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ABSTRACT
Unlike existing accuracy-centric multi-object tracking (MOT), MOT

subsystems for autonomous vehicles (AVs) must accurately perceive

the surrounding conditions of the vehicle and timely deliver the

perception results to the control subsystems before losing stability.
In this paper, we proposed MOT-AS (Multi-Object Tracking sys-

tems capturing Accuracy and Stability), a novel handover-aware

MOT execution and scheduling framework tailored for AVs with

multi-cameras, which aims to maximize tracking accuracy without

sacrificing system stability. Given the resource limitations inherent

to AVs, MOT-AS partitions the handover-aware MOT execution

into two distinct sub-executions: tracking handover objects that

move across multiple cameras (referred to as global association) and

those that move within a single camera (termed local association).

It selectively performs the global association only when necessary

and carries out local association with multiple execution options to

explore the trade-off between accuracy and stability. Building upon

MOT-AS, we developed a new scheduling framework encompass-

ing a new MOT task model, offline stability analysis, and online

scheduling algorithm to maximize accuracy without compromising

stability. We implementedMOT-AS on both high-end and embed-

ded GPU platforms using the Nuscenes dataset, demonstrating

enhanced tracking accuracy and stability over conventional MOT

systems, irrespective of their handover considerations.
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1 INTRODUCTION
A modern autonomous vehicle (AV), serving as a compelling ex-

ample of cyber-physical systems (CPSes), periodically engages in

deep neural network (DNN)-based perception tasks coupled with

decision-driven physical control tasks [4]. Perception information

(e.g., detected objects) must be highly accurate and provided in a

timely manner to control tasks for proper decision-making, such as

obstacle avoidance [4]. If perception information continually fails to

be conveyed in time, AV’s stable control for obstacle avoidance can

be lost due to applying outdated perception information, potentially

leading to a catastrophic accident within the system. Therefore,

the perception subsystem of AVs carries a crucial requirement: it

must (G1) accurately perceive the surrounding conditions of the

vehicle and (G2) timely deliver the perception results to the control

subsystem before losing stability.
The DNN-based multi-object tracking (MOT) is a representative

perception subsystem deployed in modern AVs, which tracks ob-

jects (e.g., cars and pedestrians) around the vehicle throughmultiple

cameras and periodically delivers this information to the control

subsystem [4]. There are key characteristics of multi-camera-based

MOT systems: an object being tracked in the view of one camera
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moves into the view of another camera called handover, and such

handover occurs conditionally. When tracking a normal object,

as opposed to a handover object, the comparison occurs between

consecutive frames from the same camera, eliminating the need to

reference other cameras. For instance, Figure 1(b) depicts that track-

ing objects① and② are computed exclusively for the front camera

while tracking object③ is confined to the side camera’s computa-

tions. Conversely, the occasional appearance of a handover object

demands additional computation, as it requires cross-referencing

data from multiple cameras simultaneously. For instance, in Fig-

ure 1(c), to track the handover of object② as it moves from the

view of the front camera to that of the side camera, it is necessary to

associate its presence in the front camera at 𝑡+1 with its appearance

in the side camera at 𝑡+2.

Since AVs provide limited computing resources as representative

embedded systems, performing heavy computation to achieve G1

in every MOT task can compromise G2 due to continuous dead-

line misses, which is, a challenge that existing handover-aware

approaches fail to address without consideration of resource con-

straints [5, 12, 13]. Our strategy to address this challenge involves

decomposing the handover-aware MOT execution into (i) tracking

handover objects and (ii) tracking normal (non-handover) objects,

which have distinct characteristics. The computation for (i) is con-

ditionally required and executed only when necessary by capturing

the handover moments. Meanwhile, (ii) is always necessary as long

as the detected object exists. Thus, we offer various execution op-

tions that provide a trade-off between G1 and G2 for (ii), allowing

for selective execution based on the available computing resources.

Tracking normal and handover objects is equally crucial to achiev-

ing G1, so handover-aware MOT systems on limited resources have

the following requirements.

R1. It should capture the timing of handover to track handover

objects only if necessary and offer various execution options

to provide the trade-off between G1 and G2 for tracking

normal objects.

