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Abstract. In the process of reconstructing images from data acquired
within a limited angular range, we encounter what is termed limited-
angle tomography. The deficiency of complete data in this context results
in artifacts, commonly appearing as streaks or missing structures, which
can significantly compromise the quality of the reconstructed slice. This
degradation gives rise to issues such as boundary distortion, blurred
edges, and intensity bias, potentially leading to misinterpretation of the
images. Hence, addressing artifacts in limited-angle tomography is crucial
for clinical applications. Although deep learning-based reconstruction has
shown impressive results in recent times, concerns about its robustness
persist. To bolster the robustness of our proposed technique, we integrate
prior information from a modified U-net with preprocessed input into the
Relative Variation - Simultaneous Algebraic Reconstruction Technique
(RV-SART) to provide insights into unmeasured data. Subsequently, the
method extracts structure from the initially reconstructed slice through
structure-texture decomposition. This process facilitates the reconstruc-
tion of high-quality CT images while suppressing pattern-like artifacts.
Extensive experiments demonstrate that our approach surpasses both
traditional and state-of-the-art learning techniques in terms of recon-
struction quality and preservation of fine structures in noisy limited-angle
reconstruction problems. Our technique provides improvements over the
recent LRIP-net for a 90-degree scanning range in quantitative metrics
such as PSNR by 17.48%, RMSE by 46.36%, and SSIM by 6.18%.
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1 Introduction

Computed Tomography (CT) finds applications in diverse fields, including med-
ical examinations [13] [18], industrial nondestructive testing [16], and security
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inspection [14]. In the context of medical CT, increasing attention is being
devoted to mitigating X-ray radiation doses due to their potential harm to
patients [15]. The reduction of radiation dose holds practical significance for
patient well-being. Strategies for achieving this objective include lowering the
X-ray tube current or decreasing the number of projection views. For instance,
a straightforward and effective approach is limited-angle CT scanning, where
projection views are constrained to a specific angular range. Limited-angle CT
scanning is encountered not only in medical applications but also in scenarios
such as the nondestructive testing of pipelines in service [31]. In this context,
the scanning environment necessitates CT scanning within a restricted angular
range. Furthermore, limited-angle CT scanning is employed to enhance temporal
resolution in coronary computed tomography angiography [7]. Within micro-CT
applications, certain identified objects exhibit distinctive structures, including
elongated and discoid shapes. In such cases, the object’s rotational range is
constrained due to limitations in imaging geometry. Alternatively, in specific
projection views, complete X-ray absorption occurs, leading to projection loss
[29]. In summary, limited-angle CT has garnered increasing attention in recent
years.

The rise of Convolutional Neural Networks (CNNs) across various computer
vision tasks has led to a growing popularity of deep learning approaches in the
field of medical imaging. Pelt and Batenburg [26] introduced an artificial neu-
ral network-based algorithm for fast limited-angle image reconstruction. This
method is essentially a weighted combination of the Filtered Back Projection
(FBP) technique and learned filters. Boublil et al. [5] applied a CNN-based model
to integrate multiple reconstructed results, while Kang et al. [22] developed a
deep CNN model in the wavelet domain, training wavelet coefficients from CT
images using the contourlet transform. While the aforementioned approaches
have shown promising outcomes and notably enhanced the quality of recon-
structed images, certain limitations persist. One drawback is the absence of
guaranteed worst-case performance from these algorithms. Another limitation is
their reliance on post-processing methods, overlooking data consistency.

