 1; and (B) if δk(θ, y) is equal to 0, then δk(θ, y + 1) is
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Table 1 A set of possible non-negative laxity values according to remaining relative deadline

Remaining time
to deadline (y)

Laxity (θ)

0 1 . . . Dk − Ck − 1 Dk − Ck

0

1
√

2
√ √

. . .
√ √

. . .

Dk − Ck
√ √ √ √

Dk − Ck + 1
√ √ √ √ √

. . .
√ √ √ √ √

Ck
√ √ √ √ √

Ck + 1
√ √ √ √

. . . . . .
√ √

Dk − 1
√ √

Dk
√

equal to 0. These relations come from the definition of δk(θ, y). For a task to have a
laxity of θ at y ahead of its deadline, the task should be able to have a laxity of θ + 1
at y and y + 1 ahead of its deadline. In turn, if a task cannot have a laxity of θ at
y ahead of its deadline, it cannot have a laxity of θ at y + 1 ahead of its deadline,
either. Using these relations, all δk(θ, y) marked as

√
in Table 1 can be determined

by calculating δk(θ, y) for at most Dk number of (θ, y) pairs as follows:

1. Start from θ = 0 and y = 1.
2. Calculate δk(θ, y).
3. If δk(θ, y) is equal to 1, all δk(θ + α,y + α) and δk(θ + α,y) are equal to 1 for

α > 0, and go to Step 5.
4. If δk(θ, y) is equal to 0, all δk(θ, y + α) are equal to 0 for α > 0, and go to Step 5.
5. If all δk(θ, y) marked as

√
in Table 1 are decided, then this procedure is finished.

If not, we choose the smallest y, and then the smallest θ among all undecided
δk(θ, y) marked as

√
in Table 1, and go to Step 2.

Once we know all available values of δk(θ, y) in Table 1, we immediately know
corresponding values of δ∗

k (θ, y). With the above procedure, our LLF schedulability
test in Theorem 2 has time-complexity O(n2 · maxτi∈Γ Di).

When we apply our improved LLF schedulability test in Fig. 5, each slack value Si

can be 0,1,2, . . . or (Di −Ci). Then, in the worst case scenario, one iteration may up-
date only one slack value by one, and thus the number of iterations is upper-bounded
by

∑
τi∈Γ (Di − Ci). Then, our improved schedulability test has time-complexity

O(n2 · maxτi∈Γ Di · ∑τi∈Γ (Di − Ci)).

5 Performance evaluation

This section evaluates the performance of the proposed LLF schedulability tests.
First, we compare our tests with corresponding EDZL ones in an analytic manner.
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Then, we presents simulation results to show average schedulability performance of
our tests.

5.1 Analytic evaluation

It is not known whether there exists any dominance relationship between the LLF and
EDZL scheduling algorithms themselves, but our LLF schedulability tests described
in Theorem 2 and Fig. 5 dominate the corresponding EDZL schedulability tests in
Baker et al. (2008). The following two lemmas record this.

Lemma 6 The LLF schedulability test in Theorem 2 dominates the schedulability
test of EDZL in Theorem 7 of Baker et al. (2008).

Proof Conditions (6) and (7) in Theorem 7 of Baker et al. (2008) correspond to our
two necessary conditions (19) for x = 1 and (20). The only difference is their interfer-
ence functions. While conditions of EDZL (6) and (7) in Baker et al. (2008) use the
same interference function as Eq. (13) with l′ = Dk , our condition (20) uses Eq. (13)
with l′ = Dk (i.e., l = Dk and θ = −1), and our another condition (19) for x = 1 uses
Eq. (13) with l′ = Dk − 1 + min(1,Di − Ci) (i.e., l = Dk − 1 and θ = 0). Therefore,
the interference functions of our LLF test always give a value smaller than or equal
to the interference function of the corresponding EDZL test, and then the LHS of
conditions (19) for x = 1 and (20) is smaller than or equal to the LHS of conditions
of EDZL (6) and (7). This proves the lemma. �

Lemma 7 The improved LLF schedulability test in Fig. 5 dominates the improved
(iterative) schedulability test of EDZL in Fig. 3 of Baker et al. (2008).

Proof We can easily check that the slack values (Si) of each task by Eq. (21) with
both (θ, y) = (0,1) and (−1,0) are equal to or larger than the slack value (Slb

i ) of
each task by Eq. (12) of Baker et al. (2008). Then, while conditions of EDZL (6)
and (7) in Baker et al. (2008) use the interference function of Eq. (13) with l′ =
Dk − Si , condition (20) uses Eq. (13) with l′ = Dk − Si and condition (19) for x = 1
uses Eq. (13) with l′ = Dk − 1 + min(1,Di − Ci) − Si . Therefore, the interference
functions of our LLF test always gives a value smaller than or equal to the interference
function of the corresponding EDZL test, and similar to Lemma 6, this proves the
lemma. �

In addition to this dominance property, it is easily checked that our proposed tests
in Theorem 2 and Fig. 5 are sustainable (Burns and Baruah 2008) in that a task set
deemed schedulable by our tests is still deemed schedulable even if we increase Dk

or Tk or decrease Ck .

