
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11, NOVEMBER 2024 3539

Batch-MOT: Batch-Enabled Real-Time Scheduling
for Multiobject Tracking Tasks

Donghwa Kang, Seunghoon Lee, Cheol-Ho Hong , Member, IEEE, Jinkyu Lee , Senior Member, IEEE,
and Hyeongboo Baek , Member, IEEE

Abstract—Targeting a multiobject tracking (MOT) system with
multiple MOT tasks, this article develops Batch-MOT, the first
system design that achieves both (G1) timing guarantee and (G2)
accuracy maximization, by utilizing batch execution that allows
multiple deep neural network (DNN) executions to perform
simultaneously in a single DNN inference resulting in significantly
decreased execution time without accuracy loss. To this end, we
propose an adaptable scheduling framework that allows run-
time execution behaviors deviated from our base scheduling
algorithm (i.e., nonpreemptive fixed-priority scheduling) without
compromising G1. Based on the adaptable framework, we then
develop 1) a run-time batching mechanism that finds and executes
a batch set of MOT tasks and 2) a run-time idling mechanism
that waits for the future releases of MOT tasks for batch
execution. Both run-time mechanisms can achieve G1 and G2
without incurring high run-time overhead, as they systematically
exploit the run-time execution behaviors allowed by the adaptive
framework. Our evaluation conducted with a real-world data
set demonstrates the effectiveness of Batch-MOT in improving
tracking accuracy while providing a timing guarantee compared
to the state-of-the-art real-time MOT system for multiple MOT
tasks.

Index Terms—Batch execution, multiobject tracking (MOT),
real-time scheduling, timing guarantee.

I. INTRODUCTION

AS MODERN autonomous vehicles (AVs) are equipped
with multiple cameras, they require performing multiple

multiobject tracking (MOT) tasks under limited computing
resources. Perception tasks, such as MOT are required to

Manuscript received 4 August 2024; accepted 4 August 2024. Date of
current version 6 November 2024. This work was supported in part by
the National Research Foundation of Korea (NRF) Grant funded by the
Korea Government (MSIT) under Grant 2022R1A4A3018824 and Grant
RS-2024-00438248; in part by the National Research and Development
Program through the National Research Foundation of Korea (NRF) funded
by Ministry of Science and ICT under Grant 2021M3H2A1038042. The work
of Hyeongboo Baek supported by the 2024 Research Fund of the University of
Seoul. This article was presented at the International Conference on Embedded
Software (EMSOFT) 2024 and the ESWEEK-TCAD special issue. This article
was recommended by Associate Editor S. Dailey. (Corresponding authors:
Jinkyu Lee; Hyeongboo Baek.)

Donghwa Kang is with the Department of Computer Science and
Engineering, Incheon National University, Incheon 22012, South Korea.

Seunghoon Lee and Jinkyu Lee are with the Department of Computer
Science and Engineerning, Sungkyunkwan University, Jongno 03063,
South Korea (e-mail: jinkyu.yi.3@gmail.com).

Cheol-Ho Hong is with the Department of Intelligent Semiconductor
Engineering, Chung-Ang University, Dongjak 06974, South Korea.

Hyeongboo Baek is with the Department of Artificial Intelligence,
University of Seoul, Dongdaemun 02504, South Korea (e-mail:
hbbaek@uos.ac.kr).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TCAD.2024.3443002, provided by the authors.

Digital Object Identifier 10.1109/TCAD.2024.3443002

complete their execution before specified deadlines because
AVs’ safety-related functions for path planning and vehicle
control heavily rely on the timely perception, e.g., deter-
mining the time-to-collision with pedestrians and cars ahead
as extensively discussed in the previous studies [1], [2],
[3], [4]. Additionally, it is widely acknowledged that low
accuracy in the perception tasks also compromises the safety
of AVs [2], [3]. Therefore, an MOT system with multiple
MOT tasks must achieve two goals simultaneously for every
MOT task: 1) (G1) timing guarantee and 2) (G2) accuracy
maximization.

The deep neural network (DNN)-based MOT approaches
are increasingly deployed in modern AVs [5], [6], [7], [8], [9].
However, it is challenging to fully utilize them in order to
achieve G1 and G2 for an MOT system with multiple MOT
tasks due to the inherent tradeoff between G1 and G2. A
recent study developed a scheduling framework that provides
different execution options by efficiently utilizing the control
knob of processing either a full-size or a down-scaled input
image, which is the only existing study that addresses both
G1 and G2 for multiple MOT tasks [3]. However, this control
knob has its tradeoff; ensuring G1 might compromise G2 by
necessitating downscaled image processing.

To overcome the tradeoff between G1 and G2, we utilize
batch execution for multiple MOT tasks, which, supported
by modern DNN models, concurrently processes multiple
inputs in one DNN inference reducing execution time without
accuracy loss by optimizing GPU resources [4], [10], [11].
As shown in Fig. 1(a) of the experiment results for a GPU
of Tesla V100 (comparable to the NVIDIA Orin system-
on-chip (SoC) providing similar GPU capability for Tensor
core operations [12]) with the state-of-the-art DNN model
(i.e., YOLOX [13]), 1.0 time unit taken for processing 12
full-size (size of 672 × 672) images individually (one by
one) decreases to 0.46 time unit with batch execution without
accuracy loss (maintaining 41%). Notably, this processing time
is even smaller than 0.74 time unit taken for processing 12
down-scaled (size of 256 × 256) images individually (one by
one) with accuracy drop to 17.7%. This is because it maintains
nearly the same DNN inference time (see ii. in Fig. 1(b) for
19–21 ms) until the GPU reaches resource saturation, which
occurs when processing more than ten input images for batch
execution. On the other hand, the execution times of the other
parts (to be detailed in Section II) linearly increase with the
number of input images in a batch. We conducted the same
experiments on a GPU-enabled embedded board (i.e., NVIDIA
Xavier SoC [14]) and observed that it can accommodate two

1937-4151 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 06,2024 at 23:54:21 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4730-950X
https://orcid.org/0000-0002-2332-1996
https://orcid.org/0000-0001-9518-3556

3540 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11, NOVEMBER 2024

0

0.5

1

1 2 3 4 5 6 7 8 9 10 11 12

Ex
ec

ut
io

n
tim

e (
no

rm
al

iz
ed

)

Number of images

w/o batch (672×672)
w/o batch (256×256)
w/ batch (672×672)

0.08
0.06

1

0. 46

0. 74

MOTA
(672 672): 41.0%
(256 256): 17.7%

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12

Ex
ec

ut
io

n
tim

e
(m

s)

Number of images

Batching(CPU)+image transfer from CPU to GPU
Model inference(GPU)
Postprocessing for detection(CPU)
Association(CPU)

i.
ii.
iii.
iv. Resource

saturation

(a) (b)

Fig. 1. Execution times for different number of input images of an
MOT system with YOLOX on a Tesla V100 GPU. (a) Total execution.
(b) Decomposition of batch execution.

input images (see Fig. 6(d) for 36–38 ms) for a batch execution
before the resource saturation.

Motivated by the shorter execution time by batch execution
without accuracy loss, we target a set of MOT tasks, in which
G1 is compromised by processing the original DNN workloads
(i.e., full-size image) individually1 but is not compromised by
processing the reduced DNN workloads (i.e., the down-scaled
image that compromises G2) individually. Then, we consider
the individual execution with the reduced DNN workloads in
default and aim at performing batch execution with the original
DNN workloads from multiple MOT tasks as frequently as
possible at run-time, such that both G1 and G2 are achieved;
this entails the following challenges.
C1: To determine the batch set to execute, we require an

online mechanism to find feasible batch sets, along
with run-time information on active MOT tasks, which
results in significant run-time overhead; thus, a new
scheduling framework with the low run-time overhead is
essential.

C2: While batch execution can expedite overall processing,
it may delay specific tasks due to factors like priority
inversion (to be detailed in Fig. 4 in Section V), neces-
sitating a runtime mechanism (based on the answer to
C1) with a schedulability test to ensure the timely task
execution.

C3: Since, any work-conserving scheduling cannot yield any
batch execution under a situation where there is only one
active task, we need a run-time idling mechanism (based
on the answer to C1) that accelerates the batch execution
for the situation while ensuring the timely execution of
every task (based on the answer to C2).

In this article, we propose Batch-MOT, the first system
design to achieve G1 and G2 by utilizing batch execution for
multiple MOT tasks, which systematically tackles the chaining
challenges C1–C3. Batch-MOT employs nonpreemptive fixed-
priority scheduling (NPFP) as a base scheduling algorithm,
in which each MOT task is executed nonpreemptively and the
task priority is predefined.

To address C1, we analyse the offline schedulability test
that provides timing guarantees under NPFP. Based on the
analysis, we propose a new scheduling framework NPADAPT
(the nonpreemptive ADAPTable scheduling framework) that

1If not compromised, the computing resource is sufficient for achieving G1
and G2 without any advanced technique, which is not the scope of this article.

allows run-time execution behaviors to deviate from NPFP
without compromising timing guarantees achieved by the
offline schedulability test.

The strategy of NPADAPT to reduce runtime overhead
involves the offline identification of the amount of allowable
run-time execution behavior deviations (denoted by �k defined
in Section IV-B) from NPFP for each MOT task, providing
an interface for developing a runtime batching mechanism that
incurs low runtime overhead without compromising timing
guarantees.

