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Abstract—A mixed-criticality (MC) system is a computational
platform shared by tasks with two or more safety-critical
levels. An important research topic related to MC systems is
designing scheduling algorithms that can satisfy the computation
requirements of tasks with different criticality levels. Numerous
studies have focused on this topic, but only a few have considered
parallel tasks. To address the research gap, we propose a dual-
criticality scheduling algorithm based on federated scheduling
for parallel tasks with Directed Acyclic Graph (DAG) structures.
We particularly focus on the task set in which each task has
a deadline longer than its release period. To the best of our
knowledge, our work is the first that does not assume the
constrained- or implicit-deadline in the MC DAG task model.
In addition to simulation experiments, we demonstrate that our
algorithm has a capacity augmentation bound of 4, providing a
quantitative worst-case performance guarantee for our algorithm.

I. INTRODUCTION

Standards in the automotive or aviation industry such as
DO254 and ISO 26262 give definitions for critical levels
and associate each level with a distinct level of assurance
against failure. Because an increasing number of complex
computer systems still suffer from resource constraint situa-
tions, enabling functions with two or more criticality levels
to share a common hardware platform is sometimes un-
avoidable. Such a system is usually called a mixed-criticality
(MC) system. When designing MC systems, task scheduling
is crucial in optimizing computing resources and ensuring
the reliability of high-criticality tasks. A thorough review of
existing approaches to this problem has been provided by
Burns and Davis [1]. It can be seen that most of the studies
have been focused on the scheduling of non-parallel tasks.
However, as the application scenarios of current MC systems
get more complex, the scheduling schemes towards parallel
tasks become commonly needed.

A parallel task is composed of multiple sub-tasks that
have data dependencies or resource constraints, resulting in
a specific internal parallel structure. Generally, the internal
structures of parallel tasks can be modeled with Directed
Acyclic Graphs (DAGs). It takes additional efforts to form an
efficient scheduling algorithm for DAG tasks, as the subtasks
and their precedence constraints introduce many uncertainties
in the scheduling and need to be analyzed very carefully.
For example, Zhao et al. [2] discussed how DAG structures
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introduce uncertainty to inter-task interference. This also con-
tributes to the often observed high degree of pessimism in
the response time analysis of DAG tasks in global scheduling.
A few papers have attended to the scheduling of MC DAG
tasks [3]–[10], but all of these papers have focused on DAG
tasks with implicit- or constrained-deadlines, where a task’s
deadline is not allowed to be longer than its release period.

Relaxed-deadline. In this paper, we focus on MC DAG
tasks with deadlines longer than their periods, referred to as
relaxed-deadline DAG tasks. Unlike implicit- or constrained-
deadline DAG tasks, which can have at most one unfinished
job, relaxed-deadline DAG tasks may have multiple simul-
taneous jobs, complicating the scheduling. Burns and Davis
[11] have discussed the practicality of such tasks in real
systems, using buffer reading as an example. Another example
can be found in the autonomous vehicle industry. Consider
an autonomous vehicle’s software system with functions like
obstacle avoidance (high-criticality), electrical power system
control (high-criticality), and path planning (low-criticality),
each modeled as a DAG. These tasks involve complex com-
putations and have long deadlines (e.g., the tolerable deadline
could be 160ms when the vehicle runs at a speed of 20km/h
[12]), but shorter inter-release times to ensure frequent sensor
data sampling (e.g., the sampling frequency of the camera is
typically 30Hz, i.e., period is 30ms). Besides the practicality
of the relaxed-deadline tasks, solving the scheduling problem
of such tasks will also be one step closer to solving the
scheduling problem of arbitrary-deadline tasks.

Federated scheduling. Federated scheduling algorithms are
a class of algorithms that can efficiently schedule DAG tasks
by assigning several processors exclusively to each task. Guan
et al. [13] introduced a federated scheduling algorithm to
schedule relaxed-deadline DAG tasks considering the case that
there is only one criticality level. Given the situation that
multiple jobs generated by a relaxed-deadline task could run
concurrently, their algorithm assigns dedicated processors to
each job. Comparing with other scheduling algorithms that
share processors among all the tasks [14], [15], or limit
the sharing between jobs released by the same task [16],
[17], their algorithm has shown the advantage in increasing
the analytical schedulability. Moreover, because the method
presented by Guan et al. [13] avoids interference between
jobs, which reduces the difficulty in schedulability analysis,
extending it to support the MC scenario is more convenient
than adopting other approaches. With the above insight, we
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develop a federated scheduling algorithm to schedule relaxed-
deadline DAG tasks in dual-criticality systems, reusing several
results provided by Guan et al. [13].

The contributions of this paper are as follows: 1) We
propose a federated scheduling algorithm for scheduling spo-
radic relaxed-deadline DAG task sets in a dual-criticality
system; 2) We provide a quantitative worst-case performance
guarantee for the proposed algorithm in terms of the capacity
augmentation bounds (whose definition has been given by Li
et al. [18] and will be recapitulated in Section V); and 3)
We conduct experiments with randomly generated task sets
evaluating our algorithm in terms of the acceptance ratio.

The rest of this paper is organized as follows. Section II
presents the related literature. Section III describes the task and
system model. Section IV presents the algorithm for schedul-
ing high-utilization (utilization > 1) tasks. Section V proves
that our proposed algorithm has a capacity augmentation
bound of 4 when scheduling high-utilization tasks. Section VI
extends our algorithm to support both high- and low-utilization
tasks. Section VII presents the results of experiments in terms
of acceptance ratios. Section VIII presents some concluding
remarks and discusses possible directions for future research.

II. RELATED WORK

A few papers have attended to the scheduling problem
of parallel MC tasks [3]–[10], applying a decomposition
based algorithm [3], global scheduling algorithms [4], [5] or
federated scheduling algorithms [6]–[10] in the designs.

Liu et al. [3] proposed to decompose every parallel task
into multiple sequential tasks, each with its own deadline and
release period. Then the sequential tasks can be partitioned to
respective processors, and scheduled with an uniprocessor MC
scheduling algorithm such as OCBP [19]. Their algorithm only
supports the synchronous task model, where each parallel task
consists of many computation segments, and each segment
contains one or more parallel subtasks that synchronize at
the end of the segment. Medina et al. [4], [5] proposed to
generate offline scheduling tables for each criticality mode
by statically applying an existing global scheduling algorithm.
Their approach has to know the exact DAG structures of all
the tasks before runtime, and the release interval of every
task has to be strictly equal. Li et al. [6], [7] proposed a
federated scheduling algorithm that separates high- and low-
criticality tasks by permitting each of them exclusive access
to a certain number of processors. During runtime monitor-
ing, high-criticality tasks will receive additional processors
while low-criticality tasks will be discarded upon an overrun
of high-criticality tasks. Also within the scheme of feder-
ated scheduling, Pathan [8] increased processor utilization by
considering the impact of low-utilization tasks in processor
allocation; Agrawal and Baruah [9] maximized the number
of idle processors when there is no overrun of high-criticality
tasks observed; and Yang et al. [10] lowered the resource waste
by allowing some amount of processor sharing between tasks.

The aforementioned studies primarily address implicit- or
constrained-deadline DAG tasks, where deadlines do not ex-

ceed release periods. Studies on scheduling of relaxed-deadline
DAG tasks [13]–[17], [20]–[24] have been limited to task sets
where all tasks share the same criticality level. To the best
of our knowledge, our paper is the first study in scheduling
relaxed-deadline DAG tasks within the context of MC systems.

III. TASK AND SYSTEM MODEL

We consider a task set τ with N independent sporadic
parallel tasks τ = {τ1, τ2, ..., τN} with two criticality levels
scheduled on a platform with M (M ≥ 2) homogeneous pro-
cessors where each processor has a speed equal to one. Each
task τi is represented as a DAG, denoted by Gi = (Ei, Vi).
Vi is a set of vertices, and each vertex v ∈ Vi models the
workload of some sequential instruction blocks. Ei is a set of
directed edges. An edge (v, u) ∈ Ei represents the dependency
between two vertices, where vertex v is a predecessor of
vertex u and vertex u is a successor of vertex v. A vertex
without predecessors is called a source, and a vertex without
successors is called a sink. We assume that each task has
exactly one source and one sink. This assumption will not
weaken the generalization of this model because any DAG task
with multiple sources or sinks can be easily converted into a
single-source/sink DAG task by adding a dummy source/sink
with zero Worst-Case Execution Time (WCET). A complete
path of a task is a sequence of vertices that begins with the
source vertex and contains, in succession, a successor until
it reaches the sink vertex. The path length is the aggregate
WCET of its vertices. The longest path of τi is the complete
path with the longest length.

Each task τi ∈ τ is characterized by the tuple {χi, CL
i ,

CH
i , LL

i , LH
i , Ti, Di}. χi ∈ {LO,HI} is the criticality level

of τi, representing τi is a low-criticality (LO) task or a high-
criticality (HI) task. CL

i and CH
i are two estimates for the

total WCET of all the vertices of τi. Similarly, LL
i and LH

i are
two estimates for the length of the longest path. For each HI
task, consider CH

i and LH
i to be more conservative estimates

than CL
i and LL

i , satisfying the conditions 0 < CL
i ≤ CH

i

and 0 < LL
i ≤ LH

i . For each LO task, CL
i and LL

i apply
when the task executes (CL

i > 0, LL
i > 0). CH

i and LH
i

apply when the task is discarded and not consuming resources
(CL

i = 0, LL
i = 0). Di and Ti are the relative deadline and

the minimum inter-arrival time of τi, respectively. These two
values indicate that τi will repeatedly release a job that inherits
all the characters of τi after a time interval that is no less
than Ti, and each job must finish execution after time Di.
We focus on relaxed-deadline tasks, where Di > Ti holds for
every τi ∈ τ . Note that while we assume all tasks in the task
set have parallel structures, our design does not require prior
knowledge of the specific details of any task’s structure.

