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ABSTRACT
As the application scope of DNNs executed on microcontroller

units (MCUs) extends to time-critical systems, it becomes impor-

tant to ensure timing guarantees for increasing demand of DNN

inferences. To this end, this paper proposes RT-MDM, the first Real-

Time scheduling framework for Multiple DNN tasks executed on

an MCU using external memory. Identifying execution-order depen-
dencies among segmented DNN models and memory requirements
for parallel execution subject to the dependencies, we propose (i) a

segment-group-based memory management policy that achieves iso-

lated memory usage within a segment group and sharded memory

usage across different segment groups, and (ii) an intra-task sched-
uler specialized for the proposed policy. Implementing RT-MDM on

an actual system and optimizing its parameters for DNN segmenta-

tion and segment-group mapping, we demonstrate the effectiveness

of RT-MDM in accommodating more DNN tasks while providing

their timing guarantees.

1 INTRODUCTION
Recently, the use of low-power, low-cost microcontrollers (MCUs)

in IoT devices has been rapidly increasing for time-critical systems

that necessitate multiple real-time DNN inference tasks, such as

autonomous mini-vehicles [4]. Each MCU is usually equipped with

extremely limited internal memory, which causes memory shortage

issue. Since the issue cannot be completely addressed by applying

existing techniques for DNN model compression and memory op-

timization [5, 12], a typical approach is to apply the DNN model

segmentation technique [6] (for reducing the size of the DNNmodel

loaded in the internal memory) and to employ external memory (for

storing all necessary DNN models) [10, 14]. For the latter, a DMA

(Direct Memory Access) device that is typically employed in the

MCU enables parallel execution between computing operations on
the CPU and I/O operations for data transfer between the internal

and external memory. However, due to execution-order dependencies
among segments (each performed on the DMA and then the CPU)

∗
Sukmin Kang and Seongtae Lee are co-first authors.

†
Jinkyu Lee is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

DAC ’24, June 23–27, 2024, Moscone West, San Francisco
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0601-1/24/06

https://doi.org/10.1145/3649329.3655681

of each DNN task and memory requirements for parallel execution
on the CPU and DMA subject to the dependencies, it is challenging

(G1) to efficiently utilize both CPU and DMA for accommodating

more (segmented) DNN tasks (G2) while achieving their timing

guarantees.

In this paper, we propose RT-MDM in Fig. 2, the first Real-Time

scheduling framework for Multiple DNN tasks (subject to segmenta-

tion) executed on anMCU using external memory, aiming at achiev-

ing G1 and G2. Identifying the execution-order dependencies and

memory requirements, we establish two system design principles

for RT-MDM: (DP1) enforcing non-preemptiveness for intra-task

scheduling and (DP2) proposing a new segment-group-based mem-

ory management policy. Under DP2, each segment belonging to one

of the pre-defined segment groups, whenever executed, exclusively

occupies the memory space designated to its segment group.

One may argue that G1 is achieved by employing a naive on-

demandmemorymanagement policy, e.g., managing thememory in

a best-effort manner by executing one of the ready-to-be-executed

segments whose memory usage is not larger than the available

memory space. However, the policy incurs an additional delay

due to the priority-inversion of segments whose memory usage

is different, and more importantly, it incurs a number of priority-

inversion situations (e.g., combinations of a set of segments cur-

rently occupying the memory). This makes it difficult/pessimistic

to identify/upper-bound the worst-case waiting time of a segment

for memory usage; then, a task-level timing guarantee becomes ex-

tremely difficult/pessimistic, as we need to consider all the waiting

and execution times of sequential segments belonging to a task,

compromising G2.

Different from a naive policy, the proposedmemorymanagement

policy DP2 provides an interface to achieve G1 and G2 together.
This is due to its utilization of its shared memory across different

segment groups (supporting G1 by identifying potential segments

for parallel execution on the DMA and CPU) and isolated memory

usage within each segment group (supporting G2 by limiting seg-

ment candidates that may cause priority-inversion). Additionally,

DP1 makes the interface stronger in achieving G1 and G2; DP1

allows DP2 not only to tailor segment groups specifically for each

task (in terms of number and size) as memory sharing is confined to

segments within the same task (promoting G1), but also to further

narrow down segment candidates that may incur priority-inversion

into those within the same task and group (promoting G2).

From the perspective of developing the scheduler, since DP1

enables the development of the intra-task scheduler (that schedules

segments of the same task) without considering the interference

from other tasks in terms of both timing and memory usage, it is

possible to design the intra-task scheduler and inter-task scheduler
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independently. To develop the intra-task scheduler that can benefit

from the interface provided by DP2 and enhanced by DP1, we derive

a new execution-order dependency specialized for the proposed

memory management policy DP2 that employs DP1, and enforce

an execution-order dependency that eases the computing of each

task’s WCET (the Worst-Case Execution Time) for the given WCET

of its segments. We then apply an existing inter-task scheduler and

reuse its offline timing analysis by providing the calculated task

WCET as an input to the analysis.

Finally, we find a feasible parameter combination that passes the

offline timing analysis subject to memory constraints, among all

combinations of given segmentation and segment-group mapping

for every task. Considering the trade-off between segmentation

overhead and parallel execution opportunity, we formulate a global

optimization problem and decompose it into smaller per-task op-

timization problems, enabling optimal combination identification

with lower time-complexity.