5.2 Simulation settings

We generate task sets based on a technique proposed earlier (Baker 2005), which has
been also used in many previous studies (e.g., Bertogna et al. 2009; Andersson et al.



734 Real-Time Syst (2012) 48:716–749

2008). We have two input parameters: (A) the number of processors m (1,2,4,8 or
16) and (B) individual task utilization (Ci/Ti ) distribution (bimodal with parameter:5

0.1, 0.3, 0.5, 0.7, or 0.9, or exponential with parameter:6 0.1, 0.3, 0.5, 0.7, or 0.9).
For each task, Ti is uniformly chosen in [1, Tmax = 1000], Ci is chosen based on the
bimodal or exponential parameter, and Di is uniformly chosen in [Ci,Ti].

For each combination of (A) and (B), we repeat the following procedure
(from Bertogna et al. 2009) and generate 100,000 task sets, thus resulting in
1,000,000 task sets for any given m.

1. Initially, we generate a set of m + 1 tasks.
2. In order to exclude unschedulable sets, we check whether the generated task set

can pass a necessary feasibility condition (Baker and Cirinei 2006; Baruah et al.
2009).

3. If it fails to pass the feasibility test, we discard the generated task set and return
to Step 1. Otherwise, we include this set for evaluation. Then, this set serves as a
basis for the next new set; we create a new set by adding a new task into this old
set and return to Step 2.

We evaluate the performance of six schedulability tests: (i) our proposed LLF test
in Theorem 2, (ii) our improved (iterative) LLF test in Fig. 5, (iii) an EDZL test
(Theorem 7 in Baker et al. 2008), (iv) an improved (iterative) EDZL test (Fig. 3 in
Baker et al. 2008), (v) an EDF test (Theorem 7 in Bertogna et al. 2009), and (vi) an
improved (iterative) EDF test (Sect. 6.2 in Bertogna et al. 2009). These tests are
respectively annotated as ‘LLF’, ‘LLF-I’, ‘EDZL’, ‘EDZL-I’, ‘EDF’, and ‘EDF-I’ in
the figures.

5.3 Simulation results

Figures 6 and 7 show schedulability test results of constrained deadline task sets for
m = 2 and m = 16 over varying task utilization models. Since simulation results with
other values of m (i.e., m = 4,8) are similar to the figures, additional figures are
not presented. Among the 10 task utilization models, we choose to show exponential
distribution with 0.1, exponential distribution with 0.9, and bimodal distribution with
0.9, since they correspond to the cases, where the average task utilization (Ci/Ti)

is the smallest, medium, and the largest, respectively. Each figure comprises seven
line-plots, each plot showing the number of task sets deemed schedulable by the
corresponding tests over varying values of total task set utilization. In these figures,
n denotes the average number of tasks per task set, and ‘Tot’ means the number of
task sets with each total set utilization. The other six plots show the results of the six
schedulability tests described in Sect. 5.2.

Figures 6 and 7 confirm Lemmas 6 and 7 in that they show LLF and LLF-I outper-
form corresponding EDZL tests (EDZL and EDZL-I) for all cases. We also observe

5For a given bimodal parameter p, a value for Ci/Ti is uniformly chosen in [0,0.5) with probability p,
and in [0.5,1) with probability 1 − p.
6For a given exponential parameter 1/λ, a value for Ci/Ti is chosen according to the exponential distri-
bution whose probability density function is λ · exp(−λ · x).
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Fig. 6 Schedulability tests for
m = 2

that LLF-I always outperforms LLF, but the degree of improvement depends on av-
erage task utilization. That is, while there is a remarkable difference between LLF-I
and LLF in Figs. 6(a) and 7(a), where average task utilization is the smallest, there
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Fig. 7 Schedulability tests for
m = 16



Real-Time Syst (2012) 48:716–749 737

is little difference in Figs. 6(c) and 7(c), where average task utilization is the largest.
This is because a task with larger task utilization can have a smaller slack value than
a task with smaller task utilization, and therefore if average task utilization is large,
it is difficult to improve schedulability by slack values.

