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Abstract. As we move towards a future where minimally invasive meth-
ods become the norm for surgeries and diagnostic procedures, it is
increasingly vital to improve our strategies for viewing the organs and
complex structures within our bodies. Image stitching presents an entic-
ing solution, expanding our field of view by seamlessly weaving together
a sequence of images. While existing stitching techniques do lean on
the capabilities of endoscopy imaging, they, unfortunately, overlook the
critical need for automated feedback when grappling with the complex-
ities and challenges innate to endoscopy imaging. these methods strug-
gle to stand firm against deformations and regions with low texture.
In this paper, we introduce a robust endoscopic image-stitching algo-
rithm designed to thrive in adversity. Its unique resilience to deformations
and low-texture regions is reinforced by the inclusion of a radial basis
function weighting that is paired harmoniously with location-dependent
homography based on the corresponding locations of the strong features
extracted by affine shape-adapted Hessian-Laplace detector. Crucially,
this algorithm is steered by a sophisticated automatic feedback mecha-
nism. This feedback system makes astute evaluations based on an image
quality metric and the structural comparison between the sequences of
endoscopy images. We have thoroughly validated the efficacy of our new
approach using two public datasets, namely EndoSLAM and EndoAbS,
under demanding conditions. The results eloquently illustrate the supe-
rior benefits of our technique. Our proposed method surpasses commonly
employed techniques, delivering superior performance in quantitative
metrics, including precision at 30.07%, recall at 114.89%, F1-score at
84.62%, and TRE at 46.07%.
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1 Introduction

Endoscopy is a common and essential tool in medical diagnostics and
research, playing a pivotal role in identifying and treating diseases, particularly
tumors [29]. Yet, there are limitations such as the inability to obtain the best
field of view and magnify an image simultaneously [15]. Increasing magnification
enhances detail but reduces the visual field, complicating comprehensive organ
examination and disease evaluation [26]. With the advancement of computer
technology, medical images can be shared online, facilitating remote consulta-
tions [27]. However, a single endoscopic image might not suffice for accurate
judgment. Thus, the challenge lies in stitching together successive images for
complete visualization, which is crucial for remote diagnosis and data measure-
ment.

Image stitching involves addressing several interconnected problems. Firstly,
there is the issue of data association, which involves finding common scene ele-
ments across various views, a topic discussed in-depth by Huang [9]. Secondly,
we have the task of estimating a geometric transformation. This transformation
should align with the data association and unify disparate views into a single,
seamlessly stitched image [8]. These two tasks are usually undertaken concur-
rently [4]. Lastly, it is necessary to blend the individual images’ intensities to
ensure a consistent, smooth final image [28].

Of these, the sub-problem of data association is the most complex, particu-
larly in surgical scenarios, and hence attracts significant research focus. A classic
strategy for addressing this issue is to identify and extract image point features
that correspond to unique landmarks within the scene and then match them
across different views. This approach, known as feature-based stitching [18], has
been thoroughly researched in recent years. Various well-known hand-crafted
feature methodologies, such as Harris [20], SIFT [14], SURF [24], ORB [7], and
FAST [12] have been applied to it. In more recent developments, data-driven fea-
tures derived from deep neural networks are being employed for image stitching
[2].

There are also other strategies for stitching that do not hinge on feature
extraction. Direct and dense pixel-based registration techniques can be developed
as an iterative optimization problem, with the goal of maximising similarity as
calculated by mutual information [19] or other photometric similarity/difference
measures [13]. With the increased use of deep learning across various fields, there
are now proposed end-to-end stitching algorithms that rely on deep learning to
deduce registration parameters [3].