It is evident that iterative methods and learning-based methods exhibit a
primary distinction. The former demonstrates flexibility in addressing diverse
information retrieval tasks by straightforwardly specifying parameters and opti-
mization. Conversely, the latter necessitates laborious training to acquire knowl-
edge of the model before testing and typically faces limitations tied to specialized
tasks. The practical implementation of deep learning techniques in limited-angle
tomography faces significant challenges attributed to two major factors: First,
the potential lack of generalization to unseen data due to inadequate training
data; and second, sensitivity to noise. Consequently, images reconstructed solely
through deep learning methods may appear suboptimal. Additionally, we observe
that limited-angle reconstruction consists of pattern-like artifacts, causing small
structures to be invisible. This issue can be resolved if we can separate structure
and texture from the reconstructed slice.
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We propose a hybrid approach that combines deep learning with iterative
reconstruction. The objective is to leverage Relative Variation - Simultaneous
Algebraic Reconstruction The technique (RV-SART) to impose constraints on
the reconstructed images, ensuring consistency with the measured projection
data, while unmeasured information is supplemented as prior information from
FBPConvNet with preprocessed input. To achieve this, we introduce a method
known as Deep Prior Based RV-SART. Firstly, we employ the Simultaneous
Algebraic Reconstruction Technique - Total Variation (SART-TV) using limited-
angle data. Following this, the resulting reconstructed output is input into the
CNN to extract details about unmeasured data. In the subsequent phase, the
output from the CNN is incorporated into RV-SART, providing crucial prior
information. In this stage, the initially reconstructed slice undergoes decompo-
sition into structure-texture components, aiding in the extraction of structural
information and the mitigation of pattern-like artifacts. This process guarantees
the reconstruction of high-quality CT images.

In Figure 4, we showcase the application of our proposed reconstruction tech-
nique alongside a recent learning-based approach. The visual representation illus-
trates the effective suppression of artifacts and the highly accurate reconstruc-
tion of intricate structures achieved by our method. Substantiating these visual
results, we present a comparative analysis using three key quantitative metrics
in Table 1. This table reveals remarkable enhancements, including a 17.48%
increase in PSNR, a 46.36% reduction in RMSE, and a 6.18% improvement in
SSIM when compared to the second-best performance listed in the table.

2 Related work

Numerous academics have pondered the limitations of post-processing
approaches and have shifted their focus towards emphasizing data consistency
to enhance the quality of reconstructed images. Certain methods leverage neu-
ral networks to incorporate prior information into existing iterative recon-
struction algorithms [1,3,8,17]. Specific approaches, as described in references
[6,9,10,20,24,33] embrace an end-to-end strategy that suggests the unfolding
of an iterative algorithm and comprehensive training as a deep neural network.
This approach facilitates the integration of physical information into the archi-
tecture through data consistency blocks, which are combined with trainable CNN
regularizers.

DIOR [20] is a recent technique that employs a hybrid approach in the resid-
ual domain. In contrast, our hybrid approach operates in the image domain. Our
method is simpler architecture and more effective in reconstructing high-quality
CT images, with lower computational complexity compared to DIOR.According
to our straightforward hybrid technique, structure-texture decomposition proves
to be more effective compared to separating high and low-frequency compo-
nents. This is because we deliberately extract texture components as pattern-
like noise using relative variation, and then successfully remove them from the
reconstructed CT images.
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The technique we propose utilizes prior information that falls within the
realm of deep learning-based reconstruction, specifically categorized as image-
to-image reconstruction. In this approach, direct access to raw measurements
is not necessary, indicating that image reconstruction is independent of manu-
facturing protocols. Through the utilization of a CNN, our method effectively
maps low-quality images to their high-quality counterparts without requiring
additional inputs. In the domain of post-processing sparse-view CT reconstruc-
tion, CNN plays a pivotal role, with FBPConvNet [21] standing out as a notable
representative. FBPConvNet adopts the FBP algorithm for image reconstruc-
tion and integrates a CNN structure based on U-Net [27] for image segmentation
that includes both an encoder and a decoder. Notably, FBPConvNet introduces
a skip connection between the input and output, enhancing the network’s ability
to discern subtle distinctions. To address the limitations of U-Net, Han et al.
[19] introduced Framing U-Net as an alternative post-processing method, specifi-
cally tailored to meet frame conditions. Another innovative approach comes from
Lee et al. [23], who employed a multi-level wavelet U-Net, showcasing superior
results compared to traditional U-Net. Despite the significant success of these
post-processing techniques, it is crucial to note that they do not incorporate
sinogram information into their CNN architectures. As a result, in extremely ill-
posed problems where there are very limited numbers of projections, the afore-
mentioned networks fail to reconstruct high-quality CT images and suppress
artifacts.

