
RT-Swap: Addressing GPU Memory Bottlenecks

for Real-Time Multi-DNN Inference

Woosung Kang1, Jinkyu Lee2, Youngmoon Lee3, Sangeun Oh4, Kilho Lee5, Hoon Sung Chwa1∗

1Dept. of Electrical Engineering and Computer Science, DGIST, Republic of Korea
2Dept. of Computer Science and Engineering, Sungkyunkwan University (SKKU), Republic of Korea

3Dept. of Robotics, Hanyang University, Republic of Korea
4Department of Software & Computer Engineering, Ajou University, Republic of Korea

5School of AI Convergence, Soongsil University, Republic of Korea

Abstract—The increasing complexity and memory demands
of Deep Neural Networks (DNNs) for real-time systems pose
new significant challenges, one of which is the GPU memory
capacity bottleneck, where the limited physical memory inside
GPUs impedes the deployment of sophisticated DNN models.
This paper presents, to the best of our knowledge, the first
study of addressing the GPU memory bottleneck issues, while
simultaneously ensuring the timely inference of multiple DNN
tasks. We propose RT-Swap, a real-time memory management
framework, that enables transparent and efficient swap schedul-
ing of memory objects, employing the relatively larger CPU
memory to extend the available GPU memory capacity, without
compromising timing guarantees. We have implemented RT-

Swap on top of representative machine-learning frameworks,
demonstrating its effectiveness in making significantly more DNN
task sets schedulable at least 72% over existing approaches even
when the task sets demand up to 96.2% more memory than the
GPU’s physical capacity.

I. INTRODUCTION

The increasing use of Deep Neural Networks (DNNs)
in real-time systems has led to the evolution of ever larger
and more intricate models to achieve superior accuracy on
complex tasks [1]–[3]. This increase in complexity, in turn,
accelerates the memory demands of these DNNs, introducing
a significant hurdle, especially when deploying on GPUs.
Despite the rapid advancements in GPU computational capa-
bilities, GPU memory capacity has seen comparatively slower
growth, leading to a severe bottleneck when accommodating
the ever-increasing memory demands of DNN models [4]–[6].
This memory bottleneck not only constrains the adoption of
sophisticated DNN models but also poses additional challenges
in assuring worst-case timing guarantees in real-time systems,
emphasizing the need for efficient memory management.

A number of prior studies [7]–[10] have made significant
efforts to alleviate this GPU memory bottleneck by utiliz-
ing relatively larger CPU memory or SSDs. For example,
GPUswap [8] allows GPU applications to allocate memory
exceeding the physical GPU memory capacity by relocating
data between GPU and CPU memories. A recent study [9]
enables GPU memory oversubscription by utilizing direct I/O
to SSDs targeting for embedded CPU–GPU integrated SoCs
that share the physical memory between CPU and GPU.

*Corresponding author: Hoon Sung Chwa (chwahs@dgist.ac.kr).

However, these approaches typically require the usage of their
own device driver or modifications to existing GPU drivers,
rendering them incompatible with popular machine learning
(ML) frameworks such as PyTorch [11], TensorFlow [12], and
Darknet [13], which are fundamental to the execution of DNN
models.

Modern GPUs (e.g., NVIDIA RTX3090) support Unified
Memory (UM), which enables a unified virtual memory space
between CPU and GPU, and permits GPU memory over-
subscription using hardware-based page fault handling and
automatic data migration on UM. Some studies [14], [15]
exploit UM to allow ML frameworks to execute a DNN model
demanding a memory footprint larger than the physical GPU
memory capacity. They prefetch the necessary data from CPU
to GPU by predicting the DNN model’s memory access pat-
tern, reducing the page fault handling overhead. Additionally,
other recent studies [16]–[20] offer direct (i.e., non-UM) GPU
memory swapping mechanisms. These approaches profile the
memory access pattern of a target DNN model and schedule
data movement between CPU and GPU memories based on
the memory access pattern. Despite the valuable contributions
made by these approaches in overcoming the memory bottle-
neck tailored to DNN models, they primarily focus on training
a single DNN model instead of inferencing multiple DNN
models, and do not address the timing constraints associated
with managing data movement, thus rendering them infeasible
for real-time systems.

In this paper, we aim to bridge the gap between the limited
capacity of GPU memory and the ever-increasing complexity
of DNN models, while concurrently ensuring timely inference
for multiple DNN tasks. To achieve this goal, we propose
a new real-time memory management framework, named RT-

Swap, specifically designed for DNN tasks. One of the key
features of RT-Swap is a transparent and efficient swapping
mechanism, which empowers an ML framework to perform
inference on DNN tasks requiring a memory capacity larger
than the physical GPU memory, without any alterations to
the DNN models or modifications to the GPU device driver.
Another key feature is its consistent virtual memory manage-
ment mechanism, ensuring seamless data access for DNN tasks
regardless of memory swapping. Building upon the above two
features, RT-Swap develops a swap-aware real-time scheduling
policy that determines both the maximum swap volume for
each task and the schedule of swap-in/out operations in coor-

373

2024 IEEE 30th Real-Time and Embedded Technology and Applications Symposium (RTAS)

2642-7346/24/$31.00 ©2024 IEEE
DOI 10.1109/RTAS61025.2024.00037

20
24

 IE
EE

 3
0t

h
Re

al
-T

im
e

an
d

Em
be

dd
ed

 T
ec

hn
ol

og
y

an
d

Ap
pl

ic
at

io
ns

 S
ym

po
siu

m
 (R

TA
S)

 |
 9

79
-8

-3
50

3-
58

41
-4

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

RT
AS

61
02

5.
20

24
.0

00
37

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on July 12,2024 at 03:45:24 UTC from IEEE Xplore. Restrictions apply.

dination with the execution schedule of DNN tasks, ensuring
their timely inferences. To this end, we derive a schedulability
analysis to verify whether DNN tasks satisfy their timing
constraints, taking into account the swapping overheads. We
then formulate the swap volume assignment as an optimization
problem with respect to the proposed schedulability analysis.
We also develop a swap scheduling algorithm to minimize
unnecessary swap operations and maximize the overlap be-
tween computation and data transfer, mitigating the overhead
of memory swapping.

RT-Swap offers three distinct benefits. First, it is applicable
to existing ML frameworks since it is implemented as a shared
library that can work with a target ML framework. RT-Swap

transparently intercepts all memory-related requests from the
ML framework and manages the memory objects using the
proposed swapping mechanism. Thus, it does not require any
source code modification of DNN models running on a target
ML framework. Second, it provides an efficient swapping
mechanism. RT-Swap effectively addresses crucial fragmen-
tation issues arising from frequent memory allocations and
deallocations during swap operations. This ensures efficient
GPU memory usage and avoids unnecessary swapping. Third,
it guarantees predictable and deterministic swapping overheads
and automatically coordinates the execution and swapping of
DNN tasks at a system level to meet timing constraints.

We implement RT-Swap using Darknet [13] as the
base ML framework and extend its compatibility to Py-
Torch [11]1. We evaluate RT-Swap with four standard DNN
models (YOLOv3 [21], ResNet [22], ResNext [23], and
DenseNet [24]) on a GPU computing platform equipped with
NVIDIA RTX3090 with 24 GB memory. The evaluation results
demonstrate that RT-Swap can accommodate at least 72% more
real-time DNN task sets compared to existing approaches even
when requiring up to 96.2% more memory than the GPU’s
physical capacity, without violating any timing constraints.
We also validate, via a runtime experiment, that RT-Swap

guarantees predictable response times for DNN tasks with only
marginal runtime overheads in comparison to NVIDIA’s GPU
memory oversubscription with UM.

Contribution. To the best of our knowledge, this pa-
per presents a first approach that transparently expands the
available memory capacity of a GPU, thereby addressing
the memory bottleneck issue, while simultaneously ensuring
timely inference for multiple DNN tasks. The contributions of
this paper can be summarized as follows:

• We present a new GPU memory management framework
that allows for the deployment of multiple DNN tasks that
require more memory than physically available on a GPU,
while still ensuring timing constraints are met (Sec. III).

• We design transparent and efficient swapping and virtual
memory management mechanisms to reduce fragmentation
overheads (Sec. IV)

• We develop swap-aware real-time scheduling and swap
volume assignment algorithms that not only provide timing
guarantees but also mitigate the swapping overhead (Sec. V).

• We implement an RT-Swap prototype on popular ML frame-
works and demonstrate its capability in accommodating

1RT-Swap’s source code is publicly accessible at https://rtcl.dgist.ac.kr/
index.php/rtswap.

TABLE I: CUDA runtime APIs for memory management

Function Description

cudaMalloc() Allocates memory on the device

cudaMallocManaged() Allocates memory as UM memory

cudaFree() Frees memory allocated on the device

cudaMemcpy() Copies data between the host and device

cudaMemset() Initializes or sets device memory

more real-time DNN tasks that demand more memory than
the GPU’s capacity, without violating any timing constraints
(Secs. VI and VII).

II. BACKGROUND

A. Target System

DNN tasks. A real-time DNN task involves a single
DNN model, processing one inference request per job (task’s
instance) within a specific deadline. Each model consists of
input, output, and multiple hidden layers, executed sequentially
during inference. Essential model parameters like input data,
feature maps, weights, and convolution space primarily occupy
the GPU memory. Typically, DNN task inference in most
ML frameworks is a two-step process: initialization, where
each task’s model parameters are preloaded into the GPU
memory, followed by the inference stage where computations
are performed using the preloaded parameters.