Technology’s evolution has substantially enhanced endoscopic instruments.
Luo et al. [16] proposed a method that uses an Auto-Regressive (AR) model to
predict human motion intentions for teleoperated tasks. This algorithm antici-
pates human movements, updating and adjusting robotic actions during Human-
Robot Interactions (HRI) as necessary. Moreover, Su et al. [25] developed an
innovative technique. They employed a swivel motion reconstruction method to
mimic human-like behavior through kinematic mapping in robot redundancy.
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Their groundbreaking framework merges an incremental learning approach with
a deep convolutional neural network, facilitating efficient and speedy learning.

However, these kinds of tasks require automated system feedback regarding
image quality. Owing to the endoscope’s movement, limited field of view, and the
complexity of human body structures, there is a high likelihood of missing crucial
features in the image sequence. Therefore, it is essential to have real-time updates
from the imaging process if a vital structure is not captured in the images due
to the endoscope camera’s unpredictable movement. For this reason, we provide
automated system feedback during endoscopy regarding image quality, which is
otherwise impossible to process manually.

Based on the analysis of existing literature, it becomes evident that tra-
ditional image stitching techniques have been primarily used for endoscopic
imagery, despite their inherent limitations. Such approaches do not take into
account the specific attributes of endoscopic images, resulting in significant dif-
ficulties in solving the stitching problem. In scenarios such as large motion, a
blurred environment, low texture, and deformations, the existing techniques are
prone to stitching failures, often without providing any insightful feedback.

In Section 3, we substantiate our proposed methodology by employing pub-
licly accessible datasets. The comparison of stitched images in Figure 4 and 6
with recent techniques attests to the advantages gained from extracting a sub-
stantial number of robust features in texture-less and deformed regions. These
features are then leveraged to compute a weighted local homography for stitching
image sequences. The improvements compared to best performers in quantitative
metrics, as depicted in Table 1–precision at 30.07%, recall at 114.89%, F1-score
at 84.62%, and TRE at 46.07% undeniably affirm that our technique significantly
outperforms commonly employed methods.

This paper offers several unique contributions:

– The introduction of a fully automated, feedback-oriented, robust stitching
algorithm designed specifically for endoscopic image stitching.

– Our algorithm not only provides feedback to surgeons but also executes blur
removal on endoscopic images based on image quality assessment.

– The implementation of an affine-shape adapted Hessian-Laplace detector to
extract robust features from the images.

– Our approach uses these robust features to apply a weighted local homogra-
phy designed with endoscopic imaging properties in mind.

2 Approach

In this section, we introduce our proposed approach for robust endoscopic image
stitching with automated feedback. Figure 1 illustrates the various components
of our technique.
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Fig. 1. Schematic of the proposed technique

2.1 Statistical Analysis-driven Automated Feedback

We make the assumption that the endoscopic images, denoted as Ii with
i = 1, 2, 3, ..., n, are already aligned. Our processing of these images follows
a sequential approach. To assess the level of texture availability, we employ a
measure based on uncertainty or randomness within an image. This measure,
denoted as Ei,tex, is calculated as follows:

Ei,tex =
255∑

k=1

(−pk log2 pk). (1)

In Equation (1), pk represents the probability associated with the gray level
k of the image.

In order to assess the structural similarity between two consecutive images, Ii
and Ii+1, we consider their luminance, contrast, and structure. This comparison
is based on the following equations:
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S(Ii, Ii+1) = [l(Ii, Ii+1)]α · [c(Ii, Ii+1)]β · [s(Ii, Ii+1)]γ . (2)

Here, the terms are defined as follows:

l(Ii, Ii+1) =
2µIiµIi+1 + ϵ1
µ2
Ii
+ µ2

Ii+1
+ ϵ1

,

c(Ii, Ii+1) =
2σIiσIi+1 + ϵ2

σ2
Ii
+ σ2

Ii+1
+ ϵ2

,

s(Ii, Ii+1) =
σIiIi+1 + ϵ3
σIiσIi+1 + ϵ3

where µIi and µIi+1 , σIi and σIi+1 , and σIiIi+1 represent the local means, stan-
dard deviations, and cross-covariance for images Ii and Ii+1.