Fig. 1. Limited-angle parallel-beam scanning configuration

3 Approach

We examine the limited-angle parallel-beam CT in a two-dimensional setting.
Figure 1 depicts the scanning configuration for this limited-angle parallel-beam
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CT. Additionally, the initial reconstruction for the limited angle with a straight-
forward phantom model is presented in Figure 1. The reconstruction reveals
artifacts, boundary distortion, and structure loss attributed to the insufficient
number of projections obtained through limited-angle scanning.

3.1 Deep Prior Estimation

Jin et al. [21] introduced a post-processing image reconstruction technique named
FBPConvNet, utilizing the FBP method to reconstruct the initial slice from
sparse data and feed it into the CNN input layer. This approach exhibited
impressive results in addressing sparse-view reconstruction in parallel beam X-
ray CT.

FBPConvNet uses Filtered Back Projection (FBP) and a modified U-net for
the reconstruction of sparse-view CT scans. The FBP reconstructs CT images
using the available sparse projection data. Due to the incompleteness of the
available data, artifacts are present in the reconstruction. To address this issue,
the reconstructed CT scans from sparse views undergo training with a modi-
fied U-net, using full-view CT scans as the labeled images, aiming to eliminate
the artifacts. The modified U-net incorporates two modifications. Firstly, zero
padding is applied to ensure that the image size remains constant after each
convolution. Secondly, the final layer is substituted with a convolutional layer,
reducing the 64 channels to a singular output image. While this approach proved
successful for sparse data, it encounters challenges in reconstructing data from a
limited scan range. In such cases, artifacts not only encompass pattern-like noise
but also involve boundary distortion. The FBP technique struggles to effectively
reconstruct distorted boundaries. In contrast, the SART-TV method excels in
reconstructing the initial boundary and effectively reducing noise from limited
data when compared to FBP.

Building on their work, we leverage the SART-TV method to compute the
initial slice and then insert it into the modified U-net input layer, specifically
for limited-angle CT reconstruction. The rationale behind this choice lies in the
superior performance of the SART-TV method when dealing with incomplete
data, resulting in a higher-quality training set compared to the FBP. Considering
the importance of training set quality in the modified U-net, this contributes to
an enhanced efficacy for limited-angle reconstruction.

Our proposed method comprises the following steps: Firstly, we apply the
SART-TV method to limited-angle projection data obtained from the LDCT
dataset. Subsequently, we input the slice reconstructed by the SART-TV method
into the modified U-net trained to minimize the disparity between the recon-
structed image and the labeled image.

3.2 Initial Reconstruction

We utilize the discrete linear model for CT imaging:

Af = p (1)
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where A is the system matrix, p is the vector of measured projection data, and
f is the image to be reconstructed.

Our goal is to reconstruct f satisfying the following constraint:

∥ Af − p ∥< µ (2)

where µ is a parameter representing error tolerance. In the noise-free case, µ is
ideally zero, while in the noisy case, it is set to a positive value.

Due to the severe ill-posedness of limited-angle tomography, the number of
images satisfying the above constraint is not unique. We aim to reconstruct an
image that satisfies this constraint and is simultaneously close to the modified
U-net reconstruction fprior. To achieve this, we choose to initialize the recon-
struction f iteratively, starting with f (0) = fprior, and solving it as follows:

∥ Af − p ∥< µ and f (0) = fprior (3)

Reconstructed slice f is computed as:

f t+1
j = f t

j + γ.