As to C2, we develop a run-time batching mechanism
NPFPB (NPFP with batch execution) based on NPADAPT.
It finds a set of MOT tasks with a low run-time overhead,
such that executing the set as a batch does not compro-
mise the timely execution of any task. This is achieved by
systematically exploiting the properties to be discussed in
Section III and the run-time execution behaviors allowed by
NPADAPT.

To address C3, we propose an advanced run-time batching
mechanism with an idling scheme NPFPBI (NPFPB with
idling), developed on top of NPFPB. NPFPBI further utilizes
the run-time execution behaviors allowed by NPADAPT and
determines the idling interval for each MOT task to wait for
the future release(s) of the other MOT tasks to be executed as
a batch, without incurring much run-time overhead. The rela-
tionship among NPADAPT, NPFPB, and NPFPBI is described
in Figure S.1 in the supplement [15].

We implemented Batch-MOT and evaluated it using an
open MOT data set of the autonomous driving system.
Our evaluation demonstrates that Batch-MOT exhibits higher
tracking accuracy and lower run-time overhead without
compromising timing guarantee, compared to the only exist-
ing study addressing both G1 and G2 for multiple MOT
tasks [3].

We clarify our novelty and contribution along with an
explanation of related work as follows.

1) To the best of our knowledge, Batch-MOT is the first
study providing a strict timing guarantee for batch DNN
execution of multiple (camera) tasks. Even extending
our interest to general DNN beyond MOT, the existing
studies address different problems from ours. That is,
[2], [3], [11], [16], [17] do not deal with a timing guaran-
tee for batch DNN execution; [4], [18] are designed for
single-camera (i.e., single-task) systems; and [10], [19]
aim at improving the overall FPS or minimizing the
deadline miss ratio, therefore not addressing strict timing
guarantees.

2) Batch-MOT enables the assurance of timing guaran-
tees through a simple online test with low scheduling
cost despite the complicated impact of batch DNN
execution (both with/without idling) on the timing
guarantee. This is achieved by a) the novel design
of the scheduling frameworks NPADAPT, NPFPB,
and NPFPBI (to be detailed in Sections IV–VI,
respectively) and b) the mathematical foundation of
their timely correctness, both of which are highly
challenging.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 06,2024 at 23:54:21 UTC from IEEE Xplore. Restrictions apply.

KANG et al.: Batch-MOT: BATCH-ENABLED REAL-TIME SCHEDULING FOR MULTIOBJECT TRACKING TASKS 3541

YOLO

YOLOTask1

Task2

Task3

Task4

Frame input

Batch-enabled scheduler

Queue Idling &
batch decision

|B|=2

|B|=3

|B|=4

Detector Tracker

672 x 672

IoU Matching
672 x 672

Task1

256 x 256
detected objects

Batch
execution

Individual
execution

256256

672
672

Batch-enabled MOT execution pipeline

IoU Matching

Fig. 2. Overview of Batch-MOT

II. OVERVIEW OF BATCH-MOT

As illustrated in Fig. 2, the core design features of Batch-
MOT include the batch-enabled MOT execution pipeline and
the batch-enabled scheduler to be detailed in this section.
The MOT execution pipeline and scheduler are implemented
as separate threads, and they communicate with each other
by exchanging messages through the shared memory. The
workflow of Batch-MOT is as follows. Each input frame of
the MOT tasks is forwarded to a ready queue (1 in Fig. 2).
Once the batch-enabled scheduler determines the idling time
and batch size of MOT tasks (2), some MOT tasks in
the ready queue are combined into a batch or no batch is
constructed according to the idling and batch decision (3).
Then, detection (4) and association (5) are conducted
sequentially for either batch or individual execution.

A. Batch-Enabled MOT Execution Pipeline

In the batch-enabled MOT execution pipeline, the front-
end DNN-based detector identifies the position and size of
each object’s bounding box in the input frame and sends
the detection information to the back-end tracker. The tracker
then conducts an association to match each detected object
with one of the existing objects in the previous frame (called
tracklet) based on the intersection over union-based (IoU-
based) matching and updates the tracking information for the
matched tracklet.

For the detector, Batch-MOT adopts any existing stand-
alone DNN models (e.g., the YOLO series [13], [20]) that
can accept variable input image sizes determining the tracking
accuracy as shown in Fig. 1(a). The batch MOT execution
pipeline supports two types of execution: 1) individual and
2) batch execution. For an input image of the size of 672×672,
the individual execution scale-downs the input image to the
size of 256×256. Then, it conducts the detection of the MOT
tasks and shows decreased execution time at the expense
of sacrificing the tracking accuracy. In a batch execution,
multiple input images with the original size of 672×672
are combined in a batch for DNN inference, and it is
transferred from the CPU to GPU memory [i. in Fig. 1(b)].
Then, the DNN inference is conducted on the GPU to detect
candidate objects [ii) in Fig. 1(b)], and the postprocessing,
such as nonmaximum suppression (NMS) [20] is performed
on the CPU to extract high-confident objects among detected
candidates [iii) in Fig. 1(b)]. As the tracker uses IoU-based
matching, it compares the position and size of tracklets with
the objects detected in the current frame on a one-to-one

basis and matches two objects whose size of overlapping
region is greater than a given threshold on the CPU. In
the case of batch execution, after detection is performed for
multiple MOT tasks, the associations for the batch are then
performed sequentially on the CPU [iv) in Fig. 1(b)]; however,
if the time cost for interprocess communication (IPC) on the
platform is relatively low compared to the execution time of
an association, the associations can be executed in parallel
across multiple CPUs using multiprocessing, which decreases
the overall execution time.

B. Batch-Enabled Scheduler

Batch-MOT supports a thread-level scheduler invoked when
an MOT task is released or completed. The proposed batch-
enabled scheduler operates as a background daemon and
communicates with the MOT execution pipeline through the
shared memory. To make Batch-MOT capable of addressing
C1–C3, the batch-enabled scheduler is designed as follows.

To tackle C1–C3, Batch-MOT needs to implement a run-
time batch decision mechanism that does not compromise
timing guarantees while maintaining the low run-time over-
head. This is challenging because batch execution affects the
behavior of multiple tasks, including i) the target task; ii) the
lower priority tasks; and iii) the higher priority tasks. In
other words, the batch execution of given B can change the
execution of i), ii), and/or iii), and the impact of one is different
from that of the others. Considering all the possible execution
variations of batch executions and their influences on the other
tasks at every scheduling decision may cause prohibitively
high run-time overhead, which has not been addressed in the
previous study [3].

To overcome the challenge, we first analyse the underlying
principle of our base scheduling algorithm NPFP and its
schedulability analysis that judges the timing guarantee of the
given task τk by considering i), ii), and iii) to be detailed in
Section IV-A. We then develop a new scheduling framework,
NPADAPT, which enables the run-time execution behaviors of
i), ii), and iii) deviated from NPFP while preserving the
schedulability guaranteed under NPFP, by associating the
run-time execution behaviors with the schedulability test to
be detailed in Section IV-B. By using the run-time execution
behaviors with the properties to be discussed in Section III,
the scheduler finds and executes schedulable batch sets under
work-conserving scheduling (addressing C1 and C2 to be
detailed in Section V) and beyond work-conserving scheduling
(addressing C1 and C3, to be detailed in Section VI), with the
low run-time overhead.

III. SYSTEM MODEL

We consider an MOT system with multiple DNN-based
MOT tasks τ = {τi}ni=1 [3] on a platform equipped with
multiple CPUs and a single GPU. As an input video frame is
provided periodically, an MOT task τi is considered a periodic
real-time task with a timing constraint. That is, an MOT task
τi invokes a series of jobs Ji, each separated by exactly Ti

time units; once a job of τi is released at t, it should finish
its execution no later than its deadline t + Ti. The period of

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 06,2024 at 23:54:21 UTC from IEEE Xplore. Restrictions apply.

3542 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11, NOVEMBER 2024

each task is not necessarily the same, which makes it possible
to address the situation where the frame rate of each camera
varies based on its intended use (e.g., side-facing cameras
typically operate at lower rates while forward-facing cameras
operate at higher rates [1]); of course, our task model also
accommodates a set of tasks with the same period. A job is
said to be active at t, if it has remaining execution at t. Let τ(t)
denote a set of tasks, each of whose job is active at t. Let ri(t)
denote the earliest job release time of τi after t. Since, each
task is strictly periodic, it is possible to know ri(t) at t and
indicate the earliest job deadline of τi after t. Let LP(τk) and
HP(τk) denote a set of tasks whose priority is lower and higher
than τk, respectively. Notations are summarized in Table S.1
in the supplement.

An MOT task set τ is said to be schedulable under a target
scheduling framework if every job invoked by tasks in τ does
not miss its deadline when the framework schedules τ . Since,
there is at most one active job of τi ∈ τ at any time, we use a
task τi and a job of τi (denoted by Ji) interchangeably when no
ambiguity arises. As presented, we aim to achieve G1 and G2
for every MOT task. Let Ci denote the worst-case execution
time (WCET) of τi when each performs individual execution
(as opposed to batch execution).

To schedule a set of MOT tasks, we decide to apply the
following two policies. First, we enforce nonpreemptiveness
between the detection and association of each job; that is,
once a job of τi starts its execution, it sequentially performs
the execution of its detection and association subjobs without
any preemption. Second, we disallow individual MOT tasks
to be executed in parallel (if not a part of a batch), while
the associations of MOT tasks in a batch can be performed
simultaneously on multiple CPUs depending on the time cost
of IPC mentioned in Section II. The two policies not only
reduce the run-time scheduling overhead but also significantly
lower the complexity of considering various run-time scenar-
ios that incur different interference/blocking; therefore, the
policies make it possible to ensure offline timing guarantees
through a simple online test with low scheduling cost to be
developed in Sections IV–VI.