2.2 Blur Removal for Enhanced Image Quality

To ensure that the texture information of a good quality endoscopic image is
not lost during the blur removal process, we adopt a selective approach based
on the score obtained from Equation (1). Randomly removing blur may result
in the degradation of image quality and loss of texture details. The blur removal
technique discussed in [5] is employed for this purpose. Consequently, the com-
putation of the enhanced images is carried out as follows:

Ii+1,en =
Ii+1 − [1 − t(x)]A

t(x)
. (3)

Here, t(x) represents the transmission map, and A denotes the single color
in the image where the transmission map is 0.

2.3 Robust Feature estimation using Affine-Shape Adapted
Hessian-Laplace Detector

To initiate our procedure, we employ a detector based on the Hessian matrix to
identify salient points within the scale space. The Hessian matrix is essentially
a matrix of second-order partial derivatives, obtained from the Taylor series
expansion. It is articulated as:

Hi,en =
[
Ii,en,xx(x;σd) Ii,en,xy(x;σd)
Ii,en,yx(x;σd) Ii,en,yy(x;σd)

]
(4)

Here, Ii,en,xx, Ii,en,xy, and Ii,en,yy denote second-order derivatives that are
calculated using Gaussian kernels of scale σd.

Next, we employ a scale-normalized Laplacian, which helps us choose the
appropriate scale for a detected point. It is expressed as:

Laplacian(x;σd) = σ2
d

∣∣Ii,en,xx(x;σd) + Ii,en,yy(x;σd)
∣∣ (5)
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We can estimate the affine shape of the neighborhood surrounding the
detected point by leveraging the eigenvalues of the second-moment matrix. This
matrix is represented as:

Mi,en = σ2
dg(σI) ∗

[
I2i,en,x(x;σd) Ii,en,xIi,en,y(x;σd)

Ii,en,xIi,en,y(x;σd) I2i,en,y(x;σd)

]
(6)

In this scenario, the derivatives are averaged over the detected point’s neigh-
borhood by applying a smoothing process using a Gaussian window of scale
σI .

2.4 Location-Based Weighted Homography Estimation for Feature
Correspondence

Consider reference and target images denoted as Ii,en and Ii+1,en. We compute
matching pairs pppi,en = [x, y]T and ppp

′

i,en = [x
′
, y

′
]T from detected features xr in

previous section using these images. The pairs are derived from robustly iden-
tified feature points discussed in the previous section, using the Brute-Force
(BF) matching algorithm [10]. The homographies between these pairs can be
defined as

ppp
′

i,en = hhh(pppi,en) (7)

From Equation (7), we can perform a simple matrix expansion resulting in
the following expressions:

x
′
=

h1x+ h2y + h3

h7x+ h8y + h9
(8)

y
′
=

h4x+ h5y + h6

h7x+ h8y + h9
(9)

In homogeneous coordinates, Equation 7 is represented as

p̃̃p̃p
′

i,en =HHH(p̃̃p̃pi,en) (10)

where p̃̃p̃p
′

i,en = [x
′
, y

′
, 1]T , p̃̃p̃pi,en = [x, y, 1]T and HHH is a 3 × 3 matrix.

The columns of HHH are denoted by hhh1 = [h1, h4, h7]T , hhh2 = [h2, h5, h8]T , and
hhh3 = [h3, h6, h9]T . By taking a cross-product on both sides of Equation 10, we
get:

0003×1 = p̃̃p̃p
′

i,en ×HHHp̃̃p̃pi,en (11)

This equation (11) can be reformulated as follows:

0003×1 =

⎡

⎢⎣
0003×1 −p̃̃p̃pTi,en y

′ − p̃̃p̃pTi,en
−p̃̃p̃pTi,en 0003×1 −x

′
p̃̃p̃pTi,en

−y
′
p̃̃p̃pTi,en x

′
p̃̃p̃pTi,en 0003×1

⎤

⎥⎦

⎡

⎣
hhh1

hhh2

hhh3

⎤

⎦ (12)
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The 9 × 1 vector in Equation 12 is referred to as hhh. Considering that only
two rows of the 3 × 9 matrix in Equation 12 are linearly independent, we
can determine hhh utilizing a collection of N corresponding points, denoted as
p̃̃p̃pi, en, kk = 1N and p̃̃p̃pi, en, k

′
k = 1N .

hhh = argmin
hhh

N∑

k=1

∥∥∥∥

[
aaak,1
aaak,2

]
hhh

∥∥∥∥
2

= argmin
hhh

∥∥AAAhhh
∥∥2 (13)

The components aaak,1 and aaak,2 correspond to the two rows of the matrix
specified in Equation 12. We will also apply a constraint of ∥hhh∥2 = 1 since a
homographic transformation possesses only 8 degrees of freedom.

The paper [30], introduced the Moving DLT (Direct Linear Transform)
framework to approximate local homography. This method incorporates locality-
enforcing weights into the objective of Equation 13. The estimation of local
homography at the position pppi,en,j is conducted as follows:

hhhj = argmin
hhhj

N∑

k=1

wj,k

∥∥∥∥

[
aaak,1
aaak,2

]
hhh

∥∥∥∥
2

(14)

The calculation of scalar weights, denoted as wj,kk = 1N , is determined by
changes relative to pppi,en,j .

wj,k =
(∥∥pppi,en,k − pppi,en,j

∥∥2 ∗ log
∥∥pppi,en,k − pppi,en,j

∥∥
)
/σ2 (15)

We can reformulate Equation 14 as follows:

hhhj = argmin
hhhj

∥∥WWW jAAAhhh
∥∥2 (16)

The weight matrix WWW j ∈ R2N×2N is structured as follows:

WWW j = diag
([
w1,jw1,j ...wN,jwN,j

])
(17)

In the research [30], they propose the concept of allotting increased weights
to data that is closer to pppi,en,k. This enhances the ability of the projective warp,
HHH, with respect to the local structure around pppi,en,k. They also incorporate an
offset parameter, γ, to circumvent numerical issues.

A key aspect of this concept is that the computation of local homography
is only applicable to the areas of the target image that overlap with the refer-
ence image. For each pixel in regions that do not overlap, the transformation
is computed as a weighted linear combination of the local homographies in the
overlapping areas. Thus, an appropriate set γ is crucial to prevent extrapolation.

This overarching idea is highly effective in the context of real-world images,
which often contain abundant textures and rigid structures. However, compli-
cations arise during endoscopy imaging, due to the presence of low texture and
numerous deformations. To address these challenges, we consider an endoscopy
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imaging property adapted weight function in Equation 15 that tackles deforma-
tions and outliers caused by low texture. This is achieved by combining squared
distance and log distance. This combined approach allows for the flexible fitting
of deformation patterns, while the log distance alone aids in reducing outliers.

When pppi,en,k shifts continuously in the source image domain Ii,en, the corre-
sponding homography estimation HHH adjusts smoothly. This process results in a
dynamic warp that can flexibly adapt to data and transform the source image
into Itxi,en.

Blending Warped Images

In this section, we merge the transformed source image Itxi,en with the target
image Ii+1,en to generate the final stitched image Istitch. The computation for
the stitched image [23] is as follows:

Istitch = αItxi,en + (1 − α)Ii+1,en (18)

Fig. 2. Images with different entropy: (a) higher entropy (b) moderate entropy, and
(c) lower entropy