We now discuss two interesting observations from Figs. 6 and 7. First, in each of
the six figures, we observe that the schedulability decreases as Usys increases. This
behavior is intuitive because Usys ≤ m is a necessary feasibility condition for the
task sets being considered here. Second, comparing the three figures for each value
of m, we observe that the schedulability for a fixed value of Usys decreases as the
average task set utilization decreases (or the average number of tasks increases). For
example, if we focus on the range 8 ≤ Usys ≤ 12 in Fig. 7, schedulability is different
depending on average task set utilization; no task set is schedulable by LLF or LLF-I
in Fig. 7(a), about 40 % of the task sets are schedulable in Fig. 7(b), and almost
all the task sets are schedulable in Fig. 7(c). Similar behavior can also be observed
for EDZL and EDZL-I. In Fig. 7(a), (b) and (c), the average number of tasks in each
task set with 8 ≤ Usys ≤ 12 is respectively 97.2, 25.1 and 17.5, and the numbers
indicate that schedulability at a fixed Usys value decreases as the average number of
tasks in each task set increases. This is because the pessimism in the interference
bounds (I ′

k←i (l, θ) in Eq. (23)) is more pronounced with more tasks. As a result it is
more likely that Inequality (15) will falsely identify a task to be capable of achieving
a certain laxity value within a certain time ahead of its deadline, thus making our
tests (as well as EDZL schedulability tests) more pessimistic. Note that this behavior
has been also observed in the schedulability test for the fixed priority scheduling
algorithm (Davis and Burns 2011).

With the scheduling performance, it is worth presenting the time-complexity of
each schedulability test. As mentioned in Sect. 4.4, LLF and LLF-I have O(n2 ·
maxτi∈Γ Di) and O(n2 · maxτi∈Γ Di · ∑

τi∈Γ (Di − Ci)) time-complexity, respec-
tively. On the other hands, tests for EDF and EDZL only need to investigate whether
a task can have a negative laxity (or a zero laxity), and the time-complexity of
them does not include the term of maxτi∈Γ Di . Therefore EDF and EDZL, and EDF-
I and EDZL-I have O(n2), and O(n2 · ∑

τi∈Γ (Di − Ci)) time-complexity, respec-
tively (Bertogna et al. 2009; Baker et al. 2008).

6 Discussion

As shown in the previous section, LLF, changing the priorities of jobs dynamically,
has a great potential to improve schedulability. However, such dynamic priority as-
signments can cause jobs to preempt each other frequently. For example, consider two
jobs that have the same remaining execution time C and the same laxity L at some
time instant on a single processor. Then, the LLF scheduler will execute those two
jobs alternatively yielding as many preemptions as C per each job. This could negate
the potential for schedulability improvement in some environments, where context
switch and migration impose significant overheads.

For such environments, let us discuss a variant of LLF scheduling, called “Least
Laxity-Group First” (LLGF), to reduce the number of preemptions. A laxity group
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L can be defined as an integer value, and we assume there is a laxity-group mapping
function f (L) that translates some laxity L to some laxity group L. For example,
f (L) can be defined as

L = f (L) =
⌈

L

α

⌉

,

where α represents the laxity group size. Then, LLGF schedules jobs according to
their laxity groups, and ties can be broken arbitrarily. When ties are broken according
to EDF, LLGF is a generalization of LLF and EDZL: if α = 1, it is the same as
LLF; and if α ≥ maxτi∈T (Di − Ci), it is equivalent to EDZL. LLGF then incurs less
preemptions than LLF does, since a job can preempt other jobs at most once per each
laxity group value under LLGF but it can preempt other jobs every different laxity
value under LLF. That is, a job of τi can preempt other jobs at most min(Ci,Di −
Ci + 1) times under LLF, but only at most min(Ci, �Di−Ci

α
� + 1) times under LLGF.

Therefore, we can reduce the number of preemptions by increasing α.
This raises many issues, including a new schedulability analysis for LLGF, explor-

ing the impact of α on schedulability and preemptions, and finding a good value of α

for some given context switch and migration overheads. Those issues are beyond the
scope of this paper, while this paper focuses on the schedulability analysis of LLF.
However, we believe the LLF analysis proposed in this paper will be used as a basis
for the schedulability analysis for LLGF and further issues.

7 Conclusion

In this work, we have identified laxity dynamics of the LLF scheduling algorithm,
and then derived the first LLF-specific schedulability tests for unit-capacity multi-
processor platforms. Dominance of these tests over previously known tests for EDZL
has also been established, and its effectiveness has been demonstrated through simu-
lations.

LLF has a great potential to improve schedulability at the risk of incurring more
preemptions. We plan to develop variants of LLF scheduling, such as LLGF explained
in Sect. 6, to balance the tradeoff between schedulability improvement and context
switch/migration costs.
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Appendix A: Proof of Theorem 1

The basic idea of the proof is to use mathematical induction.
(Basis) Each Inequality (10) for x = 1 and x = 2 holds by Observations 2 and 4,

respectively.
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(Inductive step) We will prove the following statements: for all x ≥ 2, if Inequal-
ity (10) for x holds, then Inequality (10) for x + 1 also holds. We consider two cases
depending on the value of 1t0−x−1.

(Inductive step: case A) Assume 1t0−x−1 = 1 ⇐⇒ ∑x
j=0 Nj(t0 − x − 1) ≤ m.