We implement RT-MDM on top of TensorFlow Lite and run it on

the Arduino Nano 33 BLE Sense board. Our case study with voice

and gesture recognitionmodels shows that RT-MDM, along with its

optimization, successfully provides timing guarantees with/without

memory constraints. To demonstrate the effectiveness of RT-MDM
for various task sets with their different memory requirements, we

solve the formulated optimization problem for random task sets,

leading to conclusions consistent with the case study.

Related work. Due to the unique challenges originating from

MCUs with limited memory space, existing studies for timing

guarantees of multiple DNN tasks without memory constraints,

e.g., [8, 15] cannot be directly applied to the MCU environment.

On the other hand, there exist a few studies that addressed the

memory constraint issue for a single DNN task or multiple DNN

tasks under a non-MCU environment [6, 7]. Demand layering [7]

minimizes memory usage by loading and executing DNN layers

in a layer-by-layer manner, but it focuses on a single DNN task.

SPET [6], which is the most relevant study to RT-MDM, focuses

on timing guarantees for multiple DNN tasks on edge TPUs with

limited SRAM. SPET improves schedulability performance with

deadline-aware SRAM allocation and DNN partitioning but falls

short in maximizing intra-task parallelism, especially crucial in tiny

memory environments where even a single DNN model might not

fit entirely. Note that there exist a few studies that address the delay

issue for multi-DNN tasks executed on an MCU, e.g., [3]; however,

they do not address timing guarantees.

Contributions. To the best of our knowledge, this paper is

the first work to consider both memory constraints and timing

guarantees for multiple DNN tasks executed on an MCU with exter-

nal memory, making the following key contributions. Based on the

investigation of execution-order dependencies and memory require-

ments, we establish system design principles for RT-MDM (Sec-

tion 3). We develop a segment-group-based memory management

policy, specialized for the target system (Section 3). We develop

an intra-task scheduler for the proposed memory management

policy and incorporate it into the overall scheduler and its timing

analysis technique (Section 4). We formulate an optimization prob-

lem for RT-MDM and solve its decomposed problem with lower

time-complexity (Section 5). We implement RT-MDM in an actual

system and demonstrate its effectiveness (Section 6).

2 TARGET ARCHITECTURE AND MODEL
Computing architecture. We target an MCU that consists of a

CPU and an internal memory. Since the internal memory is ex-

tremely limited, the MCU attaches external memory and deploys

Figure 1: Execution order dependency of a DNN task 𝜏𝑖

a DMA (Direct Memory Access) device for parallel execution be-

tween computing operations on the CPU and I/O operations. The
external memory is large enough to load all necessary DNN models.

Task model. We target a set of 𝑛 real-time DNN tasks executed

on the MCU, denoted by 𝜏 = {𝜏𝑖 }𝑛𝑖=1. We consider segmenting

a DNN task into smaller DNN segments, making it feasible for

(segmented) DNN model(s) to be loaded in the extremely limited

internal memory.
1
Then, a real-time DNN task 𝜏𝑖 is specified by the

inter-arrival time 𝑇𝑖 , the relative deadline 𝐷𝑖 (≤ 𝑇𝑖 ), and a series of

segments

−→
𝑆𝑖 . Each 𝜏𝑖 invokes a series of instances; the release times

of two consecutive instances invoked by the same task are separated

by at least 𝑇𝑖 time units, and an instance released at 𝑡 should finish

its execution until 𝑡+𝐷𝑖 , following the periodic/sporadic model [11].

A series of segments

−→
𝑆𝑖 for 𝜏𝑖 are represented by {𝑆𝑖,𝑥 }𝑁𝑆𝑖

𝑥=1
, where

𝑆𝑖,𝑥 denotes the x-th segment of 𝜏𝑖 and 𝑁𝑆𝑖 denotes the number of

segments for 𝜏𝑖 . Let𝑀𝑖,𝑥 denote the memory size requirement of

the (segmented) DNN model 𝑆𝑖,𝑥 . Also, each 𝑆𝑖,𝑥 consists of 𝑆DMA
𝑖,𝑥

and 𝑆CPU
𝑖,𝑥

, which are the x-th DMA sub-segment and its paired x-

th CPU sub-segment of 𝜏𝑖 , respectively, as shown in Fig. 1; every

DMA sub-segment is non-preemptive, which also holds for every

CPU sub-segment. Let 𝐶DMA
𝑖,𝑥

and 𝐶CPU
𝑖,𝑥

denote WCET of 𝑆DMA
𝑖,𝑥

and

𝑆CPU
𝑖,𝑥

, respectively. Let 𝐶𝑖 denote the sum of all segments of 𝜏𝑖 , i.e.,

𝐶𝑖 =
∑𝑁𝑆𝑖
𝑥=1

𝐶DMA
𝑖,𝑥
+𝐶CPU

𝑖,𝑥
.

3 SYSTEM DESIGN OF RT-MDM
Specifying execution order dependencies. As shown in Fig. 1,

there are inherent execution order dependencies within a DNN task:

between a DMA sub-segment and its paired CPU sub-segment, and

between two consecutive CPU sub-segments. The former arises

because a DNN inference (which is performed by its CPU sub-

segment) cannot be done without loading its DNN model in the

internal memory (which is performed by its DMA sub-segment),

while the latter arises because the output of a CPU sub-segment

becomes the input of the next CPU sub-segment. We record the

EDs (Execution-order Dependencies) as follows.

