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Abstract. Endoscopy images pose a distinct set of challenges, such as
specularity, uniformity, and deformation, which can obstruct surgeons’
observations and decision-making processes. These hurdles complicate
feature extraction and may ultimately lead to the failure of a surgical
navigation system. To tackle these obstacles, we introduce a Modified
Maximal Stable Extremal Region (MMSER) detector that specifically
targets fine specular regions. Subsequently, we ingeniously fuse the capa-
bilities of MMSER and saturation region properties to precisely identify
specular regions within endoscopy images. Furthermore, our approach
harnesses the shared properties of covariant features and endoscopic
imaging to detect features in intricate regions, such as low-textured and
deformed areas. Surpassing contemporary methods, our proposed tech-
nique demonstrates remarkable performance when evaluated on the avail-
able CVC-ClinicSpec datasets. Our method has shown improvements in
accuracy, recall, fl-score, and Jaccard index by 0.21%, 25.42%, 7.77% snd
11.77%, respectively, when compared to recent techniques. Owing to its
exceptional ability to accurately pinpoint specular regions and extract
features from complex areas, our approach holds the potential to signif-
icantly advance surgical navigation.

Keywords: Endoscopy Imaging - Specular Region - Saturation
Region - Feature Extraction + Feature Matching

1 Introduction

Endoscopic imaging systems have revolutionized medical procedures, enabling
quicker recovery times and less invasive surgeries compared to traditional meth-
ods. Doctors use their experience to estimate spatial relationships and dis-
tances within the surgical environment [30]. However, the narrow field of view
in endoscopy images often forces surgeons to perform multiple observations to
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gather information about the same area, which increases the risk and duration
of the operation [21]. Additionally, the 2D images lack depth information, mak-
ing it difficult for doctors to accurately determine the movements of surgical
instruments [31]. Therefore, recognizing the 3D structure during the operation
is pivotal for doctors and correct feature matching is essential to achieve this.
However, endoscopy images present difficulties for feature extraction due to the
presence of specular and uniform regions.

Specularity is a constant challenge in endoscopic images, as the angles of the
lighting source and camera are nearly identical, causing valuable information
like vessels and lesions to be concealed. Specular reflections lead to significant
discontinuities, resulting in lost image texture and color information, which hin-
ders the surgeon’s observation and judgment [29]. Several existing studies focus
on specularity detection in endoscopy imaging. Endoscopic image specularity
detection methods can be broadly categorized into those based on different color
spaces [12] and those employing classifiers [1].

Oh et al. [24] defined specular reflection areas as absolute bright areas and rel-
ative bright areas, determined through outlier detection. However, the detected
relative bright areas may include not only specular highlights but also white tis-
sues. Shen et al. [28] transformed endoscopic images into grayscale and detected
specular regions using an empirical grayscale threshold, followed by mask region
expansion through morphological techniques. However, this method is only suit-
able for endoscopic images with uniform brightness. Asif et al. [5] employed the
Intrinsic Image Layer Separation (IILS) technique to identify specular regions,
but this approach misidentifies edges and highly saturated areas as highlights in
highly saturated, high-resolution images. Nie et al. [23] suggested a technique for
detecting specular regions through brightness classification, enhancement, and
thresholding. Although the concept of brightness enhancement is promising, the
technique’s reliance on different fixed thresholds based on image brightness is
not ideal. This approach may fail to detect complex specular regions, such as
larger white tissue regions containing specularity.

Extracting features from endoscopy images can be a daunting task, espe-
cially when the scene contains specularity, deformation, and low texture [4].
Existing feature extraction methods, such as Scale-Invariant Feature Transform
(SIFT) [20], Speeded Up Robust Features (SURF) [8], Oriented Fast and Rotated
BRIEF (ORB) [26] and Harris [34] are typically used in 3D reconstruction but are
unable to compute enough good feature points from endoscopy images. As such,
finding enough good features and correct matching in continuous endoscopy
image frames is a critical aspect of recognizing the 3D structure during surgery.