All tasks in Sj (t0 − x − 1) for 0 ≤ j < x are serviced in [t0 − x − 1, t0 − x), and
thus Lk(t0 − x − 1) = Lk(t0 − x) for all tasks τk ∈ Sj (t0 − x − 1) where 0 ≤ j < x.
So, the following condition holds:

Nj(t0 − x) = Nj(t0 − x − 1) + Zj (t0 − x − 1) − Wj(t0 − x − 1),

∀0 ≤ j < x. (25)

Applying Eq. (25) to Inequality (10), we get the following condition:

x−1∑

j=0

(x − j) · Nj(t0 − x − 1)

+
x−1∑

j=0

(x − j) · (Zj (t0 − x − 1) − Wj(t0 − x − 1)
)

+
x∑

k=2

(
x∏

p=k

(

1 + 1t0−p

p − 1

)

·
k−2∑

j=0

(k − j − 1) · (Zj (t0 − k) − Wj(t0 − k)
)
)

> x · m.

(26)

Multiplying the above condition by x+1
x

, we get the following condition:

x−1∑

j=0

x + 1

x
(x − j) · Nj(t0 − x − 1)

+
x−1∑

j=0

x + 1

x
(x − j) · (Zj (t0 − x − 1) − Wj(t0 − x − 1)

)

+
x∑

k=2

(
x + 1

x

x∏

p=k

(

1 + 1t0−p

p − 1

)

·
k−2∑

j=0

(k − j − 1) · (Zj (t0 − k) − Wj(t0 − k)
)
)

> (x + 1) · m. (27)

We now look at the three terms of the LHS of Inequlaity (27). The first term can
be upper-bounded as follows:

x−1∑

j=0

x + 1

x
(x − j) · Nj(t0 − x − 1) ≤

x−1∑

j=0

(x + 1 − j) · Nj(t0 − x − 1) (28)

This is because we observe the following condition for x ≥ 1, x ≥ j ≥ 0:

x + 1

x
(x − j) = x + 1 − x + 1

x
j ≤ x + 1 − j. (29)
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If p = x + 1, then 1t0−p = 1 and (1 + 1t0−p

p−1 ) = x+1
x

. Therefore, the second term
of the LHS of Inequlaity (27) can be rearranged if k = x + 1 as follows:

x−1∑

j=0

x + 1

x
(x − j) · (Zj(t0 − x − 1) − Wj(t0 − x − 1)

)

=
k−2∑

j=0

x + 1

x
(k − j − 1) · (Zj (t0 − k) − Wj(t0 − k)

)

=
k−2∑

j=0

(
x+1∏

p=k

(

1 + 1t0−p

p − 1

))

· (k − j − 1) · (Zj (t0 − k) − Wj(t0 − k)
)

=
x+1∏

p=k

(

1 + 1t0−p

p − 1

)

·
k−2∑

j=0

(k − j − 1) · (Zj (t0 − k) − Wj(t0 − k)
)
. (30)

And, the third term of the LHS of Inequality (27) can be also rearranged as follows:

x∑

k=2

(
x + 1

x

x∏

p=k

(

1 + 1t0−p

p − 1

)

·
k−2∑

j=0

(k − j − 1) · (Zj (t0 − k) − Wj(t0 − k)
)
)

=
x∑

k=2

(
x+1∏

p=x+1

(

1 + 1t0−p

p − 1

) x∏

p=k

(

1 + 1t0−p

p − 1

)

×
k−2∑

j=0

(k − j − 1) · (Zj (t0 − k) − Wj(t0 − k)
)
)

=
x∑

k=2

(
x+1∏

p=k

(

1 + 1t0−p

p − 1

)

·
k−2∑

j=0

(k − j − 1) · (Zj (t0 − k) − Wj(t0 − k)
)
)

.

(31)

Then, once we apply Eqs. (28), (30) and (31) to Inequality (27), then the LHS of
Inequality (27) can be upper-bounded as follows:

the LHS of Inequality (27)

≤
x−1∑

j=0

(x + 1 − j) · Nj(t0 − x − 1)

+
x+1∑

k=2

(
x+1∏

p=k

(

1 + 1t0−p

p − 1

)

·
k−2∑

j=0

(k − j − 1) · (Zj (t0 − k) − Wj(t0 − k)
)
)

.

(32)
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We can now check that Inequality (10) holds for x + 1 by adding the non-negative
term for j = x to the first summation of the RHS of Inequality (32). Finally, we
conclude that if Inequality (10) for x is true, then Inequality (10) for x +1 is also true
when 1t0−x−1 = 1.

(Inductive step: case B) Assume 1t0−x−1 = 0 ⇐⇒ ∑x
j=0 Nj(t0 − x − 1) > m.