In this article, we process a down-scaled image (i.e.,
256×256) as the individual execution of each job, while we
do a full-size image (i.e., 672×672) as the batch execution
of a group of jobs. Let B denote a set of tasks whose jobs
will be executed as a batch, and let CB denote the WCET of
B, where |B| ≥ 2. We take the measurement-based approach
to derive the WCET of MOT tasks, using the experiment
setup in Section VII, with an in-depth discussion provided in
Section VIII.

In this article, we use the following properties of batch
execution.
P1: CB ≥ maxτi∈B Ci;
P2: CB ≤

∑
τi∈B Ci; and

P3: CB ≤ CB′ , if B ⊂ B′.
Batch execution of multiple MOT tasks dramatically short-

ens total inference latency by reducing the number of GPU
invocations. That is, individual execution requires as many
invocations as the number of given MOT tasks, while batch
execution performs inference with one invocation. Since, the

inference latency through a single GPU invocation increases
monotonically according to the DNN workload of the invo-
cation, P1 holds generally. Likewise, since DNN workload of
B will be increased if we add more job(s) to B, P3 holds
generally. Apart from P1 and P3, which typically holds,
P2 holds under the following condition: the benefit of reducing
the number of GPU invocations outweighs the increasing
workload (from a smaller total DNN workload of multiple
individual executions to a larger DNN workload of a single
batch execution). To satisfy the condition, we need to deploy
a detector that offers high optimization of batch execution. In
this article, we target the state-of-the-art detectors optimized
for batch execution that ensure P2 is met (e.g., YOLOX [13]
illustrated in Fig. 1, YOLOv5 [20], Faster-RCNN [21], and
others with varying sizes for both the downscaled and full-size
input images).

IV. DEVELOPING ADAPTABLE SCHEDULING FRAMEWORK

A. Base Scheduling Algorithm NPFP

In this article, we employ NPFP [3], [22] as a base
scheduling algorithm. As explained in Section III, once a
job of τi starts its execution, it sequentially performs the
execution of its detection and association subjobs without any
preemption (by NP). Also, each task’s priority is predefined,
and each job inherits its invoking task’s priority (by FP).
Whenever there is at least one active job while the computing
system is idle, NPFP selects the highest-priority active job
and starts its execution. NPFP is work conserving, meaning
that the computing system cannot be idle if there is at least
one active job; also, the vanilla NPFP does not allow any
batch execution.

The schedulability of a set of MOT tasks under NPFP is
guaranteed by the next lemma [3], [23], which is a sufficient
but not necessary schedulability test.

Lemma 1 (From [3], [23]): An MOT task set τ is schedu-
lable by NPFP, if Rk ≤ Tk holds for every τk ∈ τ , where
Rk (i.e., the response time of τk) can be calculated as follows.
Rk(x+1) is calculated by (1) sequentially with x = 0, 1, 2, . . .,
starting from Rk(0) = Ck +∑

τh∈HP(τk)
Ch + maxτj∈LP(τk) Cj,

until Rk(x+1) = Rk(x) (implying Rk = Rk(x)) or Rk(x+1) >

Tk (implying no bounded Rk)

Rk(x+ 1) = Ck +
∑

τh∈HP(τk)

⌈
Rk(x)

Th

⌉

· Ch + max
τj∈LP(τk)

Cj. (1)

Proof: Here, we summarize the proof in [3] and [23].
Consider the following situation.

1) The first job of τk and every first job of tasks whose
priority is higher than τk are released at t0.

2) A job of a task whose Ci is the largest among tasks
whose priority is lower than τk is released right before
t0.

3) The following jobs of τk and those of tasks whose
priority is higher than τk are released periodically.

It was proven that one of the jobs of τk released under the
situation (but not necessarily the first job of τk released at t0)
yields the largest response time of τk [22].

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 06,2024 at 23:54:21 UTC from IEEE Xplore. Restrictions apply.

KANG et al.: Batch-MOT: BATCH-ENABLED REAL-TIME SCHEDULING FOR MULTIOBJECT TRACKING TASKS 3543

O1 & O2 hold
DV1 & DV2
are impossible

DV3 & DV4
are impossiblee impoare mpospm

O1 & O2 hold
DV1 & DV2
are allowed

DV3 & DV4
are allowed

(a) (b)

Fig. 3. Properties of NPFP and NPADAPT. (a) NPFP (b) NPADAPT.

Then, it is trivial that the response time of the first job of τk

under the situation is upper-bounded by Rk(x) that satisfies (1).
The proof of [3, Lemma 1] proves that the response time of
the (x+ 1)th job of τk cannot be larger than that of the xth job
(where x ≥ 1), if Rk ≤ Tk holds with (1), meaning there is no
self-pushing phenomenon issue [22] for τk if Rk ≤ Tk holds
with (1).

B. Adaptable Scheduling FrameworkNPADAPT

Once Lemma 1 deems τ schedulable, we can guaran-
tee timely execution of τ scheduled by NPFP. However,
the accuracy of MOT tasks in τ scheduled by NPFP
cannot be maximized, because every job under NPFP
performs individual execution with a down-scaled image (as
opposed to batch execution of multiple jobs with a full-size
image). Therefore, targeting τ deemed schedulable under the
vanilla NPFP (that does not employ batch execution), we
want to maximize the MOT accuracy by performing batch
execution as much as possible without compromising the
schedulability.

However, a batch execution of a set of multiple jobs easily
compromises each job’s timely execution achieved by the
individual execution of corresponding jobs. For example, if
a higher-priority job of τi and a lower-priority job of τj are
executed as a batch, the execution time of the batch could be
larger than that of the job of τi solely (by P1), which may
yield the deadline miss of the job of τi. Therefore, we need to
identify which run-time execution behaviors (caused by batch
execution) that deviate from NPFP do not compromise the
schedulability.

To establish boundaries of run-time execution behavior devi-
ation (e.g., execution time increment due to batch execution,
intentional idling for batch execution) without compromising
the schedulability, we target a task set that satisfies Lemma 1
and analyse how Lemma 1 guarantees the schedulability under
NPFP. To this end, we focus on a job of τk that is released
and finished at tr and tf , respectively. First, by the property
of the nonpreemptiveness of NPFP, a lower-priority job can
block the execution of a higher-priority job only when the
former starts its execution before the release of the latter. As
addressed by the third term of the RHS of (1), the following
holds in [tr + maxτj∈LP(τk) Cj, tf) under NPFP, illustrated in
Fig. 3(a).
O1: Except the execution of the job of τk and jobs with

higher priority than τk, any other run-time behav-
ior (e.g., other jobs’ execution, the system idling) is
disallowed.

Second, after the lower-priority blocking, the only possible
execution behaviors that affect the schedulability of the job
of τk are the execution of the job of τk itself and jobs with

higher priority than τk. As addressed by the first two terms of
the RHS of (1), the following holds in [tr+maxτj∈LP(τk) Cj, tf)
under NPFP if Lemma 1 holds. This is illustrated in
Fig. 3(a).
O2: The amount of execution of the job of τk and jobs

with higher priority than τk does not exceed Ck +∑
τh∈HP(τk)

�([tf − tr]/Th)	 · Ch.
Considering the two properties, we define a class of

the nonpreemptive scheduling algorithms with the minimum
requirements, which 1) allows run-time execution behavior
deviated from NPFP to be potentially utilized for batch
execution and 2) does not compromise the schedulability under
NPFP guaranteed by Lemma 1.

Definition 1: We define NPADAPT associated with given
{�k≥0}τk∈τ (the nonpreemptive ADAPTable scheduling
framework), as any nonpreemptive scheduling algorithm in
which every job of τk ∈ τ (that is released and finished at tr
and tf , respectively) satisfies the following features, which are
illustrated in Fig. 3(b).
F1: In [tr +�k, tf), O1 holds.
F2: In [tr +�k, tf), O2 holds.

Since, F1 and F2 are the only requirements, NPADAPT with
given {�k} can accommodate the following possible run-time
execution behaviors deviated from NPFP as long as F1 and
F2 hold. Recall that Ci for each τi is the WCET when its job
performs individual execution with a down-scaled image (as
opposed to batch execution of multiple jobs with a full-size
image).

1) In [tr + �k, tf), (DV1) the job of τk may execute for
more than Ck.

2) In [tr+�k, tf), (DV2) a job of τh ∈ HP(τk) may execute
for more than Ch.

3) In [tr, tr+�k), (DV3) a job of τj ∈ LP(τk) executes for
more than Cj.

4) In [tr, tr + �k), (DV4) the computing system becomes
idle even though there is an active job, meaning that
NPADAPT is not work conserving.

The above run-time execution behaviors will be used
for the run-time batching mechanism to be explained in
Sections V and VI. We would like to emphasize that
DV1–DV4 are run-time execution behaviors deviated from
NPFP, as NPFP does not allow them in the corresponding
intervals; in other words, NPFP disallows DV1 and DV2
in [tr + maxτj∈LP(τk) Cj, tf), and DV3 and DV4 in [tr, tr +
maxτj∈LP(τk) Cj).

Considering that NPFP satisfies O1 and O2 in [tr +
maxτj∈LP(τk) Cj, tf) if Lemma 1 holds, the following prop-
erty holds: for τ that is deemed schedulable by Lemma 1,
NPFP belongs to NPADAPT associated with {�k =
maxτj∈LP(τk) Cj}. From F1 and F2 for NPADAPT, we can easily
derive the schedulability analysis of NPADAPT, by replacing
maxτj∈LP(τk) Cj with �k in Lemma 1.