∑
piϵPα

Sϵ(pi−
∑M

k=1 Ai,k.f
l
k)∑M

k=1 Ai,k
Ai,j

∑
piϵPα

Ai,j
, (4)

where i represents the projection ray index of p, j denotes the pixel index of f ,
Ai,j signifies the element of matrix A at the i-th row and j-th column, M stands
for the total number of pixels, t denotes the iteration number, α represents the
X-ray source rotation angle, γ is a relaxation factor typically set to 0.7, and Pα

denotes the set of projection rays corresponding to the X-ray source rotation
angle α and Sϵ denotes soft-thresholding operator with threshold ϵ.

3.3 Structure-Texture Decomposition

Subsequently, we engage in structure-texture decomposition for the recon-
structed slice f to eliminate artifacts. We employ the concept of Relative Vari-
ation (RV) [30] to distinguish and extract structure and texture from the recon-
structed slice. The expression for the RV of the reconstructed slice is as follows:

arg min
∑

pix

(Spix − fpix)2 + λ.

(
Dx(pix)

Lx(pix) + ε
+

Dy(pix)
Ly(pix) + ε

)
(5)

S represents the resulting structure image.The term (Spix − fpix)2 serves
to stabilize the input and output, preventing wild deviations. The regularizer,
denoted as relative total variation (RTV), accounts for the impact of texture
removal in an image. This regularizer is defined as

(
Dx(pix)

Lx(pix)+ε + Dy(pix)
Ly(pix)+ε

)
,

where λ in Equation (5) represents a weighting factor, and ε is a small positive
number crucial for preventing division by zero in the element-wise operation. D
is the pixel-wise windowed total variation in horizontal and vertical directions,
and L denotes the windowed inherent variation that captures the overall spatial
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variation. The solution of the loss function aims to make the extracted structures
similar to those in the input image, while L and D provide information about
the texture part. Textures, being the pattern-like effects, are undesirable in the
CT image. Therefore, we will utilize D computed from Equation (5) to remove
the pattern-like noise in our proposed RV-SART algorithm.

Fig. 2. Schematic of the proposed technique

3.4 Limited-Angle Reconstruction Algorithm

Figure 2 delineates our proposed methodology, providing a comprehensive
overview of each section’s output. In this figure, the reconstruction process part
shows the overall reconstruction process, which includes two main parts: modi-
fied U-net with preprocessed input and RV-SART.

The first part shows the CNN model based on the U-net. It is composed of
an encoder path and a decoder path. The encoder path consists of numerous
3 × 3 convolutions, rectified linear units, and 2 × 2 max pooling operations
represented in the green arrow. The decoder path also consists of numerous
3×3 up-convolutions, batch normalizations, and rectified linear units represented
in the purple arrow. The skip connection and the concatenation in the black
dashed line arrow are available because of the loss of useful information in every
convolution and max pooling. In the final layer of the CNN, a 1× 1 convolution
represented in an orange arrow is used to make the CNN output a single-channel
image, which is the final reconstructed image.

RV-SART receives the CNN output and uses it as prior information about
unmeasured data during reconstruction for data consistency with the measured
data. During this stage, the initially reconstructed slice undergoes decomposition
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Algorithm 1 Deep Prior Based RV-SART
Parameter initialization

1: λ = 0.0002,σ = 5, η = 15, k = 4 ;
Prior reconstruction

2: fprior = initial reconstruction from modified U-net with preprocessed input
3: f = fprior

4: f0 = f
Relative Variation SART

5: for i = 1 : Nd do
6: f = f + λAi

p−Aif
Ai.Ai

7: ffil = medianfilter(f )
Enforce positivity

8: if fi < 0 then
9: fi = 0
10: end if
11: S0 = f

Structure-Texture decomposition
12: solve Dx, Dy, Lx, Ly,Spix using [33]
13: return Dx, Dy,Spix

Enhance Reconstructed slice structure
14: f = Spix

15: fen = f − (Dx +Dy)
16: p = Afen

compute l2 norm
17: Ni =

√
p − Afen

until {stopping criteria}
18: if i ̸= 1&&Ni > Ni−1 then
19: return fen

20: end if
21: end for
22: return fen

into structure-texture components through total variation and inherent varia-
tion, as shown in the RV-SART stage, facilitating the extraction of structural
information and the suppression of pattern-like artifacts. This comprehensive
process ensures the generation of high-quality CT images.