Since at most m tasks can be serviced in [t0 −x−1, t0 −x), there exists a minimum
number y (≤x) such that at least one of the tasks in Sy(t0 − x − 1) is not serviced
in [t0 − x − 1, t0 − x). It holds that y ≥ 1 because otherwise N0(t0 − x − 1) > m,
which means t0 − x is the first instant when there is a task with a negative laxity.
Thus, all tasks in Sj (t0 − x − 1) for j = 0, . . . , y − 1 are serviced while all tasks
in Sj (t0 − x − 1) for j = y + 1, . . . , x are not serviced. Among tasks in Sy(t0 −
x − 1),

∑y

j=0 Nj(t0 − x − 1) − m tasks are not serviced and m − ∑y−1
j=0 Nj(t0 −

x − 1) tasks are serviced. Considering that serviced tasks keep their laxity values
and non-serviced ones reduce their laxity values by one, we establish the following
relationship between Nj(t0 − x) and Nj(t0 − x − 1):

Nj(t0 − x) = Q + Zj (t0 − x − 1) − Wj(t0 − x − 1), (33)

where

Q =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Nj(t0 − x − 1), 0 ≤ j ≤ y − 2,

Nj (t0 − x − 1) + (
∑y

k=0 Nk(t0 − x − 1) − m), j = y − 1,

(m−∑y−1
k=0 Nk(t0 − x − 1)) + Nj+1(t0 − x − 1) j = y,

Nj+1(t0 − x − 1), y + 1 ≤ j ≤ x − 1.

The detailed calculation of Q is as follows. For j = 0, . . . , y − 1, all tasks in Sj (t0 −
x − 1) keep their laxity values at t0 − x, and therefore the first two cases include
Nj(t0 − x − 1) terms. Among tasks in Sy(t0 − x − 1), (

∑y

k=0 Nk(t0 − x − 1) −
m) tasks do not perform their executions in [t0 − x − 1, t0 − x) and then each of
their laxity values is y − 1 at t0 − x. In turn, (m − ∑y−1

k=0 Nk(t0 − x − 1)) tasks
perform its execution in [t0 − x − 1, t0 − x) and then each of their laxity values is
y at t0 − x. Therefore, the second and third cases have the corresponding terms. For
j = y, . . . , x − 1, all tasks in Sj+1(t0 − x + 1) do not perform their executions in
[t0 − x − 1, t0 − x) and then each of their laxity values is j at t0 − x. Thus, the third
and fourth cases includes Nj+1(t0 − x − 1) terms.

By putting the above equation into Inequality (10), we derive the following condi-
tion:

y−2∑

j=0

(x − j) · Nj(t0 − x − 1)

+ (
x − (y − 1)

) ·
(

Ny−1(t0 − x − 1) +
y∑

k=0

Nk(t0 − x − 1) − m

)

+ (x − y) ·
(

m −
y−1∑

k=0

Nk(t0 − x − 1) + Ny+1(t0 − x − 1)

)
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+
x−1∑

j=y+1

(x − j) · Nj+1(t0 − x − 1)

+
x−1∑

j=0

(x − j) · (Zj (t0 − x − 1) − Wj(t0 − x − 1)
)

+
x∑

k=2

(
x∏

p=k

(

1 + 1t0−p

p − 1

)

·
k−2∑

j=0

(k − j − 1) · (Zj (t0 − k) − Wj(t0 − k)
)
)

> x · m. (34)

We re-arrange terms as follows:

y−1∑

j=0

(x − j) · Nj(t0 − x − 1) +
x−1∑

j=y

(x − j) · Nj+1(t0 − x − 1)

+ (
x − (y − 1)

) ·
y∑

j=0

Nj(t0 − x − 1) − (x − y) ·
y−1∑

j=0

Nj(t0 − x − 1)

− (
x − (y − 1)

) · m + (x − y) · m

+
x−1∑

j=0

(x − j) · (Zj (t0 − x − 1) − Wj(t0 − x − 1)
)

+
x∑

k=2

(
x∏

p=k

(

1 + 1t0−p

p − 1

)

·
k−2∑

j=0

(k − j − 1) · (Zj (t0 − k) − Wj(t0 − k)
)
)

> x · m. (35)

To re-arrange the first two lines of the above inequality, we use the following trivial
equations.

• ∑x−1
j=y(x − j) · Nj+1(t0 − x − 1) is equal to

∑x
j=y+1(x − j + 1) · Nj(t0 − x − 1).

• (x − (y − 1)) · ∑y

j=0 Nj(t0 − x − 1) − (x − y) · ∑y−1
j=0 Nj(t0 − x − 1) is equal to

(x − (y − 1)) · Ny(t0 − x − 1) + ∑y−1
j=0 Nj(t0 − x − 1)

Using the above equations, we derive the following equation.