3 Experiments

We have utilized three diverse, publicly accessible datasets: EndoSLAM [21],
EndoAbs [22], and Hamlyn [16]. These datasets were selected purposefully to
encompass a variety of conditions, including differing lighting circumstances,
small fields of view, low-texture regions, and deformed areas, thereby providing
a comprehensive evaluation of our method. The texture of an image is crucial
for image-guided systems as it enhances feature extraction reliability and boosts
computational precision.
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Fig. 3. Image Enhancement: (a) image with moderate blur, (b) enhanced image from
moderate blur, (c) image with extreme blur and (d) enhanced image from extreme blur

3.1 Qualitative Evaluation

Figure 2 depicts three images from the EndoSLAM dataset, each presenting
varying levels of texture Ei,tex. In Figure 3(a), the image displays a moderate blur
with an entropy value of 7.21. After deblurring, an enhanced image is produced,
as seen in Figure 3(b), which possesses a richer texture and an improved entropy
value of 7.87. This refined image is more conducive to robust feature extraction.
Conversely, the image in Figure 3(c) exhibits an intense blur with an entropy
of 7.13. Following deblurring, the resultant image on Figure 3(d) shows only a
slight improvement in texture quality, with an entropy of approximately 7.17.
Despite the enhancement, this image remains below the optimal threshold and
is not ideal for stitching.

Figure 4 illustrates that our proposed method generates higher quality and
more accurate stitching in comparison to other cutting-edge techniques. To fur-
ther scrutinize the performance, a region in Figure 5 where robust feature extrac-
tion and subsequent image frame warping proved challenging was cropped. The
APAP technique, as illustrated in Figure 5(a) and outlined in [30], presents a
comparable outcome; specifically, it fails to accurately merge the tissue area,
resulting in a warped region. The AutoStitch method [6] generates a malformed
area and even excludes some parts entirely from the original image sequence. As
we shift our focus to Figure 5(c), the latest wide parallax technique [11] misplaces
the tissue region entirely due to the lack of robust features and incorrect warping
in that particular area. In stark contrast, our proposed method delivers perfect
alignment of the tissue region. This is achieved by successfully extracting robust
features in these areas thanks to the affine adaptation of the Hessian-Laplace
detector. Subsequently, these features are used to calculate a weighted homog-
raphy, which enables precise warping. This is made possible by the appropriate
distribution of weight based on whether a randomly located feature is sufficiently
close to the target feature location.

Figure 6 and 7 showcase the exemplary results achieved when stitching using
the stereo pairs from the Hamlyn and EndoAbs datasets, respectively. The Ham-
lyn dataset, while offering images of high resolution, introduces intricate chal-
lenges due to the presence of elements such as blood, deformations, and surgical
instruments. Impressively, our proposed method managed to stitch the Ham-
lyn stereo pairs with remarkable accuracy, highlighting its resilience and effec-
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Fig. 4. Image stitching using state of art techniques: (a) APAP (b) AutoStitch (c)
Wide Parallax, and (d) Proposed

Fig. 5. Magnified stitched region using state-of-the-art feature based techniques: (a)
APAP (b) AutoStitch (c) wide parallax, and (d) Proposed

tiveness even when faced with occlusions caused by surgical tools. Turning our
attention to the EndoAbs dataset, it’s worth noting that our technique consis-
tently delivered despite the challenging low-light conditions. Such challenging
scenarios are not uncommon in surgical environments. The successes displayed
herein emphasize the potential of our method to furnish an expanded field of
view, characterized by both precision and quality, from a stereo image sequence.
This expanded perspective can be invaluable in enhancing surgical operations
and diagnostic procedures.

Figure 8 depicts an instance of a failure during the image stitching process. As
evident from the figure, the extreme blur in Figure 8(a) (the left image) impedes
the algorithm’s capability to establish correspondences between image sequences.
The particular image lacks sufficient texture information, making it challenging
to extract robust features. Consequently, the stitching process fails noticeably
as shown in Figure 8(b). In such scenarios, our algorithm offers feedback to the
experts, suggesting adjustments in the endoscope’s movement to capture higher-
quality images.