Some additional symbols will be also used throughout the
remainder of this paper. We use τLO and τHI to denote
two subsets of τ , grouping all the LO tasks and HI tasks,
respectively. It follows that τLO ∪ τHI = τ . UL

i and UH
i

denote the utilizations of task τi, and are equal to CL
i /Ti and

CH
i /Ti, respectively. A task is a high-utilization task if either

UL
i or UH

i is larger than 1; the task is a low-utilization task,
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TABLE I: Summary of Major Notations

Notation Description

Ti Minimum inter-arrival time of τi
Di Relative deadline of τi
LL
i , LH

i Two estimates for the length of τi’s longest path
CL

i , CH
i Two estimates for the total WCET of τi

D
′
i Virtual deadline of τi

ML
i No. of processors assigned to a job of τi in the typical state

MH1
i No. of processors assigned to a carry-over job of τi

MH2
i No. of processors assigned to a non-carry-over job of τi

SL
i No. of processors assigned to τi in the typical state

SH
i No. of processors assigned to τi in the critical state

RH1
i Worst-case response time of any carry-over job released by τi

ts System mode transition time
tr , tf Release and finish times of a job J
X , Y Key path execution and non-execution durations of J within

[tr,min{ts, tf}]
X

′
, Y

′
Key path execution and non-execution durations of J within
[max{ts, tr}, tf ]

Ψi Pairs of {SL
i , SH

i } returned by Algorithm 1
Ψi,j jth item in Ψi

Γ {Ψi|i ∈ {1, ..., |τHI
Hu |}}

Zi(d) Minimum cost sum to the multiple-choice knapsack problem
defined on the first i sets in Γ and with restricted capacity d

otherwise. Because any low-utilization task can be easily con-
verted to a sequential implicit-deadline task and scheduled by
any existing MC scheduler designed for such a task model, this
paper focuses on the scheduling of high-utilization tasks. We
use τLO

Hu , τHI
Hu , τLO

Lu and τHI
Lu to denote four disjunct subsets

of τi. Specifically, τLO
Hu = {τi ∈ τ | χi = LO ∧ UL

i > 1},
τHI
Hu = {τi ∈ τ | χi = HI ∧UH

i > 1}, τLO
Lu = {τi ∈ τ | χi =

LO ∧ UL
i ≤ 1} and τHI

Lu = {τi ∈ τ | χi = HI ∧ UH
i ≤ 1}.

It follows that τLO
Hu ∪ τLO

Lu = τLO and τHI
Hu ∪ τHI

Lu = τHI .
Table I lists the most important and frequently used notions.

Following the system model established by Li et al. [6], a
dual-criticality system has two system modes: typical state
and critical state. The system always starts in the typical
state. Because the system model does not assume clairvoyance
in knowing the actual execution time of a job, a runtime
monitor is required to control the mode transition. We assign
a virtual deadline D

′

i (specified in Section IV), which satisfies
D

′

i ≤ Di, to each HI task. Virtual deadline is used to permit
enough slack for HI task to complete CH

i before its real
deadline in case of mode transition. It has been introduced
in EDF-VD [25] and adopted in other federated scheduling
algorithms [6], [7]. During runtime, the monitor will trigger
a mode transition from typical to critical state if it detects a
job released by a HI task τi has either one of the following
behaviors: 1) It does not complete within its virtual deadline
D

′

i; and 2) It consumes more than CL
i execution without

signaling finish. Note that the other federated scheduling
algorithms [6], [7] only use the first event to trigger mode
transition. We include the second event as an additional mode
transition triggering event since it is commonly used in MC
scheduling research for non-parallel tasks [1]. Upon a mode
transition from typical to critical state, LO tasks will be
discarded immediately. In the critical state, the work and
longest path length of any job released by a HI task τi will
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mode switchtypical state critical state

Processors reserved for τi, but not assigned to any job

Processors assigned to a job of τi

Processors assigned to a carry-over job of τi

Job release of τi (J1 − J5)

Fig. 1: An example of processor reservation in a dual-criticality
system where M = 16 and τHI = {τi, τk}. The processor allocation
details for τi are provided. J2 triggers the system transition, when it
does not signal finish upon its virtual deadline D

′
i .

never exceed CH
i and LH

i , respectively.
An MC task set τ is said to be correctly scheduled by a

scheduler if: 1) All released jobs can meet their deadlines when
the system stays in the typical state; 2) Any job released by
a HI task can meet its deadline during stable system states
(typical and critical states) and upon a mode transition from
typical to critical state; and 3) Any job released by a LO task
can meet its deadline when it has a deadline no later than the
state transition time. For a task set with

∑
τi∈τ U

H
i > M or∑

τi∈τ U
L
i > M , or if there is any task in the task set such

that LL
i ≥ Di or LH

i ≥ Di, the task set is deemed unfeasible
for any scheduling algorithm. Hence, in the following sections
we will only consider task sets that satisfy the conditions:∑

τi∈τ U
L
i ≤ M ,

∑
τi∈τ U

H
i ≤ M , ∀τi ∈ τHI : LL

i ≤ LH
i ≤

Di and ∀τi ∈ τLO : LL
i ≤ Di.

IV. FEDERATED SCHEDULING FOR DUAL-CRITICALITY
HIGH-UTILIZATION TASKS

In this section, we present an algorithm that schedules the
high-utilization tasks. We will extend this algorithm to support
both high- and low-utilization tasks in Section VI.

We classify jobs running in the critical state by their release
time. A job released by a HI task before the system mode
switch but not completed upon the mode switch is a carry-
over job. Jobs released after the system mode switch are non-
carry-over jobs. The scheduling of any high-utilization task
τi follows these rules: 1) Each job has exclusive access to
a number of processors during execution, where ML

i is the
number during typical state, MH1

i is the number starts from
the mode transition time if the job is a carry-over job, MH2

i

is the number if the job is a non-carry-over job; 2) Any job is
scheduled by a work-conserving scheduler that never leaves a
processor idle when there are vertices ready to run; and 3) Jobs
release their processors immediately upon completion, making
those processors available for the other upcoming jobs.
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We denote the total number of processors a task τi requires
in typical and critical states as SL

i and SH
i , respectively. Our

idea is to set upper limits for SL
i and SH

i with each feasible
tuple of {ML

i ,M
H1
i ,MH2

i } so that we can measure the
requirements of the whole task set in both system modes when
the tuple is given for every task. Based on this knowledge,
we can then choose {ML

i ,M
H1
i ,MH2

i } for every task in a
manner to keep the demands of the task set in both system
modes lower than what the system can supply.

Figure 1 shows a high-level intuition for our processor
reservation algorithm in a dual-criticality system. The behavior
of a high-utilization HI task τi is highlighted. J1-J5 are jobs
of τi. The system starts in the typical state and switches to
the critical state at time 8 when J2 remains unfinished upon
its virtual deadline D

′

i. LO tasks are dropped immediately
after time 8. J2 and J3 become carry-over jobs after the mode
transition and J4 and J5 are non-carry-over jobs since they are
released after the mode transition. The number of active jobs
of τi at the same time is upper bounded by 2 in the typical state
and 3 in the critical state. It follows that SL

i = 2ML
i . Since

MH1
i > MH2

i , SH
i reaches its upper bound 2MH1

i + MH2
i

when the number of carry-over jobs is maximized as 2. RH1
i

is the Worst-Case Response Time (WCRT) of a carry-over
job released by τi. RH1

i and D
′

i are crucial in bounding the
maximum number of active jobs of τi, which will be explained
formally in the following paragraphs.

Next, we consider a high-utilization task with χi = LO and
χi = HI seperately. When χi = LO, because such a task will
be discarded upon mode transition, MH1

i , MH2
i and SH

i are
set to 0 and we only need to minimize the value of SL

i . That is
the same as what has to be done in a single-criticality system,
and we simply let {ML

i , S
L
i } = ReserveProcs(CL

i , L
L
i , Di, Ti)

(Algorithm 1 given by Guan et al. [13]). As for the case that
χi = HI , we want to answer the following questions:
Q1. How to get all tuples {ML

i ,M
H1
i ,MH2

i } that guarantee
the timing correctness in both typical and critical states
for every job generated by a HI task τi? (Lemma 4)

Q2. Given any tuple {ML
i ,M

H1
i ,MH2

i }, can SL
i and SH

i of
a HI task be upper bounded? (Lemmas 6 and 7)

Q3. If SL
i and SH

i can be upper bounded with any feasible
tuple of {ML

i ,M
H1
i ,MH2

i }, how do we choose the tuple
for each HI task? (Algorithm 2)

Before addressing these questions, we define key path and
introduce four additional notions (X , Y , X

′
and Y

′
) to be

used later in the proofs.

Definition 1. Key Path [26]. A key path λi of a job of τi is a
complete path that satisfies the following condition. For any
edge (v, u) ∈ λi, v has the latest completion time among all
the predecessors of u.

Note that the longest path and key path of a job may
differ. By definition, a key path can only be known after
a job’s execution. The longest path, on the other hand, is
static information independent of the execution sequence of
the vertices. Figure 2 shows the key path of job J in different
execution scenarios, where J is released by τi from Figure 2a.

Figure 2b shows one possible execution sequence of J with
total work CL

i . The key path in the presented execution
sequence is {v1, v2, v5} which is different from the longest
path {v1, v3, v5}. Similarly, in Figure 2c, τi’s job J has total
work equals CH

i and triggers the mode transition when it
consumes CL

i without signaling finish. Here, the key path is
{v1, v4, v5}, while the longest path is {v1, v2, v5}. Since a key
path is also a complete path, its length will never exceed that
of the longest path.

v1 v3

v2

v4

v5

{1, 1} {3, 5}

{2, 6}

{2, 5}

{1, 1}
CL

i = 9 LL
i = 5

Longest Path: {v1, v3, v5}
CH

i = 18 LH
i = 8

Longest Path: {v1, v2, v5}
Ti = 10 Di = 13

(a) A HI task τi. {cL, cH} above each vertex represents two WCET
estimates for that vertex. CL

i is the sum of cL and CH
i is the sum of cH .