GPU memory management. We focus on a system com-
posed of a GPU and a CPU with separate physical memories,
shared by multiple DNN tasks for inference. Using CUDA
runtime APIs, tasks allocate GPU memory as memory objects,
representing contiguous virtual memory areas. Each object is
mapped to the physical memory by the GPU driver, limited
by the GPU’s physical capacity. DNN tasks, once scheduled
on the GPU, can access data only if it is stored on the
GPU memory. Since the GPU lacks direct access to CPU
(host) memory—unless deliberately mapped by a programmer
into the GPU memory space2—it necessitates manual data
migration between the GPU and CPU memories, facilitated
by specific CUDA runtime APIs, as outlined in Table I.

B. Unified Memory and On-demand Paging

Modern GPUs offer Unified Memory (UM), enabling a
shared virtual memory address space between the CPU and
GPU with automatic data migration via on-demand paging.
This allows the GPU to access pages in CPU memory, enabling
DNN tasks to operate beyond GPU memory capacity, i.e.,
memory oversubscription. In CUDA, cudaMallocManaged
allocates data accessible by both CPU and GPU via a single
shared pointer. A page fault is triggered if the GPU accesses
an unmapped virtual page, which is resolved by remapping
and data copying, a process called on-demand paging. When
the GPU’s physical memory is full, the GPU driver moves a
page from the GPU to the CPU to accommodate a new page,
using the Least Recently Used (LRU) policy for page eviction.
Although UM with on-demand paging enables GPU memory
oversubscription, the LRU policy is imprecise, making the
amount of evicted pages for each inference job unpredictable,
rendering it infeasible for real-time multi-DNN systems.

2Note that accessing mapped CPU memory in the GPU space lowers
performance due to PCIe transfers during each memory access.

374

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on July 12,2024 at 03:45:24 UTC from IEEE Xplore. Restrictions apply.

(a) Standard memory allocation (b) Object-level memory management (c) Task-level memory management (ours)

GPU virtual address space

GPU physical memory

MO2

MO2

Old VA
of MO3

MO1

MO1

Coupled
memory allocation &
address mapping

(VA varies when re-alloc)

GPU virtual address space

GPU physical memory

MO2
Reserved VA

of MO3
MO1

MO2

MO3

reserve virtual address
allocate memory
map memory address

O3

O3MOO

2

Internal
fragment

External
fragment

MO22

GPU virtual address space

GPU physical memoryMO2

MO22
Map

to MO3

Fixed-size memory chunksunks

reserve contiguous addresses
allocate fixed-size mem chunks
map memory address

Variable-size
memory chunks
VVVV

2

External
f

O22

E ternal

MO1

MO1MO1 MM

MO3MO3MO3

ory chy uchhhhuumemoemorryyd siizeiiFixedF eddddd

MO

O3O3

ernalrn l

Reserved address GPU viReserved address

oupCoCCCC

New VA
of MO3

MO3

N

((((
3

CCCCCCC

Fig. 1: Three different GPU memory management approaches

C. GPU Virtual Memory Management

The CUDA runtime offers low-level GPU virtual memory
management (VMM) APIs. These differ from standard high-
level functions such as cudaMalloc, where the GPU driver
fully controls physical memory allocation and the mapping
of virtual to physical addresses. The following three primary
VMM APIs enable the separation of virtual and physical ad-
dresses of GPU memory, allowing for their independent man-
agement: cuMemCreate creates a physical memory chunk of
a specific size; cuMemAddressReserve reserves a virtual
address range; and cuMemMap maps a physical memory chunk
to a virtual address range. Utilizing these APIs, we aim to
provide transparent virtual GPU memory access to DNN tasks
regardless of memory swapping.

III. DESIGN PRINCIPLE

RT-Swap is designed to bridge the gap between the limited
capacity of GPU memory and the ever-increasing complexity
of DNN models, also ensuring timely inference. It operates
as a runtime memory management system, virtualizing the
memory usage of DNN tasks across GPU and CPU memories.
RT-Swap enables the execution of larger DNNs beyond the
GPU’s physical capacity by transparently managing the data’s
allocation and movement, while assuring timely inferences. To
achieve this, RT-Swap tackles the following key challenges:

C1. How to allocate GPU memory exceeding the physical
memory capacity?

C2. How to provide transparent GPU memory access for DNN
tasks even when allocating more GPU memory than is
physically available?

C3. How to provide an offline timing guarantee to DNN tasks
in conjunction with the solutions to C1 and C2?

C1. All DNN task data must be pre-loaded into the GPU
memory before execution. To tackle C1, a runtime data transfer
support between the GPU and CPU memories is essential.
When the available GPU memory falls short for a DNN task’s
GPU memory allocation request, some data associated with
other tasks should be moved from GPU to CPU memory to
make room (referred to as swap out). Conversely, when a
DNN task requires access to data that is not currently in GPU
memory, that data should be transferred back to GPU memory
and reallocated (referred to as swap in).

C2. Addressing C1 involves implementing swap-in/out
operations, necessitating the allocation and deallocation of
GPU memories and data transfers between CPU and GPU. For
C2, it is essential to make swap-in/out operations transparent to
DNN tasks, maintaining consistent data access despite runtime

data transfers. Particularly, reallocation after swapping back
in assigns a new GPU memory space and virtual address,
causing discrepancies with initial addresses and potential data
access errors during execution. Hence, it is crucial to preserve
transparency, ensuring consistent mapping of original virtual
addresses to their corresponding data during swap operations.

C3. The implementation of swap-in/out operations intro-
duces additional overhead, primarily due to the data trans-
fers required between CPU and GPU memories. This extra
overhead inevitably impacts the inference time of each DNN
task. To tackle C3, we need to determine the maximum swap
volume (the maximum amount of data to be swapped in/out)
for each DNN task and the schedule of swap-in/out operations
so as to ensure all timing constraints are met despite the added
overhead of swap operations.

RT-Swap addresses C1–C3 with related design principles.

Task-level Predictable Memory Swapping. To ensure
each task’s timely inference under memory swapping, RT-Swap

introduces a runtime swap manager that controls the amount of
data to be swapped in/out at a task level and orchestrates each
task’s data movement, allocation, and deallocation. RT-Swap

keeps track of all allocated memory objects and the cumulative
GPU memory assigned to each DNN task. When the free GPU
memory is insufficient to handle a memory allocation request,
RT-Swap determines which memory objects should be swapped
out to the CPU memory, thus freeing up GPU memory for the
request. If a scheduled DNN task has any memory objects that
have been previously swapped out, RT-Swap performs a swap-
in operation, reallocating the memory objects to GPU memory
before execution.

Transparent GPU Virtual Memory Management. RT-

Swap utilizes CUDA-supported VMM APIs to provide a seam-
less DNN task experience, ensuring consistent memory access
despite runtime GPU memory allocations and deallocations
from swap operations. Unlike the standard cudaMalloc,
which assigns a new virtual address during the reallocation of
a swapped-out memory object (as shown in Fig. 1(a)), VMM
APIs maintain virtual address consistency during memory
object swapping. In Fig. 1(b), a virtual address (VA) range
is typically reserved equivalent to the desired memory object
size, paired with a single physical memory chunk of matching
size. The VA remains reserved even when its physical chunk is
unmapped during a swap-out, allowing a new physical chunk
to be remapped to the original VA without inconsistency when
swapped back in. An object-level VMM approach, however,
leads to significant internal fragmentation issues. VMM APIs
inherently use 2MB as the minimum physical chunk size.
So, when allocating each memory object smaller than this

375

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on July 12,2024 at 03:45:24 UTC from IEEE Xplore. Restrictions apply.

�������	
������

���	������

�
�

�

�

������

�����

����

���	��
!	

"
#

���	�����

$��� 	%��

����	&	���� 	
������

$��������'���	
'��

����	����'���

�����	������'���

��������(&)��'���

���	���*�

+)�		&
����

����	%��

�����	������'	,�-	����

.�
��

�
�

�!

�����
"�
'

�����

���(����	

���	

�������!	

�������	�������	/��������0

#�����	,�-																
$��������'���

'��

,�-	���!

�����	

����

1����*�	,�-		����	 1����*�	,�-	����

,�����'

�������2��'

$��'���	����
	

,�����'���	������

����	

������

��
�*	3,

�,��(�	��4
��	3,	
���

�$��'	

����!
 �$��'2���
	��	����!

���'�	����	�'��	���2"�
'

����
�%�
'

Fig. 2: System architecture overview

size, 2MB of memory is consumed, leaving a considerable
portion unused (internal fragmentation), as illustrated by MO1

in Fig. 1(b). Additionally, the object-level approach produces
physical memory chunks in varied sizes for different memory
objects, resulting in increased external fragmentation. To re-
solve these issues, RT-Swap adopts two strategies: maintaining
a contiguous task-level VA range and sequentially mapping
uniform physical chunks. As shown in Fig. 1(c), RT-Swap

reserves a large, contiguous task-level VA range and sequen-
tially allocates memory objects to consistent, uniform physical
chunks. This method minimizes internal fragmentation within
each physical chunk at a task level and prevents external
fragmentation by using consistently sized physical chunks.

Swap-Aware Real-Time Scheduling. For a given taskset,
RT-Swap determines each DNN task’s maximum swap volume
to ensure: 1) continual data retrieval from the GPU memory
during execution, and 2) completion of execution before the
deadline. We accomplish this by deriving a schedulability
analysis, considering memory swapping overheads. We then
formulate swap volume assignment as an optimization prob-
lem. This involves formulating swap volume assignment as
an optimization problem, aiming to minimize the total swap
volume while ensuring 1) and 2) with respect to the pro-
posed schedulability analysis. Upon determining each task’s
maximum swap volume, RT-Swap identifies candidate memory
objects to meet the swap volume. This list of candidates
then informs the actual selection of memory objects to be
swapped out during runtime. RT-Swap also coordinates the
schedule of swap-in/out operations with the DNN tasks’ ex-
ecution schedule. It ensures that necessary memory objects
are swapped in before a DNN task’s execution, and sufficient
free GPU memory is maintained by swapping out volumes
from previously executed tasks. RT-Swap aims to minimize
unnecessary swap-in/out operations and maximize the overlap
between computation and data transfer, thereby efficiently
mitigating the swapping overhead.