Figure 9 illustrates the scenario of the maximum angular limit in our pro-
posed technique. Beyond this limit, the stitching process is affected as the angle
increases. To assess the maximum allowable angle for flawless stitching, we set
the scale to 0.5 and varied the angle values to 5, 10, 15, 45, and 50 degrees. Table 1
includes the maximum limit angle of 45 degrees, beyond which the stitching pro-
cess begins to degrade. In Figure 9(a)(b)(c), the green box region demonstrates
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nearly perfect stitching. However, in Figure 9(d)(e), we observe a degradation
in the stitching process within the green box region as the angle increases from
45 to 50 degrees. These quantitative results are reflected in Table 1, where the
Target Registration Error (TRE) is 0.05 for angles 5, 10, and 15 and increases
to 1.3 for the 45-degree angle.

Fig. 6. Image Stitching using stereo pairs: (a) Hamlyn left view (b) Hamlyn right view
(c) Hamlyin stitched

Fig. 7. Image Stitching using stereo pairs: (a) EndoAbs left view (b) EndoAbs right
view, and (c) EndoAbs stitched

3.2 Quantitative Evaluation
To evaluate the efficacy of the affine-adapted Hessian-Laplace detector, we com-
pared it with two recently adapted feature detectors for endoscopy imaging:
Pyramid ORB [31] and Improved SIFT [16]. We employed the same image
sequence these detectors use for feature extraction. When compared to [31] with
800 key points, our proposed method extracts 17,261 key points, which is approx-
imately 21.5 times greater. Furthermore, when compared to [16] with 113 corre-
sponding points, our technique maintains 1,505 correspondences, which is 13.3
times greater. The large number of key points that our affine-adapted detector
extracts features from most regions, and the high number of correspondences
allows for dense matching.
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Fig. 8. Failure case of image stitching: (a) matching pairs, and (b) stitched image

Fig. 9. Stitching images using the proposed method at a scale of 0.5 with various
rotations: (a) 5-degree rotation (b) 10-degree rotation (c) 15-degree rotation (d) 45-
degree rotation, and (e) 50-degree rotation

Feedback Evaluation In our research, we utilized the EndoSLAM dataset to
determine optimal feedback threshold values. After a thorough examination of
multiple trials, we identified optimal thresholds for both entropy and structural
similarity, which stood at 7.25 and 0.76, respectively. These identified thresholds
play a pivotal role in facilitating feedback for our proposed algorithm. Specifi-
cally, an endoscopy image with entropy below the threshold suggests that the
image might lack sufficient texture, while a lower structural similarity value com-
pared to the set threshold suggests a lack of adequate structure similarity in the
consecutive image sequence for successful stitching. Consider the images shown
in Figure 2(a)(b)(c) with entropies of 7.45, 7.21, and 7.13 respectively. The pro-
gressive increase in entropy value signifies an image enriched in texture. Based
on these observations, our method leverages these entropy values to provide the
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surgeon with feedback regarding the optimal positioning and movement of the
endoscope. Additionally, the structural similarity value obtained from equation
2 assists in determining when there is an inadequate overlapping region for effec-
tive comparison and feature extraction. For instance, Figure 3(b) depicts how
improved image quality can accentuate the texture in an image. Yet, Figure
3(d) illustrates that even with enhanced image quality, extracting meaningful
information for subsequent processes remains a challenge.

We need the feedback system to operate in real time during the endoscopy
procedure to decide whether to accept or reject an image. However, real-time
stitching is not necessary, as it is time-consuming and not crucial for the sur-
geon’s immediate evaluation. The priority is to obtain high-quality images during
the procedure, ensuring they can be stitched later without information loss. This
will provide the surgeon with a high-quality stitched image for better diagnosis.
Our feedback system can evaluate and correct endoscopy images at a rate of 10
frames per second.