Theorem 1: An MOT task set τ is schedulable by NPADAPT
associated with given {�k}, if Rk ≤ Tk holds for every τk ∈ τ ,
where Rk (i.e., the response time of τk) can be calculated as
follows. Rk(x + 1) is calculated by (2) sequentially with x =
0, 1, 2, . . . ,, starting from Rk(0) = Ck +∑

τh∈HP(τk)
Ch +�k,

until Rk(x+1) = Rk(x) (implying Rk = Rk(x)) or Rk(x+1) >

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 06,2024 at 23:54:21 UTC from IEEE Xplore. Restrictions apply.

3544 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11, NOVEMBER 2024

Tk (implying no bounded Rk)

Rk(x+ 1) = Ck +
∑

τh∈HP(τk)

⌈
Rk(x)

Th

⌉

· Ch +�k. (2)

Proof: Suppose that, a job of τk whose release time is
tr does not finish its execution until tr + Rk, although Rk

satisfies (2). First, we consider that the amount of execution
of τk and its higher-priority tasks in [tr +�k, tr + Rk) is not
larger than Ck +∑

τh∈HP(τk)
�(Rk/Th)	 · Ch. From (2), Rk −

�k = Ck +∑
τh∈HP(τk)

�(Rk/Th)	 · Ch holds. Therefore, if the
amount of execution of τk and its higher-priority tasks in [tr+
�k, tr + Rk) is not larger than Ck +∑

τh∈HP(τk)
�(Rk/Th)	 ·Ch,

the supposition contradicts F1. Second, we consider that the
amount of execution of τk and its higher-priority tasks in [tr+
�k, tr+Rk) is larger than Ck+∑

τh∈HP(τk)
�(Rk/Th)	·Ch, which

immediately contradicts F2. Therefore, the supposition always
contradicts.

Provided that �k ≥ maxτj∈LP(τk) Cj, no execution of τj

can occur within the interval [tr + �k, tf), where tr and tf
represent the release and finishing times of τk, respectively.
This condition ensures the sustainability property with respect
to {Ci}.

In the next section, we will develop a run-time batching
mechanism by utilizing the capability of NPADAPT in achiev-
ing the schedulability even in the presence of the run-time
execution behavior deviated from NPFP (as long as F1 and
F2 are satisfied). To this end, we will deploy the largest �k

for NPADAPT to accommodate a longer blocking period due
to batch execution or a longer idling for batch execution to
be performed in the future. Let �∗k denote the largest �k that
does not compromise the schedulability of τk in Theorem 1,
and let R∗k denote Rk with �∗k . We can easily verify that if τ is
deemed schedulable by Lemma 1, �∗k ≥ maxτj∈LP(τk) Cj holds
for every τk ∈ τ .

Offline Time-Complexity: We can find �∗k ∈ [0, Tk − Ck]
using the binary search. Hence, the time complexity to find
�∗k and R∗k for every τk ∈ τ using Theorem 1 is O(n2 · log(n) ·
max(Tk)), which is affordable as it is performed offline.

V. NPFPB : ENABLING RUN-TIME BATCHING

As C1 and C2 in Section I indicate, utilizing batch execution
necessitates a mechanism that efficiently finds a batch of jobs
to be executed at run-time without compromising timing guar-
antee. Therefore, this section develops a run-time mechanism
that achieves the following goals to address C1 and C2 in
Section I, respectively.

1) Perform batch execution as frequently as possible
(for high accuracy) while minimizing the run-time
complexity.

2) Do not compromise the schedulability of τ under
NPFP, guaranteed by Lemma 1.

To this end, we develop NPFPB (NPFP with batch execu-
tion) associated with given {�k}. We address the second goal
by making NPFPB follow F1 and F2 (implying NPFPB with
{�k} belongs to NPADAPT with {�k}). Then, the remaining
step is how to design a run-time batching mechanism that
addresses the first goal while satisfying F1 and F2.

, , , , }
- +t-

Test (Algo. 2 Line 2-3)

- +t-

No test owing to P2, , , , }

Not happen owing to NPFPB principle

t - +-

, , , , }

(t) + +t

Test (Algo. 2 Line 4-5), , , }

(a)

(b)

(c)

(d)

Fig. 4. Four batch execution cases for a set of tasks {τ1, τ2, τ3(=τk), τ4, τ5};
the smaller index, the higher priority. (a) Case 1: τk ∈ τ(t) and τk ∈ B.
(b) Case 2: τk ∈ τ(t), τk /∈ B, and τh ∈ HP(τk). (c) Case 3: τk ∈ τ(t), τk /∈ B,
and τh ∈ LP(τk). (d) Case 4: τk /∈ τ(t) (and therefore τk /∈ B).

As a first step to develop NPFPB associated with given
{�k}, we investigate how each batch execution affects the
schedulability under NPFP guaranteed by Lemma 1. From
now on, we interpret a run-time execution behavior deviated
from NPFP due to batch execution as a change of WCET
(as well as the actual execution time) of the highest-priority
task in the batch; therefore, the priority of a batch execution
inherits the priority of the highest-priority task in the batch.
For example, if a higher-priority job of τi and a lower-priority
job of τj are executed as a batch, we regard this situation as
an increase of WCET of the job of τi from Ci to CB where
B = {τi, τj}.

Consider τ deemed schedulable by Lemma 1. Suppose
we schedule τ by NPFP until t, but we are going to
execute a set of jobs as a batch (denoted by B) at t. We
investigate how the schedulability of a job Jk of the task
τk ∈ τ is affected differently according to the following four
cases, which are illustrated in Fig. 4 with a task set τ =
{τ1, τ2, τ3(=τk), τ4, τ5}, in which a smaller task index implies
a higher priority. Let τh denote the highest-priority task among
tasks in B; recall that τ(t) is a set of tasks, each of whose job
is active at t, and rk(t) is the earliest job release time of τk

after t.
1) Case 1 of τk ∈ τ (t) and τk ∈ B: The WCET of Jk is

changed from Ck to CB, e.g., B = {τ1, τ2, τ3(=τk)} in
Fig. 4(a).

2) Case 2 of τk ∈ τ (t), τk /∈ B, and τh ∈ HP(τk): The
longest time for a job of τh to delay the execution of Jk is
changed from Ch to CB, e.g., B = {τ1, τ2} in Fig. 4(b).

3) Case 3 of τk ∈ τ (t), τk /∈ B, and τh ∈ LP(τk): Jk

experiences an additional delay from a lower-priority job
of τh for up to CB, which does not occur under NPFP,
e.g., B = {τ4, τ5} in Fig. 4(c).

4) Case 4 of τk /∈ τ (t) (therefore τk /∈ B): The longest time
for a job of τh to delay the execution of Jk (to be released
at rk(t) > t) is changed from max(0, t + Ch − rk(t)) to
max(0, t+CB−rk(t)), e.g., B = {τ1, τ2, τ4} in Fig. 4(d).

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 06,2024 at 23:54:21 UTC from IEEE Xplore. Restrictions apply.

KANG et al.: Batch-MOT: BATCH-ENABLED REAL-TIME SCHEDULING FOR MULTIOBJECT TRACKING TASKS 3545

To make NPFPB associated with given {�k} preserve
schedulability even in the presence of batch execution for
Cases 1–4, our basic design principle for the run-time mech-
anism of NPFPB is as follows.

We enforce the prioritization policy of FP on batch
execution. To this end, we disallow the batch execution of
B at t, if there is an active job of τk /∈ B whose priority is
higher than the lowest-priority task in B. The principle has
three distinct advantages as follows.

DP1: To make the schedule under NPFPB as similar as
possible to that under the base scheduling algorithm
NPFP,

DP2: To eliminate Case 3, which a) not only reduces a
burden to check the schedulability affected by given
batch execution b) but also helps to comply with F1
by preventing a lower-priority job from executing in
the interval of interest of F1 (i.e., [tr +�k, tf)).

DP3: To narrow down the number of possible choices of
the set of tasks to be executed as a batch, i.e., from
2|τ(t)|−1 to |τ(t)−1|, which significantly reduces the
run-time overhead for checking different batch can-
didates as well as the offline measurement/analysis
overhead for obtaining CB for different B.

Under the design principle, we handle Cases 1–4 for a given
batch execution. For each case, we either derive a condition
for the batch execution not to compromise the schedulability
(for Cases 1 and 4) or verify that the batch execution cannot
compromise the schedulability (for Cases 2 and 3), both of
which are achieved by satisfying F1 and F2.

1) Case 1 of τk ∈ τ (t) and τk ∈ B: If t+CB ≤ rk(t)−Tk+Rk

holds, F2 is satisfied and the job of τk active at t does
not miss its deadline,2 as exemplified in Fig. 4(a).

2) Case 2 of τk ∈ τ (t), τk /∈ B, and τh ∈ HP(τk): The
longest time for jobs of tasks in B (at most one job per
task) to be executed is decreased from

∑
τh∈B Ch (in the∑

τh∈HP(τk)
�(Rk(x)/Th)	 · Ch term in the RHS of (1)) to

CB by P2, which cannot compromise the schedulability
of Jk that is active at t, as exemplified in Fig. 4(b).

3) Case 3 of τk ∈ τ (t), τk /∈ B, and τh ∈ LP(τk): This
case does not occur under the design principle DP2, as
illustrated in Fig. 4(c).