Considering the lower dose used to obtain the measured data introduces
inherent noise. To mitigate this, we apply a small-sized filter according to the
following expressions:

f = fprior + γAi
p − Aif

Ai.Ai
(6)

ffil(s, t, v) = median{f(s+ l, t+m, v + n)|(l,m, n)ϵR} (7)

Subsequent observations reveal artifacts in the reconstructed slice due to the
significant amount of incomplete data. These artifacts exhibit a pattern resem-
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bling stripes. To address this, we employ a structure-texture decomposition to
separate pattern-like artifacts from the structure and enhance the reconstructed
slice as expressed in Equation 5:

fen = f − (Dx +Dy) (8)

Algorithm 1 outlines the Deep Prior Based RV-SART in pseudocode. The
process begins with the initialization of parameters in the parameter initializa-
tion phase (Line 1). Subsequently, the initial reconstruction is computed using
a modified U-net with preprocessed input and established as a prior (Lines 2-3)
to address the unmeasured region. The RV-SART phase (Lines 4-21) delineates
the key steps involved in ensuring consistency between the unmeasured data and
the measured projection data. The initially reconstructed slice, denoted as f0,
acts as a temporary variable throughout the reconstruction process. An initial
slice is reconstructed using prior information, and a small filter is employed to
suppress noise while maintaining data consistency and positivity (Lines 5-10).
The initially reconstructed slice is then assigned to the temporary variable S0

for further processing. To mitigate pattern-like artifacts stemming from limited
data, structure-texture decomposition is performed on the reconstructed slice
(Lines 11-13). The resulting slice, with suppressed pattern-like artifacts, becomes
the current reconstructed slice, and its brightness is enhanced by subtracting
windowed total variation (Lines 14-15). Subsequently, a forward projection is
computed using the enhanced reconstructed slice, and the l2 norm is calculated
(Lines 16-17). The algorithm verifies the convergence criteria (Line 18). Finally,
the high-quality CT slice is obtained (Line 22).

4 Experiments

Dataset. We employ the clinical dataset from the 2016 AAPM Low-Dose CT
(LDCT) Grand Challenge [25], provided by the Mayo Clinic. We create the pro-
jection data within a parallel-beam geometry system using Siddon’s ray-driven
algorithm [28]. This dataset is already infused with realistic noise. Furthermore,
we introduced a 10% Gaussian noise for comparison with state-of-the-art tech-
niques.

Implementation. We employed a training dataset comprising 2 patient records
from the AAPM dataset, and for testing, we employed data from a separate
patient within the same AAPM dataset. The training process for modified U-
net involved using pairs of limited-view SART-TV slices as input and full-view
SART-TV slices as label. The limited-view SART-TV slices were computed from
three distinct scanning angular ranges: 90, 120, and 150 degrees. In contrast,
the full-view SART-TV slices were computed using the full 360-degree angular
range. It is crucial to emphasize that this training approach makes the method
applicable to real CT reconstructions, where access to an oracle reconstruc-
tion is unavailable. Following this, the network’s output is fed into the iterative



88 D. M. Bappy et al.

Fig. 3. Limited-angle reconstruction experiment of the AAPM dataset with 90◦ scan-
ning angular range

model RV-SART as prior information for high-quality reconstruction. This pro-
cess ensures accurate reconstruction of the structure while effectively suppressing
artifacts. This limited-view reconstruction holds significant relevance in human
imaging, as a substantial reduction in the number of views, for instance, a spe-
cific number of decrease in projections, corresponds to an equivalent reduction
in the radiation dose administered to the patient.