There are only a few works that attempt to extract features in endoscopy
imaging. Yan et al. [19] proposed using SIFT for feature extraction and improv-
ing the matching process through feature-point pair purification. Although this
technique enhances matching performance, it overlooks the fact that having
enough available features is crucial for improved matching. In a recent study,
Barbed et al. [7] introduced a self-supervised SuperPoint [13] adaptation for the
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endoscopic domain. However, this learning-based technique has computational
complexity, and the adapted model avoids features within specular regions.

Recent advances in specularity removal have yielded promising results.Pan et
al. [25] introduced an accelerated adaptive non-convex robust principal compo-
nent analysis (AANC-RPCA) method that enhances the efficiency and accuracy
of highlight removal through adaptive threshold segmentation and quasi-convex
function approximation. Zhang et al. [35] developed a partial attention net-
work (PatNet) that employs highlight segmentation and image inpainting, sig-
nificantly improving the visual quality of endoscopic images. Another innovative
approach by Joseph et al. [17] presents a parameter-free matrix decomposition
technique that decomposes the original image into a highlight-free pseudo-low-
rank component and a highlight component, effectively removing specular reflec-
tions and boundary artifacts. These methods demonstrate significant progress in
addressing the challenges of specular highlight removal in endoscopic imaging.

Existing techniques primarily focus on detecting specular regions. However,
these methods often suffer from high computational complexity and insufficient
detection in complex situations, such as when large white tissues overlap with
densely specular regions, as shown in Figure 1. It displays white tissue regions
enclosed by red boundaries and specular regions enclosed by blue boundaries
from publicly available datasets CVC-ClinicSpec [27], Kvasir-Seg [16], Hyper-
Kvasir [11], and CVC-ClinicDB [9]. Both these regions exhibit similar proper-
ties, including high intensity and low saturation, which often causes existing
techniques to misidentify them as a single specular region, known as a false
specular region. These false regions are generally larger than the actual specular
regions because they include a combination of specular and white tissue regions.
Saturation detectors can effectively identify these false specular regions, as they
detect regions as specular if they possess high intensity and low saturation.
However, the inadequate detection of false regions by existing methods makes
their removal challenging, subsequently impacting feature detection. Moreover,
covariant detectors can consistently detect affine-invariant frames in deformed
and textureless regions, from which distinctive SIFT descriptors can be extracted
for reliable matching.

Our technical contributions are as follows:

— We introduce MMSER as a method for identifying fine specular regions.

— By integrating the specular regions identified using MMSER with those
detected by the saturation detector, we effectively recognize complex spec-
ular regions and eliminate false regions.

— To tackle the complexity of feature extraction in deformed and low-texture
regions of endoscopy images, we utilize the affine invariance properties of
covariant detectors and the distinctiveness of SIFT descriptors.

— By employing adaptive distance thresholding and outlier rejection, we
enhance the accuracy of matching.

— Our technique has shown improvements compared to recent techniques in
accuracy 0.21%, recall 25.42%, fl-score 7.77%, and jaccard 11.77%.
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(a) CVC-ClinicSpec (b) Kvasir-Seg (c) HyperKvasir ~ (d) CVC-ClinicDB

Fig. 1. Images with overlapping white tissue and specular regions from available public
datasets.

Input Image —» MMSER Region =————

9—-’ Specular Region —» Specular suppression

=

Saturation Region Enhanced Saturation Region

(a) Specular Detection and Removal Module

Adaptive distance th Covariant feature Specular suppressed

—
RANSAC reshold extraction Ref. image

Specular suppressed
target image

(b) Covariant Feature Extraction and Matching Module

Fig. 2. Schematic of the proposed technique

2 Proposed Method

Capitalizing on the synergistic combination of MMSER, and saturation regions,
our proposed technique offers significant advantages over existing methods, as it
can adeptly handle complex situations such as false, low-texture, and deformed
regions. Furthermore, our affine adaptation of covariant features enables the
detection of features within low-textured and deformed areas. The affine invari-
ance properties of these features also enhance matching accuracy. With the
capacity to extract features from intricate regions and improve matching accu-
racy, our method paves the way for precise 3D dense reconstructions in endoscopy
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imaging, ultimately contributing to significant advancements in surgical naviga-
tion.