Table 1. Evaluating the Efficacy of Various Techniques

Orientation 000000 Methods
Scale Rotation SIFT SURF ORB AKAZE Proposed

P R F1 TREP R F1 TREP R F1 TREP R F1 TREP R F1 TRE
0.9 5 0.65 0.17 0.27 0.45 0.59 0.29 0.39 8.88 0.59 0.15 0.23 3.87 0.75 0.32 0.3 3.70 0.95 0.77 0.85 0.06
0.9 10 0.64 0.15 0.25 0.85 0.60 0.15 0.23 10.7 0.69 0.12 0.20 6.71 0.82 0.34 0.48 8.02 0.93 0.66 0.77 0.06
0.9 15 0.65 0.12 0.20 1.15 0.50 0.11 0.19 17.8 0.72 0.11 0.20 7.03 0.81 0.35 0.49 10.6 0.88 0.56 0.68 0.05
0.8 5 0.48 0.10 0.13 0.41 0.41 0.19 0.26 9.46 0.73 0.22 0.34 3.62 0.67 0.25 0.36 3.53 0.95 0.89 0.92 0.06
0.8 10 0.47 0.10 0.13 0.79 0.48 0.11 0.18 10.7 0.68 0.20 0.31 7.01 0.69 0.25 0.37 7.31 0.93 0.75 0.84 0.06
0.8 15 0.51 0.10 0.13 1.11 0.46 0.10 0.16 16.6 0.58 0.16 0.25 7.20 0.73 0.25 0.38 10.8 0.89 0.63 0.74 0.05
0.7 5 0.40 0.10 0.10 0.36 0.60 0.23 0.33 8.21 0.67 0.14 0.23 3.13 0.71 0.21 0.33 3.66 0.93 0.89 0.91 0.05
0.7 10 0.39 0.10 0.11 0.70 0.55 0.14 0.23 10.2 0.61 0.13 0.22 6.18 0.76 0.23 0.35 7.02 0.92 0.87 0.90 0.06
0.7 15 0.41 0.10 0.11 1.10 0.49 0.11 0.18 15.8 0.55 0.14 0.22 7.22 0.80 0.22 0.34 10.4 0.90 0.76 0.83 0.05
0.6 5 0.39 0.10 0.11 0.31 0.33 0.11 0.17 7.49 0.73 0.10 0.16 2.88 0.55 0.11 0.19 3.32 0.93 0.88 0.90 0.04
0.6 10 0.44 0.10 0.12 0.61 0.37 0.11 0.16 14.5 0.56 0.10 0.11 5.33 0.66 0.14 0.23 6.22 0.93 0.86 0.89 0.05
0.6 15 0.45 0.10 0.13 0.89 0.44 0.10 0.17 14.9 0.69 0.10 0.16 7.84 0.66 0.14 0.23 6.24 0.90 0.82 0.86 0.05
0.5 5 0.48 0.10 0.15 0.27 0.60 0.12 0.21 6.13 0.71 0.10 0.10 2.33 0.46 0.10 0.10 2.52 0.84 0.78 0.81 0.04
0.5 10 0.45 0.10 0.13 0.51 0.51 0.10 0.17 11.8 0.73 0.10 0.12 4.43 0.43 0.10 0.10 4.57 0.93 0.86 0.89 0.05
0.5 15 0.47 0.10 0.14 0.74 0.53 0.10 0.16 17.1 0.70 0.10 0.10 6.73 0.41 0.10 0.10 7.64 0.86 0.77 0.81 0.05
0.5 45 0.36 0.08 0.11 2.10 0.29 0.08 0.06 18.3 0.42 0.05 0.08 7.95 0.38 0.04 0.07 8.71 0.31 0.26 0.28 1.30
Average 0.47 0.10 0.14 0.77 0.48 0.13 0.20 12.4 0.64 0.12 0.19 5.58 0.65 0.19 0.28 6.51 0.880.74 0.79 0.12

Assessment Through Simulated Transformations Endoscopy imaging
encounters various obstacles, with the random motion of the endoscope being
one of the primary challenges. This motion may introduce minor rotations, and
the tissues encountered can also undergo deformation. Bearing this scenario in
mind, we select an arbitrary frame from the EndoSLAM dataset and subject it
to transformations such as rotation followed by scaling. This procedure yields 15
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unique transformation combinations denoted as TGT . The transformation matrix
Test can then be estimated based on the matched feature points identified in the
feature correspondence section.