IV. SYSTEM DESIGN

Based on the aforementioned design principle, we design
RT-Swap as a runtime memory management framework that
can be integrated into popular ML frameworks. The system
overview of RT-Swap is depicted in Fig 2. RT-Swap consists of
two key components: RT-Swap Library and RT-Swap Scheduler.

A. RT-Swap Library

RT-Swap Library provides wrapper functions for relevant
GPU memory API functions, some of which are exemplified
in Table I. The rationale behind this is that each DNN task
must use the API functions to allocate and access the GPU
memory. This design enables the library to have control over
the GPU management, leveraging the extensive CPU memory
as a swapping device for facilitating swap-in/out operations
during runtime. RT-Swap Library is implemented as a shared
library, enabling pre-loading into a target ML framework by
setting the LD_PRELOAD environment variable, without any
source code modifications of DNN models and the GPU driver.
This allows for the interception of target CUDA runtime
API function calls, facilitating the execution of corresponding
wrapper functions implemented in RT-Swap Library.

Initialization. In the initialization phase, RT-Swap Library

is paired with each DNN task, holding essential information
such as the maximum swap volume and a list of candidate
memory objects to meet the swap volume. Detailed dis-
cussions on offline swap volume assignment and swapping
candidate selection are in Sec. V-D. Aligned with our de-
sign principles, RT-Swap Library reserves a single, contiguous
VA range, equivalent to the maximum swap volume, using
cuMemAddressReserve. This reserved VA range is used
for sequentially allocating memory objects in the swap candi-
date list and for dynamically mapping and unmapping physical
memory chunks based on swap-in/out operation requests. It is
beneficial to secure a contiguous VA range preemptively for
swap candidates. This not only reduces fragmentation overhead
but also ensures transparent GPU virtual memory access for
all tasks (further details in subsequent sections discussing frag-
mentation overheads). During runtime, RT-Swap Library manages
the GPU memory, handling allocations/deallocations and data
transfers involved in swap operations.

Memory allocation/deallocation. RT-Swap Library operates
at invocations of CUDA memory allocation API functions
(i.e., cudaMalloc). Two scenarios exist when allocating a
memory object: i) the memory object is a swap candidate, or
ii) it is not. For non-swap candidates, RT-Swap Library simply
executes the original API function call, ensuring that the
memory object persistently resides in the GPU memory. For
swap candidates, RT-Swap Library first identifies the placement
of the memory object within the reserved VA range, aligning it
sequentially with previous objects, as shown by MO1–MO3

in Fig. 1(c). It then creates multiple uniform physical chunks
using cuMemCreate, ensuring their total size covers the
memory object size, and maps these chunks to the object’s
VA range using cuMemMap. In both scenarios, RT-Swap Library

communicates with RT-Swap Scheduler to confirm adequate free
GPU memory to accommodate the new memory object. If
the free GPU memory is scarce, RT-Swap Scheduler triggers a
swap-out operation with another DNN task’s RT-Swap Library,
ensuring adequate GPU memory is released before allocating
the new memory object. Memory deallocation requests (i.e.,
cudaFree) can be managed in a similar manner.

Swapping out/in. RT-Swap Library performs swap-in/out op-
erations as directed by RT-Swap Scheduler at runtime, as shown
in Fig. 3. RT-Swap adopts a uniform physical memory chunk as
the basic swapping unit to avoid external fragmentation. This
size is referred to as the swap chunk size. When there is a

376

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on July 12,2024 at 03:45:24 UTC from IEEE Xplore. Restrictions apply.

����

����	
��

����

����

�

���������
������

��

�����

����

�����������	���
��	�� �������������
��	��

��	��

���������	���

�
���

������������������	�

�����������������

���
�������������

��������

�
��� ����������� ����

	�
�������������������

��������� �

���
� ��������

��	���

		

�
��������������

���

����

���������
������

����

����
��	��

���������	���

�
���

���
�
����

��������

�

��� ��������� ����

�
��������������

��� ���

� ���
���� ���������

� ����
�����
������

��	���

�

� 	�
������������������

� ����
�������������� � ��

����

����	
��

Fig. 3: Swap-out/in operation procedures

request to swap out a specific amount of GPU memory, RT-

Swap Library identifies sequential target physical chunks within
the reserved VA range. This identification starts from the initial
pointer and covers up to the size of the requested swap-out,
which is rounded up to the closest multiple of the swap chunk
size. RT-Swap Library then updates the starting pointer for future
swap-out operations. The swap-out operation includes several
steps as illustrated in Fig 3(a): � allocating CPU memory, �
copying data from the target GPU physical chunks to the CPU
memory, � unmapping the target physical chunks from their
corresponding GPU VA range, and � releasing the physical
chunks. RT-Swap Library also maintains a record of the GPU VA
range and corresponding CPU VA range of the sequential target
chunks, ensuring they can be accurately swapped back in later.
The swap-in operation also involves several steps as illustrated
in Fig 3(b): � creating GPU physical memory chunks, �
mapping these chunks to the corresponding GPU VA range, �
copying data from the CPU memory to the new GPU memory
chunks, and 	 releasing the CPU memory.

Swap-in/out operations can incur noticeable performance
overheads. Thus, it is essential to reduce these costs. The
CUDA runtime offers two main types of CPU memory for
swapping devices: pageable and host-pinned. Pageable mem-
ory, allocated using the standard malloc function, requires
additional temporary pinned memory for data transfers be-
tween the CPU and GPU. In contrast, host-pinned memory,
allocated using cudaHostAlloc, permits direct data trans-
fers, omitting the need for temporary buffers and additional
copying steps. Thus, utilizing host-pinned memory is a more
efficient swapping method, reducing overall overheads. Addi-
tionally, steps � and 	 can be omitted during the swap-out
and -in operations, respectively, further enhancing efficiency.
Given that RT-Swap pre-determines each task’s maximum swap
volume offline, it limits the maximum data transfer between the
CPU and GPU to this volume. Consequently, RT-Swap Library

pre-allocates host-pinned memory equivalent to the maximum
swap volume during initialization, serving as a dedicated
swapping space for each task throughout the inference stage.

Fig. 4(a) shows the latency in swapping out and in 300MB
of GPU memory, with a 64MB swap chunk size, using three
methods: Pageable, Pinned, and RT-Swap Library. Pageable and
Pinned represent the swap-out and -in operations (i.e., �–�
and �–), utilizing CPU pageable and host-pinned memory,
respectively. RT-Swap Library mirrors Pinned, except it omits
steps � and 	 during the swap-out and -in operations, re-
spectively. Pageable incurs the highest latency primarily due
to the overheads of using temporary host-pinned memory in

�

��

���

���

���

���

�
��
��
�
	�

�

�
�
��

�
��
�
��

�
�	

�
�
�

�
�
�

�

�
�
��
�
��

�������� ������

�
��
��
��
��

��

���������������������

�	
�����������������������

�	
�����������������������

����������

����������

�����

�����

�����

������ �

�
�	

�
�
�

�
�
�

�

�
�
��
�
��

�
��
�
��

�
	

�
�
�

�������	 �����
��
�
�
�
��

(a)

�

��

��

��

��

��

��

� � � 	� �� �� 	�� ���

��
�
��
��
�
��

�������������� ����

��	�������

����	������

	
�
��
������

(b)

Fig. 4: Swap latency of 300MB memory: (a) latency break-
down of three methods; (b) impact of swap chunk sizes

TABLE II: Internal fragmentation overhead

Resolution

ResNet

(416)

DenseNet

(416)

ResNext

(416)

YOLOv3

(416)

of MO < 2MB 1009 1689 962 372

of MO ≥ 2MB 312 129 359 282

Total amount (GB) 1.4 0.9 2.2 2.6

MO-level VMM (GB)
3.5

(+2.1)

4.0

(+3.1)

4.2

(+2.0)

3.5

(+0.9)

RT-Swap (GB)
1.4

(+0.000)

0.9

(+0.001)

2.2

(+0.000)

2.6

(+0.001)

steps � and �, resulting in 192.6ms and 93.9ms for swap-out
and -in operations, respectively. Pinned, despite using direct
data transfers, still has significant latency due to overheads
in other steps. Contrastingly, RT-Swap Library, omitting steps �
and	, optimizes latency effectively, taking 26.2ms and 28.3ms
for the swap-out and -in operations, respectively, and showing
substantial improvements compared to the other two methods.
Note that the swapping latency depends on the requested size
and swap chunk size. In addition to minimizing swapping
overheads, RT-Swap aims to hide the overheads as much as
possible, maximizing the overlap between GPU computation
and swapping, to be discussed in Sec. V.

Mitigating fragmentation overheads. RT-Swap is designed
to mitigate both internal and external fragmentation overheads
inherent in the typical object-level VMM approach. Regarding
internal fragmentation, we observe that DNN computation uses
a wide range of parameter sizes, from a few KB to several
hundreds of MB. Table II outlines the number of memory
allocation requests from four DNN models, categorized by
sizes. For instance, ResNet requests allocation for 1009 mem-
ory objects (MOs) (76.4%) under 2MB and 312 MOs (23.6%)
larger than 2MB. Note that the memory allocation via CUDA
VMM APIs is confined to a minimum physical memory chunk
size of 2MB (as imposed by the GPU driver), the object-
level VMM approach implies that every memory object smaller
than 2MB will occupy a 2MB physical memory chunk. This
approach leaves a significant portion of memory unused, lead-
ing to increased internal fragmentation. Such fragmentation
triggers unnecessary swapping operations, making task sets
hardly schedulable. Unlike the object-level VMM approach,
RT-Swap Library pre-reserves a contiguous task-level VA range
for potential swapping candidates, organizing the allocation
sequentially. This ensures that each object’s starting pointer
aligns with the end of the preceding object. Therefore, RT-Swap

bounds the internal fragmentation overhead within a given
memory chunk size for each DNN task. This is made possible
through task-level virtual memory management, as opposed to

377

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on July 12,2024 at 03:45:24 UTC from IEEE Xplore. Restrictions apply.

the conventional object-level approach. As shown in Table II,
for ResNet, the object-level approach requires 3.5GB of GPU
memory to allocate only 1.4GB of memory objects, yielding
2.1GB of GPU memory unusable. In contrast, RT-Swap requires
only an additional 1MB beyond the total memory footprint.