In essence, our proposed technique consists of the following steps: First, we
separately detect MMSER, and saturation regions. Next, we enhance the satu-
ration region by suppressing false region areas, which typically correspond to
white tissue regions containing specularity. We then merge the MMSER and
the enhanced saturation regions to obtain our final detected specular region.
Subsequently, we remove the detected specular region using existing techniques.
Afterward, we extract covariant feature frames and SIFT descriptors with affine
adaptation and match features between two images. Although there are some
mismatched features, we employ adaptive distance thresholding to eliminate
them. However, some mismatches may persist, so we use RANSAC to obtain
accurate matches between features. The flowchart of our proposed technique is
illustrated in Figure 2.

We can define the intensity function I using red (), green (g) and blue (b)
component of an image as follows:

I:%(rJrngb). (1)

2.1 Modified Maximally Stable Extremal Regions Detection

The MSER algorithm [22] identifies extremal regions (maximum or minimum
intensity) as connected components within the level sets of an image. Among
these extremal regions, locally maximally stable ones are chosen. The absence of
smoothing enables the detection of both fine and large structures. While MSER’s
properties are valuable for extracting extremal regions and varying region sizes,
our goal is to detect only maximum intensity and fine structures. Consequently,
we modify the MSER detector’s properties to suit our specific requirements for
capturing higher intensity and fine regions in endoscopy images. The steps of
our proposed MMSER detection method can be outlined as follows.

— We assume I(z, y) represent the intensity of an image at pixel location (z,y).
— We define an extremal region Mg as a connected component of an image I,
such that V(z,y) € Mg and V(2',y') € 9Mpg (the boundary of Mg):

I(z,y) > I(z',y') + ¢, (2)

where, t is intensity threshold.

— We compute the area of the extremal region Mp for a range of intensity
thresholds ¢ € [0, 255]. Let A(t) denote the area of R at threshold ¢.

— Calculate the stability score S(Mpg) for each extremal region Mp as the
absolute difference in areas over a range of intensity thresholds At:

S(Mg) = A(t + At) — A(t), (3)

where At is the sensitivity of stability.
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— We consider an extremal region Mg is maximally stable Mpgg if its stability
score S(Mpg) is locally minimal compared to its neighboring regions in the
intensity range, and its area A(t) is smaller than a predefined maximum area
Az Mathematically, this can be expressed as:

Mm:{mh ﬁﬂm<sm0mdm@<Amr @

0 otherwise

where R’ is a set of neighbouring regions.

2.2 Intensity-Saturation Regions Detection

Previously, in [32], the author established a correlation between intensity and
saturation. In this study, specular regions in images were detected using the bi-
directional histogram concept. The approach was based on the observation that
specular areas exhibit higher brightness and lower saturation than surround-
ing regions. Although this technique was effective in detecting specular regions,
it had limitations. For instance, it often incorrectly identified the white tis-
sue region as specular because of its high intensity and low saturation, and it
could not detect small regions. In this study, we leverage the intensity-saturation
technique to detect the presence of white tissue in endoscopy images. Once we
identify the white tissue region, we apply morphological operations to suppress
it, resulting in an enhanced saturation region.The enhanced intensity-saturation
regions IS.,, are calculated as follows:

— We denote S as the saturation of an image, which can be expressed as:
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— To identify the specular region I.S in the image, we consider each pixel p and
check if it satisfies the following conditions:

I
I1Is=!"7
Sp
— We compute the connected component ¢ in IS.

— We compute the area Ag(i) for each connected component.
Next, we compute the enhanced intensity-saturation regions IS,,, as follows:

(6)
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(7)

I.S’en _ Im ,if As(l) S th VC
0 otherwise

where t;, is an adaptive threshold that depends on the size of the image. For

the CVC-ClinicSpec dataset, we evaluated with various threshold values and

determined that the appropriate threshold value is 20.
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2.3 Integration of Detected Regions

We combine the modified maximally stable extremal regions Mpgs with the
enhanced intensity-saturation regions IS., to obtain the final specular regions
Sk.