ED1. The x-th CPU sub-segment of 𝜏𝑖 (i.e., 𝑆
CPU
𝑖,𝑥

) starts execution,

only if the x-th DMA sub-segment of 𝜏𝑖 (i.e., 𝑆
DMA
𝑖,𝑥

) completes.

ED2. The x-th CPU sub-segment of 𝜏𝑖 (i.e., 𝑆
CPU
𝑖,𝑥

) starts execution,

only if the (x-1)-th CPU sub-segment of 𝜏𝑖 (i.e., 𝑆
CPU
𝑖,𝑥−1) com-

pletes (or it is the first segment, i.e., 𝑥 = 1).

Identifying memory requirements. We identify MRs (Mem-

ory Requirements) for parallel execution between CPU and DMA

sub-segments, subject to ED1 and ED2, as follows.

MR1. As it is not mandatory to execute 𝑆DMA
𝑖,𝑥

and 𝑆CPU
𝑖,𝑥

in a back-to-

back manner, the DNN model loaded in the internal memory

(by 𝑆DMA
𝑖,𝑥

) should be kept not only during its inference (by

𝑆CPU
𝑖,𝑥

) but also between the completion of 𝑆DMA
𝑖,𝑥

and the begin-

ning of 𝑆CPU
𝑖,𝑥

. Otherwise, we need to re-load the DNN model

by re-executing 𝑆DMA
𝑖,𝑥

, incurring an additional delay.

1
Possible segmentation points vary with each DNN model, e.g., up to four segments

in the gesture recognition model in Section 6. Segmentation imposes an additional

delay to each segment due to the output copy operation and I/O interface preparation.
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Figure 2: System design and optimization for RT-MDM
MR2. Since the output from 𝑆CPU

𝑖,𝑥
becomes an input to 𝑆CPU

𝑖,𝑥+1, we
need a space in the internal memory to store the output dur-

ing the interval from the completion of 𝑆CPU
𝑖,𝑥

to the beginning

of 𝑆CPU
𝑖,𝑥+1. Otherwise, we need to write the output to and read

it back from the external memory, incurring additional delay

and management burden.

MR3. To execute a CPU sub-segment 𝑆CPU
𝑖,𝑥

and a DMA sub-segment

𝑆DMA
𝑘,𝑦

in parallel, the internal memory should accommodate

the DNN models for both 𝑆CPU
𝑖,𝑥

and 𝑆DMA
𝑘,𝑦

at the same time.

Establishing design principles for RT-MDM.We establish

the system Design Principles (DPs) for RT-MDM that provide an

interface to achieve G1 and G2 under ED1–2 and MR1–3.

DP1. We enforce task-level non-preemptive scheduling; once
the first segment of a task 𝜏𝑖 starts its execution, no segments

from other tasks can be executed on both CPU and DMA

until all segments of 𝜏𝑖 finish their executions.

DP2. We introduce a notion of segment groups for memory par-

tition and propose segment-group-based memory man-
agement, tailored to each task (thanks to DP1).

Developing memory management policy.We develop our

segment-group-based memory management policy, specialized for

each task 𝜏𝑖 as follows. Segment groups are managed for each task

𝜏𝑖 , and each segment of 𝜏𝑖 belongs to one of the pre-defined segment

groups for 𝜏𝑖 . Each segment of 𝜏𝑖 , whenever executed, exclusively

occupies the memory space designated to its segment group.

Then, the proposedmemorymanagement policy (i.e., DP2), along

with DP1, not only simplifies/addresses MR1–MR3 but also pro-

vides the scheduler (to be developed) with an interface that maxi-

mizes intra-task parallelism as follows. First, the proposed memory

management policy makes the scheduler to allow the existence

of multiple segments in different groups whose DMA execution

is completed but CPU execution is not started, supporting paral-

lel execution under MR1. Second, DP1 and DP2 make it possible

to store only one segment output of 𝜏𝑖 at any time (when 𝜏𝑖 is

executed), reducing the burden of storing segment outputs from

multiple tasks. Therefore, we address MR2 by reserving a part of

memory space as a common space whose size is the largest segment

output and the executable space.
2
Third, we partition the memory

space not reserved for the common space and system space (utilized

by the system’s BSP and the DNN framework) into 𝑁𝐺𝑖 segment

groups for 𝜏𝑖 , where 𝑁𝐺𝑖 is the number of segment groups for 𝜏𝑖 ;

2
The common space consists of executable space and memory for segment output.

Executable space is memory utilized during inference run-time, and segment output

refers to the intermediate results generated by segmentation. Unlike parameter data,

this common space is shared across all models, indicating that its required size is

defined by the largest executable, rather than the cumulative total.

as shown in Fig. 2, the partition is tailored to each task 𝜏𝑖 . The

N-th segment group of 𝜏𝑖 requires the memory space as much as

the maximum memory usage of all segments belonging to the N-

th segment group of 𝜏𝑖 , calculated by max𝑆𝑖,𝑥 |𝐺𝑖,𝑥=𝑁 𝑀𝑖,𝑥 , where

𝐺𝑖,𝑥 is the segment-group index of 𝑆𝑖,𝑥 (1 ≤ 𝐺𝑖,𝑥 ≤ 𝑁𝐺𝑖 ). Then,

DP1 and DP2 address MR3 by checking the following constraint

for every 𝜏𝑖 ∈ 𝜏 : the sum of the maximum memory usage of all

segment groups of 𝜏𝑖 is no larger than the available memory size

the except system space (denoted by𝑀) subtracted by the common

space (denoted by𝑀common
), recorded as follows.