0 1 2 3 4 5 6 t

P1

P2
v1

v3
v5v4 v2

key path

X = X1 + X2 = 4
Y = 2

X1 Y X2

(b) The system remains in the typical state during the entire execution of J .

0 1 2 3 4 5 6 7 8 9 10 11 t

X Y X
′

P1

P2

P3

v1

v3
v5v2

v4Not Available key path

X = 1 Y = 4
X

′
= 6 Y

′
= 0

mode switch

(c) J is a carry-over job. It triggers the mode transition at time 5.

0 1 2 3 4 5 6 7 8 t

P1

P2

P3

v1

v3
v5v2

v4 key path

X
′
= 8 Y

′
= 0

X
′

(d) J is a non-carry-over job.

Fig. 2: The scheduling of job J . ML
i = 2 and MH1

i = MH2
i = 3.

P1 − P3 are processors.

Next, we introduce four notions (X , Y , X
′

and Y
′
) related

to the key path. Consider a system switching to the critical
state at time ts. A job J is released at tr and finishes
at tf . Define X as the key path execution duration within
[tr,min{ts, tf}], Y as the key path non-execution duration
within [tr,min{ts, tf}], X

′
as the key path execution duration

within [max{ts, tr}, tf ], and Y
′

as the key path non-execution
duration within [max{ts, tr}, tf ]. We demonstrate X , Y , X

′

and Y
′

in the job execution examples in Figure 2. When
tf < ts, i.e., the system remains in the typical state throughout
J’s execution, X

′
= Y

′
= 0 and the response time is X + Y

(Figure 2b). When tr ≤ ts ≤ tf , i.e., J is a carry-over job, the
response time is X+Y +X

′
+Y

′
(Figure 2c). When tr > ts,

i.e., J is a non-carry-over job released after the mode switch,
X = Y = 0 and the response time is X

′
+ Y

′
(Figure 2d).

We now address Q1, Q2 and Q3 in the presented order. To
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address Q1, the first thing is to set the virtual deadline for
each HI task with the help of Lemma 1.

Lemma 1. During the typical state, if a job J has total
work and longest path length not exceeding CL

i and LL
i ,

respectively, its WCRT is upper bounded by CL
i −LL

i

ML
i

+ LL
i .

Proof. As stated in Lemma 1 by Guan et al. [13], all ML
i

processors are busy during Y , making the total work done
in Y equal to ML

i Y . Since at least one processor is busy at
any time point in X , the total work done in X is at least X
and the total work done in X + Y is at least X + ML

i Y .
Since the total work completed by J cannot exceed CL

i , we
have ML

i Y + X ≤ CL
i , which leads to Y ≤ CL

i −X

ML
i

. By
definition, X represents the length of the key path and must
satisfy X ≤ LL

i . Therefore, we conclude: X + Y ≤ CL
i

ML
i
+

(1− 1
ML

i
)X ≤ CL

i

ML
i
+ (1− 1

ML
i
)LL

i .

We now safely set the virtual deadline of a HI task τi as
D

′

i =
CL

i −LL
i

ML
i

+LL
i . By Lemma 1, no job of τi will miss this

virtual deadline when the system stays in the typical state.
We will discuss the relationship between the virtual deadline
and the real deadline later. Next, we upper bound the response
time for a job running in the critical state by Lemmas 2 and
3.

Lemma 2. Assume that J is a carry-over job released by τi,
then the WCRT of J is upper bounded by RH1

i where

RH1
i =


CL

i

ML
i
+

CH
i −CL

i −LH
i

MH1
i

+ LH
i MH1

i > ML
i

CH
i −LH

i

MH1
i

+ LH
i MH1

i ≤ ML
i

(1)

Proof. By the definition of virtual deadline, it must be X +

Y ≤ D
′

i =
CL

i

ML
i
+(1− 1

ML
i
)LL

i . Since X ≥ 0, Y ≤ CL
i

ML
i
+(1−

1
ML

i
)LL

i . As stated in Lemma 1 by Guan et al. [13], all ML
i

processors are busy during Y , so the total work done during
Y is ML

i Y . Since at least one processor is busy at any time
point in X , the total work done in X is at least X and the total
work done in X + Y is at least X +ML

i Y . Furthermore, the
total work completed by J cannot exceed CL

i upon the mode
transition; otherwise, the transition would occur earlier. Thus,
we have ML

i Y +X ≤ CL
i ⇒ Y ≤ CL

i −X

ML
i

≤ CL
i

ML
i

. Combining

these two inequalities, we have Y ≤ CL
i

ML
i

.
From the analysis above, we also know that the work left to

be finished and the remaining length of the key path after the
mode transition are upper bounded by CH

i − (ML
i Y +X) and

LH
i −X , respectively. Similar to the condition before the mode

transition, the total work done in X
′
+ Y

′
is at least X

′
+

MH1
i Y

′
. We have X

′
+MH1

i Y
′ ≤ CH

i −(ML
i Y+X) ⇒ Y

′ ≤
CH

i −(ML
i Y+X)−X

′

MH1
i

. Another condition that must hold is X
′ ≤

LH
i −X . Therefore, we have X

′
+Y

′ ≤ CH
i −(ML

i Y+X)

MH1
i

+(1−
1

MH1
i

)(LH
i −X). The response time of J is X + Y +X

′
+

Y
′ ≤ CH

i −LH
i

MH1
i

+ LH
i + (1 − ML

i

MH1
i

)Y . When MH1
i > ML

i ,

1 − ML
i

MH1
i

> 0. Since Y ≤ CL
i

ML
i

, the response time is upper

bounded by CL
i

ML
i
+

CH
i −CL

i −LH
i

MH1
i

+ LH
i . When MH1

i ≤ ML
i ,

1 − ML
i

MH1
i

≤ 0. Since Y ≥ 0, the response time is upper

bounded by CH
i −LH

i

MH1
i

+ LH
i .

Lemma 3. Assume that J is a non-carry-over job released by
τi, then the WCRT of J is upper bounded by CH

i −LH
i

MH2
i

+ LH
i .

Proof. Since a non-carry-over job is solely influenced by
MH2

i , the proof closely resembles that of Lemma 1. X
′

as
the length of the key path satisfies X

′ ≤ LH
i . The work

completed in X
′
+ Y

′
is at least MH2

i Y
′
+X

′
and at most

CH
i . Thus, we have MH2

i Y
′
+ X

′ ≤ CH
i ⇒ Y

′ ≤ CH
i −X

′

MH2
i

.

X
′
+ Y

′ ≤ CH
i

MH2
i

+ (1− 1
MH2

i
)LH

i follows.

Lemmas 1, 2 and 3 bound the WCRT of any job by a
function of ML

i , MH1
i or MH2

i . We can obtain the feasible
solutions for {ML

i ,M
H1
i ,MH2

i } by making each bound below
Di. However, the solution space would be three-dimensional,
making it difficult to design the optimization algorithm. We
want to reduce the number of variables at this stage to
facilitate the optimization process that we will describe later.
One way to achieve this is to express MH2

i as a function
of MH1

i . Our intuition for deciding the value of MH2
i is

minimizing the number of active jobs during the critical state
and avoiding high values for MH2

i . According to Lemmas
2 and 3, the WCRT of any job in the critical state is
max{RH1

i ,
CH

i −LH
i

MH2
i

+ LH
i }. Given a value of MH1

i , setting

MH2
i such that CH

i −LH
i

MH2
i

+ LH
i ≤ RH1

i limits the number of

active jobs to a maximum of RH1
i

Ti
, where MH2

i is minimized
when the equal sign is taken. However, finding an integer value
for MH2

i to satisfy the equality might not always be possible
for a given MH1

i . To guarantee that the number of active jobs
and MH2

i remain upper bounded by
⌈
RH1

i

Ti

⌉
(as will be shown

in the proof of Lemma 7) and
⌈

CH
i −LH

i

RH1
i −LH

i

⌉
(as will be shown in

the proof of Lemma 5), even when the aforementioned equal
sign does not hold, we assign the value to MH2

i as follows.

MH2
i =


⌈

CH
i −LH

i

min{
⌈

RH1
i
Ti

⌉
Ti,Di}−LH

i

⌉
MH1

i > ML
i

MH1
i MH1

i ≤ ML
i

(2)

With Equation (2) the number of variables is reduced to two
({ML

i ,M
H1
i }). We are ready to answer Q1 with Lemma 4.

Lemma 4. If ML
i and MH1

i satisfy Inequality Group (3) or
(4), a HI criticality task τi can complete within its deadline
in both typical and critical states.

MH1
i > ML

i
CL

i −LL
i

ML
i

+ LL
i ≤ Di

CL
i

ML
i
+

CH
i −CL

i −LH
i

MH1
i

+ LH
i ≤ Di

(3)


MH1

i ≤ ML
i

CL
i −LL

i

ML
i

+ LL
i ≤ Di

CH
i −LH

i

MH1
i

+ LH
i ≤ Di

(4)

366

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on January 29,2025 at 05:05:33 UTC from IEEE Xplore.  Restrictions apply. 



Proof. In the typical state, by Lemma 1, if ML
i satisfies

Inequality Group (3) or (4), any HI task τi can finish its
CL

i time execution within its deadline. In the critical state, by
Lemma 2, if MH1

i and ML
i satisfy Inequality Group (3) or

(4), any carry-over job will complete its CH
i time execution

within its deadline. A non-carry-over job is assigned MH2
i

processors determined by Equation (2), which can guarantee
a response time no more than min{

⌈
RH1

i

Ti

⌉
Ti, Di} ≤ Di

when MH1
i > ML

i and Di when MH1
i ≤ ML

i , respectively.
Concluding from both system modes, Lemma 4 is proved.