Baseline methods. We compare two widely used classical techniques and six
state-of-the-art learning-based techniques as our baselines, including traditional
methods FDK [11] and SART [2], learning based methods FBPConvNet [21],
LRIP-Net [12], SIPID [32], PD-net [1], IFSR-net [9], and SFSR-net [9]. To ensure
a fair comparison, we employ parallel geometry for all techniques and apply the
2D network for slice-wise reconstruction.

Evaluation metrics. We assess the reconstructed CT slice using three quan-
titative metrics, namely peak signal-to-noise ratio (PSNR), structural similarity
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(SSIM), and root-mean-square error (RMSE), following prior studies in [4]. Supe-
rior reconstruction quality is indicated by higher PSNR/SSIM values and lower
RMSE values.

Fig. 4. Comparing Learning-Based Techniques for Limited-Angle Reconstruction
Experiment to Preserve Structural Integrity in the AAPM Dataset with a 90◦ Scanning
Angular Range

4.1 Results

Qualitative Evaluation. Figure 3 illustrates both the qualitative and quanti-
tative performance of our proposed technique in comparison to frequently used
traditional methods using the AAPM dataset with a 90-degree scanning angular
range. In the reconstruction, it is evident that FDK completely failed to recon-
struct the structure. SART performs reasonably well in reconstructing the region
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Table 1. Evaluating Limited-Angle Data Distorted by 10% Gaussian Noise: A Com-
parative Analysis based on PSNR, RMSE, and SSIM Metrics

NoiseNview Method PSNR RMSE SSIM
10% 150 FBPConvNet 21.8293 0.0810 0.7887

SIPID 29.0276 0.0345 0.9193
PD-net 29.0084 0.0354 0.9193
SFSR-net 29.4543 0.0336 0.9199
IFSR-net 29.6694 0.0328 0.9231
LRIP-Net 30.8026 0.0288 0.9362
Proposed 31.67830.0261 0.9800

120 FBPConvNet 20.0065 0.0999 0.7465
SIPID 26.6271 0.0461 0.8941
PD-net 26.7667 0.0458 0.8944
SFSR-net 27.2079 0.0436 0.9034
IFSR-net 27.2853 0.0432 0.9032
LRIP-Net 29.1261 0.0349 0.9256
Proposed 31.55770.0264 0.9740

90 FBPConvNet 18.7582 0.1153 0.7252
SIPID 23.6216 0.0664 0.8607
PD-net 23.6473 0.0657 0.8615
SFSR-net 23.7253 0.0651 0.8591
IFSR-net 24.2056 0.0616 0.8701
LRIP-Net 25.9377 0.0457 0.9141
Proposed 30.90600.0285 0.9724

with available data but struggles in areas with unavailable data. In compari-
son, our proposed technique demonstrates excellent performance in reconstruct-
ing fine structures and suppressing artifacts, particularly within the delineated
white box. These qualitative results align closely with the quantitative values,
as observed from significantly lower values in comparison to our proposed tech-
nique.

Figure 4 illustrates the outcomes of the reconstruction achieved by very recent
learning-based approaches in the context of 90◦ limited-angle reconstruction. It
is evident that learning-based methods demonstrate successful reconstruction in
the missing angular region compared to classical techniques.

To thoroughly assess the preservation of structure and the removal of arti-
facts, we selected a small yet intricate feature within the image slice, demarcated
by a green box. The FBPConvNet falls short in reconstructing even the outer
structure of the slice, as it was expressly designed for sparse data and struggles
to reconstruct adequately from limited input.
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In comparison, SIPID [32], PD-net [1], IFSR-net [9], and SFSR-net [9] demon-
strate commendable performance in reconstructing the overall structure. How-
ever, they still face challenges in accurately reconstructing small structures, and
a significant portion of fine details is lost during the noise suppression process.