Constraint 1.

𝑁𝐺𝑖∑︁
𝑁=1

max

𝑆𝑖,𝑥 |𝐺𝑖,𝑥=𝑁
𝑀𝑖,𝑥 ≤ 𝑀 −𝑀common

(1)

Guiding scheduler development. DP1 and DP2 also guide

the development of the scheduler for RT-MDM with several advan-

tages. First, DP1 allows the currently executing segment of a task

to operate without considering offline parameters and run-time

information of segments from other tasks. This enables designing

an intra-task scheduler optimized for each task independently of

the inter-task scheduler. Second, DP2 reduces the burden of consid-

ering the memory usage of all segments that occupy memory space;

instead, the scheduler only needs to check whether the memory

space partitioned to a group is used or not, which not only reduces

the run-time scheduling overhead but also simplifies possible exe-

cution scenarios, easing the development of offline timing analysis.

Third, DP2 makes it possible to reuse existing schedulability anal-

ysis for the most fundamental periodic/sporadic sequential task

model, as long as WCET of each task is calculated under the intra-

task scheduler. According to the guidance, Section 4 will present

details of the scheduler for RT-MDM that complies with ED1–2

and MR1–3, along with timing guarantees.

4 SCHEDULER DEVELOPMENT FOR RT-MDM
4.1 Intra-Task Scheduler
Focusing on a task 𝜏𝑖 , this section introduces an intra-task sched-

uling algorithm designed for a single segment group for each task

𝜏𝑖 (i.e., 𝑁𝐺𝑖 = 1). Then, the scheduling algorithm is generalized

to multiple segment groups (i.e., 𝑁𝐺𝑖 > 1) to maximize parallel

execution on the CPU and DMA.

If all segments of a task belong to the same group, the internal

memory can accommodate only one (segmented) DNN model, mak-

ing it impossible for any two different segments to be executed

in parallel on the CPU and DMA, which enforces the following

execution-order dependency:

ED3-IPD. The x-th DMA sub-segment of 𝜏𝑖 (i.e., 𝑆
DMA
𝑖,𝑥

) starts its ex-

ecution, only if the (x-1)-th CPU sub-segment of 𝜏𝑖 (i.e.,

𝑆CPU
𝑖,𝑥−1) completes (or it is the first segment, i.e., 𝑥 = 1).

Thanks to DP1, every DMA and CPU sub-segment starts its

execution as quickly as possible without considering interference

from segments of other tasks, as long as ED1 and ED2 (the inher-

ent execution-order dependencies in Section 3) and ED3-IPD (the

one originating from a single segment group) are satisfied. We

call this intra-task scheduling algorithm IPD (Intra-Parallelism-

Disabled) scheduling. As illustrated in Fig. 3(b1), IPD executes all

sub-segments in a back-to-back manner.

Different from the single segment-group case, a task with multi-

ple segment groups allows intra-task parallel execution on the CPU

and DMA. That is, during the execution of a CPU sub-segment of

the task (i.e., 𝑆CPU
𝑖,𝑥

), the next DMA sub-segment(s) can be executed

(i.e., 𝑆DMA
𝑖,𝑦1

and then 𝑆DMA
𝑖,𝑦2

where𝑦1, 𝑦2 > 𝑥 ), as long as those segments

3



Figure 3: Intra-task schedules (a) for 𝜏𝑖 when 𝑁𝐺𝑖=𝑁𝑆𝑖=1, 2, 3,
and (b) for another task 𝜏 𝑗 with 𝑁𝑆 𝑗=3 when 𝑁𝐺 𝑗=1, 2, 3

belong to different segment groups. This is because, there is no

inherent execution order requirement between a CPU sub-segment

of a task (i.e., 𝑆CPU
𝑖,𝑥

) and its next DMA sub-segments (𝑆DMA
𝑖,𝑦

where

𝑦 > 𝑥). We design the following intra-task scheduling algorithm

for multiple segment groups, called IPE (Intra-Parallelism-Enabled)

scheduling.

First, to address the remaining memory requirement issue MR1

that was not addressed but simplified by the proposed memory

management policy, we should guarantee the following execution-

order dependency.

ED4-IPE. The x-th DMA sub-segment of 𝜏𝑖 (i.e., 𝑆
DMA
𝑖,𝑥

) starts its exe-

cution, only if no prior DMA sub-segment 𝑆DMA
𝑖,𝑦

(𝑦 < 𝑥 ) in

the same group remains with its paired CPU sub-segment

𝑆CPU
𝑖,𝑦

unfinished.

Note that the “only if” statement of ED4-IPE implicitly implies 𝑆DMA
𝑖,𝑥

does not belong to the same group as the currently executing CPU

sub-segment, which is a must for parallel execution on the CPU

and DMA.

Second, to ease timing guarantees for IPE, we should avoid the

inversion among consecutive DMA segments. To this end, we en-

force the following execution order requirement to IPE, to be used

for Lemma 2 that calculates the task WCET under IPE.

ED5-IPE. The x-th DMA sub-segment of 𝜏𝑖 (i.e., 𝑆
DMA
𝑖,𝑥

) starts its ex-

ecution, only if the (x-1)-th DMA sub-segment of 𝜏𝑖 (i.e.,

𝑆DMA
𝑖,𝑥−1) completes (or it is the first segment, i.e., 𝑥 = 1).