With Lemma 4, we can find the solution region of
{ML

i ,M
H1
i } for any high-utilization HI task. Figure 3 pro-

vides three examples representing the solution regions of
{ML

i ,M
H1
i } when CH

i − CL
i − LH

i is < 0, = 0 and > 0.
For answering Q2, the dominance relationship between

MH1
i and MH2

i is crucial and presented in Lemma 5.

Lemma 5. Under the constraint of Lemma 4, MH1
i ≥ MH2

i

holds for all the HI tasks.

Proof. Case 1: MH1
i ≤ ML

i . According to Equation (2),
MH1

i = MH2
i . Case 2: MH1

i > ML
i . We consider two

subcases. Case 2a:
⌈
RH1

i

Ti

⌉
Ti < Di.

MH2
i =

⌈
CH

i −LH
i⌈

RH1
i
Ti

⌉
Ti−LH

i

⌉
≤

⌈
CH

i −LH
i

RH1
i −LH

i

⌉
≤
⌈

CH
i −LH

i

CL
i

ML
i

+
CH
i

−CL
i

−LH
i

MH1
i

⌉
(by Equation (1))

≤MH1
i

(
∵ ML

i < MH1
i

)
Case 2b:

⌈
RH1

i

Ti

⌉
Ti ≥ Di. By Lemma 4, RH1

i ≤ Di. By

Equation (2), MH2
i =

⌈
CH

i −LH
i

Di−LH
i

⌉
≤

⌈
CH

i −LH
i

RH1
i −LH

i

⌉
. The rest of

the proof is the same as in Case 2a.
Concluding from both cases, Lemma 5 is proved.

Now Q2 can be addressed easily by Lemmas 6 and 7. The
proof for Lemma 6 is omitted because SL

i is not related to any
configuration made for the critical state and is determined by
the response time (as indicated in Lemma 1) and ML

i , which
mirrors the proof of Lemma 6 by Guan et al. [13].

Lemma 6. For a HI task τi, if ML
i satisfies Lemma 4, SL

i

is upper bounded by ML
i

⌈ CL
i −LL

i
ML

i

+LL
i

Ti

⌉
.

Lemma 7. For a HI task τi, if ML
i and MH1

i satisfy Lemma
4 and MH2

i is obtained by Equation (2), SH
i is upper bounded

by MH1
i

⌈
D

′
i

Ti

⌉
+MH2

i

(⌈
RH1

i

Ti

⌉
−
⌈
D

′
i

Ti

⌉)
.

Proof. By Lemma 2 and Equation (2), the WCRT of a
job running in the critical state is upper bounded by either
RH1

i or min{
⌈
RH1

i

Ti

⌉
Ti, Di}. Because

⌈
RH1

i

Ti

⌉
Ti ≥ RH1

i and

Lemma 4 guarantees Di ≥ RH1
i , min{

⌈
RH1

i

Ti

⌉
Ti, Di} ≥

RH1
i . Hence, any job of HI task τi can complete within

min{
⌈
RH1

i

Ti

⌉
Ti, Di} in the critical state.

(a) CH
i = 20, CL

i = 16, LH
i = 11,

LL
i = 7, Ti = 5 and Di = 12.

(b) CH
i = 30, CL

i = 22, LH
i = 8,

LL
i = 7, Ti = 5 and Di = 12.

(c) CH
i = 1500, CL

i = 800, LH
i = 15, LL

i = 10, Ti = 200 and Di = 300.

Fig. 3: Solution space of {ML
i ,MH1

i }, when CH
i −CL

i −LH
i is < 0

(a), = 0 (b) or > 0 (c). Black line: CL
i

ML
i
+

CH
i −CL

i −LH
i

MH1
i

+LH
i = Di.

Red line: CH
i −LH

i

MH1
i

+LH
i = Di. Blue line: MH1

i = ML
i . Green data

point: ML
i = MH1

i =
CH

i −LH
i

Di−LH
i

.

Let t be an arbitrary time during the critical state.
When MH1

i > ML
i , any job of τi released before or

at time t − min{
⌈
RH1

i

Ti

⌉
Ti, Di} has already been com-

pleted at t. Jobs that are released in the time interval
(t − min{

⌈
RH1

i

Ti

⌉
Ti, Di}, t] can still be executing at t, and

there are at most min{
⌈
RH1

i

Ti

⌉
,
⌈
Di

Ti

⌉
} of them. By Lemma 4,

RH1
i ≤ Di. So we have min{

⌈
RH1

i

Ti

⌉
,
⌈
Di

Ti

⌉
} =

⌈
RH1

i

Ti

⌉
, and

the total number of currently running jobs in the critical state
is upper bounded by

⌈
RH1

i

Ti

⌉
.

According to Lemma 5, MH1
i ≥ MH2

i . Therefore, the total
number of processors required by τi will reach the peak value
when the number of carry-over jobs is maximized. A carry-
over job is released no earlier than t−D

′

i; otherwise, it would
have completed or triggered a system mode transition before
the current mode transition time. The maximum number of
carry-over jobs running at t is no more than

⌈
D

′
i

Ti

⌉
. Thus, the

total number of processors required by τi in the critical state

is maximized at MH1
i

⌈
D

′
i

Ti

⌉
+MH2

i

(⌈
RH1

i

Ti

⌉
−

⌈
D

′
i

Ti

⌉)
.

With the answer to Q2 in mind, we can now begin to
delve into Q3. Assume the number of processors remaining
for high-utilization tasks in the typical state is MLr and the
critical state is MHr. When only high-utilization tasks exist
in the task set, MLr = MHr = M . We want to decide if a
{ML

i ,M
H1
i } for every task exists, so that

∑
∀τi∈τ S

L
i ≤ MLr

and
∑

∀τi∈τHI
Hu

SH
i ≤ MHr. Recall that for a LO task SH

i = 0,
we minimize the value of SL

i by ReserveProcs (Algorithm
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Algorithm 1 ReservationPairs(τi, MLr , MHr)

Input: τi, MLr , MHr

Output: Ψi

1: ΠL ← all ML
i that satisfy Lemma 4, ML

i ≤MLr and ML
i ∈ N.

2: Ψi ← ∅, j ← 1
3: for each ML

i ∈ ΠL do
4: ΠH1

j ← with the given ML
i , all MH1

i that satisfy Lemma 4,
MH1

i ≤MHr and MH1
i ∈ N.

5: SL
i ←ML

i

⌈
D

′
i

Ti

⌉
6: f(MH1

i )←MH1
i

⌈
D

′
i

Ti

⌉
+MH2

i

(⌈
RH1

i
Ti

⌉
−

⌈
D

′
i

Ti

⌉)
7: SH

i ← min
MH1

i ∈ΠH1
j

f(MH1
i )

8: Ψi,j ← {SL
i , S

H
i }, Ψi ← Ψi ∪ {Ψi,j}, j ← j + 1

9: end for
10: return Ψi

(a) When ML
i = 7, how SH

i varies
corresponding to all MH1

i that satisfy
the constraints of Lemma 4, MH1

i ≤
MHr and MH1

i ∈ N.

(b) The final result of Ψi = {{8, 18}
, {5, 12}, {6, 12}, {7, 10}, {8, 9},
{9, 9}, {10, 9}, {11, 9}, {12, 9},
{13, 9}, {14, 9}, {15, 9}, {16, 9}}.

Fig. 4: How Algorithm 1 generates Ψi for the high-utilization HI
task in Figure 3c, when MLr = MHr = 16.

1 given by Guan et al. [13]). The problem is simplified to
finding the values of {ML

i ,M
H1
i } for every HI task. Given

the constraints of Lemma 4, ML
i ≤ MLr, MH1

i ≤ MHr and
ML

i ,M
H1
i ∈ N, the number of choices for {ML

i ,M
H1
i } is

finite, leading to a finite number of feasible pairs of {SL
i , S

H
i }.

We use a set Ψi = {Ψi,1, ...,Ψi,j , ...,Ψi,|Ψi|} to denote
the feasible pairs of processor reservations for a HI task, i.e.
pairs of {SL

i , S
H
i }, where Ψi,j is the jth feasible pair in Ψi

and |Ψi| is the total number of feasible pairs in Ψi. Each Ψi

corresponds to a HI task. For the convenience of explanation,
when we refer to an overall processor reservation of a HI
task in the typical state (or critical state), we also use ΨL

i,j (or
ΨH

i,j) when its order in Ψi need to be emphasized. Without
loss of generality, we assume that τHI

Hu are the tasks in τ with
the first |τHI

Hu | index numbers, i.e. τHI
Hu = {τ1, τ2, ..., τ|τHI

Hu|}.
The set containing all the Ψi can be represented as {Ψi|i ∈
{1, ..., |τHI

Hu |}}. We use Algorithm 1 to populate Ψi. For each
HI task, Algorithm 1 first collects the set of ML

i as ΠL (line
1). Next, it gathers the corresponding set of MH1

i for each
ML

i as ΠH1
j , determines the minimum value of SH

i given this
specific ML

i , and adds a new member to Ψi (lines 3-9).
Figure 4 illustrates the population of Ψi for the ex-

ample task in Figure 3c. Based on the solution region
of {ML

i ,M
H1
i } (Figure 3c) and ML

i ≤ MLr, we have
ΠL = {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}. For ML

i = 7,

Algorithm 2 FedMixedCriticality(τHI
Hu , τLO

Hu , MLr , MHr)

Input: τHI
Hu , τLO

Hu , MLr , MHr

Output: schedulability analysis result
1: for each τi ∈ τLO

Hu do
2: {ML

i , SL
i } ← ReserveProcs(CL

i , L
L
i , Di, Ti) [13]