Sk = Mpgs +IS.,. (8)

Figure 2 top row appropriately illustrates the steps of our proposed technique
for detecting specular regions, showcasing the effectiveness of our approach in
complex situations. To highlight the need for our method, we carefully selected
an image including false regions from the CVC-ClinicSpec dataset. Our pro-
cess begins by converting the colored image to a grayscale image, followed by
computing the MMSER (Mpg) containing relatively fine specular regions. Sub-
sequently, we compute the intensity-saturation region IS, which encompasses
relatively larger regions, including the crucial false regions (if present in the
image). We refine the false regions based on their existence to obtain the
enhanced intensity-saturation region IS.,. Finally, we integrate the Mprg with
the IS, to obtain the final specular region Sr with remarkable precision and
accuracy.

2.4 Specular Region Suppress

We use the technique [10] to remove specularity and achieve a clean image with-
out specularity after detecting the specular region S in the previous step.

IRefine =I® SRa (9)

where the operator ® represents the specular removal operation implemented in
[10].

2.5 Affine-Invariant Feature Detection

In the previous step, we obtained the specular-removed image Ige fine, which we
use to extract affine-invariant features. Using a covariant detector [33], we detect
feature frames F' that are defined by an affine matrix comprising a translation
vector t, and a linear map L. These feature frames define elliptical regions
in the image. Next, we extract description vectors d, from these regions. An
affine-invariant feature is associated with a matrix F' and a vector d,,.

li1 lig t

F= |L tr‘ T oy Loy tro

(10)

where the translation vector ¢, represents the location of an image, while the

linear map L represents the shape and orientation of the local features.
Following this, we extract a descriptor vector of dimension 128 — D from the

detected region using the SIFT method. This descriptor will be used to calculate
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Algorithm 1. Detection of specular highlights, extraction of affine-invariant
features, and improvement of matching accuracy in endoscopy image pairs.

Require: Endoscopy image pair.
1: for each image do
Compute the modified MSE regions Mgs.
Compute the saturation regions IS.
Compute the enhanced saturation regions I Ser,.
Integrate Mrs and ISe, to get Sg.
Compute Irefine using Arnold’s method [30] to suppress specularity.
Extract the Affine-invariant features from I cane by computing:
(i) Feature frame F'
(ii) Feature descriptor d,
: end for
: Compute the initial match between the image pair using the descriptors d, and
the Brute-Force technique [15].
: Apply adaptive distance thresholding to improve the initial match.
: Remove outliers using graph-cut RANSAC [6].

[EErgy—Y

=
w N

the matching confidence between two features by computing the distance ratio
en-

ey = dn,closest _ || dv;n - dv,mclosﬁst || (11)
dn,closest2 || dv,n - dv,mclosestg ||

In comparing features between two images, d, ,, and d, ,,, denote the feature
descriptors, while d;, ciosest is the descriptor distance between a particular feature
and its nearest neighbor in the other image, and dy, cjosest2 is the distance to the
second-nearest neighbor. A smaller value of e, indicates a greater similarity
between the two features, increasing the likelihood that the correspondence is
an inlier.

2.6 Feature Matching

Once the Affine-invariant features are computed, we can perform matching
between corresponding images by comparing descriptors vector d,,, using the
Brute-force (BF) method [15].

Next, we will use the distance ratio e,, between the two best matching descrip-
tors and only accept matches below an adaptive threshold th.,. After extensive
evaluation of various endoscopy datasets, we determined the optimal threshold
value to be 0.91.

Finally, we perform geometric verification on the previous matching results.
The geometric verification technique Graph-Cut RANSAC [6] improves the
matching from the previous step by removing outliers and mismatches that do
not satisfy the geometric constraint.
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3 Computational Procedures

Algorithm 1 outlines the complete steps of our proposed method for specular detec-
tion, affine-invariant feature extraction, and matching accuracy improvement.