4) Case 4 of τk /∈ τ (t) (and Therefore τk /∈ B): If t +
CB ≤ rk(t) + �k holds, the batch execution of B does
not violate F1 and does not affect F2, as exemplified in
Fig. 4(d).

The formal proof of the conditions/statements in Cases 1–4
will be in the proof of Theorem 2.

Using Cases 1–4, Algorithm 2 presents NPFPB associated
with {�k}, which is performed at t at which there is at least one
active job while the computing system is ready to work. After
defining B(n) as a set of the n highest-priority tasks among
τ(t) in line 1, we check whether there are multiple active jobs
(i.e., two or more tasks in τ(t)) in line 2. We find the largest x,
such that B(x) does not compromise the schedulability of all
the other jobs, by testing schedulability test for online batching

2Recall that Rk is the response time of τk calculated by Theorem 1 for
given �k .

Algorithm 1 STOB(t, τ (t),B)

1: for τk ∈ τ do
2: if τk ∈ τ(t) and τk ∈ B then
3: if t + CB > rk(t)− Tk + Rk then return unschedulable
4: else if τk /∈ τ(t) then
5: if t + CB > rk(t)+�k then return unschedulable
6: end if
7: end for
8: return schedulable

Algorithm 2 NPFPB Scheduling Algorithm
At t, at which a job is finished while there is at least one active job,
or at which at least one job is released while the system is idle,

1: Let B(n) denote {τi(t)}ni=1, where τn(t) denotes the nth

highest-priority task in the set of active tasks at t (i.e., τ(t)) for
1 ≤ n ≤ |τ(t)|.

2: if |τ(t)| ≥ 2 then
3: Find the largest batch set B(x) for 2 ≤ x ≤ |τ(t)| such that

STOB
(
t, τ (t),B(x)

)
in Algorithm 1 returns schedulable,

using binary search; if such B(x) exists, execute a set of
active jobs invoked by tasks in B(x) as a batch, and return.

4: end if
5: Execute the highest-priority active job, and return.

(STOB) (t, τ (t),B(x)) in Algorithm 1 (in Line 3); we will
detail Algorithm 1, including why it is possible to apply the
binary search. If such B(x) exists, execute a set of active jobs
invoked by tasks in B(x) as a batch (in line 3). Otherwise (or
there is only one active job at t), execute the highest-priority
job (in line 5), which is the same as NPFP.

For a given B, STOB in Algorithm 1 checks whether every
task τk satisfies the conditions in Cases 1 and 4. Lines 2 and
3 correspond Case 1, while lines 4 and 5 correspond Case 4.
Note that, by the statements of Cases 2 and 3, we do not need
to check the cases for schedulability. Now, we present why it
is possible to apply the binary search to find the largest B(x)
in line 3 of Algorithm 2.

Lemma 2: Recall B(x) in line 1 of Algorithm 2. If
STOB(t, τ (t),B(x+1)) in Algorithm 1 returns schedulable,
then STOB(t, τ (t),B(x)) also returns schedulable.

Proof: Since, B(x) ⊂ B(x+1) holds, CB(x) ≤ CB(x+1) holds
by P3 in Section III. This implies that the opposite conditions
in lines 3 and 5 of Algorithm 1, respectively, satisfy rk(t) −
Tk + Rk ≥ t + CB(x+1) ≥ t + CB(x) and rk(t) + �k ≥ t +
CB(x+1) ≥ t + CB(x). Therefore, the lemma holds.

As we designed, NPADAPT subsumes NPFPB as follows.
Theorem 2: For τ with {�k ≥ maxτj∈LP(τk) Cj} that is

deemed schedulable by Theorem 1, NPFPB associated with
{�k} belongs to NPADAPT associated with {�k}.3

Proof: Suppose that a job of τk (denoted by Jk) scheduled
by NPFPB associated with {�k} is released and finished at tr
and tf , respectively. We prove that Jk always satisfies F1 and
F2 of Definition 1, which proves the theorem.

First, we check whether F1 is satisfied. Since, NPFPB is
work conserving, it suffices to check (F1′) whether there is no

3Since Theorem 1 with �k = maxτj∈LP(τk) Cj is equivalent to Lemma 1, τ

deemed schedulable by Theorem 1 with �k ≥ maxτj∈LP(τk) Cj is also deemed
schedulable by Lemma 1 (i.e., NPFP-schedulable).

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 06,2024 at 23:54:21 UTC from IEEE Xplore. Restrictions apply.

3546 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11, NOVEMBER 2024

execution of lower-priority jobs in [tr +�k, tf). We consider
four cases.

(Case F1a): If a lower-priority job of τj starts its execution
at t (< tr) as individual execution, it will finish its execution
no later than t + Cj (< tr + Cj). Therefore, as long as �k ≥
maxτj∈LP(τk) Cj holds, F1′ holds.

(Case F1b): If a batch (denoted by B), including a lower-
priority job of τj starts its execution at t (< tr), it will finish
its execution no later than t + CB (< tr + CB). By line 5 of
Algorithm 1, t+CB ≤ tr+�k holds, meaning that F1′ holds.

(Case F1c): If a lower-priority job of τj starts its execution
at t (≥ tr) although Jk is not finished until t, it violates line 5
of Algorithm 2.

(Case F1d): If a batch (denoted by B), including a lower-
priority job of τj starts its execution at t (≥ tr), we consider
two subcases: (i) B’s priority is lower than τk, and ii)
otherwise. Recall that B has the priority of the highest-priority
task in B; so, the entire execution of B has equal or higher
priority than τk. Therefore, i) violates line 5 of Algorithm 2,
and ii) does not violate F1 since it is regarded as an execution
whose priority is not lower than τk.

Second, we check whether F2 is satisfied with four cases.
(Case F2a): We consider there is no batch execution in

[tr, tf). Similar to the proof of Lemma 1 for NPFP, the
amount of execution of τk and its higher-priority tasks in [tr+
�k, tf) is maximized when all the jobs of τk and its higher-
priority tasks are released at tr. In this worst-case situation,
F2 trivially holds.

(Case F2b): We consider a batch (denoted by B) starts its
execution at t (< tr) (and therefore B cannot include τk). Then,
the batch execution will finish its execution no later than t+CB
(< tr + CB). By line 5 of Algorithm 1, t + CB ≤ tr + �k

holds, meaning that the batch execution cannot contribute to
higher-priority execution in [tr +�k, tf).

(Case F2c): We consider a batch (denoted by B) that does
not include τk starts its execution at t (≥ tr). Then, the
WCET of B is no larger than the sum of the corresponding
individual WCET (i.e., CB ≤

∑
τh∈B Ch) by P2. This is

equivalent to reducing the execution time of some tasks
{τh ∈ B}, such that CB =

∑
τh∈B C′h, where C′h denotes the

reduced execution time of τh. Therefore, the batch execution
does not compromise the bounded higher-priority execution
of Case F2a. Note that, the existence of τj belonging to both
B and LP(τk) may compromise the bounded higher-priority
execution due to additional interference contribution by a
lower-priority task τj; however, NPFPB disallows to execute
a batch that belongs to such τj.

(Case F2d): We consider a batch (denoted by B) that
includes τk starts its execution at t (≥ tr). Different from
Case F2c, it is possible for a task whose priority is lower
than τk to be included in B due to τk ∈ B. Recall that B has
the priority of the highest-priority task in B; so, the entire
execution of B has equal or higher priority than τk. Since
NPFPB is work-conserving nonpreemptive scheduling, the
execution of B finishes no later than t+CB, which is no later
than rk(t)− Tk + Rk = tr + Rk by line 3 of Algorithm 1. We
consider two cases: 1) tf = tr +Rk and 2) tf < tr +Rk. In the

first case, if we apply F1, the amount of execution of the job
of τk and jobs of its higher-priority task (by either individual
execution or batch execution B) in [tr + �k, tf) is upper-
bounded by Rk−�k. Therefore, violation of F2 contradicts (2)
in Theorem 1. In the second case, the amount should be strictly
less than Ck +∑

τh∈HP(τk)
�([tf − tr]/Th)	 · Ch; otherwise, (2)

should hold for a value (denoted by R′k = tf−tr) that is smaller
than Rk.

One may wonder whether the proof for Case F2d correctly
considers multiple jobs of τh ∈ B \ {τk} released after t. Since
B starts at t and finishes at tf , the job of a higher-priority
task τh released in (t, tf) will start at tf or later, which does
not belong to [tr + �k, tf), the interval of interest of F2.
Instead, the schedulability of the job of a higher-priority task
τh released in (t, tf) will be checked by Algorithm 1 when
τk = τh; if deemed unschedulable, the corresponding B cannot
be scheduled. Therefore, the proof is correct.

As shown in line 5 of Algorithm 1, a larger �k implies
a higher chance for the algorithm to allow the execution of
given B. Therefore, we will use the largest {�∗k} associated
with Theorem 1; we already explained how to calculate {�∗k}
in Section IV-B. Finally, we present the schedulability analysis
of NPFPB in the following theorem.

Theorem 3: τ is schedulable by NPFPB associated with
{�∗k} (i.e., the largest {�k} that makes τ schedulable by
Theorem 1), if �∗k ≥ maxτj∈LP(τk) Cj holds for every τk ∈ τ .

Proof: The theorem holds by Theorems 1 and 2.
Run-Time Complexity: At each t, which Algorithm 2

focuses on, we test the O(log(|τ(t)|)) batch sets by STOB,
each of which requires O(|τ |) time-complexity. Therefore, the
total run-time complexity is O(|τ | · log(|τ(t)|), which is much
lower than O(|τ |2 · |τ(t)|), the complexity of the existing study
for scheduling multiple MOT tasks in [3].