3: SH
i ← 0

4: end for
5: for each τi ∈ τHI

Hu do
6: if MHr < max{

⌈
CH

i −LH
i

Di−LH
i

⌉
, 1} then

7: return failure
8: else
9: Ψi ←ReservationPairs(τi, MLr , MHr)

10: end if
11: end for
12: Γ← {Ψi|i ∈ {1, ..., |τHI

Hu |}}
13: if

∑
∀τi∈τLO

Hu
SL
i +OptimizeReservation(Γ, MHr)≤MLr then

14: return success
15: else
16: return failure
17: end if

ΠH1
j = {6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}, considering the

solution region of {ML
i ,M

H1
i } and MH

i ≤ MHr. Algorithm
1 calculates the value of SH

i for each MH1
i in ΠH1

j , as
shown in Figure 4a, and identifies the minimum SH

i (which
is 10 when MH1

i = 10) to include in Ψi. The corresponding
{ML

i ,M
H1
i } = {7, 10} is marked in Figure 3c. Note that, as

a result of Algorithm 1, not all pairs of {SL
i , S

H
i } are included

in Ψi. For instance, in this example, {7, 11}, {7, 12}, {7, 13},
{7, 14}, {7, 15} and {7, 16} are left out because {7, 10} has
an equal typical state reservation and a lower critical state
reservation. This ensures that we can achieve optimal results
with a reduced Ψi in the subsequent process. The final Ψi

after processing all ML
i in ΠL is presented in Figure 4b,

with the highlighted data representing the Ψi,j obtained in
Figure 4a. In this example ΨH

i,1 = 18 > MHr, which is
not useful for constructing feasible scheduling. However, we
retain such a Ψi,j as it does not affect the final result of our
processor reservation algorithm. This will be further explained
after introducing Algorithm 2.

We form the processer reservation problem as a multiple-
choice knapsack problem in the following manner. There are
|τHI

Hu | mutually disjoint sets of items to be packed into a
knapsack of capacity MHr. Each item Ψi,j ∈ Ψi has a cost
ΨL

i,j and a weight ΨH
i,j . The problem is to choose exactly one

item from each set such that the cost sum is minimized without
exceeding the capacity MHr in the corresponding weight sum.
This problem can be solved in pseudopolynomial time through
dynamic programming [27]. Let Zi(d) be a minimum cost sum
to this problem defined on the first i sets and with restricted
capacity d. Initially we set Z0(d) = 0 for all d = 0, ...,MHr.
To compute Zi(d) for i = 1, ..., |τHI

Hu |, we use the recursion:

Zi(d)=min


Zi−1(d−ΨH

i,1) + ΨL
i,1 d−ΨH

i,1 ≥ 0

Zi−1(d−ΨH
i,2) + ΨL

i,2 d−ΨH
i,2 ≥ 0

...

Zi−1(d−ΨH
i,|Ψi|)+ΨL

i,|Ψi| d−ΨH
i,|Ψi|≥0

(5)

If d−ΨH
i,j < 0 is true for all j = 1, ..., |Ψi|, the minimum
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Algorithm 3 OptimizeReservation(Γ, MHr)

Input: Γ, MHr

Output: Z|τHI
Hu

|(M
Hr)

1: Z0(d)← 0, d ∈ {0, 1, ...,MHr}
2: for each i ∈ {1, ..., |τHI

Hu |} do
3: obtain Zi(d) by Equation (5), d ∈ {0, 1, ...,MHr}
4: end for
5: return Z|τHI

Hu
|(M

Hr)

operator returns +∞. The optimization result Z|τHI
Hu|(M

Hr)
corresponds to the minimum number of processors required by
τHI
Hu in the typical state without exceeding the capacity MHr

in the critical state. By comparing Z|τHI
Hu|(M

Hr) with MLr −∑
∀τi∈τLO

Hu
SL
i , we can decide if the task set is schedulable.

Algorithm 2 shows the entire process of the schedulability
analysis. Initially, it reserves processors for LO tasks using
ReserveProcs [13] (lines 1-4). It then populates Ψi for each
HI task using Algorithm 1 (lines 5-11). Finally, it solves the
multiple-choice knapsack problem using Algorithm 3 (lines
12-17). Algorithm 2 has a time complexity of O(NM2). Al-
gorithm 3 will discard any Ψi,j with ΨH

i,j > MHr, rendering
its presence in Ψi inconsequential. Similarly, any Ψi,j with
ΨL

i,j > MLr will be ignored if it does not contribute to
Z|τHI

Hu|(M
Hr) and a failure is inevitable if it does contribute,

regardless of the presence or absence of this Ψi,j . In both
cases, the final result remains unaffected.

V. THE CAPACITY AUGMENTATION BOUND FOR
SCHEDULING HIGH-UTILIZATION TASKS

The capacity augmentation bound is a quantitative metric
that is widely used to analyze the worst-case performances
of scheduling algorithms for real-time parallel tasks. It pro-
vides a linear-time schedulability test and serves as a good
performance reference for the algorithm under evaluation. The
definition of the capacity augmentation bound is as follows.

Definition 2. Capacity Augmentation Bound [23]. A schedul-
ing algorithm S has a capacity augmentation bound ρ if it
can schedule any task set that satisfies the following two
conditions: the task set’s total utilization is no greater than
M
ρ , where M is the number of processors in the system; and

the length of the longest path of each task is at most 1
ρ of its

relative deadline.

In the following, we provide a capacity augmentation bound
for our algorithms in scheduling only high-utilization tasks.
For simplicity, the term high-utilization is not always explicitly
stated throughout the subsequent text within this section. Two
mathematical inequalities will be used in the proofs: If 0 <
c ≤ a

b and 0 ≤ x ≤ y < bc, then a
b ≤ a−x

b− x
c

≤ a−y
b− y

c
; If

0 < a
b ≤ c and 0 ≤ x ≤ y < bc, then a

b ≥ a−x
b− x

c
≥ a−y

b− y
c

.
LO tasks: As indicated in Algorithm 2, we reserve pro-

cessors for every LO task by ReserveProcs [13]. The timing
correctness of ReserveProcs has already been proved by Guan
et al. [13]. It has also shown by Guan et al. [13] that
ReserveProcs has a capacity augmentation bound of 3, which
guarantees the total number of processors assigned to LO tasks

will not exceed three times the total utilization of LO tasks,
where each LO task τi has LL

i ≤ 1
3Di. Let’s set this fact aside

for now, and use it along with other facts of HI tasks to prove
the final capacity augmentation bound later.
HI tasks: When considering HI tasks, we will start by

considering a processor assignment strategy as shown in Table
II and validate the timing correctness of each task with such an
assignment in both system modes. Subsequently, we will prove
that replacing the part related to HI tasks in Algorithm 2 with
the setting in Table II can guarantee a capacity augmentation
bound of 4. At last, we will prove the dominance of Algorithm
2 over Table II; this dominance relationship establishes a
capacity augmentation bound of 4 for Algorithm 2.

In the above order, first we demonstrate the assignments in
Table II can guarantee the timing correctness of HI tasks for
any ρ ≥ 3+

√
5

2 ≈ 2.62 with Lemmas 8 and 9.

Lemma 8. The processor assignments of Table II can guaran-
tee the timing correctness of any Type II task in both critical
state and typical state for any ρ > 0.

Proof. We consider two possibilities for the value of ML
i .

Case 1: M̂L
i >

⌈
CH

i −LH
i

Di−LH
i

⌉
. According to [13], M̂L

i ≥

1. The conditions ML
i = M̂L

i ≥ 1, and ML
i ≥

max{
⌈
CH

i −LH
i

Di−LH
i

⌉
, 1} = MH1

i follow. Case 2: M̂L
i ≤⌈

CH
i −LH

i

Di−LH
i

⌉
. ML

i = MH1
i =

⌈
CH

i −LH
i

Di−LH
i

⌉
. In both cases, the

processor assignment satisfies Inequality Group (4). According
to Lemma 4, the task can complete its execution within the
deadline in both system modes.

Lemma 9. The processor assignments of Table II can guar-
antee the timing correctness of any Type I task in both critical
state and typical state for any ρ ≥ 3+

√
5

2 ≈ 2.62.

Proof.
ML

i ≥
⌈

CL
i

( 1
ρ−1+

1
ρ )Di−LH

i

⌉
>

⌈
CL

i −LL
i

( 1
ρ−1+

1
ρ )Di−LL

i

⌉
>

⌈
CL

i −LL
i

Di−LL
i

⌉ (
∵ ρ ≥ 3+

√
5

2 ⇒ 1
ρ−1 + 1

ρ ≤ 1

)
The condition CL

i −LL
i

ML
i

+LL
i ≤ Di follows. For MH1

i , there are

two possible cases. Case 1: ML
i ≥ CH

i −LH
i

Di−LH
i

. Because ML
i ≥

CL
i

( 1
ρ−1+

1
ρ )Di−LH

i

and 1− 1
ρ−1 −

1
ρ > 0, Di− CL

i

ML
i
−LH

i ≥ (1−
1

ρ−1−
1
ρ )Di > 0. Using the mathematical inequalities given in

the previous text, we have
⌈
CH

i −LH
i

Di−LH
i

⌉
≥

⌈
CH

i −LH
i −CL

i

Di−LH
i −

CL
i

ML
i

⌉
> 0.

Thus, MH1
i =

⌈
CH

i −LH
i

Di−LH
i

⌉
. ML

i and MH1
i satisfy Inequality

Group (4). Case 2: ML
i <

CH
i −LH

i

Di−LH
i

. Because Di−LH
i − CL

i

ML
i

>

0, we have 0 <
⌈
CH

i −LH
i

Di−LH
i

⌉
<

⌈
CH

i −LH
i −CL

i

Di−
CL
i

ML
i

−LH
i

⌉
, and MH1

i =⌈
CH

i −LH
i −CL

i

Di−LH
i −

CL
i

ML
i

⌉
. ML

i and MH1
i satisfy Inequality Group (3).