4 Experimental Results and Analysis

4.1 Implementation and Data

Our study involves evaluating the effectiveness of the proposed technique in
detecting specular regions and extracting affine-invariant features in endoscopy
imaging. To accomplish this, we compare our approach to state-of-the-art specu-
lar detection and feature extraction techniques. The experiments are conducted
on a Windows 10 x64 system, utilizing OpenCV 4.0 for image processing. The
hardware consists of an Intel i5-9400K with a 2.90 GHzX2 processor and 16 GB
of RAM. Implementation of the algorithm is carried out using both Matlab 2022
and Python 3.8. Our evaluation is conducted on the publicly available CVC-
ClinicSpec dataset, which contains colonoscopy images with annotated specular
ground truth labels. To measure the effectiveness of our proposed approach, we
use gold standard metrics such as Accuracy, Precision, Recall, Fl-score, and
Jaccard. We also evaluated the performance of affine-invariant feature extrac-
tion and matching in challenging conditions using the Hyper-Kvasir dataset.
Specifically, we used the labeled videos in “lower-gi-tract/quality-of-mucosal-
view/BBPS-2-3” from the dataset. We extracted and matched features across
pairs of frames taken 1 second apart from each other within the sequences of
the Hyper-Kvasir dataset (where 1 second 25 frames). To evaluate the result, we
used 10% of the frames from the videos. Our assessment of the detection algo-
rithm’s ability to segment the specular region involves the use of five metrics:
Accuracy, Precision, Recall, F1-score, and Jaccard.

Our main contribution in this research is the detection of specular regions and
the extraction of covariant features. Specifically, we focus on extracting covari-
ant features, as specular regions often mislead feature extraction processes, com-
plicating surgical navigation. We utilize an existing technique to suppress the
detected specular regions, with the source code publicly available. In the follow-
ing sections, we will evaluate our detection and feature extraction performance
both qualitatively and quantitatively.

4.2 Visual Evaluation

In this part we will visually asses the specular region detection, covariant feature
extraction and matching ability in challenging endoscopy imaging condition.

Specular Region Detection and Suppression Figure 3 presents a compar-
ison between recent state-of-the-art techniques and our proposed method for
detecting specular regions. The input image and ground truth from the CVC-
ClinicSpec dataset are shown. Specifically, Arnold’s method [3] fails to detect
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(e) Nie (f) Proposed

Fig. 3. Comparison between different detection methods

(a) Specular removal using Pierre’10 de-(b) Specular removal using Li’19 detec-
tection mask tion mask

(c¢) Specular removal using Nie’23 detec-(d) Specular removal using Proposed de-
tion mask tection mask

Fig. 4. Specularity removal using detected region from different techniques

fine specular regions and misidentifies the false region as a specular region. Li’s
method [18] is better at detecting fine specular regions, but also misclassifies
the false region. Nie’s method [23] can detect fine regions and specular regions
on white tissue, but produces false edges that may affect the specular suppres-
sion process. In contrast, our proposed technique effectively detects fine specular
regions and also accurately extracts specular regions from white tissue.
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(a) Harris Fea-(b) ORB Features(c) SIFT Features(d) SURF Fea-(e) Affine-

tures on Specularon Specular im-on Specular im-tures on SpecularInvariant Fea-

image age age image tures on Specular
image

(f) Harris Fea-(g) ORB Features(h) SIFT Features(i) SURF  Fea-(j) Affine-

tures on filteredon filtered image on ﬁltered image tures on filteredInvariant Fea-

image image tures on filtered
image

Fig. 5. Comparison between feature detectors

To suppress specular regions, we utilized Arnold’s technique [3]. Figure 4
depicts the results of specular suppression using the detected specular region
mask discussed in Figure 4. The results indicate that using Arnold’s technique
and regions detected by Li’s method [18] do not effectively suppress the specu-
lar regions, and additionally introduce artifacts around the white tissue region.
On the other hand, Nie’s detected regions [23] perform better in removing the
specular region compared to Arnold’s and Li’s methods, but still contain some
specular regions and artifacts near the white tissue region. In contrast, our pro-
posed detected region performs exceptionally well in suppressing the specular
regions, with ignorable artifacts on the white tissue region.