While ED4-IPE implicitly enforces sequential DMA execution for

segments in the same group, ED5-IPE applies to all segments.

Similar to IPD, every DMA and CPU sub-segment under IPE

starts its execution as quickly as possible, as long as necessary

execution order requirements are satisfied. Therefore, under IPE,

each CPU sub-segment starts as soon as the inherent execution

order requirements ED1 and ED2 are satisfied, while each DMA

sub-segment starts as soon as ED4-IPE and ED5-IPE are satisfied.

Note that IPE is a generalization of IPD, as IPD is equivalent to

IPE when all segments of a task belong to the same group. This is

because, if all segments belong to the same segment group, ED4-IPE

is not satisfied for any DMA sub-segment during any CPU sub-

segment execution, yielding ED3-IPD that implies ED5-IPE.

We illustrate various intra-task schedules under IPE in Fig. 3,

where 𝑁𝑆𝑖 and 𝑁𝐺𝑖 are the number of segments and segment

groups of 𝜏𝑖 , respectively. Fig. 3(a) shows the impact of finer seg-

mentation on the task WCET, when memory space is sufficiently

large to accommodate DNN models for all segments (i.e., one group

allocated to each segment). Due to the segmentation overhead

shown in the gray box, finer segmentation does not always yield a

smaller task WCET. On the other hand, Fig. 3(b) depicts a varying

number of segment groups, for a given segmentation. By increasing

the opportunity for parallel execution, more segment groups al-

ways yield a shorter task WCET, as long as Constraint 1 is satisfied.

Note that it is possible for two consecutive segments to be assigned

to the same group in order to satisfy Constraint 1.

4.2 Overall Scheduler with Timing Analysis
While DP1 enforces NP (Non-Preemptiveness) for inter-task sched-

uling (i.e., the execution of a task’s segment does not allow that of

any segment of other tasks), we can apply most (if not all) existing

prioritization policies for inter-task scheduling such as FP (task-

level Fixed-Priority) and EDF (Earliest Deadline First). In this paper,

we focus on NP-FP-IPD and NP-FP-IPE as follows: to determine

which task to be executed, we enforce pre-defined task-level fixed

priority (FP); once a segment of a task starts its execution, it is not

interfered by any segment from other tasks (NP); and once a task is

selected to be executed, its segments are scheduled by IPE (or IPD).

Let HP(𝜏𝑘 ) and LP(𝜏𝑘 ) denote a set of tasks higher and lower than

𝜏𝑘 , respectively for FP.

Therefore, as long as we calculate WCET of each task under

the intra-task scheduler, the execution model for RT-MDM is ab-

stracted to the basic sporadic/periodic model on a uniprocessor [11].

Under NP-FP-IPD, WCET of each task 𝜏𝑖 (denoted by 𝐶′
𝑖
) is triv-

ially the sum of WCET of all CPU and DMA sub-segments, i.e.,

𝐶′
𝑖
= 𝐶𝑖 =

∑𝑁𝑆𝑖
𝑥=1

𝐶DMA
𝑖,𝑥
+ 𝐶CPU

𝑖,𝑥
. Then, we can apply an existing re-

sponse time analysis for the basic sporadic/periodic model, yielding

the following response time analysis for NP-FP-IPD.

Lemma 1. [From [9]] Suppose the segmentation
−→
𝑆𝑖 and segment

group mapping {𝐺𝑖,𝑥 }𝑁𝑆𝑖
𝑥=1

are given for every 𝜏𝑖 ∈ 𝜏 , and the model
space in the internal memory is sufficiently large to accommodate
a DNN model for any segment. A DNN task set 𝜏 is schedulable by
NP-FP-IPD, if the response time (𝐹𝑘 +𝐶′𝑘 − 1) is no larger than 𝐷𝑘

for every 𝜏𝑘 ∈ 𝜏 , where 𝐹𝑘 = 𝐿 that satisfies the following inequality:

1 + max

𝜏 𝑗 ∈LP(𝜏𝑘 )

(
𝐶′𝑗 − 1

)
+

∑︁
𝜏ℎ∈HP(𝜏𝑘 )

𝑊ℎ (𝐿) ≤ 𝐿, (2)

where𝑊𝑖 (𝐿) is the maximum amount of execution of 𝜏𝑖 in an interval
of length 𝐿 (therefore upper-bounded by 𝐿) calculated as follows [1].
Note that 𝑁𝑖 (𝐿) = ⌊

(
𝐿 + 𝑅𝑖 −𝐶′𝑖

)
/𝑇𝑖 ⌋, and the fixed-point iteration

(e.g., used in [9]) is used to find 𝐿 for Eq. (2).

𝑊𝑖 (𝐿) = 𝑁𝑖 (𝐿) ·𝐶′𝑖 +min

(
𝐶′𝑖 , 𝐿 + 𝑅𝑖 −𝐶

′
𝑖 − 𝑁𝑖 (𝐿) ·𝑇𝑖

)
(3)

Proof. We outline the proof, with the full version in [9]. If Eq. (2)

holds, one unit of 𝜏𝑘 ’s execution is finished within the interval of

length 𝐿 regardless of blocking from a lower-priority task (upper-

bounded by max𝜏 𝑗 ∈LP(𝜏𝑘 ) (𝐶
′
𝑗
− 1)) and interference from higher-

priority tasks (upper-bounded by

∑
𝜏ℎ∈HP(𝜏𝑘 )𝑊ℎ (𝐿)). Due to non-

preemptiveness, 𝜏𝑘 finishes within 𝐿 +𝐶′
𝑘
− 1 time units. □

Different from IPD, we need to develop a method to calculate

WCET of 𝜏𝑖 (denoted by 𝐶∗
𝑖
) under IPE.