We used a specific threshold value of 0.8 for all methods, including our pro-
posed method, as suggested by [17] in Table 1 to evaluate quantitative perfor-
mance. After numerous observations and experiments with different thresholds
on endoscopy images, we determined that a threshold value of 0.8 was the most
effective.

For quantitative evaluation with simulated data, we adopt an approach akin
to that presented in [1]. To assess the results, we utilized metrics such as preci-
sion, recall, and F1-score to quantify feature detection and matching accuracy.
Additionally, the TRE was used to gauge the precision of the registration.

Table 1 displays the quality evaluation metrics for various methods. It is
evident from the table that our proposed method significantly surpasses other
best performers in commonly used techniques, delivering superior performance
in quantitative metrics. Specifically, we achieved a precision of 30.07%, recall
of 114.89%, F1-score of 84.62%, and TRE of 46.07%. The superior performance
of our method is primarily attributed to the innovative affine-shape adapted
detector, which excels in detecting a substantial number of robust features, espe-
cially in low-texture regions. In contrast, other methods under comparison tend
to identify features primarily around specular reflection-affected areas, leading
them to estimate less accurate matches. Remarkably, our method managed to
extract a commendable 78 percent of accurate matches from the vast number of
features identified. Such a substantial figure is pivotal for our stitching algorithm,
as it relies on local homography.

Fig. 10. Ablation Study

4 Ablation Study

We conducted an ablation study to verify the importance of reducing image
blur, which can significantly affect stitching and feature extraction. In both
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Table 2. Ablation Study

methods P R F1 TER
SIFT 0.41 0.53 0.55 1.04
SURF 0.21 0.016 0.03NA
ORB 0.19 0.01 0.02NA
Proposed 0.65 0.71 0.69 0.08
Proposed-Corrected 0.79 0.76 0.77 0.02

Figure 10 and Table 2, “Proposed-Corrected” refers to the case of using reduced-
blur images. Figures 10a and 10b demonstrate that the APAP and our proposed
methods perform poorly without blur reduction. Conversely, after reducing blur,
the “Proposed-Corrected” method in Figure 10c stitches images almost perfectly.
Wide Parallax and Autostitch results are not included because these methods
failed to stitch the images due to insufficient feature detection in blurred images.

Additionally, we performed a quantitative evaluation of feature extraction
techniques using both blurred and corrected images, as shown in Table 2. The
metrics indicate that SIFT, SURF, and ORB methods perform poorly with
blurred images. Even our proposed technique performs averagely with blurred
images. However, after reducing blur, our “Proposed-Corrected” method shows
significantly improved performance.

5 Conclusions and Future Work

In our study, we introduce an innovative automatic feedback system critical to
contemporary endoscopic tools used in medical surgeries and diagnostics. This
automatic feedback notifies the surgeon and assists the robot in adjusting the
endoscope’s motion during the imaging process. Moreover, it provides crucial
information to experts, enabling them to acquire meaningful images necessary
for diagnosis and surgery.

Our technique successfully eliminates blur based on feedback, ensuring our
algorithm does not degrade the quality of high-grade images by inappropri-
ately applying the smoke removal technique. The affine shape-adapted Hessian-
Laplace detector incorporated in our approach also extracts robust features
from complex endoscopic images, particularly in deformed and low-texture areas.
Finally, we implemented an endoscopy property-adapted weighting to estimate
local homography, enhancing the stitching in deformed and low-texture regions.
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