Feature Detection and Matching The effectiveness of covariant detectors
compared to commonly used detectors in endoscopy imaging is demonstrated in
Figure 5. In Figure 5 top row, where the image contains specular regions, we
observe that Harris, ORB, SIFT, and SURF detectors mostly detect features
in specular highlight and corner-like areas, while avoiding low-texture areas. In
contrast, covariant detector [33] detects affine-invariant frames throughout all the
regions. Furthermore, in the filtered image in Figure 5 bottom row, we see a
significant reduction in the number of features detected by Harris, ORB, SIFT,
and SURF detectors, due to the absence of specular regions, while covariant
detector detects a similar number of features throughout all the regions.
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(c) Distance threshold match (d) Geometric match

Fig. 6. Steps for improving matching accuracy

Fig. 7. Pair of 1-second-apart frames were used from the Hyper-Kvasir dataset to
extract affine-invariant features and matches of inliers.

The matching process of affine-invariant features is illustrated in Figure 6.
The filtered image sequence is represented in Figure 6(a). The initial matching
results with numerous mismatches are depicted in Figure 6(b). By applying adap-
tive distance thresholding, the number of mismatches is significantly reduced,
as shown in Figure 6(c). However, some mismatches still exist. Finally, Figure
6(d) demonstrates that there are no mismatches after applying the graph-cut
RANSAC geometric verification technique.

Our evaluation uses the Hyper-Kvasir dataset with specularity, which allows
us to compare our results with those in [7]. As shown in Figure 7, the detected
affine-invariant features from the Hyper-Kvasir dataset are not confined to spe-
cific areas such as corners or specular regions but are also present in low-texture
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areas. Additionally, the figure demonstrates the feature matching between two
pairs of frames taken 1 second apart from the dataset.

4.3 Quantitative Evaluation

Table 1 presents a quantitative comparison of different techniques for detecting
specular regions on the CVC-ClinicSpec dataset. The bold values indicate the
best detection performance. Our proposed method outperforms the other meth-
ods in terms of Accuracy, Recall, F1-score, and Jaccard. Specifically, compared to
the best-performing method Nie [23], our method achieves higher Accuracy, F1-
score, and Jaccard by 0.21, 7.77, and 11.77 percent respectively. Additionally,
our Recall value is 1.97 percent higher than that of Meslouhi [14].

These improvements are primarily due to our innovative combination of
MMSER with saturation region properties, which enhances the detection and
management of specular regions in endoscopy images. This dual approach allows
for more precise identification of true positives, especially in low-textured and
deformed areas, leading to significantly higher recall and better alignment with
the ground truth, as reflected in the Jaccard Index. Although our precision
(0.8516) is slightly lower than that of Nie et al., the substantial gains in recall
and the balanced F1-Score underscore the robustness and effectiveness of our
method in accurately detecting and managing specular regions, which is crucial
in medical imaging for ensuring comprehensive and reliable feature extraction.

Table 1. Quantitative comparison between state-of-art techniques

‘Methods Accuracy|Precision Recall |[F1-Score|Jaccard
Arnold et al. [3] |0.9837 |0.8938 |0.6739 |0.7684 0.6589
Meslouhi et al. [14]0.9920 |0.3744 ]0.8961 (0.5281 |0.6616
Alsaleh et al. [2] 10.9699 |0.6016 |0.8020 (0.6875 |0.6016
Shen et al. [28] 0.9767 10.9064 |0.6683 |0.7694 |0.6518

Asif et al. [5] 0.9584 10.6972 |0.7151 |0.6489 |0.6333
Nie et al. [23] 0.9932 10.9083 |0.7286 |0.8085 |0.7153
Proposed 0.9953 0.8516 |0.9138|0.8713 |0.7995