Regarding external fragmentation, the object-level ap-
proach aggravates the issue by creating physical memory
chunks of varied sizes, each corresponding to different memory
object sizes. This variation in sizes results in inefficient mem-
ory usage and increased external fragmentation; for example,
if a larger memory chunk is swapped out to make space
for a smaller one, a significant portion of the freed GPU
memory remains unused. Contrary to the object-level VMM
approach, RT-Swap Library employs physical memory chunks
of a consistent, uniform size for all memory objects. When
a specific memory object size is requested for allocation, RT-

Swap Library creates multiple uniform physical memory chunks,
cumulatively sufficient to meet the memory object size. More-
over, RT-Swap uses a consistent physical memory chunk as the
basic swapping unit, preventing external fragmentation.

Choosing an appropriate physical memory chunk size,
which corresponds to the swap chunk size, is critical, as it
involves a trade-off: managing a higher number of physical
memory chunks or facing increased internal fragmentation
overhead. We measure the swap-out latency of 300MB, varying
the swap chunk size between 2MB and 256MB, as shown
in Fig. 4(b). A larger swap chunk size leads to more copy
time (�) due to higher internal fragmentation overheads. Con-
versely, a smaller swap chunk size results in longer processing
times in steps � and � due to the increased number of physical
memory chunks needing to be unmapped and released. For
instance, a 256MB swap chunk size allows RT-Swap Library to
manage only two physical memory chunks, but necessitates the
transfer of 512MB of data between the GPU and CPU memory,
despite only 300MB being essential. In contrast, a 2MB swap
chunk size necessitates managing 150 physical memory chunks
but avoids internal fragmentation. The results in Fig. 4(b)
show that the swap-out latencies for 2MB and 256MB swap
chunk sizes are 35.3ms and 41.6ms, respectively. The optimal
performance, 26.2ms, is achieved with a 64MB swap chunk
size. A similar trend is also observed in the swap-in operation.
Note that the optimal swap chunk size may vary based on the
swap-in/out size; this is further discussed in Sec. V-D.

B. RT-Swap Scheduler

RT-Swap Scheduler prioritizes scheduling by accounting for
the timing requirements of DNN tasks. RT-Swap Scheduler

provides cooperative scheduling of GPU computations and
memory swapping. This involves aligning swap-in/out opera-
tions with inference job schedules and vice versa, by managing
swap and computation queues systematically. This approach
efficiently hides swapping overhead while ensuring accurate
and timely inference results for DNN tasks.

RT-Swap Scheduler operates as an independent process,
maintaining system-wide information gathered from all run-
ning DNN tasks, and communicates with individual RT-Swap

Library associated with each task. During initialization, RT-Swap

Scheduler establishes a connection with each RT-Swap Library and
interacts through an IPC-based communication stub interface

that is implemented within each library and the scheduler. To
develop offline swap volume and swap chunk size assignments,
RT-Swap Scheduler maintains a detailed profile for each task’s
DNN model including its timing constraint, GPU execution
time, swap-in/out latency, and set of memory objects.

During inference, RT-Swap Scheduler collaboratively man-
ages each task’s execution timing and the schedule of swap-
in/out operations. RT-Swap Scheduler continuously monitors the
available free GPU memory and maintains an updated list of
physical memory chunks that have been swapped out for each
task. Before the execution of a DNN task with swapped-out
physical chunks, RT-Swap Scheduler proactively issues a swap-
in request to the corresponding RT-Swap Library of that task. If
there is limited free GPU memory available to process the
swap-in request, RT-Swap Scheduler issues swap-out requests
to other tasks ahead of the swap-in request. The details of
scheduling and swap volume assignment will be in Sec. V.

V. SWAP-AWARE REAL-TIME SCHEDULING

So far, we have discussed the execution of DNN tasks by
RT-Swap when the memory requirement exceeds the GPU’s
physical memory capacity. Now, we will discuss how RT-Swap

schedules swap operations concurrently with the execution of
DNN tasks, and determines the optimal swap chunk size and
swap volume for each task to meet their timing requirements.

A. Task Model

We consider a CPU–GPU platform π with a GPU physical
memory capacity denoted as mD. The CPU physical memory
capacity is assumed to be sufficiently large, as it can be easily
expanded with multiple DRAMs. We denote the swap chunk
size as δ, which represents the unit of memory swapping.

We represent real-time DNN inference tasks using a pe-
riodic task model, commonly utilized in various real-time
systems. Each task is assumed to utilize one DNN model and
handles one inference request per job. Each DNN task τi ∈ τ
can be specified as τi = (Mi, Ci, Ti, Di). Here, Mi is the
memory profile; Ci is the worst-case execution time (WCET)
without swap operations; Ti is the period; and Di, the relative
deadline, is equivalent to Ti.

The memory profile Mi is further characterized by (mi,
mS

i , xi, Θi, O
In(xi, δ), O

Out(xi, δ)), each of which is detailed
below. mi is the total GPU memory footprint of τi, assumed
to remain within the GPU’s memory capacity mD. This
footprint comprises swappable memory objects, denoted as
mS

i , which are allocated using CUDA runtime APIs such
as cudaMalloc and are manageable by RT-Swap. Note that
mS

i is a subset of mi, with the remaining memory being
non-swappable components like static allocations and shared
libraries. xi denotes the maximum swap volume, a portion of
mS

i , determined offline by our proposed algorithm, ensuring
each task τi does not exceed this swap limit to meet its
timing constraint. Note that xi is a multiple of the swap chunk
size δ. Among all swappable GPU memory objects, we also
denote a list of candidate memory objects for swapping as Θi.
OIn(xi, δ) and OOut(xi, δ) are the maximum times required
for swapping in and out, respectively, estimated using linear
regression, considering xi and δ. All parameters in Mi can be
determined offline (see Sec. VII for details).

378

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on July 12,2024 at 03:45:24 UTC from IEEE Xplore. Restrictions apply.

Each task τi potentially generates an infinite sequence of
jobs every Ti time-units. Each job must complete execution
within a relative deadline of Di time-units. The priority
ordering of DNN tasks is determined according to the Earliest
Deadline First (EDF) policy. Note that GPU has separate
computation and data copy engines, so the scheduler can
schedule both computation and swap operations in parallel.
When it comes to preemptiveness, we assume the execution
of DNN tasks and each swap operation are non-preemptive.

B. Target Scheduling Problems

As we target a task set where the cumulative memory
demand surpasses the GPU memory capacity, it is necessary to
handle swap-in/out operations, which meet the following swap
requirements.

R1. Prior to the execution of τi, it is necessary to swap in the
previously swapped-out memory volume, up to xi.

R2. Prior to τi’s swap-in operation, a sufficient volume of
free GPU memory must be ensured for τi. This is ac-
complished by swapping out a corresponding volume, up
to xi, from other DNN tasks.

Since the swap-in/out operations incur additional delay to
each task’s execution, the requirement for timing guarantees
can be written as follows.

R3. Adhering to R1 and R2, all jobs of all tasks τi ∈ τ must
meet deadlines for all possible legal job arrival sequences.

To satisfy the requirements R1–R3, we need to schedule
not only the task executions on GPU but also the swap-in/out
operations thereof, which entails the following two problems:
(i) how to determine the execution order of the task executions
on GPU and their swap-in/out operations, and (ii) how to
determine the amount of swap-in/out operations and the swap
chunk size, which can be formally stated as follows.

Problem 1 (P1): Given the swap chunk size δ and swap
volume assignments {xi}, design a swap-aware scheduling
algorithm such that G1) the number of swap operations for
each job of τi is bounded (as a very small number) and G2)
the overlap between computation and swapping is maximized,
both without compromising the swap requirements R1 and R2.

Problem 2 (P2): Given a task set τ with the proposed
swap scheduling algorithm as a solution of P1, determine xi

for every τi ∈ τ and δ such that the swap requirements R1–R2
and the timing guarantee requirement R3 are satisfied.

We will propose the solutions of P1 and P2 in Sections V-C
and V-D, respectively.