According to Lemma 4, the task can complete its execution
within its deadline in both cases.
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TABLE II: A Processor Allocation Strategy for High-utilization HI Tasks

Task Type Classification Criteria ML
i MH1

i

I CH
i −CL

i −LH
i > 0, CH

i
Di

> 1, 1 < Di
Ti

≤ 2

and CL
i ≤ (Ti − LL

i )

⌈
CH

i −LH
i

Di−LH
i

⌉
+ LL

i

max{
⌈

CL
i

( 1
ρ−1

+ 1
ρ
)Di−LH

i

⌉
,
⌈
(ρ− 1)UL

i

⌉
} max{

⌈
CH

i −LH
i

Di−LH
i

⌉
,

⌈
CH

i −CL
i −LH

i

Di−
CL
i

ML
i

−LH
i

⌉
}

II Any HI task other than Task Type I max{M̂L
i ,

⌈
CH

i −LH
i

Di−LH
i

⌉
}a max{

⌈
CH

i −LH
i

Di−LH
i

⌉
, 1}

a M̂L
i is the first return value of ReserveProcs(CL

i , LL
i , Di, Ti) [13]

Next, we provide the upper bounds of SH
i and SL

i for every
HI task with Lemmas 10, 11, 12 and 13 where the processor
mapping is compliance with the settings in Table II.

Lemma 10. Under the configuration of Table II, if a Type II
HI task τi satisfies the condition 1

ρDi ≥ LH
i ≥ LL

i , SH
i ≤

ρUH
i holds for any ρ ≥ 4.

Proof. We demonstrate Lemma 10 is correct by proving that
SH
i ≤ ρUH

i holds for any HI task with 1
ρDi ≥ LH

i ≥ LL
i

if each its job is assigned the same number of processors as
a Type II HI task in Table II. More specifically, we consider
two complementary sets of HI tasks: CH

i

Di
> 1 and CH

i

Di
≤ 1.

By Table II, ML
i ≥ MH1

i . According to Equation (2), we have

MH2
i = MH1

i = max{
⌈
CH

i −LH
i

Di−LH
i

⌉
, 1}. SH

i = MH1
i

⌈
D

′
i

Ti

⌉
+

MH2
i

(⌈
RH1

i

Ti

⌉
−

⌈
D

′
i

Ti

⌉)
= MH1

i

⌈ CH
i −LH

i
MH1

i

+LH
i

Ti

⌉
.

Case 1: CH
i

Di
> 1. MH1

i =
⌈
CH

i −LH
i

Di−LH
i

⌉
.

SH
i ≤

⌈
CH

i −LH
i

Di−LH
i

⌉ ⌈
Di

Ti

⌉ (
∵ MH1

i ≥ CH
i −LH

i

Di−LH
i

> 0
)

≤
(

CH
i −Di

ρ

Di−
Di
ρ

+ 1
)⌈

Di

Ti

⌉ (
∵ CH

i

Di
> 1 ∧ LH

i ≤ Di

ρ

)
≤
(

ρ
ρ−1

CH
i

Di
+ ρ−2

ρ−1

)
· 2Di

Ti

(
∵ Di

Ti
> 1

)
<
(

ρ
ρ−1 + ρ−2

ρ−1

)
CH

i

Di
· 2Di

Ti

(
∵ CH

i

Di
> 1 ∧ ρ ≥ 4

)
<2

CH
i

Di
· 2Di

Ti
< ρUH

i

Case 2: CH
i

Di
≤ 1. MH1

i = 1. SH
i =

⌈
CH

i

Ti

⌉
≤ CH

i

Ti
+ 1 ≤

2UH
i ≤ ρUH

i .
Concluding from both cases, the lemma is proved.

Lemma 11. Under the configuration of Table II, if a Type I HI
task τi satisfies the condition 1

ρDi ≥ LH
i ≥ LL

i , SH
i ≤ ρUH

i

holds for any ρ ≥ 4.

Proof. Case 1: ML
i ≥ CH

i −LH
i

Di−LH
i

. As already demonstrated in

the proof of Lemma 9, MH1
i =

⌈
CH

i −LH
i

Di−LH
i

⌉
. Similar to Case

1 in the proof of Lemma 10, SH
i ≤ ρUH

i . Case 2: ML
i <

CH
i −LH

i

Di−LH
i

. In this case MH1
i =

⌈
CH

i −CL
i −LH

i

Di−
CL
i

ML
i

−LH
i

⌉
.

D
′

i =
CL

i −LL
i

ML
i

+ LL
i ≤ CL

i −LL
i

⌈(ρ−1)UL
i ⌉

+ LL
i ≤ CL

i

(ρ−1)
CL
i

Ti

+ LL
i

≤ Ti

ρ−1+
Di

ρ

(
∵ LL

i ≤ Di

ρ

)
≤
(

1
ρ−1+

2
ρ

)
Ti

(
∵ 1< Di

Ti
≤2

)

It can be derived that for any ρ ≥ 2 +
√
2 ≈ 3.41, the

inequality D
′

i ≤ Ti holds true. According to Lemma 9, with
the arrangement in Table II, any Type I task can be completed
before its deadline. Therefore we have RH1

i ≤ Di. Because
1 < Di

Ti
≤ 2, 1 ≤

⌈
RH1

i

Ti

⌉
≤

⌈
Di

Ti

⌉
≤ 2. There are two

possibilities:
⌈
RH1

i

Ti

⌉
= 1 and

⌈
RH1

i

Ti

⌉
= 2. We consider them

separately. Case 2a:
⌈
RH1

i

Ti

⌉
= 1.

SH
i =MH1

i

⌈
D

′
i

Ti

⌉
+MH2

i

(⌈
RH1

i

Ti

⌉
−

⌈
D

′
i

Ti

⌉)
=MH1

i

(
∵
⌈
RH1

i

Ti

⌉
=

⌈
D

′
i

Ti

⌉
= 1

)
≤


CH

i − CL
i

ML
i

−LH
i

Di−
CL
i

ML
i

−LH
i

 ≤
⌈

CH
i − Di

ρ−1−
Di
ρ

Di−
Di
ρ−1−

Di
ρ

⌉
(
∵ CH

i

Di
> 1 ∧ML

i ≥ (ρ− 1)
CL

i

Di
∧ LH

i ≤ Di

ρ

)
≤ ρ(ρ−1)

ρ2−3ρ+1
CH

i

Di
− 2ρ−1

ρ2−3ρ+1 + 1

For any ρ satisfies 3.41 ≈ 2 +
√
2 ≤ ρ ≤ 5+

√
17

2 ≈ 4.56,
the conditions ρ(ρ−1)

ρ2−3ρ+1 ≤ ρ and − 2ρ−1
ρ2−3ρ+1 + 1 ≤ 0

hold. Consequently, the above value is upper bounded by
ρ
CH

i

Di
≤ ρUH

i (∵ Di > Ti). For any ρ that satisfies ρ >
5+

√
17

2 , it has − 2ρ−1
ρ2−3ρ+1 + 1 > 0, and the above value is

upper bounded by
(

ρ(ρ−1)
ρ2−3ρ+1 − 2ρ−1

ρ2−3ρ+1 + 1
)

CH
i

Di
= 2

CH
i

Di
≤

2UH
i

(
∵ CH

i > Di > Ti

)
≤ ρUH

i . Case 2b:
⌈
RH1

i

Ti

⌉
= 2.

Because Di

Ti
≤ 2, min{

⌈
RH1

i

Ti

⌉
Ti, Di} = min{2Ti, Di} = Di.

MH2
i =

⌈
CH

i −LH
i

Di−LH
i

⌉
.

SH
i =MH1

i +MH2
i

(
∵
⌈
RH1

i

Ti

⌉
= 2,

⌈
D

′
i

Ti

⌉
= 1

)
≤


CH

i − CL
i

ML
i

−LH
i

Di−
CL
i

ML
i

−LH
i

+
⌈
CH

i −LH
i

Di−LH
i

⌉
≤
(

CH
i − Di

ρ−1−
Di
ρ

Di−
Di
ρ−1−

Di
ρ

+ 1

)
+

(
CH

i −Di
ρ

Di−
Di
ρ

+ 1

)
(

∵ CH
i

Di
> 1 ∧ML

i ≥ (ρ− 1)
CL

i

Di
∧ LH

i ≤ Di

ρ

)
≤
(

ρ(ρ−1)
ρ2−3ρ+1 + ρ

ρ−1

)
CH

i

Di
+

(
2− 2ρ−1

ρ2−3ρ+1 − 1
ρ−1

)
It can be derived that for any ρ ≥ 4, the
condition 2 − 2ρ−1

ρ2−3ρ+1 − 1
ρ−1 > 0 holds. As

a result, the above value is upper bounded by
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(
ρ(ρ−1)

ρ2−3ρ+1 + ρ
ρ−1

)
CH

i

Di
+

(
2− 2ρ−1

ρ2−3ρ+1 − 1
ρ−1

)
CH

i

Di
≤

4
CH

i

Di
≤ ρUH

i

(
∵ CH

i > Di > Ti ∧ ρ ≥ 4
)
.

Lemma 12. Under the configuration of Table II, if a Type II
HI task τi satisfies the condition 1

ρDi ≥ LH
i ≥ LL

i , SL
i ≤

(ρ− 1)UL
i + UH

i holds for any ρ ≥ 4.