Table 2 provides a quantitative comparison between commonly used detectors
and the covariant detector, demonstrating the efficacy of the latter in extract-
ing features from complex, low-texture, and deformed regions, particularly in
endoscopy imaging. As shown in the table, the covariant detector is capable of
extracting a very large number of features, 4907 and 4847 in the specular and
filtered image, respectively, outperforming ORB, SIFT, Harris, and SURF. Fur-
thermore, the table shows that our method achieves a greater number of inliers,
1274, compared to ORB, SIFT, Harris, and SURF after applying distance thresh-
olding and Graph-cut RANSAC on initial Brute-Force matching to the extracted
affine-invariant features.
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The performance of various state-of-the-art techniques is presented in Table
3 using the Hyper-Kvasir dataset. The proposed technique outperforms other
techniques in terms of feature extraction and inlier matching and is not limited
to specific areas such as corners or specular regions. The table shows that the pro-
posed technique achieves superior quantitative results compared to other tech-
niques.

Table 2. Quantitative comparison between Table 3. Matching quality metrics
feature detectors for state-of-the-art techniques using
the Hyper-Kvasir dataset [4].

Methods Specular image Filtered image
Features Inliers Features Inliers Methods Feat/Img F Inl.
Harris [34] 59 2 19 1 STIFT [20] 825.7 151.3
ORB [26] 447 29 80 6 ORB [26] 361.3 1372
SIFT [20] 140 22 101 17 SP Base [13] 211.8 51.3
SURFg] 40 14 23 12 E-SP [7] 591.3 200.4
Affine-Invariant 4907 1344 4847 1274 Affine-Invarinat 1125.7 281.3

5 Conclusions and Future Work

Our study proposes a novel specular detection technique that leverages the
affine invariance properties of covariant detectors to overcome challenges in
complex endoscopy imaging scenarios. Our approach enhances the character-
istics of the Maximal Stable Extremal Region (MSER) to detect fine specular
regions, followed by the computation of saturation regions. By merging the Mod-
ified MSER (MMSER) and saturation regions, our method accurately pinpoints
areas of specular reflection. Using an existing method for suppression of specular
regions, we refine the image and compute affine-invariant features, resulting in
the extraction of a significant number of high-quality features. Our technique
excels at detecting intricate specular regions and extracting features from uni-
form and deformed areas in endoscopy images. This state-of-the-art approach
has the potential to enhance surgical navigation precision significantly.

Our detection technique is evaluated on the CVC-ClinicSpec. Visual eval-
uation reveals that our approach can successfully extract specular regions in
complex conditions where other state-of-the-art techniques fail. Furthermore, in
terms of Accuracy, Recall, F-1 Score, and Jaccard, our technique outperforms
other existing methods in quantitative evaluation. Our evaluation also shows
that recent techniques fail to detect the false regions, leading to artifacts during
specular region suppression, unlike our technique.

Our approach to specular detection can significantly impact surgical naviga-
tion by enhancing the clarity and reliability of endoscopic images through any
efficient removal process. Specular reflections in these images can obscure crit-
ical anatomical details, leading to potential misinterpretations during surgical
procedures. By accurately detecting and suppressing these specular regions, the
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proposed technique ensures that important features are preserved and accurately
extracted. This improved image quality facilitates better spatial understanding
and decision-making for surgeons, thereby increasing the safety and efficacy of
minimally invasive surgeries. Enhanced feature extraction and matching also
contribute to more precise 3D reconstructions, further aiding in navigation and
reducing the risk of complications.

The most robust aspect of the method is its combination of MMSER with
saturation region properties to accurately detect and manage specular regions
in endoscopy images. This technique significantly enhances the detection and
extraction of features from low-textured and deformed areas, demonstrating
notable improvements in metrics such as accuracy, recall, Fl-score, and Jac-
card index compared to existing methods. Conversely, the least effective aspect
is the specular removal method used, which does not perform optimally. In the
future, we plan to develop our own specular removal technique.
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