Lemma 2. Suppose the segmentation
−→
𝑆𝑖 and segment group map-

ping {𝐺𝑖,𝑥 }𝑁𝑆𝑖
𝑥=1

are given for every 𝜏𝑖 ∈ 𝜏 , and the model space in the
internal memory is sufficiently large to accommodate DNN models
of any multiple segments belonging to all different segment groups.
Under IPE, for every 𝜏𝑖 ∈ 𝜏 , the following holds: once 𝜏𝑖 starts its
execution, it finishes its execution within 𝐶∗

𝑖
time units, where 𝐶∗

𝑖
is

calculated by Algorithm 1.

Proof. Algorithm 1 is equivalent to simulating IPE from 𝑡 = 0

and taking the finishing time as𝐶∗
𝑖
, when the actual execution time

of each sub-segment is equal to its WCET.
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Algorithm 1 Calculation of 𝐶∗
𝑖
for 𝜏𝑖 under IPE

1: 𝑡DMA ← INF, 𝑡CPU ← INF, 𝑥 ← 1, 𝑦 ← 1, 𝑡 ← 0, Pending← ∅
2: while 𝑥 ≤ 𝑁𝑆𝑖 or 𝑦 ≤ 𝑁𝑆𝑖 do
3: if 𝑡DMA = INF and 𝐺𝑖,𝑥 ∉ Pending then 𝑡DMA ← 𝑡 + 𝐶DMA

𝑖,𝑥
,

Pending.add(𝐺𝑖,𝑥 ) // This line is skipped when 𝑥 = 𝑁𝑆𝑖 + 1
4: if 𝑡CPU = INF and 𝑦 < 𝑥 then 𝑡CPU ← 𝑡 +𝐶CPU

𝑖,𝑦

5: 𝑡 = min(𝑡DMA, 𝑡CPU )
6: if 𝑡 = 𝑡DMA then 𝑥 ← 𝑥 + 1, 𝑡DMA ← INF
7: if 𝑡 = 𝑡CPU then Pending.remove(𝐺𝑖,𝑦 ), 𝑦 ← 𝑦 + 1, 𝑡CPU ← INF
8: end while
9: Return 𝑡 as𝐶∗

𝑖

In Line 1, 𝑡DMA and 𝑡CPU denote the finishing time of the currently

executing DMA and CPU sub-segments, respectively, with INF
indicating no currently executing corresponding sub-segment. 𝑥

and 𝑦 denote the index of the DMA and CPU sub-segments to be

executed, respectively; 𝑡 is the current time, and Pending is a set
of segment group indices with finished DMA but unfinished paired

CPU sub-segments (needed for checking ED4-IPE). The while loop

in Lines 2–8 simulates IPE from 𝑡 = 0, with the finishing time

returned in Line 9. Lines 3–4 execute the next DMA (likewise CPU)

sub-segment if the necessary conditions are satisfied; Line 5 updates

the current time after executing DMA and/or CPU sub-segment(s);

and Lines 6–7 update necessary information when the currently

executing DMA and/or CPU sub-segment(s) is finished.

Then, Algorithm 1 yields each task’s WCET under IPE, as IPE

enforces sequential execution of CPU sub-segments (by ED2) and

DMA sub-segments (by ED5-IPE); by preventing any inversion among

CPU sub-segments and that among DMA sub-segments, Algo-

rithm 1 is sustainable with respect to the actual execution time of ev-

ery segment, which proves the lemma. This implies that, under IPE

without ED5-IPE, Algorithm 1 does not yield the taskWCET, making

it very difficult (or impossible) to calculate the task WCET. □

It is straightforward that 𝐶∗
𝑖
in Lemma 2 is no larger than 𝐶′

𝑖
=

𝐶𝑖 . Therefore, under the same prioritization policy for inter-task

scheduling, IPE yields no larger response time of every 𝜏𝑖 ∈ 𝜏

than IPD. Using Lemma 2, we derive a response time analysis for

NP-FP-IPE, which is tighter than that for NP-FP-IPD in Lemma 1.

Theorem 1. Suppose the segmentation
−→
𝑆𝑖 and segment group

mapping {𝐺𝑖,𝑥 }𝑁𝑆𝑖
𝑥=1

are given for every 𝜏𝑖 ∈ 𝜏 , and the model space
in the internal memory is sufficiently large to accommodate DNN
models of any multiple segments belonging to all different segment
groups. A DNN task set 𝜏 is schedulable by NP-FP-IPE, if the response
time (𝐹 ∗

𝑘
+𝐶∗

𝑘
−1) is no larger than𝐷𝑘 for every 𝜏𝑘 ∈ 𝜏 , where 𝐹 ∗𝑘 = 𝐿

that satisfies Eq. (2) by replacing all {𝐶′
𝑖
}𝜏𝑖 ∈𝜏 terms to {𝐶∗

𝑖
}𝜏𝑖 ∈𝜏 .