Proof. If M̂L
i >

⌈
CH

i −LH
i

Di−LH
i

⌉
, ML

i = max{M̂L
i ,

⌈
CH

i −LH
i

Di−LH
i

⌉
} =

M̂L
i . According to [13], for any task with Di ≥ 3LL

i ,
SL
i ≤ 3UL

i < (ρ − 1)UL
i + UH

i . If M̂L
i ≤

⌈
CH

i −LH
i

Di−LH
i

⌉
,

ML
i =

⌈
CH

i −LH
i

Di−LH
i

⌉
≥ 1

(
∵ M̂L

i ≥ 1
)

, we prove the bound
holds under four cases. Note that the first three cases will use

the fact that SL
i = ML

i

⌈ CL
i −LL

i
ML

i

+LL
i

Ti

⌉
< ML

i

( CL
i −LL

i
ML

i

+LL
i

Ti
+

1

)
<

CL
i

Ti
− LL

i

Ti
+

(
1 +

LL
i

Ti

)
ML

i .

Case 1: CH
i

Di
≤ 1.

SL
i <

CL
i

Ti
− LL

i

Ti
+

(
1 +

LL
i

Ti

) (
∵ CH

i

Di
≤ 1 ⇒ ML

i = 1
)

<
CL

i

Ti
+ 1 < UL

i + UH
i

(
∵ UH

i > 1
)
< (ρ− 1)UL

i + UH
i

Case 2: CH
i −CL

i −LH
i ≤ 0. In this case, we have ML

i ≤⌈
CL

i

Di−LH
i

⌉
. Therefore,

SL
i <

CL
i

Ti
− LL

i

Ti
+
(
1 +

LL
i

Ti

)⌈
CL

i

Di−LH
i

⌉
<

CL
i

Ti
− LL

i

Ti
+
(
1 +

LL
i

Ti

)(
CL

i

Di−LH
i
+ 1

)
<

CL
i

Ti
+

(
1 +

Di
ρ

Ti

)
CL

i

Di−
Di
ρ

+ 1
(
∵ LL

i ≤ LH
i ≤ Di

ρ

)
<

CL
i

Ti
+

Di+
Di
ρ

Ti

CL
i

Di−
Di
ρ

+ 1 (∵ Di > Ti)

< 2ρ
ρ−1U

L
i + UH

i

(
∵ UH

i > 1
)

For any ρ satisfies ρ ≥ 2 +
√
3 ≈ 3.73, the condition 2ρ

ρ−1 ≤
ρ− 1 holds. 2ρ

ρ−1U
L
i + UH

i ≤ (ρ− 1)UL
i + UH

i follows.

Case 3: CH
i

Di
> 1 and CL

i > (Ti − LL
i )

⌈
CH

i −LH
i

Di−LH
i

⌉
+ LL

i .

SL
i <SL

i + 2
CL

i

Ti
− 2

(Ti−LL
i )ML

i +LL
i

Ti

<3
CL

i

Ti
− 3

LL
i

Ti
+
(
3
LL

i

Ti
− 1

)
ML

i

<3
CL

i

Ti
− 3

LL
i

Ti
+ 3

LL
i

Ti

(
CH

i −LH
i

Di−LH
i

+ 1
)

<3
CL

i

Ti
+ 3

Di
ρ

Ti

CH
i −Di

ρ

Di−
Di
ρ

(
∵ LL

i ≤ LH
i ≤ Di

ρ ∧ CH
i

Di
> 1

)
<3

CL
i

Ti
+ 3

Di
ρ

Ti

ρ
ρ−1

CH
i

Di
(∵ ρ > 1)

<3UL
i + 3

ρ−1U
H
i < (ρ− 1)UL

i + UH
i (∵ ρ ≥ 4)

Case 4: CH
i

Di
> 1, Di

Ti
> 2 and CL

i ≤ (Ti −
LL
i )

⌈
CH

i −LH
i

Di−LH
i

⌉
+ LL

i . Because CL
i ≤ (Ti − LL

i )M
L
i + LL

i ,

we have
CL
i −LL

i
ML

i

+LL
i

Ti
≤ 1 and SL

i = ML
i . Consequently,

SL
i <

CH
i −Di

ρ

Di−
Di
ρ

+ 1
(
∵ CH

i > Di ≥ ρLH
i

)
< ρ

ρ−1
CH

i

Di
+ ρ−2

ρ−1

< ρ
ρ−1

CH
i

Di
+ ρ−2

ρ−1
CH

i

Di

(
∵ CH

i

Di
> 1 ∧ ρ > 2

)

<2
CH

i

2Ti

(
∵ Di

Ti
> 2

)
< UH

i < (ρ− 1)UL
i + UH

i

Lemma 13. Under the configuration of Table II, if a Type I
HI task τi satisfies the condition 1

ρDi ≥ LH
i ≥ LL

i , SL
i ≤

(ρ− 1)UL
i + UH

i holds for any ρ ≥ 4.

Proof.

SL
i ≤ML

i

⌈ CL
i −LL

i

⌈(ρ−1)UL
i ⌉+LL

i

Ti

⌉ (
∵ ML

i ≥
⌈
(ρ− 1)UL

i

⌉)
≤ML

i

⌈ CL
i

(ρ−1)UL
i

+LL
i

Ti

⌉
≤ML

i

⌈ 1
ρ−1Ti+

2
ρTi

Ti

⌉(
∵LL

i ≤ Di

ρ ≤ 2Ti

ρ

)
≤ML

i

(
∵ 1

ρ−1 + 2
ρ < 1

)
If ML

i =
⌈
(ρ− 1)UL

i

⌉
, ML

i < (ρ−1)UL
i +1 < (ρ−1)UL

i +

UH
i (∵ UH

i > 1). If ML
i =

⌈
CL

i

( 1
ρ−1+

1
ρ )Di−LH

i

⌉
,

ML
i ≤

⌈
CL

i

( 1
ρ−1+

1
ρ )Di−

Di
ρ

⌉ (
∵ LH

i ≤ Di

ρ

)
< (ρ− 1)Ci

Di
+ 1 < (ρ− 1)Ci

Ti
+ 1 (∵ Di > Ti)

< (ρ− 1)UL
i + UH

i

(
∵ UH

i > 1
)

Finally, we are able to establish the capacity augmentation
bound by Theorems 1 and 2.

Theorem 1. Replacing the processor assignment strategy for
τHI
Hu in Algorithm 2 with Table II gives an algorithm that

has a capacity augmentation bound of 4 in scheduling high-
utilization relaxed-deadline tasks.

Proof. If we can prove that under the assumptions of The-
orem 1 a task set τ = τHI

Hu ∪ τLO
Hu (∀τi ∈ τ,Di > Ti)

is always schedulable when it satisfies:
∑

∀τi∈τ U
L
i ≤ M

ρ ,∑
∀τi∈τHI

Hu
UH
i ≤ M

ρ , ∀τi ∈ τHI
Hu : LL

i ≤ LH
i ≤ Di

ρ ,
∀τi ∈ τLO

Hu : LL
i ≤ Di

ρ and ρ = 4, then according to Definition
2 this theorem is true.

According to Lemmas 10, 11, 12 and 13, if the above
conditions are satisfied, the total number of processors is
upper bounded by

∑
τi∈τHI

Hu
4UH

i ≤ M in the critical state,
and

∑
τi∈τHI

Hu
(3UL

i +UH
i )+

∑
τi∈τLO

Hu
3UL

i ≤ 3
∑

τi∈τ U
L
i +∑

τi∈τHI
Hu

UH
i ≤ 3

ρM + 1
ρM ≤ M in the typical state. There-

fore, the task set is schedulable in both system modes.

Theorem 2. The capacity augmentation bound of Algorithm
2 is 4 in scheduling high-utilization relaxed-deadline tasks.

Proof. Under the assumption that only high-utilization tasks
exist, if

∑
∀τi∈τHI

Hu
min
MH1

i

SH
i ≤ M under the constraint of

Lemma 4, Algorithm 2 guarantees that
∑

∀τi∈τHI
Hu

SH
i ≤ M .

Let’s assume that the value of
∑

∀τi∈τHI
Hu

SL
i under the proces-

sor assignment strategy of Table II and Algorithm 2 are SLT

and SLA, respectively. Algorithm 2 always makes processor
assignments that minimize the value of

∑
∀τi∈τHI

Hu
SL
i under

the constraint of Lemma 4, so we have SLA ≤ SLT .
Since in both cases ReserveProcs [13] assigns processors to
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LO tasks in the typical state, the value of
∑

∀τi∈τLO
Hu

SL
i

remains unchanged. If SLT +
∑

∀τi∈τLO
Hu

SL
i ≤ M holds true,

SLA +
∑

∀τi∈τLO
Hu

SL
i ≤ M is also true. Therefore, as long as

a task set is schedulable by adopting the processor assignment
strategy of Table II, it is also schedulable under unaltered
Algorithm 2. We can then safely conclude that the capacity
augmentation bound of Algorithm 2 is at most 4.

VI. SCHEDULING DUAL-CRITICALITY TASKS IN GENERAL

Generalizing our algorithm to support both high- and low-
utilization tasks is similar to the approach presented by Li et
al. [6]. We reuse MC-Partition-UT-0.75 [28] to schedule low-
utilization tasks. The whole scheduling algorithm is modified
in the following manner. We first reserve the necessary number
of processors for low-utilization tasks; and then, we assign
processors to each high-utilization task and test if they are
schedulable on the remaining processors with Algorithm 2.

The scheduling of low-utilization tasks is performed as
follows: 1) Every low-utilization task τi is converted into an
implicit-deadline task; and 2) All the low-utilization tasks are
scheduled on a set of allocated processors by a partitioned
scheduling algorithm MC-Partition-UT-0.75 [28], executed
and scheduled as though they are sequential tasks. Note
that every low-utilization task is converted into an implicit-
deadline task before the partition process. This operation
permits us to use the existing algorithms designed for implicit-
deadline tasks, such as MC-Partition-UT-0.75. In this scenario,
MLr ≤ M and MHr ≤ M when applying Algorithm 2.

We can obtain a capacity augmentation bound for the
generalized algorithm by Theorem 3.