Conversely, LRIP-Net [12] exhibits proficient reconstruction of the majority
of structures, yet struggles with the precise reconstruction of small features. In
contrast, our proposed technique excels in reconstructing almost all fine struc-
tures flawlessly. This success is attributed to our approach of implementing
structure-texture decomposition in the initial reconstruction phase, effectively
eliminating pattern-like artifacts from the overall structure.

Notably, our proposed technique showcases superior preservation of image
details and edges, as emphasized in the magnified region within the green box.

Quantitative Evaluation. Table 1 presents quantitative metrics for comparing
recent learning-based techniques with our proposed approach. The evaluation
encompasses three distinct limited-angle scanning configurations, each subjected
to an additional 10% of Gaussian noise. The table illustrates that as the number
of projections increases, the reconstruction quality improves for all techniques.
Consistent with visual assessments, LRIP-Net consistently ranks second across
all three scanning configurations, while our proposed technique secures the top
position.

The quantitative evaluations align with the observed visual quality. Our pro-
posed technique achieves the highest PSNR of 30.9060, SSIM of 0.9724, and the
lowest RMSE of 0.0285. These metrics substantiate the ability of our technique to
preserve high-quality structures, mitigate noise, and minimize suboptimal label
errors compared to ground truth data.

Furthermore, our method outperforms alternatives by attaining the high-
est PSNR and SSIM, coupled with the lowest RMSE. This dual validation, both
quantitative and qualitative, underscores the efficacy of our approach in address-
ing the challenges associated with limited-angle reconstruction, particularly in
terms of maintaining structural integrity.

Fig. 5. ablation study
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5 Ablation Study

We performed an ablation study to demonstrate how the proposed technique
impacts reconstruction quality compared to the base U-Net. Initially, the base U-
Net used FBP-reconstructed inputs, which resulted in very poor reconstruction
quality. Instead, we propose using SART-TV reconstructed inputs to enhance
the base U-Net architecture, thereby improving reconstruction quality.

The base U-Net’s reconstructed output contained pattern-like noise,
obstructing the visualization of small and thin structures. Figure 5 illustrates
the performance of our proposed technique compared to the base U-Net. By
providing SART-TV reconstructed inputs to the base U-Net, the reconstruc-
tion quality improves compared to using FBP-reconstructed inputs. However, as
observed in Figure 5a, the U-Net’s reconstruction quality remains poor due to
its inability to reconstruct missing projection areas.

In contrast, our proposed technique without relative variation, shown in
Figure 5b, successfully reconstructs the CT image in the missing projection
areas, although it contains noise-like patterns that obscure the visualization of
important organs. Finally, in Figure 5c, we utilize relative variation for structure
decomposition, which removes these pattern-like artifacts and produces high-
quality CT images with clear visualization of the organs.

Quantitative evaluation also suggests that including relative variation
improves PSNR, SSIM, and RMSE to 28.1652, 0.9721, and 0.0311, respectively,
compared to the base U-Net and the proposed technique without relative varia-
tion.

6 Conclusions

In this study, we introduce the Deep Prior Based RV-SART designed for recon-
structing high-quality slices in extremely ill-posed conditions, particularly utiliz-
ing a 90-degree scanning angular range. Our approach incorporates prior infor-
mation from a modified U-net with preprocessed input to feed the RV-SART
algorithm about unmeasured data. Subsequently, it extracts structure from the
initial reconstructed slice through structure-texture decomposition, facilitating
the reconstruction of high-quality CT images while suppressing pattern-like arti-
facts.

Experiments demonstrate that Deep Prior Based RV-SART excels in high-
quality reconstruction from limited-angle data, surpassing the performance of
previous state-of-the-art techniques. Notably, prior information is constructed
by adapting the efficient and simple architecture of sparse-based modified U-
net for specific limited-angle data, providing crucial prior information regard-
ing unmeasured data. This method not only sidesteps recent, computationally
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complex deep learning approaches but also enhances accuracy in limited-angle
reconstruction.
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