The sum of the first two lines of the Inequality (35)

=
y−1∑

j=0

(x − j) · Nj(t0 − x − 1) +
x∑

j=y+1

(x − j + 1) · Nj(t0 − x − 1)

+ (
x − (y − 1)

) · Ny(t0 − x − 1) +
y−1∑

j=0

Nj(t0 − x − 1)
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=
y−1∑

j=0

(x − j + 1) · Nj(t0 − x − 1) +
x∑

j=y+1

(x − j + 1) · Nj(t0 − x − 1)

+ (
x − (y − 1)

) · Ny(t0 − x − 1)

=
x∑

j=0

(x − j + 1) · Nj(t0 − x − 1). (36)

We now re-arrange the fourth and fifth lines of the Inequality (35). Using

1t0−x−1 = 0, we obtain
∏x+1

p=x+1(1 + 1t0−p

p−1 ) = 1, and then the fourth line is equal

to
∏x+1

p=x+1(1 + 1t0−p

p−1 )
∑x−1

j=0(x − j) · (Zj (t0 − x − 1) − Wj(t0 − x − 1)). Once we

substitute k = x + 1, the fourth line is equal to
∏k

p=x+1(1 + 1t0−k

k−1 )
∑k−2

j=0(k − j − 1) ·
(Zj (t0 − k) − Wj(t0 − k)). Then,

The sum of the fourth and fifth lines of the Inequality (35)

=
k∏

p=x+1

(

1 + 1t0−k

k − 1

) k−2∑

j=0

(k − j − 1) · (Zj (t0 − k) − Wj(t0 − k)
)

+
x∑

k=2

(
x∏

p=k

(

1 + 1t0−p

p − 1

)

·
k−2∑

j=0

(k − j − 1) · (Zj (t0 − k) − Wj(t0 − k)
)
)

=
x+1∑

k=2

(
x+1∏

p=k

(

1 + 1t0−p

p − 1

)

·
k−2∑

j=0

(k − j − 1) · (Zj (t0 − k) − Wj(t0 − k)
)
)

.

(37)

We add m for both the LHS and RHS of the Inequality (35) to eliminate
the third line, and replace the first two lines, and the third and fourth lines by
Eqs. (36) and (37), respectively. We finally obtain the following inequality.

Inequality (35)

⇐⇒
x∑

j=0

(x − j + 1) · Nj(t0 − x − 1)

+
x+1∑

k=2

(
x+1∏

p=k

(

1 + 1t0−p

p − 1

)

·
k−2∑

j=0

(k − j − 1) · (Zj (t0 − k) − Wj(t0 − k)
)
)

> (x + 1) · m. (38)

The last condition is identical to Inequality (10) for x + 1. Finally, we conclude
that if Inequality (10) for x is true, then Inequality (10) for x + 1 is also true when
1t0−x−1 = 0.
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By (Inductive step: case A) and (Inductive step: case B), the inductive step is
correct.

Appendix B: Proof of Lemma 4

We show that the LHS of Inequality (19) is equal to or larger than that of Inequal-
ity (10) for x = 1,2,3, . . . ,∞. Then Inequality (19) is a necessary condition of In-
equality (10), and then the lemma directly follows from Theorem 1, where Inequal-
ity (19) is as follows:

x−1∑

j=0

(x − j)
∑

τk∈Γ

δ∗
k (j, x) > x · m,

and Inequality (10) is as follows:

x−1∑

j=0

(x − j) · Nj(t0 − x)

+
x∑

k=2

(
x∏

p=k

(

1 + 1t0−p

p − 1

)

·
k−2∑

j=0

(k − j − 1) · (Zj (t0 − k) − Wj(t0 − k)
)
)

> x · m.

We investigate how much individual tasks contribute to the LHS of Inequality (10)
and to that of Inequality (19) for given x. Then we prove that the contribution of task
τk to the LHS of Inequality (19) is always equal to or larger than that to the LHS
of Inequality (10). We let (Ax ) and (Bx ) denote the LHS of Inequality (19) and the
LHS of Inequality (10) for given x, respectively. We consider two cases depending
on whether task τk is active at t0 − x or not.

Before investigating each case, we first observe when task τk contributes to (Bx )
through Zθ(t0 − y), Wθ(t0 − y) and Nθ(t0 − y). Task τk contributes to (Bx ) through
exactly one Nθ(t0 −x)-term if it has an active job at t0 −x, and there is no contribution
through any Nθ(t0 −x)-term if it has no active job at t0 −x. Since Zθ(t0 −y) denotes
the number of tasks whose jobs are released at t0 − y + 1 with a laxity of θ , task τk

contributes to (Bx ) through Zθ(t0 − y)-terms only when its job is released at t0 − y +
1, and then θ is always Dk − Ck . Similarly, since Wθ(t0 − y) denotes the number of
tasks whose jobs are finished at t0 − y + 1 and have a laxity of θ at t0 − y, task τk

contributes to (Bx ) through Wθ(t0 − y)-terms only when it finishes execution at t0 −
y + 1. In addition, a job of τk can contribute to (Bx ) through at most one Zθ(t0 − y)-
and at most one Wθ(t0 − y)-terms.

We now derive upper bounds of contribution of some W -, Z- and N -terms in the
following two lemmas.