C. Swap Schedule Generation

Since each of the inference tasks and swap-in/out oper-
ations is non-preemptive, the scheduler is invoked upon (i)
request of a new inference job (REQUEST) or (ii) completion
of a job or a swap operation (COMPLETION). The scheduler
maintains two queues: one for inference requests (computation
queue), and the other for swap requests (swap queue). In case
of a REQUEST event, the newly requested job of τi is placed
into the computation queue. Upon each invocation (either
REQUEST or COMPLETION), both the jobs in the computation

5�
�

6�

5�
�

�������	
�	������6�

�����	���	������6�

������
�	������6�

6�6�67�������

�����������

�������

��

	���

����

���

������
67� 6�

������
6�

������
�
6�

������
�
67� 6�

��

	���

����

���

������
67� 6�

�� ��

��
	

��

��
	��

� ��
�

�7

������
6�

������
�
6�

������
�
67� 6�

��������	��
�������
��

���������
����������
��

����

��
�

��

��
���

� ��
�

�7

��
���

�

�� ���� �� ��

�������� �6��� �6��� �6���6��� �6���� �6����

�6��� �6��� �6���6��� �6���� �6������������

	
����
�����

Fig. 5: Schedules for swap operations and normal executions:
(a) unnecessary swap operations performed, (b) which is
addressed by the RT-Swap Scheduler

queue and the swap requests in the swap queue are scheduled
under EDF. Let τCPU (t) denote the subset of τ for which
any portion of their swap volumes resides in CPU memory
at time t. When a job of τi is selected to be scheduled at
time t, the scheduler checks whether τi belongs to τCPU (t).
If τi ∈ τCPU (t), its swap-in operation is placed into the swap
queue to satisfy R1, and the execution of τi is blocked until
its swap-in operation is completed. The scheduler also checks
whether there is a sufficient amount of free GPU memory. If
there is an insufficient amount of free GPU memory, the swap-
out operations of other DNN tasks except τi are placed into the
swap queue ahead of τi’s swap-in operation to satisfy R2. Let
τGPU (t) denote the subset of τ for which any portion of their
swap volumes resides in GPU memory at time t. We choose
the tasks in τGPU (t) to be swapped out in order of the latest
future job release time first until enough volume is freed up
to perform the swap-in operation of τi.

Addressing G1 for P1. Although the basic mechanism of
RT-Swap Scheduler satisfies both R1 and R2, the mechanism,
as it is, may produce unnecessary swap operations, hindering
timely inferences for DNN tasks, as described as follows. As
shown in Fig. 5(a), three tasks (τ1, τ2, τ3) are presented, each
with m1=m2=m3=100, and x1=0, x2=x3=50, given a GPU
memory capacity of mD=250. τ1 can be scheduled without
any swap operation. To schedule τ2 and τ3, it is necessary
to swap out one task and swap in the other. τ3 requests its
inference job at time t1 and it is scheduled at t2. Since τ3 ∈
τCPU (t2) holds and no free GPU memory is available at t2,
the scheduler performs the swap-out operation of τ2 at t2 and
then the swap-in operation of τ3 at t3. In the middle of the
swap-in operation of τ3, a new inference job of τ1 and that of
τ2 whose priority is higher than τ3 are released. Since the job
of τ1 has a higher priority than that of τ2 and τ1 /∈ τCPU (t4)
holds, the job execution of τ1 is started at t4. Once the job
execution of τ1 is finished at t5, the job of τ2 (whose priority
is higher than that of τ3) will be scheduled ahead of τ3 at t5.
Consequently, the scheduler performs the swap-out operations
of τ3 to secure free GPU memory for τ2’s swap-in operation

379

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on July 12,2024 at 03:45:24 UTC from IEEE Xplore. Restrictions apply.

���

����

��	
������ ���	��
�

�� ������

�����

�7 �������

�����

��
�

����

���

����

��	
������ ���	��
�

�� ������

�����

�7 �������

�����

��
�

���

����

��	
������ ���	��
�

�� ������

�����

��
	

�7

�����

��

��
�

�������

��

���

����

��	
������ ���	��
�

�� ������

�����

�����

��

��
�

��

��
	

�7 �����

Fig. 6: Blocking scenarios: (a) undesirable long blocking delay,
(b) which is addressed by RT-Swap Scheduler, (c) blocking delay
upper-bounded by OIn(xi, δ)+Ci, and (d) by Cmax,1+Cmax,2

at time t5. In this situation, the swap-in operation of τ3 at t3 is
unnecessary since τ3 is not scheduled due to the new release
of the higher priority task τ2. If this situation is repeated, the
swapping overhead imposed on τ3 is unnecessarily increased
and unbounded.

To prevent this situation, RT-Swap Scheduler does not allow
any preemption of higher priority tasks between the swap-in
operation of a task and its normal execution. In Fig. 5(b), after
the swap-in operation of τ3 at t3, RT-Swap Scheduler executes τ3
by considering the swap-in operation of τ3 and its execution as
a non-preemptive region without allowing any preemption of
higher-priority tasks between the swap-in operation of τ3 and
its execution. By the policy, RT-Swap Scheduler achieves G1 for
P1, preserving the following property.

Property 1: Under RT-Swap Scheduler, every job of a task
τi ∈ τ performs at most one swap-in operation and one swap-
out operation.

Addressing G2 for P1. RT-Swap Scheduler tries to maximize
the overlap between computation and swapping to effectively
hide the swap overhead. To this end, RT-Swap Scheduler per-
forms the swap operations proactively in conjunction with the
execution of inference jobs. Let Qc(t) denote the set of jobs in
the computation queue at time t. If the highest priority job Jx
in Qc(t) does not belong to τCPU (t) (i.e., no need to perform
the swap-in operation), RT-Swap Scheduler schedules the swap-
in operation of the highest priority job Jy in Qc(t)∩ τCPU (t)
(i.e., the job that requires the swap-in operation the earliest)
to overlap it with the execution of Jx. Similarly, if the swap-
out operation is required before Jy’s swap-in operation, it is
scheduled together with the execution of Jx. As shown in
Fig. 5(b), at time t6, τ1 is the highest priority job in Qc(t6) and
does not belong to τCPU (t6). τ2 is the second highest priority
in Qc(t6) and belongs to τCPU (t6), requiring the swap-out
operation of τ3 to swap in τ2’s memory. RT-Swap Scheduler

schedules the swap-out operation of τ3 and the execution of τ1
in parallel, and subsequently schedules the swap-in operation
for τ2 in the middle of τ1’s execution. Therefore, τ2 can be
executed right after the execution of τ1 without any delay
caused by swap operations.

Although such proactive swap operations can effectively
hide their overheads, they may impose high blocking delay
on an inference job that does not require swap operations.

Consider the situation in Fig. 6(a): the swap-in operation
of τ2 is not finished until the execution of τ1 is finished,
and therefore the execution of τ2 cannot start right after the
execution of τ1. Under this situation, if a new highest-priority
job of τhigh that does not require swap operations is released
at t0, its blocking delay by lower-priority jobs of τ1 and τ2
is longer than the sum of the execution time of τ1 and τ2 as
shown in the figure; in fact, the blocking delay becomes longer
as the swap-in operation time of τ2 gets longer. This situation
occurs due to the discrepancy between the highest-priority job
in the swap queue and that in the computation queue when
the highest-priority job in the computation queue does not
require swap operations. To avoid this situation, we make the
scheduler start the highest-priority swap-in operation only if
the corresponding execution in the computation queue is the
highest-priority, resulting in Fig. 6(b) for the same situation.

D. Swap Volume Assignment

We formulate P2 as an optimization problem such that the
total swap volume for a task set is minimized while R1–R2 (the
swap requirements) and R3 (the timing guarantee requirement)
are satisfied.

minimize
xi, δ

∑
τi∈τ

xi (1a)

subject to 0 ≤ xi ≤ m
S
i , for all τi ∈ τ, (1b)∑

τi∈τ

mi −
∑

τj �=τi

xj ≤ m
D
, for all τi ∈ τ, (1c)

Eq. (3) in Theorem 1 holds. (1d)

Addressing the swap requirements. Constraint (1b) spec-
ifies that the maximum swap volume xi for each task τi must
be less than or equal to the amount of swappable memory
mS

i , which is an obvious constraint. Constraint (1c) represents
a sufficient condition for a task set τ to fulfill R1 and R2 given
the GPU memory capacity mD. For each task τi, the left-hand
side (LHS) of the constraint specifies the minimal necessary
GPU memory allocation, which includes the maximum swap
volume xi required for the correct execution of τi (satisfying
R1), while also considering the swap-out of the maximum
swap volumes of all tasks other than τi. Then, to satisfy
R2, the LHS value must be less than or equal to the GPU
memory capacity mD; this must hold for every task τi ∈ τ ,
which is Constraint (1c). To account for each task’s internal
fragmentation overhead, the total memory footprint mi is
adjusted by adding a margin up to δ, ensuring that mi is
rounded up to the nearest multiple of δ.

Addressing the timing guarantee requirement. To verify
whether a task set associated with the swap chunk size δ and
swap volumes {xi} meets all timing constraints under RT-Swap

Scheduler (satisfying R3), we develop schedulability analysis
by employing the existing utilization-based non-preemptive
EDF schedulability analysis [25], [26]. We first upper-bound
the total time for a job of each τi to occupy the computing
system (either by its swap-in/out operations or GPU execu-
tion), by OOut(xi, δ) + OIn(xi, δ) + Ci, which respectively
represent the maximum time for swapping out to secure the
memory space for τi, the maximum time for swapping in to
transfer data for τi, and the maximum GPU execution time

380

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on July 12,2024 at 03:45:24 UTC from IEEE Xplore. Restrictions apply.

of τi; then,
(
OOut(xi, δ) + OIn(xi, δ) + Ci

)
/Ti is the task

utilization for τi, to be used in Theorem 1. Second, we need
to calculate Bmax, the maximum blocking time for a higher-
priority task’s job to be delayed due to its lower-priority task(s)
(either by their swap-in/out operations or GPU execution); we
calculate Bmax under RT-Swap Scheduler as follows.

Lemma 1: Under RT-Swap Scheduler, the maximum time a
task is blocked by a lower-priority task’s execution or swap
operation (denoted by Bmax) is calculated by

Bmax = max
τi∈τ

(
O

Out(xi, δ), O
In(xi, δ) + Ci, Cmax,1 + Cmax,2

)
,

(2)

where Cmax,n is the nth largest Ci for τi ∈ τ .

Proof: Suppose that a higher-priority task τhigh is released
at t0. We consider six cases depending on the existence/type
of blocking by a lower-priority task τlow (and another lower-
priority task τlow′) at t0.