VI. NPFPBI : EXPLOITING IDLING FOR BATCHING

Although NPFPB efficiently finds and executes a set of
active jobs as a batch, it inherently cannot address the situation
where there is only one active job at t. Since, the situation
cannot be addressed by any work-conserving scheduling, we
need to develop a run-time idling mechanism that accelerates
batch execution to address C1 and C3 in Section I. To this
end, we develop NPFPBI (NPFPB with idling) with given
{�k}. Based on NPFPB, NPFPBI achieves the same goals:
1) maximizing the batch execution with minimum run-time
overhead, while 2) preserving the schedulability guaranteed by
Lemma 1.

Our design principles of the run-time idling mechanism of
NPFPBI are as follows.

1) To prevent idling from compromising F2, any idling
cannot be overlapped with any [tr +�i, tf) for any job
of τi released and finished at tr and tf , respectively.

2) Between the execution of a batch set at t and that of
the same batch set at t′ (> t), the latter cannot help
any job’s timely execution. Therefore, we restrict time
instant candidates at which a batch set starts its execution
after idling, to the time instants at which any job (to be
executed as a batch) is released.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 06,2024 at 23:54:21 UTC from IEEE Xplore. Restrictions apply.

KANG et al.: Batch-MOT: BATCH-ENABLED REAL-TIME SCHEDULING FOR MULTIOBJECT TRACKING TASKS 3547

t

{ }

t

{ }

t

{ }
idle

B

(a) (b) (c)

Fig. 5. Example scenario of the idling mechanism of NPFPBI in Algorithm 3. (a) Initialization (line 1). (b) Finding candidate tasks (lines 2–5). (c) Finding
the largest schedulable batch set (lines 6 and 7).

Algorithm 3 Idling Mechanism of NPFPBI

1: Set t′ ← rk(t)− Tk +�k, and τ ′(t)← ∅
2: for τi ∈ τ \ {τk} sorted by ri(t) do
3: if ri(t) ≤ t′ then set τ ′(t)← τ ′(t) ∪ {τi}, and

t′ ← min
(
t′, ri(t)+�i

)

4: else Exit the loop.
5: end for
6: Let τ ′n(t) denote the task with the nth earliest next job release

time after t among tasks in τ ′(t); r′n(t) denote the next job
release time of τ ′n(t) after t; and B′(n) denote {τ ′i (t)}ni=1, where
1 ≤ n ≤ |τ ′(t)|.

7: Find the largest batch set B′(x) ∪ {τk} for 1 ≤ x ≤ |τ ′(t)| such
that STOB

(
r′x(t),B′(x) ∪ {τk},B′(x) ∪ {τk}

)
in Algorithm 1

returns schedulable, using the binary search; if such B′(x)
exists, set tIDLE

end ← r′x(t) where tIDLE
end denotes the latest idling

time instant, and return.
8: Execute the active job of τk at t, and return.

3) Once we determine to perform batch execution at t after
idling, we include all the active jobs to the batch set to
be executed, which eases the satisfaction of F1 and F2
in the presence of idling.

Algorithm 3 presents the run-time idling mechanism of
NPFPBI at t, at which there is only one active job of τk

while the computing system is ready to work. Lines 1–5 find
τ ′(t) ⊂ τ , a set of candidate tasks to be executed with τk as
a batch after idling. We aim at calculating t′(> t), which is,
the latest time instant at which all of the next released jobs in
τ ′(t) and the active job of τk can idle without violating F1. t′ is
determined by the earlier time instant between rk(t)−Tk+�k

and the earliest one among ri(t) + �i for every τi ∈ τ ′(t).
Then, rk(t) − Tk + �k ≤ t′ and ri(t) + �i ≤ t′ hold for τk

and every τi ∈ τ ′(t), respectively, which helps to achieve the
first design principle by disallowing any job in the batch set
to start its execution after the interval of interest of F2 for
the job. In line 6, we define τ ′n(t) as the task with the nth

earliest next job release time after t among tasks in τ ′(t),
r′n(t) as the next job release time of τ ′n(t) after t, and B′(n)

as {τ ′i (t)}ni=1.4 In line 7, we find the largest x such that the
execution of a batch set of B′(x) ∪ {τk} does not compromise
the schedulability of all the other jobs. To this end, we test
STOB(r′x(t),B′(x)∪{τk},B′(x)∪{τk}) in Algorithm 1, meaning
that we check whether a batch set of B′(x)∪ {τk} can start its
batch execution at r′x(t) at which jobs of B′(x) ∪ {τk} are the
only active jobs; we will explain why it is possible to apply
the binary search. If such B′(x) ∪ {τk} exists, we reserve that

4For tasks with the same next job release time, a higher priority implies
an earlier next job release time.

a set of jobs invoked by tasks in B′(x)∪ {τk} will be executed
at r′x(t) by setting tIDLE

end ← r′x(t). Otherwise, we execute the
single active job at t immediately (in line 8), which is the same
as NPFP.

Fig. 5 presents an example scenario at the current time
instant t, at which an idling decision can be made with τk under
Algorithm 3. As an initialization, t′ and τ ′(t) are set to rk(t)−
Tk+�k and ∅, respectively, [line 1 of Algorithm 3, illustrated
in Fig. 5(a)]. Then, two tasks τa and τb will be released at t <

ra(t) and t < rb(t), and t′ and τ ′(t) are updated to ra(t)+�a

and τ ′(t) = {τa, τb}, respectively, [lines 2–5 of Algorithm 3,
illustrated in Fig. 5(b)]. Finally, B′(2) ∪ {τk} is determined
as a schedulable batch set according to STOB(r′2(t),B′(2) ∪
{τk},B′(2) ∪ {τk}), and then tIDLE

end is set to r′2(t) [lines 6–7 of
Algorithm 3 illustrated in Fig. 5(c)].

We present why it is possible to apply binary search in line 7
of Algorithm 3.

Lemma 3: Recall r′n(t) and B′(n) defined in line 6 of
Algorithm 3. If STOB(r′n+1(t),B′(n+1) ∪ {τk},B′(n+1) ∪
{τk}) in Algorithm 1 returns schedulable, STOB(r′n(t),B′(n)∪
{τk},B′(n) ∪ {τk}) also returns schedulable.

Proof: If we apply CB(n) ≤ CB(n+1) (from B(n) ⊂ B(n+1)

and P3 in Section III) and r′n(t) ≤ r′n+1(t) to the opposite
conditions in lines 3 and 5 of Algorithm 1, the proof is similar
to that of Lemma 2.

Including the idling mechanism in Algorithm 3, we present
the entire NPFPBI scheduling algorithm in Algorithm 4; note
that, tIDLE

end is set to −∞ when the system starts. In the case of
t < tIDLE

end (lines 1 and 2), there should not be any execution,
since the idling mechanism determines that all active jobs
will be executed at tIDLE

end , not at the current time instant t.
In the case of t = tIDLE

end (lines 3 and 4), we start to execute
all the active jobs as batch execution immediately, which is
determined by the idling mechanism. In the case of t > tIDLE

end
(lines 5 and 6), we consider two cases. First, if there is only
one active job when the computing system is ready to work,
we perform Algorithm 3. Second, if there is more than one
active job when the computing system is ready to work, we
perform Algorithm 2.

Then, we prove that NPADAPT subsumes NPFPBI as
follows.

Theorem 4: For τ with {�k ≥ maxτj∈LP(τk) Cj} that is
deemed schedulable by Theorem 1, NPFPBI associated with
{�k} belongs to NPADAPT associated with {�k}.

Proof: Suppose that, a job of τk scheduled by NPFPBI
associated with {�k} (denoted by Jk) is released and finished
at tr and tf , respectively. We prove that Jk always satisfies F1
and F2 of Definition 1, which proves the theorem.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 06,2024 at 23:54:21 UTC from IEEE Xplore. Restrictions apply.

3548 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11, NOVEMBER 2024

Algorithm 4 NPFPBI Scheduling Algorithm
At t, at which a job is finished while there is at least one active job,
or at which at least one job is released while the system is idle,

1: if t < tIDLE
end then

2: Any job cannot start its execution.
3: else if t = tIDLE

end then
4: Execute all the active jobs at t as a batch.
5: else if t > tIDLE

end then
6: if there is only one active job at t then Perform

Algorithm 3.
7: else Perform Algorithm 2.
8: end if

First, we check whether F1 is satisfied. Since, we add the
run-time idling mechanism to NPFPB, we focus on proving
that the idling mechanism does not compromise F1. By the
selection of τ ′(t) (in lines 1–5 of Algorithm 3) and the
selection of the time instant at which a batch execution starts
after idling (in line 7 of Algorithm 3), any batch execution
after idling cannot start its execution in [tr +�k, tf]. Also, a
batch execution after idling can be performed only if line 5
of Algorithm 1 guarantees that the execution finishes before
tr +�k. This proves the satisfaction of F1.

Second, we check whether F2 is satisfied. Since, the idling
mechanism complies with F1, we can check F2 when a
batch execution starts. This is achieved by calling Algorithm 1
by line 7 of Algorithm 3, which corresponds to line 3 of
Algorithm 2 for NPFPB. Therefore, the remaining proof is
similar to that for NPFPB in Theorem 2.

Finally, we present the schedulability analysis of NPFPBI
in the following theorem.

Theorem 5: τ is schedulable by NPFPBI associated with
{�∗k} (i.e., the largest {�k} that makes τ schedulable by
Theorem 1), if �∗k ≥ maxτj∈LP(τk) Cj holds for every τk ∈ τ .