Lemma 8 The sum of the contribution of the W -term of τk’s qth job and the Z-term
of τk’s (q + 1)th job to (Bx ) is upper-bounded by zero, if the finishing time of τk’s qth
job and the release time of τk’s (q + 1)th job are in [t0 − x + 1, t0).
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Proof Suppose that τk’s qth job finishes its execution at t0 −y +1 (1 ≤ y ≤ x), and it
has a laxity of θ at t0 − y. And, suppose that τk’s (q + 1)th job released at t0 − y′ + 1
(1 ≤ y′ ≤ y). Then, by definition, contribution of the W -term of τk’s qth job and

the Z-term of τk’s (q + 1)th job to (Bx ) is −∏x
p=y(1 + 1t0−p

p−1 ) · (y − θ − 1) and
∏x

p=y′(1 + 1t0−p

p−1 ) · (y′ − (Dk − Ck) − 1), respectively. Then, the sum of contribution
of the W -term of τk’s qth job and the Z-term of τk’s (q +1)th job to (Bx ) is calculated
by

x∏

p=y

(

1 + 1t0−p

p − 1

)

· (−y + θ + 1) +
x∏

p=y′

(

1 + 1t0−p

p − 1

)

· (y′ − (Dk − Ck) − 1
)

=
x∏

p=y

(

1 + 1t0−p

p − 1

)

·
(

θ −
y−1∏

p=y′

(

1 + 1t0−p

p − 1

)

· (Dk − Ck)

)

+
x∏

p=y

(

1 + 1t0−p

p − 1

)

·
(

−(y − 1) +
y−1∏

p=y′

(

1 + 1t0−p

p − 1

)

· (y′ − 1
)
)

. (39)

Once we apply θ ≤ Dk − Ck and
∏y−1

p=y′(1 + 1t0−p

p−1 ) ≥ 1, we derive that (θ −
∏y−1

p=y′(1 + 1t0−p

p−1 ) · (Dk −Ck)) is upper-bounded by zero. Once we apply
∏y−1

p=y′(1 +
1t0−p

p−1 ) ≤ y′
y′−1 · y′+1

y′ · · · · · y−1
y−2 = y−1

y′−1 , we derive that (−(y − 1)+∏y−1
p=y′(1 + 1t0−p

p−1 ) ·
(y′ − 1)) is also upper-bounded by zero. Therefore, the RHS of Eq. (39) is upper-
bounded by zero. �

Lemma 9 The sum of the contribution of the N -term of τk’s qth job, the W -term
of τk’s qth job, and the Z-term of τk’s (q + 1)th job to (Bx ) is upper-bounded by
x − Dk + Ck , if τk’s qth job is active at t0 − x, the finishing time of τk’s qth job is in
[t0 − x + 1, t0), and the release time of τk’s (q + 1)th job is in [t0 − x + 1, t0).

Proof Assume that τk’s qth job has a laxity of θ ′ and θ at t0 − x and t0 − y (1 ≤
y ≤ x), respectively, and it finishes its execution at t0 − y + 1. And, assume that τk’s
(q + 1)th job released at t0 − y′ + 1 (1 ≤ y′ ≤ y). By definition, contribution of the
N -term of τk’s qth job amounts to x − θ ′. Then, the sum of contribution of the N -
term and W -term of τk’s qth job and the Z-term of τk’s (q +1)th job to (Bx ) amounts
to x − θ ′ plus the RHS of Eq. (39) as follows:

x − θ ′ +
x∏

p=y

(

1 + 1t0−p

p − 1

)

· θ −
x∏

p=y′

(

1 + 1t0−p

p − 1

)

· (Dk − Ck)

+
x∏

p=y

(

1 + 1t0−p

p − 1

)

·
(

−(y − 1) +
y−1∏

p=y′

(

1 + 1t0−p

p − 1

)

· (y′ − 1
)
)

≤ x − θ ′ +
x∏

p=y

(

1 + 1t0−p

p − 1

)

· θ −
x∏

p=y′

(

1 + 1t0−p

p − 1

)

· (Dk − Ck). (40)
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Once we apply θ ≤ θ ′ ≤ Dk −Ck to the RHS of Eq. (40), we can derive the following
conditions:

The RHS of Eq. (40)

≤ x − θ +
x∏

p=y

(

1 + 1t0−p

p − 1

)

· θ −
x∏

p=y′

(

1 + 1t0−p

p − 1

)

· (Dk − Ck)

= x − Dk + Ck +
(

x∏

p=y

(

1 + 1t0−p

p − 1

)

− 1

)

· θ

−
(

x∏

p=y′

(

1 + 1t0−p

p − 1

)

− 1

)

· (Dk − Ck)

≤ x − Dk + Ck +
(

x∏

p=y

(

1 + 1t0−p

p − 1

)

− 1

)

· (Dk − Ck)

−
(

x∏

p=y′

(

1 + 1t0−p

p − 1

)

− 1

)

· (Dk − Ck). (41)

Since
∏x

p=y′(1+ 1t0−p

p−1 ) ≥ ∏x
p=y(1+ 1t0−p

p−1 ), the RHS of Eq. (41) is upper-bounded
by x − Dk + Ck , and this proves the lemma. �

We now prove Lemma 4 by proving (Ax ) is larger than or equal to (Bx ) for a
given x. To do this, we use Lemmas 8 and 9, and the fact that the contribution of each
W -term is no larger than zero.