Proof. The theorem immediately holds by Lemmas 1 and 2. □

5 OPTIMIZATION FOR RT-MDM
So far, we have explained how RT-MDM operates at run-time once

the segmentation (i.e.,

−→
𝑆𝑖 ) and the segment-group mapping (i.e.,

{𝐺𝑖,𝑥 }𝑁𝑆𝑖
𝑥=1

)
3
are given for every 𝜏𝑖 ∈ 𝜏 . However, the choice of the

segmentation and segment-group mapping (determined offline)

affects timing guarantees in Theorem 1 due to a trade-off between

segmentation overheads and parallel execution opportunities. Finer

segmentation yields larger overhead (in time), due to the time

needed for saving/restoring intermediate output data from the

3
Note that 𝑁𝐺𝑖 is implicitly determined, once {𝐺𝑖,𝑥 }𝑁𝑆𝑖

𝑥=1
is determined.

Time (ms) 𝜏1 𝜏1 𝜏2 𝜏2 𝜏2 𝜏2
Size (KB) 𝑁𝑆1=1 𝑁𝑆1=2 𝑁𝑆2=1 𝑁𝑆2=2 𝑁𝑆2=3 𝑁𝑆2=4

Max {𝐶DMA
𝑖,𝑥 } 98 11,89 115 16,110 14,103,16 14,31,81,14

Max {𝐶CPU
𝑖,𝑥

} 187 203,11 186 144,51 145,46,6 146,24,22,6

{𝑀𝑖,𝑥 } 27 3,25 31 3,30 9,22,3 3,7,22,3

Table 1: Measurement of {𝐶𝑖,𝑥 } and {𝑀𝑖,𝑥 } for 𝜏1 and 𝜏2

CPU and preparing DMA protocols. However, it enables the use of

more segment groups, which enhances opportunities for parallel

execution, thereby reducing task WCET. Considering this trade-

off, we find an optimal segmentation and segment-group mapping

(shown in Fig. 2) by solving the following target problem.

Problem 1 (Global problem). For every 𝜏𝑖 ∈ 𝜏 , the options
for
−→
𝑆𝑖 are given4, and the options for each 𝐺𝑖,𝑥 for 1 ≤ 𝑥 ≤ 𝑁𝑆𝑖

are 1 ≤ 𝐺𝑖,𝑥 ≤ 𝑁𝑆𝑖 . Among all combinations of the options for
every 𝜏𝑖 ∈ 𝜏 , Find a combination that satisfies Theorem 1 subject to
Constraint 1 in Eq. (1).

Since the search space for Problem 1 is too broad (i.e., tasks

× segmentation options × segment-group mapping options), we

decompose the problem into the following smaller per-task opti-

mization problems.

Problem 2 (Decomposed problem for 𝜏𝑖 ). For given options for
−→
𝑆𝑖 and options for {1 ≤ 𝐺𝑖,𝑥 ≤ 𝑁𝑆𝑖 }𝑁𝑆𝑖

𝑥=1
, Minimize 𝐶∗

𝑖
subject to

Constraint 1 in Eq. (1).

We can solve Problem 2 using existing optimization solvers,

e.g., [13]. Finally, the following theorem proves that solving the

decomposed per-task problems for all tasks one-by-one conserves

the optimality of Problem 1,

Theorem 2. If Theorem 1 does not hold for {𝐶∗
𝑖
} solved by Prob-

lem 2 for every 𝜏𝑖 ∈ 𝜏 , there is no solution for Problem 1.

Proof. DP1 disallows any dependency among different tasks,

and Theorem 1 is sustainable with respect to 𝐶∗
𝑖
(i.e., smaller 𝐶∗

𝑖
always reducing or at least keeping the response time of every task),

which proves the theorem. □

6 EVALUATION
Implementation and Case Study.We implement RT-MDM on

the Arduino Nano 33 BLE Sense board consisting of an ARM Cortex

M4F core that runs at 64 MHz with a Nordic nRF52480 chipset, a

compact 256KB SRAM, and a DMA device; an SD card is attached

to the board as external memory. We develop RT-MDM on top of

TensorFlow Lite without any additional modifications.

We trained and implemented two commonly used types of DNN

models on MCUs: voice recognition (for some commands) and ges-

ture recognition (using accelerometer data), which were created

by combining conv2d layers and fully connected layers. The voice

and gesture models without any segmentation are 27KB and 31KB

in size, respectively. The voice recognition model (denoted as 𝜏1)

could be divided into up to two segments, while the gesture recog-

nition model (denoted as 𝜏2) could be segmented into at most four

segments, each with its own segmentation point. Table 1 presents

the maximum of the 100 measured execution times for all segments

of 𝜏1 and 𝜏2, for all possible combinations of segmentation. Note

that, for a given 𝑁𝑆𝑖 , we show just one segmentation option among

all possible combinations within a task.

We set the remaining parameters of 𝜏1 and 𝜏2 as 𝑇1=𝐷1=500ms

and 𝑇2=𝐷2=600ms, and compare the actual response time (by mea-

surement) and guaranteed response time (by Theorem 1), under

the followings: IPE-1-1 (IPE with 1 segment and 1 segment group,

4
Each DNNmodel has its own possible segmentation points. See examples in Section 6.
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Deadline of 𝜏1 Deadline of 𝜏2

(a) Under IPE-M-1

Deadline of 𝜏1 Deadline of 𝜏2

(b) Under IPE-Opt

Figure 4: The actual response time for case study
which is equivalent to IPD), IPE-M-1 (IPE with the maximum seg-

ments and 1 segment group), IPE-M-M (IPE with the maximum seg-

ments and the maximum segment groups), and IPE-Opt (IPE with

the optimal segment and segment group that yields the solution of

Problem 2). Note that we employ NP-DM (Deadline Monotonic; the

smaller 𝐷𝑖 , the higher priority) for the inter-task scheduler.