Theorem 3. A joint use of Algorithm 2 and MC-Partition-UT-
0.75 [28] in scheduling relaxed-deadline tasks in general has
a capacity augmentation bound of 4M

M−1 ≈ 4 for large M .

Proof. Let’s assume s is the utilization bound of the al-
gorithm that is adopted in scheduling low-utilization tasks.
The numbers of processors assigned to low-utilization tasks
in typical state and critical state are upper bounded by⌈
s
∑

∀τi∈τLO
Lu ∪τHI

Lu
UL
i

⌉
< s

∑
∀τi∈τLO

Lu ∪τHI
Lu

UL
i + 1 and⌈

s
∑

∀τi∈τHI
Lu

UH
i

⌉
< s

∑
∀τi∈τHI

Lu
UH
i +1, respectively. When

ρ = 4M
M−1 > 4, Lemmas 10, 11, 12, and 13 still hold.

When s ≤ 3 (s = 8
3 < 3 for MC-Partition-UT-0.75),

together with ρ = 4M
M−1 , Lemmas 12 and 13, the necessary

processor reservation in the typical state is upper bounded
by 3

∑
τi∈τ U

L
i +

∑
τi∈τHI UH

i + 1 ≤ 3
ρM + 1

ρM + 1 ≤
4M M−1

4M + 1 ≤ M . Similarly, s ≤ 3 and ρ = 4M
M−1 ,

together with Lemmas 10 and 11 guarantee an upper bound
for the overall processor requirement in the critical state as
4
∑

τi∈τHI UH
i +1 ≤ 4

ρM+1 ≤ 4M M−1
4M +1 ≤ M . Theorem

3 follows.

Note that Li et al. [6], [7] proved that for implicit-deadline
tasks, their algorithm achieves a capacity augmentation bound
of 2+

√
2 ≈ 3.4 for high-utilization tasks and 11M

3M−3 ≈ 3.7 for
tasks in general. Our algorithm’s capacity augmentation bound

increases only slightly compared with their results, even as the
tasks become significantly more complex.

VII. EXPERIMENTS

We evaluate our algorithm in terms of the acceptance ratio
(the ratio of schedulable task sets to total task sets generated)
and computation time. The program is written in Python and
runs on a computer with a 3.6GHz 8-Core Intel Core i7 CPU
and 64GB of RAM.

A. Task Generation Procedure
We define normalized utilization as the ratio of total utiliza-

tion to M . Let {UL
norm, UH

norm} and {UL, UH} denote the
normalized and total utilization in typical and critical states,
respectively. Then, UH

norm = UH

M and UL
norm = UL

M . During
task set generation, UL

norm ∈ [0.2, 1.0], UH
norm ∈ [0.2, 1.0] and

M ∈ {16, 32, 64} are input parameters. For each combination
of UL

norm, UH
norm and M , we generated 500 task sets.

We generate two types of task sets: those mainly consisting
of high-utilization tasks and those composed of relaxed-
deadline DAG tasks in general. The generation process is
as follows. We choose integer N uniformly from [2, ⌊UL⌋).
After which, we choose integer |τHI | uniformly from
[1,min{N, ⌊UH⌋}), to ensure a reasonable number of HI
tasks for any {UL, UH}. Then, we have |τLO| = N − |τHI |.
Without loss of generality, we let τHI = {τ1, τ2, ..., τ|τHI |}
and τLO = {τ|τHI |+1, τ|τHI |+2, ..., τN} during the
rest of the task generation process. After N , |τLO|
and |τHI | are obtained, we use the Dirichlet-Rescale
algorithm [29] to generate utilization vectors based
on {UL, UH}. In the evaluation of high-utilization
tasks, UH

i for each HI task is obtained by calling
DRS(|τHI |, UH , upper bounds = None, lower bounds =
uminH) [29], where uminH = (1, 1, ..., 1). After
determining UH

i , we let (UL
1 , U

L
2 , ..., U

L
N ) =

DRS(N,UL, upper bounds = umaxL, lower bounds =
uminL). uminL = (0, 0, ..., 0, 1, 1, ..., 1) with the first |τHI |
elements as 0 and the last |τLO| elements as 1. This
configuration ensures that every LO task has UL

i ≥ 1.
umaxL = (UH

1 , UH
2 , ..., UH

|τHI |, U
L, UL, ...UL), where the

last |τLO| elements are set to UL, and the ith (i ∈ [1, |τHI |])
element is set to UH

i since any HI task should satisfy
UL
i ≤ UH

i . In the evaluation of general task sets, we change
lower bounds to None during the generation of utilization
vectors. Next, we determine CL

i , CH
i , LL

i , LH
i , Ti, and Di

for each task. We uniformly choose integers from [10, 1000]
and [1, Di) as Di and Ti, respectively. Subsequently, we
have CL

i = UL
i Ti and CH

i = UH
i Ti. For generating LH

i of
a HI task, we first select a random γ ∈ [0.1, 0.5], then let
LH
i = min{γDi, C

H
i }. For LL

i of a HI task, we first select
a random γ• ∈ [0.1, 0.9], then let LL

i = min{γ•LH
i , CL

i }.
Similarly, for LL

i of a LO task, we first select a random
β ∈ [0.1, 0.5], then let LL

i = min{βDi, C
L
i }.

B. Results
Figure 5 shows the acceptance ratios when Algorithm 2

is unaltered and when Algorithm 2 is modified by replacing
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(a) M = 16, high-utilization tasks (b) M = 16, general tasks

(c) M = 32, high-utilization tasks (d) M = 32, general tasks

(e) M = 64, high-utilization tasks (f) M = 64, general tasks

Fig. 5: Acceptance ratios when scheduling relaxed-deadline MC
tasks. Optimal− and Table II − UL

norm represent the results
when Algorithm 2 is unaltered and modified by replacing processor
assignment strategy for τHI

Hu with Table II (ρ = 4), respectively.

processor assignment strategy for τHI
Hu with Table II, under dif-

ferent UH
norm, UL

norm and M . Limited by space, we only show
the results when UL

norm = 0.2, 0.4 and 0.6. For the scheduling
of high-utilization tasks, Figures 5a, 5c and 5e show that
Algorithm 2 always has higher acceptance ratios than the
altered Algorithm 2 which is in line with our theory. Both
algorithms admit fewer task sets when UL

norm and UH
norm get

higher. For example, when M = 32, the acceptance ratios of
Optimal−0.4 for UH

norm = 0.4, 0.6 and 0.8 are approximately
100%, 76%, and 11%, respectively; and the acceptance ratios
of Table II − 0.4 are around 86%, 42%, and 5.6% for the
same values of UH

norm. When M = 32 and UH
norm = 0.6, the

acceptance ratios of Optimal−UL
norm and Table II−UL

norm

decrease by about 32% and 26%, respectively, when UL
norm

is increased from 0.2 to 0.6. The acceptance ratios of both
Algorithms drop as M increases, while Algorithm 2 changes
slower indicating a more steady performance. For instance,
with UH

norm = 0.6 and M increasing from 16 to 64, the
acceptance ratio of Optimal − 0.6 decreases from 58% to
42%, while that of Table II − 0.6 lowers from 31% to 12%.
Figures 5b, 5d and 5f show that the acceptance ratio for
general task sets changes little compared to high-utilization
task sets. In most cases, the acceptance ratios for general tasks
are slightly higher, which can be attributed to low-utilization

tasks. The experimental results show that our algorithm can
maintain a relatively high schedulability ratio. This provides
a foundation for future extensions of our algorithm to support
multi-criticality systems. We also observe that, although our
algorithms have a capacity augmentation bound of 4, a signifi-
cant portion of task sets remains schedulable even when UL

norm

or UH
norm exceeds 0.25. While this result does not necessarily

imply a capacity augmentation bound lower than 4, it is worth
investigation in future studies.

Fig. 6: Computation time of schedulability analysis. Each box dis-
plays the range between the first and third quartiles. The whiskers
cover the range between the 5th and 95th percentiles. The solid
square represents the mean and the horizontal bar is the median.

Figure 6 shows the analysis time of our algorithm (unal-
tered), with each box corresponding to a specific value of M
and N . The task generation process is slightly adjusted by
fixing N at 4, 8, or 12, and fixing UL

norm and UH
norm at 0.6,

while the rest remains. We observe that the computation time
increases with both M and N . For example, with N = 4,
and M increasing from 16 to 64, the mean of the analysis
time for high-utilization tasks increases from 0.3ms to 3.6ms.
With M = 16, and N increasing from 4 to 12, the mean
of the analysis time for high-utilization tasks increases from
3.6ms to 13.4ms. This result aligns with the time complexity.
The analysis time for general tasks is consistently lower than
that for high-utilization tasks. In all configurations tested, the
maximum analysis time remains below 45ms, demonstrating
that our algorithm is computationally efficient.

VIII. SUMMARY

In this paper, we have proposed a federated algorithm
for scheduling relaxed-deadline DAG tasks in dual-criticality
systems. We prove our algorithm has a capacity augmen-
tation bound of 4 for high-utilization tasks and 4M

M−1 for
relaxed-deadline tasks in general. We show that the federated
scheduling algorithm remains a useful strategy in reducing
the difficulty and complexity of schedulability analysis. This
advantage of federated scheduling is powerful in building
real-time scheduling algorithms, especially when coping with
complex systems like MC systems. With careful design, the
‘resource waste’ due to isolation can be negligible compared
to the pessimism-induced waste in task interference analysis.
We anticipate researchers working on the same task model
could conduct comparisons to either confirm or refute our
hypothesis. In our next step, we plan to extend our algorithm
to support more than two criticality levels.
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[4] R. Medina, É. Borde, and L. Pautet, “Scheduling multi-periodic mixed-
criticality dags on multi-core architectures,” in 2018 IEEE Real-Time
Systems Symposium (RTSS), 2018, pp. 254–264.
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