(Case 1) At t0, no swap-in/out operations and no GPU
execution of any τlow: Bmax = 0 holds trivially.

(Case 2) At t0, the GPU execution of τlow only: Since
τhigh is blocked by the GPU execution of τlow only, Bmax is
upper-bounded by maxτi∈τ Ci.

(Case 3) At t0, the swap-out execution of τlow only: Since
τhigh is blocked by the swap-out execution of τlow only, Bmax

is upper-bounded by maxτi∈τ O
Out(xi, δ).

(Case 4) At t0, the swap-in execution of τlow only:
According to RT-Swap Scheduler, the GPU execution of τlow
is followed by its swap-in execution without any higher-
priority task preemption. Therefore, Bmax is upper-bounded
by maxτi∈τ O

In(xi, δ) + Ci.

(Case 5) At t0, the swap-out execution of τlow and
GPU execution of τlow′ : According to Cases 2 and 3,
Bmax is upper-bounded by the maximum of maxτi∈τ Ci and
maxτi∈τ O

Out(xi, δ). One may argue that if the swap-out of
τlow finishes before the GPU execution of τlow′ , it is possible
for another lower-priority task τlow′′ to start its execution as
shown in Fig. 6(a). However, this situation cannot occur as
RT-Swap Scheduler starts the highest-priority swap-in operation
only if the corresponding execution in the computation queue
is the highest-priority, yielding the situation in Fig. 6(b).

(Case 6) At t0, the swap-in execution of τlow and GPU
execution of τlow′ : We consider two sub-cases. First, if the
swap-in execution of τlow is finishes later than the GPU
execution of τlow′ , Bmax is the same as that for Case 4, upper-
bounded by maxτi∈τ O

In(xi, δ) + Ci, as shown in Fig. 6(c).
Second, if the swap-in execution of τlow finishes no later
than the GPU execution of τlow′ , the GPU execution of τlow
can start its execution only after that of τlow′ is finished. In
this case, Bmax is upper-bounded by the sum of two GPU
executions of different tasks, which is Cmax,1 + Cmax,2.

For all cases, Bmax is upper-bounded by the right-hand-
side of Eq. (2), which proves the lemma.

Once we apply Bmax, we apply the schedulability analysis
in [25], [26] as follows.

Theorem 1: If Eq. (3) holds for given δ and {xi}, τ is
schedulable by the proposed scheduling algorithm (i.e., no job
deadline miss is guaranteed).

Bmax

minτi∈τ Ti

+
∑
τi∈τ

OOut(xi, δ) +OIn(xi, δ) + Ci

Ti

≤ 1.0 (3)

Proof: The theorem holds by applying the schedulability
analysis in [25], [26] to the fact that the total execution of each
task τi is upper-bounded by OOut(xi, δ)+OIn(xi, δ)+Ci and
the maximum blocking time is Bmax.

Final solution. The optimization problem is solved using
Gurobi [27], a well-known optimization solver, by restricting
possible solutions for {xi} to multiples of δ. In addition, to
determine a list Θi of candidate memory objects for swapping
among all swappable memory objects, they are organized in
descending order based on their sizes. They are sequentially
added to Θi until the cumulative size of Θi meets or exceeds
xi. This approach allows RT-Swap to manage a reduced number
of CPU VA to GPU VA mappings for swapping within Θi,
thereby optimizing maintenance efforts.

VI. IMPLEMENTATION

We initially implement RT-Swap using Darknet [13] as
the base ML framework and subsequently extend its com-
patibility to PyTorch [11]. RT-Swap consists of two main
components: RT-Swap Library and RT-Swap Scheduler. RT-Swap

Library, designed as a shared library, facilitates easy integration
with any ML framework by simply preloading it through the
LD_PRELOAD environment variable, avoiding source code
changes. We implement the swap handler in RT-Swap Library

using signals (SIGUSR1 and SIGUSR2 in POSIX) to execute
swap-in/out operations based on RT-Swap Scheduler’s requests.
To avoid conflicts between inference and swap requests, the
swap handler functions as a separate thread.

RT-Swap Scheduler, operating as a standalone process, man-
ages communication with RT-Swap Library for each DNN task,
requiring only minimal adjustments to the ML framework’s
code. For example, incorporating RT-Swap into Darknet re-
quires fewer than 20 lines of code to establish an IPC interface.
During the initialization phase of a DNN model within Dark-
net (in parse_network_cfg within parser.c), a dual IPC
connection using named pipes is established for blocking I/O,
consisting of one channel for the DNN task to send scheduling
requests to RT-Swap Scheduler, and another for RT-Swap Sched-

uler to return scheduling decisions. In the inference phase,
Darknet employs a specific function (network_predict
in network.c) to execute a series of GPU kernels as per the
DNN model’s specifications. We integrate the communication
stub at the beginning of this function, allowing the DNN task
to forward a scheduling request to RT-Swap Scheduler upon
initiating an inference job. The DNN task is then paused,
awaiting a scheduling decision from RT-Swap Scheduler. RT-Swap

Scheduler then takes charge of managing GPU computations
and memory swapping for DNN tasks.

Compatibility. To showcase the compatibility of RT-Swap

with other state-of-the-art ML frameworks, we extend its
implementation to include PyTorch. PyTorch differentiates
itself with a sophisticated caching allocator for GPU memory

381

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on July 12,2024 at 03:45:24 UTC from IEEE Xplore. Restrictions apply.

�

��

��

��

��

���

�
�	
	�

�
��
��

�
��
��

�
�����

�
������

	
��
�
�

��
������

��
������

��
������

��
���	�

�
�
��
!
"�
�
#"
#$
%
��
�$
#&
��

�
�

��&��$�'(�#)�$ ��$�'(�'�$��&*�+�"&,�	
��

�'� �����"� ������
��� ����,�-

(a)

�

��

��

��

��

���

� �� �� �� �� �� �� ��
��

��
�
 !
�
"

"#
$
��

!#
"&
��
�
�

���������	
���-��������

���� 	������� ������
��� ������-

(b)

�

 �

!�

"�

#�

$��

� $� � %� !� &� "� '� #� �� $���
�(
��
)
*%
�
�*
��
.
��

%�
�&
��
�
�

�%��&�&��(��(���'��%'���+��(���%'��'������

�%'� 	%��%�*� ������

��� ����,%

(c)

Fig. 7: Schedulability ratio comparison according to (a) the number of tasks in the task set, (b) reduced GPU capacity (%), and
(c) ratio between low-resolution task and high-resolution task

TABLE III: DNN workload memory footprints and WCETs

ResNet YOLOv3 DenseNet ResNext

Resolution 256, 416, 608

GPU memory (GB) 1.4, 2.4, 3.8 2.3, 3.6, 6.2 1.0, 1.6, 2.7 1.6, 3.2, 5.7

Swappable (GB) 0.7, 1.4, 2.7 1.1, 2.6, 5.2 0.4, 0.9, 1.8 1.0, 2.2, 4.5

WCET (ms) 29, 36, 48 48, 51, 63 31, 34, 42 41, 45, 63

management, optimizing memory usage by estimating mem-
ory needs through an initial run, then allocating memory in
large blocks. This approach minimizes runtime allocations
and de-allocations, enhancing performance. Despite PyTorch’s
unique approach to memory management, it still relies on
CUDA runtime APIs for its memory allocation processes.
Thus, the implementation approach for integrating RT-Swap

with PyTorch mirrors the methodology applied to Darknet. RT-

Swap is compatible with ML frameworks that support CUDA
10.2 or higher. This compatibility depends on the availability
of CUDA low-level GPU VMM APIs. Moreover, RT-Swap

does not require DNN model changes, making it versatile for
different DNN models.

VII. EVALUATION

We demonstrate the capability of RT-Swap in optimizing
GPU memory usage, utilizing CPU memory for swapping,
while guaranteeing timely inference for multiple DNN tasks.

A. Experimental Setup

We evaluate RT-Swap on top of Darknet [13]3. Our exper-
iments are conducted on a server equipped with an NVIDIA
RTX3090 GPU with 24GB of GPU memory, 128GB of
CPU memory (32GB×4 DDR4 @ 2666MHz), and PCIe 3.0,
operating on Ubuntu 18.04 with CUDA 12.1. We use four
popular DNN models: YOLOv3 [21], ResNet [22], ResNext
[23], and DenseNet [24], each with three input resolutions
(256, 416, 608), as detailed in Table III. To profile each model,
we utilize the NVIDIA nvprof tool, determining the total
memory footprint while employing RT-Swap Library to obtain the
amount of swappable memory. Computation time is measured
by running each model 1000 times, taking the maximum value
as the WCET. Swap-in/out times are estimated using linear
regression, given their proportionality to the swap volume with
a specified swap chunk size.

We compare four different approaches against RT-Swap:

3We choose Darknet for our RT-Swap experiment due to its straightforward
structure, which facilitates easier comparison with existing approaches.

• Base: on-demand paging with LRU replacement policy [28];
• MO-VMM: memory-object-level VMM;
• MIN: RT-Swap with the minimum swap chunk size (2MB);
• Pageable: RT-Swap with pageable CPU memory.

Base utilizes CUDA-supported unified memory with on-
demand paging, employing the LRU replacement policy upon
a page fault. Since on-demand paging cannot determine the
swap amount offline, DNN executions are emulated using the
same replacement policy and non-preemptive EDF scheduling
to quantify individual DNN tasks’ swap amounts for compar-
ison. MO-VMM adopts the default memory-object-level virtual
memory management method provided by CUDA with host-
pinned memory. MIN and Pageable are variations of RT-Swap.
MIN assigns the swap chunk size to a minimal value of 2MB,
and Pageable utilizes pageable CPU memory as a swapping
device, instead of using host-pinned memory. In comparison
of the schedulability ratio, we use our proposed analysis in
Eq. (3) for all approaches.