Proof: The theorem holds by Theorems 1 and 4.
Run Time-Complexity: At each t, which Algorithm 3

focuses on lines 1–5 check at most |τ | tasks, and lines 6–8
test the O(log(|τ(t)|)) batch sets by STOB, each of which
requires O(|τ |) time complexity; hence, the total run-time
complexity of Algorithm 3 is O(|τ | · log(|τ(t)|). By the run-
time complexity of Algorithms 2 and 3, that of Algorithm 4 is
also O(|τ |·log(|τ(t)|), which is much lower than O(|τ |2 ·|τ(t)|)
for the existing study [3].

VII. EVALUATION

A. Experiment Setup

We consider four different computing systems. The first one
is equipped with Intel Xeon Silver 4215R CPUs @ 3.20 GHz,
251.5 GB RAM, and a Tesla V100 GPU. We also consider
three GPU-enabled embedded boards: 1) NVIDIA Jetson TX2;
2) Xavier; and 3) Orin. The MOT execution pipeline and
scheduler run on Python and Pytorch, and the model precision
is set to FP16; on the same experiment setting in Fig. 1, we
observed nearly the same tracking accuracy with FP32 owing
to the mixed precision training. As the object detector, we
consider the YOLO series [13], [20] trained with the COCO
Dataset [24]. We use SORT [6] as the object tracker of the
two-stage methods. The performance was evaluated using the

Waymo Open Dataset [25], the autonomous driving data set
collected by autonomous driving cars. For the evaluation, we
use the measured WCETs in Fig. 8.

B. Experiment Results

In this section, we demonstrate the effectiveness of the
proposed run-time batching and idling mechanisms in improv-
ing the tracking accuracy by comparing the following three
approaches that operate on the architecture of Batch-MOT.
Note that, we apply the rate monotonic (RM) [26] to FP, for
all the approaches in this section.

1) NPFP in Section IV-A, in which all the MOT tasks
perform individual execution with down-scaled images.

2) NPFPB in Section V, in which down-scaled and full-
size images are processed for the individual and batch
execution, respectively.

3) NPFPBI in Section VI, in which down-scaled and full-
size images are processed for the individual and batch
execution, respectively.

We also compare our approaches with the only existing
study that addresses G1 and G2 for multiple MOT tasks as
follows.

1) RT-MOT, a flexible MOT execution scheduling frame-
work on the architecture proposed in [3] with the YOLO
series and DeepSORT [5] as its detector and tracker.

For all the target approaches, we provide a run-time option
called the individual full-size execution policy (IFP). Under
IFP, each target approach performs a full-size execution at t
only if: i) an MOT task τi is active alone at t; ii) the full-size
execution (even with its WCET) of the only active task at t
can be completed by tnext (the earliest future release of any
task later than t), i.e., t+ Cfull

i ≤ tnext, where Cfull
i is the

WCET for the full-size execution of the task; and iii) if the
target approach is NPFPBI , the system is not idle at t under
NPFPBI , i.e., t < tIDLE

end in Algorithm 3. Conditions i) and ii)
ensure IFP improves accuracy through the full-size execution
without compromising timing guarantees of the other tasks.
Condition iii) ensures IFP can be incorporated into NPFPBI
without conflicting with its idling mechanism. Note that, RT-
MOT inherently employs IFP.

While the existing DNN-based MOD techniques
(e.g., [2], [10], and [11]) could be considered for comparison,
adapting them for the MOT systems would require new
contributions. For example, extending DNN-SAM [2] would
need alignment in tracking algorithm, ROI identification, and
other features of RT-MOT for fairness. Although DNN-SAM
is optimized for accuracy within the ROI, it requires two
separate DNN inferences: one for the ROI and another for
outside areas, hindering high overall accuracy. Executing two
DNN inferences not only doubles the computational tasks of
pre/postprocessing [as shown in i) and iii) of Fig. 1], but also
limits the benefits of increased GPU utilization from batch
execution.

Since, the approaches share the same offline schedulability
test in Lemma 1, we compare their tracking accuracy of the
task sets whose schedulability is guaranteed by the test. We
use multiple object tracking accuracy (MOTA) [27], a primary
metric to evaluate the tracking accuracy; tracking accuracy

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 06,2024 at 23:54:21 UTC from IEEE Xplore. Restrictions apply.

KANG et al.: Batch-MOT: BATCH-ENABLED REAL-TIME SCHEDULING FOR MULTIOBJECT TRACKING TASKS 3549

M
O

TA
 (%

)

0

20

40

Max MOTA

Full-size
execution ratio

1

0
70, 100

130, 130,
130, 130

190, 210, 230,
250, 270, 290

110, 150,
190, 230

w IFP
w/o IFP

RT-MOT RT-MOT

M
O

TA
 (%

)

0

20

40

Max MOTA

Full-size
execution ratio

1

0
160, 220

310, 310,
310, 310

460, 510, 560,
610, 660, 710

320, 380,
440, 500

w IFP
w/o IFP

RT-MOT RT-MOT

0
4
8

2 4 6 8 10 12Sc
he

du
lin

g
ov

er
he

ad
 (m

s)

Number of tasks

RT-MOT

X
av

ie
r

V
10

0

0

1.5

3

6.7
0.7

2.4
0.2

10

100

1000

1 2 4 6 8 10 12

In
fe

re
nc

e
tim

e
(m

s)

Number of images

FasterRCNN FasterRCNN
YOLOX YOLOX

XavierV100

(a) (b) (c) (d)

Fig. 6. Comparison of different approaches on YOLOX (a), (b), and (c), and different DNN models (d).

under MOTA is derived by counting miss detection, false
detection, and miss tracking; we obtained similar experimental
results using IDF-1 [27], another widely recognized metric for
the tracking accuracy. In addition, to evaluate the effectiveness
of resource utilization of each approach, we measure the ratio
of the number of full-size image executions to the total number
of the MOT executions (referred to as the full-size execution
ratio).

Fig. 6(a) and (b) compare the tracking accuracy and full-size
execution ratio of the four approaches using YOLOX on the
Tesla V100 and Jetson Xavier. Similar results were observed
for the Jetson TX2 and Orin (also with YOLOv5 [20]). We
consider four sets of MOT tasks [periods shown on the x-
axis in Fig. 6(a) and (b)] that pass the test in Lemma 1, but
schedulability is not guaranteed when all the tasks use full-size
input images. Note that, the two computing systems provide
different WCETs, resulting in different task periods in each set.
The bar and line in each graph represent the average MOTA
score and full-size execution ratio, respectively. The red dotted
line indicates the maximum achievable tracking accuracy.

As shown in Fig. 6(a) and (b), a higher full-size execution
ratio leads to higher accuracy. The accuracy of RT-MOT shows
a significant decrease when the full-size execution ratio is
low as observed in the third and fourth task sets of Fig. 6(a)
and (b). This decline is attributed to the unique approach of
RT-MOT, where it detects objects only in a partial region
(i.e., the region of interest) of the input image when the full-
size execution cannot be performed. In contrast, NPFPB and
NPFPBI consider the down-scaled entire region, making them
more resilient to a low full-size execution ratio. As the number
of tasks increases, the accuracy of RT-MOT dramatically
decreases for both the computing systems. However, NPFPB
and NPFPBI maintain high accuracy by securing the chance
of batch execution. In the case of a set of tasks with equal
periods (e.g., the fourth task set), NPFPB and NPFPBI
achieve maximum accuracy owing to the high chance of
batch execution. The IFP approach contributes significantly to
improving accuracy in both the computing systems.

Fig. 6(c) presents the run-time overhead of the schedul-
ing algorithm for NPFPBI and RT-MOT. As discussed in
Section VI, the run-time complexity of NPFPBI is O(|τ | ·
log(|τ(t)|), which is much lower than O(|τ |2 · |τ(t)|), the com-
plexity of RT-MOT. As the number of MOT tasks increases,
the difference between the run-time scheduling overhead of
NPFPBI and RT-MOT becomes larger. For example, the
run-time scheduling overhead of RT-MOT is about 12 times
(2.4/0.2) and 9.6 times (6.7/0.7) larger than that of NPFPBI

Individual execution (256 size)

t

Association
of (4)

ACET WCET

CPUs

GPU Detection of

BCET WCET

WCET of (4) BCET of
(association) (detection)

34.8ms 37.8ms

9.7ms 12.9ms

-4 5-9

Ex
ec

ut
io

n
tim

e
fo

ra
ss

oc
ia

tio
n

(m
s)

Detected objects
10-14 15-

(a) (b)

Fig. 7. CPU/GPU parallel execution example. (a) Varying WCET with the
different number of objects on Jetson Orin. (b) Varying association WCET.

for a set of 12 MOT tasks on the two considered systems,
respectively.

Fig. 6(d) shows the variation in average DNN inference
time (excluding pre/post processing) based on the number of
input images for batch execution, using different DNN models
and computing systems. YOLOX demonstrates GPU resource
saturation with more than the ten input images on Tesla V100
and two on Jetson Xavier, highlighting the effectiveness of
batch execution in reducing inference time; similar trends
were observed for YOLOv5. In contrast, Faster-RCNN [21]
saturates with a single input image due to its two-stage design,
which splits computation into region proposal and classifica-
tion, resulting in higher serialization during classification as
noted in [4].