If the model space in the internal memory is sufficiently large, the

actual response times of both tasks under IPE-Opt and IPE-M-M do
not exceed the corresponding relative deadline 𝐷𝑖 , e.g., IPE-Opt in

Fig. 4(b). However, those under IPE-M-1 and IPE-1-1 compromise

timing constraints (e.g., the largest response times under IPE-M-1
in Fig. 4(a) are 596ms for 𝜏1 and 651ms for 𝜏2), due to incapability

of parallel execution. The schedulability results are consistence

with the guaranteed response times from Theorem 1; for example,

the guaranteed response time of 𝜏2 under IPE-Opt is 436ms (≤
𝐷2=600ms), while that under IPE-M-1 is not bounded.

However, if the model space in the internal memory is limited to

30KB, IPE-M-M no longer yields timing guarantee, due to compro-

mising Constraints 1, i.e., the sum of {𝑀2,𝑥 } when 𝑁𝑆2 = 𝑁𝐺2 = 4

in Table 1 is 3+7+22+3=35KB, larger than 30KB. This holds for all

approaches with 𝑁𝐺2 = 𝑁𝑆2, because the sum of {𝑀𝑖,𝑥 } for every
column for 𝜏2 in Table 1 is larger than 30KB. On the other hand,

IPE-Opt chooses 𝑁𝑆2 = 4 and two segment groups (𝑁𝐺2 = 2) of

{𝑆2,1, 𝑆2,3} and {𝑆2,2, 𝑆2,4}, which requires only max(3,22)+max(7,

3)=29KB memory space and yields the guaranteed response time

of 494ms (≤ 𝐷2=600ms). This demonstrates that RT-MDM, along

with its optimization, not only considers memory constraints but

also ensures timing guarantees.

More detailed evaluation for timing guarantee. To eval-

uate the capability of RT-MDM in achieving timing guarantees

subject to the memory constraint for various task sets with their
different memory requirements, we count task sets deemed schedu-

lable by Theorem 1 with Constraint 1, among task sets randomly

generated as follows. For given task set utilization (𝑈=
∑
𝜏𝑖 ∈𝜏

𝐶𝑖

𝑇𝑖
=

0.1, 0.2, 0.3, · · · , 1.0), we choose the number of DNN tasks (𝑛) in

[2, 5] (four options), and then set the period 𝑇𝑖 (the same as the

relative deadline 𝐷𝑖 ) of each task uniformly from [5000, 50000).

The utilization of each task (𝑢𝑖=
𝐶𝑖

𝑇𝑖
) is generated with the UUni-

fast algorithm [2], and the corresponding 𝐶𝑖 is set to 𝑢𝑖 ×𝑇𝑖 . For
|−→𝑆𝑖 |, the number of segments of a task 𝜏𝑖 (𝑁𝑆𝑖 ) is selected in [2,5]

(four options); we then distribute 𝐶𝑖 to all sub-segments of 𝜏𝑖 , i.e.,

{𝐶DMA
𝑖,𝑥

,𝐶CPU
𝑖,𝑥
}, using UUnifast. We generate segmentation overhead

from [0.1 · 𝐶𝑖,𝑥 , 0.2 · 𝐶𝑖,𝑥 ], and add it to each sub-segment of 𝑆𝑖,𝑥 .

For given model space in the internal memory (i.e., 𝑀 −𝑀common
),

𝑀𝑖,𝑥 is uniformly selected in [0.1 ·𝑀 , 0.3 ·𝑀]. For each target task

set utilization 𝑈 , we generate 1,000 task sets.

Fig. 5(a) shows the schedulable task set ratio for 1000×4×4 task
sets per task set utilization (𝑈 ) under different approaches. Overall,

IPE-Opt exhibits 32.0%, 45.7% and 60.5% higher schedulable ratio

than IPE-1-1, IPE-M-M and IPE-M-1, respectively. Since IPE-1-1
and IPE-M-M enforce the memory constraint where the sum of

all segments’ memory usage is less than the model space in the

(a) Varying𝑈 (b) Varying 𝑁𝑆𝑖 for given 𝑛 = 5

Figure 5: The ratio of schedulable task sets
internal memory, their schedulable ratio is not close to 100% even

with very low task set utilization. The difference between IPE-Opt
and IPE-M-1 comes from our optimization strategy, which proves

that it is more effective than the strategy that simply maximizes

intra-parallelism. Fig. 5(b) shows the schedulable task set ratio as

𝑁𝑆𝑖 changes when 𝑛 is fixed to 5. As 𝑁𝑆𝑖 increases, the schedulable

ratio under IPE-M-M and IPE-1-1 decreases due to the memory

constraint, but that of under IPE-M-1 remains stable; however,

no approaches yield a higher schedulable ratio than IPE-Opt. In
summary, IPE-Opt always yields a higher ratio of schedulable task

sets, demonstrating the effectiveness of optimized RT-MDM.

7 CONCLUSION
This paper proposed RT-MDM, the first real-time scheduling frame-

work for multiple DNN tasks executed on an MCU. With a novel

design of the segment-group-based memory management policy

and the intra-task scheduler, RT-MDM was proven to achieve effi-

cient utilization of both CPU and DMA for accommodating more

DNN tasks while providing their timing guarantees.
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