B. Extensive Simulations

With an increasing number of tasks. We generate a
synthetic DNN task set τ as follows. For each task τi ∈ τ ,
its DNN model and resolution are randomly chosen from the
four DNN models and three resolutions, respectively, as shown
in Table III, and Ti is uniformly chosen in [3000, 5000].
Initially, 100 DNN task sets are created, each with 4 tasks and a
total footprint of 23-24GB.4 Additional tasks are incrementally
added to each set, creating 100 new task sets each time, until
reaching 13 tasks per set.

Fig. 7(a) compares the percentage of schedulable task sets
by five approaches, varying the number of tasks from 4 to 13.
RT-Swap consistently outperforms other approaches, rendering
72%, 139%, 221%, and 383% more task sets schedulable
compared to MIN, MO-VMM, Pageable, and Base, respectively.
This performance gap widens as the number of tasks (denoted
as n) increases, coinciding with a growth in memory overflow
from 0 to 25.9GB, causing more memory to be swapped.
When n ≥ 6, Base hardly finds any schedulable task sets due
to its LRU replacement policy, which neglects schedulabil-
ity, causing unpredictable page evictions. Similarly, Pageable

struggles at n ≥ 7, due to significant swapping overheads

4We cap the footprint to ensure that adding any new task surpasses the
24GB GPU capacity, focusing on task sets exceeding GPU memory limits.

382

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on July 12,2024 at 03:45:24 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Task set information for a case study

Task Deadline (ms) DNN model Max. swap volume (MB)

τ1 600 DenseNet 416 0

τ2 600 ResNet 256 0

τ3 900 ResNext 608 576

τ4 900 ResNext 608 576

τ5 1200 ResNext 608 576

τ6 1200 ResNext 608 576

from data transfers to pageable CPU memory. MO-VMM faces
notable fragmentation issues, failing to optimize available GPU
memory, leading to unschedulable task sets. MIN suffers from
an exhaustive number of physical memory chunks, causing
excessive swapping overheads and reduced schedulability. In
contrast, RT-Swap optimizes the swap chunk size and swap
volumes based on the proposed schedulability analysis, and
employs efficient swapping mechanisms to minimize frag-
mentation overheads. Consequently, RT-Swap outperforms in
scheduling more task sets, even with up to 12 tasks and an
average overflow of 23.1GB (96.2% more memory).

With a reduced GPU capacity. We assess RT-Swap’s
memory efficiency by varying the GPU’s physical capacity.
Using the same 100 task sets from the previous simulation,
each with 5 tasks, we reduce the original 24GB GPU capacity
incrementally from 0% to 70%, as depicted in Fig. 7(b). As
GPU memory capacity diminishes, swap amounts naturally
increase. RT-Swap, however, manages to maintain the schedu-
lability of task sets that were schedulable at the original
GPU capacity, enduring an average GPU capacity reduction
of 36.5%. In contrast, other approaches only sustain schedu-
lability with an average capacity reduction of 5.2%. This
enhancement indicates RT-Swap’s efficient utilization of GPU
memory, minimizing fragmentation and swapping overheads,
thereby allowing for a more number of schedulable task sets
even with limited GPU memory.

With an increasing resolution. We evaluate the effective-
ness of RT-Swap in accommodating larger DNN models by
varying the high-resolution task ratios. Among three resolu-
tions of 256, 416, and 608, tasks utilizing 256 are considered
as low-resolution tasks, while those utilizing 608 are deemed as
high-resolution tasks. Starting with 100 task sets of ten low-
resolution tasks each, we incrementally convert one random
low-resolution task to high-resolution, generating 100 new task
sets each time, until all tasks are high-resolution. For the four
DNN models, high-resolution tasks require 2.9x more memory
on average as compared to their low-resolution counterparts.
In Fig. 7(c), RT-Swap successfully enables high-resolution
inference in an average of 70.5% of tasks within the generated
task sets, outperforming other approaches which only manage
this in 29.4% of tasks. Consequently, RT-Swap significantly
enhances the quality of inference results, effectively leveraging
the available limited GPU memory capacity.

C. Runtime Experiments

To analyze the performance of RT-Swap in terms of infer-
ence latency and response time, we conduct a case study with
six DNN tasks, detailed in Table IV. The cumulative memory
footprint of these tasks is 25.6GB, exceeding the GPU’s
capacity by 1.6GB. The tasks τ1 and τ2 have deadlines of
600ms; τ3 and τ4 have deadlines of 900ms; and τ5 and τ6 have
deadlines of 1200ms. τ1 and τ2 use DenseNet and ResNet,

�
����

�
����

�
����

�
���	

�
���

�
����

�
�

�
!�
��
�
��

�

���

����

����

����

����

�
����

�
����

�
����

�
���	

�
���

�
����

�
�

�
!�
��
�
��

�

���

����

����

����

����

�7 �� �� �� �� ��

(a) Base

�
����

�
����

�
����

�
���	

�
���

�
����

�
�

�
!�
��
�
��

�

���

����

����

����

����

�
����

�
����

�
����

�
���	

�
���

�
����

�
�

�
!�
��
�
��

�

���

����

����

����

����

�7 �� �� �� �� ��

(b) RT-Swap

Fig. 8: Observed latency distribution using Base and RT-Swap

�

���

���

���

���

�

� ���� ���� 	��� ����
���

�
�

������������������

������

������

�����	

����������������

����������������

���������������	

�7

��
��
���������	
��7

���������	
���
���������	
���

(a) Base

�

���

���

���

���

�

� ���� ���� 	��� ����
���

�
�

������������������

������

������

�����	

����������������

����������������

���������������	

�7

��
��
���������	
��7

���������	
���
���������	
���

(b) RT-Swap

Fig. 9: Response Time CDF using Base and RT-Swap

respectively, whereas the remaining tasks use ResNext. The
tasks are scheduled under EDF. Our proposed swap volume
assignment algorithm ensures that the entire model parameters
of τ1 and τ2, with shorter deadlines, reside in the GPU memory
without swapping. Meanwhile, the other four tasks are each
allocated 576MB of swap volumes to manage the excess GPU
memory usage. RT-Swap sets the swap chunk size to 32MB.

Fig. 8 shows the average inference latency of six tasks
using Base and RT-Swap (marked as a cross), and the distribu-
tion of observed latency (marked as a candlestick) depicting
max/min values and 25 to 75 percentiles range as boxes. The
latency includes the page fault handling time and the swapping
time for Base and RT-Swap, respectively, in addition to the
computation time. Note that outliers are excluded from the
distribution for clarity and are instead plotted as dots. In the
figure, we observe that Base adds high fluctuations in latency,
on the order of seconds (up to 2.2secs). Under Base, although
τ1 with a shorter period exhibits fewer pages being evicted on
average due to the LRU policy, its worst-case latency is 383ms,
higher than the average value of 59ms by 6.5x. τ3 with a
longer period faces much higher and unpredictable page fault
handling overhead, yielding a substantial increase in latency
(up to 2172ms). On the other hand, RT-Swap shows consistent
latency by limiting the maximum swap volume for each task.
The worst-case latency for τ1 is 33ms, and for τ3 it is 184ms,
imposing only a minor swapping overhead of up to 121ms.

To demonstrate RT-Swap’s effectiveness in ensuring schedu-
lability, Fig. 9 shows the measured end-to-end response time
CDF of three tasks in the task set by Base and RT-Swap,

383

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on July 12,2024 at 03:45:24 UTC from IEEE Xplore. Restrictions apply.

displaying only three out of the six tasks as those with the
same deadlines show similar results. Under Base, all tasks miss
their deadline and show long tail latency with the maximum
observed response time of 4438ms. On the other hand, RT-Swap

achieves 14x reduction in the maximum observed response
time on average over Base, making all tasks schedulable.

D. Runtime Overhead Analysis

We analyze the runtime overhead of RT-Swap for initializa-
tion, wrapper function calls, communications between RT-Swap

Library and RT-Swap Scheduler, as well as memory usage and
fragmentation, as detailed in Table V. These measurements are
based on the task set used in a case study. To initialize RT-Swap,
RT-Swap Scheduler sets up IPC channels and VMM configura-
tions on each RT-Swap Library, resulting in an average delay of
120.5μs. Wrapper function calls in RT-Swap Library occur at the
initialization stage, averaging at 3.5μs per memory allocation
request. RT-Swap imposes scheduling overhead composed of
IPC communication and swapping decision costs, averaging
11.6μs and 11.1μs (up to 12.1μs and 43.6μs, respectively).
This delay is minor compared to DNN computation times and
can be accommodated in the schedulability analysis. Addition-
ally, RT-Swap needs extra CPU memory (up to 15.7MB) to
manage mapping information of each task’s CPU VA to GPU
VA, along with swap and computation queues. However, it
utilizes the abundant CPU memory available. RT-Swap shows
an average increase of 6.3MB (up to 9.5MB) in GPU memory
usage due to internal fragmentation.

VIII. RELATED WORK

GPU Memory Management for a Single Kernel. To
process DNNs in real-time, GPU has become a primary
computing device that works as a co-processor along with CPU
and CPU memory. Since GPU memory is dedicated to the GPU
device and managed directly by the GPU driver rather than
the OS, there have been attempts to manage GPU memory
on top of the GPU driver. Studies [29]–[32] have suggested
GPU memory management by intercepting GPU library APIs
when sending commands to the GPU driver. RSVM [29],
for example, provides library-based memory management and
allows transparent access to memory between the GPU and
CPU using region-based allocation. VAST [30] utilizes a
virtual address space for GPU memory based on OpenCL,
dividing large memory tasks into smaller sub-kernels that fit
within the available memory. RT-Swap leverages mechanisms
for GPU memory management by intercepting GPU APIs to
focus timely inference of multiple DNN tasks rather than a
single task or kernel in existing approaches.