Suppose that τk’s qth job is released strictly before t0 − x, and τk’s (q + 1)th job
is released at t0 −y (≥t0 −x). And, τk’s pth job is released strictly before t0, and τk’s
(p + 1)th job is released at t0 + v (≥t0). Then, among jobs invoked by τk , only the
(q + 1)th, (q + 2)th, . . . , and pth jobs contribute to (Bx ) through their Z-terms. And
the (q + 1)th, (q + 2)th, . . . , and (p − 1)th jobs of τk definitely contribute to (Bx )
through their W -terms, and the qth and pth jobs of τk may or may not contribute to
(Bx ) through their W -terms depending on their finishing times. We now consider two
cases as follows.

(Case A: task τk’s qth job is not active at t0 − x)
Since there is no active job of τk at t0 − x, jobs of τk cannot contribute to (Bx )

through any N -term. By Lemma 8, the contribution of a job of task τk through its W -
term and the next job of task τk through its Z-term to (Bx ) is upper-bounded by zero.
Therefore, the contribution of the (q + 1)th, . . . , and (p − 1)th jobs of τk through
their W -terms and the (q + 2)th, . . . , and pth jobs of τk through their Z-terms is
also upper-bounded by zero. And, the qth and pth jobs of τk may contribute to (Bx )
through their W -terms, but any contribution though W -terms is non-positive. What
remains is to calculate the contribution of (q + 1)th jobs to (Bx ) through its Z-term.

The contribution of task τk’s (q +1)th job to (Bx ) through its Z-term is
∏x

p=y(1+
1t0−p

p−1 ) · (y − (Dk −Ck)− 1). Since
∏x

p=y(1 + 1t0−p

p−1 ) is upper-bounded by y
y−1 · y+1

y
·
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· · · · x
x−1 = x

y−1 ,
∏x

p=y(1 + 1t0−p

p−1 ) · (y − (Dk − Ck) − 1) is also upper-bounded by
(y − (Dk − Ck) − 1) · x

y−1 = x − (Dk − Ck)
x

y−1 ≤ x − Dk + Ck . Therefore, the total
contribution of jobs of task τk to (Bx ) is upper-bounded by x − Dk + Ck .

By definition of δ∗
k (θ, x), it holds that θ ≤ Dk − Ck , and there exists only one θ

that results in δ∗
k (θ, x) = 1 for a given x. Thus, the contribution of jobs of τk to (Ax )

is at least x − Dk + Ck .
Therefore, the total contribution of jobs of τk to (Ax ) is larger than or equal to that

to (Bx ).
(Case B: task τk’s qth job is active at t0 − x (i.e., an N -term contributes to (Bx ).))
This case implies τk’s qth job is finished after t0 − x, which means it contributes

to (Bx ) through its W -term. We consider two sub-cases: (Case B-1) the execution of
τk’s qth job is finished strictly before t0; and (Case B-2) at or after t0.

(Case B-1) By Lemma 9, the contribution of the qth job through its N - and W -
terms and the (q + 1)th job through its Z- term is upper-bounded by x − Dk + Ck .
By Lemma 8, the contribution of the (q + 1)th, . . . , and (p − 1)th jobs of τk through
their W -terms and the (q + 2)th, . . . , and pth jobs of τk through their Z-terms is
also upper-bounded by zero. Here the pth job of τk may contributes to (Bx ) through
its W -term, but the quantity is no larger than zero. Therefore, the total contribution
of jobs of τk to (Bx ) is upper-bounded by x − Dk + Ck , and as shown in (Case 1)
this means the total contribution of jobs of τk to (Ax ) is larger than or equal to that
to (Bx ).

(Case B-2) In this case, the N -term of the qth job of τk is the only term that con-
tributes (Bx ) by jobs of τk ; any other jobs of τk cannot contribute to (Bx ) through
any other terms. Suppose that the qth job has a laxity of θ at t0 − x, then the con-
tribution through its N -term is x − θ . Since the finishing time of the qth job is
at or after t0, the release time of the job, t0 − z, is no earlier than t0 − Dk (i.e.,
t0 − z ≥ t0 − Dk ⇐⇒ z ≤ Dk). Then, t0 − x is at x + Dk − z time units ahead of its
deadline.

On the other hand, if δk(θ
′, x) = 1, then θ ′ ≤ θ because x ≤ x + (Dk − z). There-

fore, the contribution of the job to (Ax ), x − θ ′, is no smaller than x − θ . Therefore,
the total contribution of task τk to (Ax ) is larger than or equal to that to (Bx ).

By (Case A) and (Case B), the contribution of jobs of τk to (Ax ) is larger than or
equal to that to (Bx ).
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