VIII. DISCUSSION

CPU/GPU Parallelism: Contrary to Batch-MOT’s assump-
tion, consider CPU/GPU parallel execution where, at time t,
four associations of B(4) are executed in parallel on multiple
CPUs, while the another task τk is performed individually
on the GPU as shown in Fig. 7(a). If the WCET of B(4)’s
association (e.g., 12.9 ms) is less than the best case execution
time (BCET) of τk (e.g., 34.8 ms), then τk’s association can
be executed nonpreemptively, consistent with Batch-MOT’s
assumption. Our experiments confirmed that this condition
always holds. Then, we conducted the accuracy evaluation,
including CPU/GPU parallel execution on Jetson Orin without
modifying the Batch-MOT’s offline tests. The experiments
demonstrated that the CPU/GPU parallel execution did not
incur any deadline misses and resulted in a marginal accuracy
improvement (up to 0.81%) compared to the case without
CPU/GPU parallel execution (see Figure S.4(a) in supple-
ment). The reason for the marginal improvement is that,
as shown in Figure S.4(a), the average case execution time
(ACET) of the association (e.g., 9.7 ms) is much smaller than
that of detection, so the reduction in response time achieved
by CPU/GPU parallel execution is minimal.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 06,2024 at 23:54:21 UTC from IEEE Xplore. Restrictions apply.

3550 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11, NOVEMBER 2024

1 1 3 5

Ex
ec

ut
io

n
tim

e
(m

s)

672256

Batch size

= image size

Q1
Q3

Q1-1.5 (Q1-Q3)

Q3+1.5 (Q1-Q3)

Outlier: WCET

1 1 3 5
Batch size

672256 = image size

1 1 3 5

Ex
ec

ut
io

n
tim

e
(m

s)

672256

Batch size

= image size

1 1 2

Ex
ec

ut
io

n
tim

e
(m

s)

672256

Batch size

= image size

For real driving scenarios

Measured WCET
considering all
sensors and actuators

(a) (b) (c) (d)

Fig. 8. Execution time measurements on Waymo Dataset (a)–(c) and our
real-world driving scenarios (d).

Flexible WCET: Association compares objects detected in
the t-th frame with those in the (t−1)th frame, associating the
most similar pairs. Therefore, the WCET of association in the
t-th frame depends strictly on the number of detected objects
as shown in Fig. 7(b). If Batch-MOT splits an MOT task
into detection and association subtasks and allows scheduling
decisions between them, the WCET of the association subtask
(measured offline based on the number of objects) can be
dynamically determined by the number of objects detected in
the detection subtask. This approach would require additional
alters to the Batch-MOT’s current schedulability tests.

WCET Measurement: Fig. 8 shows the execution time
for the down-scaled (256×256) images and batch execution
of full-size (672×672) images for up to five MOT tasks
using YOLOX on the four computing systems evaluated in
Section VII. Measurements are with 1000 iterations to obtain
WCET [e.g., Outlier: WCET in Fig. 8(a)]; more details are
in Figure S.2 and Table S.2 in the supplement. The Waymo
Dataset was used for Tesla V100, Jetson Xavier, and Orin,
while real driving scenario videos were used for Jetson
TX2. Fig. 8(d) considers all the communication overheads,
including sensors (e.g., camera and LiDAR) and actuators.
Note that, Batch-MOT does not predict execution time at run-
time but uses offline WCET. Recent studies on offline WCET
of DNN execution [2], [3], [4], [11], [18] are widely accepted.
It is generally reasonable to assume an upper bound with
high confidence through intensive measurement plus a safety
margin.

IX. CONCLUSION

In this article, we proposed a novel system design, Batch-
MOT, that enables batch execution of multiple MOT tasks to
maximize the tracking accuracy while providing timing guar-
antees. Using a new scheduling framework, NPADAPT, which
allows run-time execution deviations with timing guarantees,
we developed a run-time batching mechanism, NPFPB, and
a run-time idling mechanism, NPFPBI . These mechanisms
efficiently find and execute MOT tasks as a batch without
compromising timely execution. Experiments demonstrated
that Batch-MOT improves the tracking accuracy over the
state-of-the-art real-time MOT systems while ensuring timing
guarantees.

REFERENCES

[1] M. Yang et al., “Re-thinking CNN frameworks for time-sensitive
autonomous-driving applications: Addressing an industrial challenge,”
in Proc. IEEE Real-Time Embed. Technol. Appl. Symp. (RTAS), 2019,
pp. 305–317.

[2] W. Kang et al., “DNN-SAM: Split-and-merge DNN execution for real-
time object detection,” in Proc. 28th IEEE Real-Time Embed. Technol.
Appl. Symp. (RTAS), 2022, pp. 160–172.

[3] D. Kang et al., “RT-MOT: Confidence-aware real-time scheduling
framework for multi-object tracking tasks,” in Proc. IEEE Real-Time
Syst. Symp. (RTSS), 2022, pp. 318–330.

[4] S. Liu et al., “Self-cueing real-time attention scheduling in criticality-
aware visual machine perception,” in Proc. IEEE Real Time Technol.
Appl. Symp. (RTAS), 2022, pp. 173–186.

[5] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime
tracking with a deep association metric,” in Proc. IEEE Int. Conf. Image
Process. (ICIP), 2017, pp. 3645–3649.

[6] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online
and realtime tracking,” in Proc. IEEE Int. Conf. Image Process. (ICIP),
2016, pp. 3464–3468.

[7] Y. Zhang, C. Wang, X. Wang, W. Zeng, and W. Liu, “FairMOT: On the
fairness of detection and re-identification in multiple object tracking,”
Int. J. Comput. Vis., vol. 129, no. 11, pp. 3069–3087, 2021.

[8] P. Chu, J. Wang, Q. You, H. Ling, and Z. Liu, “TransMOT:
Spatial-temporal graph transformer for multiple object tracking,” 2021,
arXiv:2104.00194.

[9] J. Pang et al., “Quasi-dense similarity learning for multiple object
tracking,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2021, pp. 164–173.

[10] H. Zhou, S. Bateni, and C. Liu, “S3DNN: Supervised streaming
and scheduling for GPU-accelerated real-time DNN workloads,” in
Proc. IEEE Real-Time Embed. Technol. Appl. Symp. (RTAS), 2018,
pp. 190–201.

[11] Y. Xiang and H. Kim, “Pipelined data-parallel CPU/GPU scheduling for
multi-DNN real-time inference,” in Proc. IEEE Real-Time Syst. Symp.
(RTSS), 2019, pp. 392–405.

[12] “NVIDIA Orin developer kit.” Accessed: Mar. 27, 2023. [Online].
Available: https://www.nvidia.com/ko-kr/autonomous-machines/
embedded-systems/jetson-orin/

[13] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “YOLOX: Exceeding YOLO
series in 2021,” 2021, arXiv:2107.08430.

[14] “NVIDIA xavier developer kit.” Accessed: Jul. 9, 2018. [Online].
Available: https://www.nvidia.com/en-us/autonomous-machines/
embedded-systems/jetson-agx-xavier

[15] “Supplement.” Accessed: Feb. 8, 2024. [Online]. Available: https://
www.bit.ly/24EMSOFT-Batch-MOT-supplement

[16] A. Soyyigit, S. Yao, and H. Yun, “Anytime-Lidar: Deadline-aware 3D
object detection,” in Proc. IEEE Int. Conf. Embed. Real-Time Comput.
Syst. Appl. (RTCSA), 2022, pp. 31–40.

[17] S. Heo, S. Jeong, and H. Kim, “RTScale: Sensitivity-aware adaptive
image scaling for real-time object detection,” in Proc. Leibniz Int. Proc.
Inform. (LIPIcs), vol. 231, 2022, pp. 1–22.

[18] S. Lee and S. Nirjon, “SubFlow: A dynamic induced-subgraph strategy
toward real-time DNN inference and training,” in Proc. IEEE Real-Time
Embed. Technol. Appl. Symp. (RTAS), 2020, pp. 15–29.

[19] S. Liu et al., “On removing algorithmic priority inversion from mission-
critical machine inference pipelines,” in Proc. IEEE Real-Time Syst.
Symp. (RTSS), 2020, pp. 319–332.

[20] “YOLOv5.” Accessed: Nov. 23, 2022. [Online]. Available: [Online].
Available: https://github.com/ultralytics/yolov5

[21] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 28, 2015, pp. 1–9.

[22] L. George, N. Rivierre, and M. Spuri, “Preemptive and
non-preemptive real-time uniprocessor scheduling,” INRIA,
Paris, France, Rep. RR-2966, 1996. [Online]. Available:
https://who.rocq.inria.fr/Laurent.George/#Publication

[23] G. Yao, G. Buttazzo, and M. Bertogna, “Feasibility analysis under fixed
priority scheduling with fixed preemption points,” in Proc. IEEE Int.
Conf. Embed. Real-Time Comput. Syst. Appl. (RTCSA), 2010, pp. 71–80.

[24] T.-Y. Lin et al., “Microsoft COCO: Common objects in context,” in
Proc. 13th Eur. Conf. Comput. Vis. (ECCV), 2014, pp. 740–755.

[25] P. Sun et al., “Scalability in perception for autonomous driving: Waymo
open dataset,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2020, pp. 2446–2454.

[26] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling
algorithm: Exact characterization and average case behavior,” in Proc.
IEEE Real-Time Syst. Symp. (RTSS), 1989, pp. 166–171.

[27] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi, “Performance
measures and a data set for multi-target, multi-camera tracking,” in Proc.
Eur. Conf. Comput. Vis. Workshops (ECCVW), 2016, pp. 17–35.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 06,2024 at 23:54:21 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