Driver-level GPU Paging. Various studies [7]–[10] attempt
to overcome the limited GPU memory by providing a paging
mechanism between GPU and CPU memory. Gdev [7] allows
GPU contexts to allocate memory beyond the physical GPU
memory size by swapping between CPU and GPU memory
at the memory object granularity. GPUSwap [8] enables GPU
memory oversubscription via direct access to CPU memory
by ensuring the GPU always has access to the data. A recent
study [9] provides GPU memory oversubscription by utilizing
direct I/O to SSD on an integrated GPU. RT-Swap shares this
vision to overcome the GPU memory wall in practice but
there are several major differences that make RT-Swap more

TABLE V: Runtime overhead analysis for RT-Swap

Runtime overhead Average Min Max

Initialization (one time) (μs) 120.5 80.1 194.2

Wrapper function calls (μs) 3.5 3.0 8.0

Scheduling (μs) 22.7 12.8 55.6

Extra CPU memory usage (MB) 14.9 14 15.7

Fragmentation (MB) 6.3 0 9.5

transparent, deployable, and timely for DNN tasks. First, they
rely on proprietary GPU driver requiring modifications to the
device driver or installing custom driver; in contrast, RT-Swap

can be deployed on any NVIDIA GPU, either integrated or
discrete, on top of the GPU device driver without modification
by the proposed transparent GPU virtual memory management.
Moreover, they do not deal with the overheads induced by
swap operations falling short in ensuring timely inference for
multiple DNN tasks.

Framework-level DNN Memory Management. Instead
of a driver-level, DNN framework-level solution [16]–[18],
[20] aims to efficiently map DNN layers across GPU and
CPU memory. vDNN [16] aims to release or transfer feature
maps generated between layers to CPU memory to address
the large GPU memory footprint during the training step.
Capuchin [17], unlike static approaches, offers a dynamic
approach to select memory allocations and transfer them to
CPU memory. Swapadvisor [18] reduces memory management
overhead by overlapping layer execution time and memory
transfer time through layer scheduling and determining which
tensor to transfer. Sentinel [20] selects tensors to transfer
based on their hotness, i.e., how frequently they are revisited.
Demand layering [33] minimizes memory usage by loading
and executing layers in a layer-by-layer manner. Despite these
efforts, these framework-level solutions focus on a single DNN
training/inference step rather than multiple DNN inferences.
RT-Swap, on the contrary, provides transparent, efficient, and
scalable system-wide memory management for multiple DNN
frameworks running at the same time for real-time inferences.

IX. CONCLUSION

This paper presents a new real-time memory management
framework, specifically designed to address the GPU memory
bottleneck problem, while concurrently ensuring timely infer-
ence for multiple DNN tasks. We introduce transparent and
efficient memory swapping and virtual memory management
mechanisms with negligible fragmentation overhead, thereby
expanding the available GPU memory. Moreover, the proposed
swap-aware real-time scheduling algorithm guarantees the
timely execution of DNN tasks and mitigates the overhead of
memory swapping. Extensive evaluation and implementation
on a popular ML framework prove the effectiveness of our
approach in accommodating more real-time DNN tasks that
demand more memory than physically available on the GPU,
while preserving timing constraints.

RT-Swap is suitable for systems with distinct CPU and GPU
memories, like NVIDIA DRIVE [34]. In integrated CPU-GPU
SoCs, like NVIDIA Jetson [35], with shared memory, RT-Swap

could enable transparent swapping between shared memory
and secondary storage (e.g., SSD and ZRAM), a potential
area for future exploration. Additionally, future enhancements
may involve extending RT-Swap for layer-level GPU memory
management to further boost memory efficiency.

384

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on July 12,2024 at 03:45:24 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGEMENT

This work was supported in part by (1) the National
Research Foundation of Korea (NRF) grant (2018R1A5A1060031

(ERC), 2021R1F1A1063785, 2022R1A4A3018824, RS-2023-00248143, RS-

2023-00213309) and (2) Institute of Information & communica-
tions Technology Planning & Evaluation (IITP) grant (IITP-

2022-0-01053, RS-2022-00155885, IITP-2024-RS-2022-00156360) funded
by the Korea government (MSIT).

REFERENCES

[1] H.-Y. M. L. Chien-Yao Wang, Alexey Bochkovskiy, “Yolov7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,”
2022.

[2] Q. Zhao, T. Sheng, Y. Wang, Z. Tang, Y. Chen, L. Cai, and H. Ling,
“M2det: A single-shot object detector based on multi-level feature
pyramid network,” in AAAI, 2019.

[3] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++:
A nested u-net architecture for medical image segmentation,” in Deep

Learning in Medical Image Analysis and Multimodal Learning for

Clinical Decision Support, 2018.

[4] L. Wang, J. Ye, Y. Zhao, W. Wu, A. Li, S. L. Song, Z. Xu, and T. Kraska,
“Superneurons: Dynamic gpu memory management for training deep
neural networks,” in PPoPP, 2018.

[5] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “Zero: Memory
optimizations toward training trillion parameter models,” in SC, 2020.

[6] J. Ren, S. Rajbhandari, R. Y. Aminabadi, O. Ruwase, S. Yang,
M. Zhang, D. Li, and Y. He, “Zero-offload: Democratizing billion-scale
model training,” in ATC, 2021.

[7] S. Kato, M. McThrow, C. Maltzahn, and S. A. Brandt, “Gdev: First-
class gpu resource management in the operating system.” in ATC, 2012.

[8] J. Kehne, J. Metter, and F. Bellosa, “Gpuswap: Enabling oversubscrip-
tion of gpu memory through transparent swapping,” in VEE, 2015.

[9] J. Bakita and J. H. Anderson, “Enabling gpu memory oversubscription
via transparent paging to an nvme ssd,” in RTSS, 2022.

[10] P. Yu and M. Chowdhury, “Fine-grained gpu sharing primitives for deep
learning applications,” MLSys, 2020.

[11] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in NIPS, 2019.

[12] M. A. et al., “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015. [Online]. Available: https://www.
tensorflow.org/

[13] J. Redmon, “Darknet: Open source neural networks in c,” 2013–2016.
[Online]. Available: http://pjreddie.com/darknet/

[14] A. A. Awan, C.-H. Chu, H. Subramoni, X. Lu, and D. K. Panda, “OC-
DNN: Exploiting advanced unified memory capabilities in CUDA 9 and
Volta GPUs for out-of-core DNN training,” in HiPC, 2018.

[15] J. Jung, J. Kim, and J. Lee, “Deepum: Tensor migration and prefetching
in unified memory,” in ASPLOS, 2023.

[16] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keck-
ler, “vDNN: Virtualized deep neural networks for scalable, memory-
efficient neural network design,” in MICRO, 2016.

[17] X. Peng, X. Shi, H. Dai, H. Jin, W. Ma, Q. Xiong, F. Yang, and X. Qian,
“Capuchin: Tensor-based GPU memory management for deep learning,”
in ASPLOS, 2020.

[18] C.-C. Huang, G. Jin, and J. Li, “Swapadvisor: Pushing deep learning
beyond the gpu memory limit via smart swapping,” in ASPLOS, 2020.

[19] M. Hildebrand, J. Khan, S. Trika, J. Lowe-Power, and V. Akella, “Au-
totm: Automatic tensor movement in heterogeneous memory systems
using integer linear programming,” in ASPLOS, 2020.

[20] J. Ren, J. Luo, K. Wu, M. Zhang, H. Jeon, and D. Li, “Sentinel: Efficient
tensor migration and allocation on heterogeneous memory systems for
deep learning,” in HPCA, 2021.

[21] A. Farhadi and J. Redmon, “Yolov3: An incremental improvement,” in
CVPR, 2018.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[23] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in CVPR, 2017.

[24] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in CVPR, 2017.

[25] T. Baker, “A stack-based resource allocation policy for realtime pro-
cesses,” in RTSS, 1990.

[26] W. Kang, S. Chung, J. Y. Kim, Y. Lee, K. Lee, J. Lee, K. G. Shin, and
H. S. Chwa, “DNN-SAM: Split-and-merge dnn execution for real-time
object detection,” in RTAS, 2022.

[27] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2023. [Online]. Available: https://www.gurobi.com

[28] Nvidia, “Understanding on demand paging (odp),” 2022.
[Online]. Available: https://enterprise-support.nvidia.com/s/article/
understanding-on-demand-paging--odp-x

[29] F. Ji, H. Lin, and X. Ma, “RSVM: a region-based software virtual
memory for GPU,” in PACT, 2013.

[30] J. Lee, M. Samadi, and S. Mahlke, “VAST: The illusion of a large
memory space for GPUs,” in PACT, 2014.

[31] R. Ausavarungnirun, J. Landgraf, V. Miller, S. Ghose, J. Gandhi, C. J.
Rossbach, and O. Mutlu, “Mosaic: a GPU memory manager with
application-transparent support for multiple page sizes,” in MICRO,
2017.

[32] H. Kim, J. Sim, P. Gera, R. Hadidi, and H. Kim, “Batch-aware unified
memory management in GPUs for irregular workloads,” in ASPLOS,
2020.

[33] M. Ji, S. Yi, C. Koo, S. Ahn, D. Seo, N. Dutt, and J.-C. Kim, “Demand
layering for real-time dnn inference with minimized memory,” in RTSS,
2022.

[34] NVIDIA DRIVE AGX Orin DevKit. [Online]. Available: https:
//developer.nvidia.com/drive/hyperion

[35] NVIDIA Jetson DevKit. [Online]. Available: https://developer.nvidia.
com/embedded/jetson-developer-kits

385

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on July 12,2024 at 03:45:24 UTC from IEEE Xplore. Restrictions apply.