Based on the perception information received from perception

subsystems, the control subsystems of modern AVs strive to main-

tain stability by periodically executing control tasks. Existing real-

time perception task model [4] presupposes that all perception tasks

must complete their execution and deliver them to the control sub-

systems before their deadlines. This strict requirement can often be

excessively cautious or pessimistic as actual physical systems have

inbuilt safety margins and thus do not lose stability even if some

jobs miss their deadlines [7]. For instance, the control subsystem

based on MOT systems might tolerate occasional misses in percep-

tion information updates, as it can utilize perception information

received in the previous period before losing system stability [6].

Allowing such sporadic misses in updating perception information

enables higher utilization of computing resources by accepting

more diverse execution schedules. However, to efficiently utilize

these advantages in a handover-aware MOT system to achieve G1

and G2, a technique must first be developed that allows the target

MOT system to verify G2 is guaranteed at design time; this pro-

cess is known as offline stability analysis. Subsequently, among the

scheduling options that satisfy G2, the best schedule of perception

information in terms of accuracy must be found using the answer

to R1 at every MOT execution to achieve G1; this process is referred

to as the online scheduling algorithm. These strategies underline

that a handover-aware MOT system aiming to achieve G1 and G2

has the following requirement.

R2. It should develop offline stability analysis and an online

scheduling algorithm thatmaximizes tracking accuracywhile

ensuring stability, using the interface provided by the answer

to R1.

In this paper, we proposeMOT-AS (Multi-Object Tracking sys-

tems capturing Accuracy and Stability), a novel handover-aware

MOT execution and scheduling framework designed for AVs equipped

with multi-cameras, which aims to maximize tracking accuracy

without sacrificing system stability. To address R1,MOT-AS intro-

duces a new system design that handles as many MOT tasks as

cameras in AVs, constantly updating the state of the objects being

tracked by each MOT task, to be detailed in Section 2.1. By com-

paring the states of objects across different MOT tasks, MOT-AS
can estimate the timing of handovers, referred to as handover iden-
tification, and selectively execute the tracking of handover objects,

known as global association. Moreover,MOT-AS incorporates the

notion of a confidence threshold to determine the number of ob-

jects participating in tracking, to be detailed in Section 2.2. This

enables two distinct execution options, named low-workload and

high-workload, to track normal objects, referred to as local associ-
ation, offering the trade-off between tracking accuracy (affecting

G1) and execution time (affecting G2). In essence, MOT-AS basi-

cally offers two execution alternatives for the local association, one

with the global association and the other without, resulting in four

execution options for each MOT task.

To fulfill R2, MOT-AS implements a new scheduling framework

that leverages the system design developed to address R1. To this

end, we first propose a new MOT task model by expanding the

existing stability-aware fault-tolerant CPS task model to properly

represent themultipleMOT execution options offered by the answer

to R1. Then, motivated by the limited resources provided by AVs, we

target MOT systems where a high-workload local association along

with a global association for every MOT execution cannot conserve

the stability of the system. For the target systems, we propose a

new offline stability analysis that ensures the minimum execution

of every MOT task (i.e., a low-workload local association without

global association) while providing stability. Building upon the

MOT task model and offline stability analysis, we develop an online

scheduling algorithm, NPFP
ML

(non-preemptive fixed-priority with

mixed local and global associations) that assesses the feasibility

of the diverse execution options provided by the answer to R1

and then selects the best choice that maximizes accuracy without

undermining the stability verified by the offline analysis.

We deployed MOT-AS on both high-end and embedded GPU

platforms using the Nuscenes as a handover-aware dataset, demon-

strating superior tracking accuracy and stability over traditional

MOT systems, regardless of their handover considerations.

Our contributions are as follows.

• We raise themotivation of systematically decomposing handover-

aware MOT execution into the global and local associations

to achieve G1 and G2 in resource-limited AVs (Section 2).
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Figure 1: Different states of objects (“N”ew, “C”onfirmed,
“L”ost, “H”andover) tracked by two MOT tasks for a front
camera 𝜏𝑓 and a side camera 𝜏𝑠 , respectively

• We propose a new system design MOT-AS to execute global

association selectively and provide a trade-off between G1

and G2 for local association (Sections 3 and 4).

• Building uponMOT-AS, we implement a scheduling frame-

work that maximizes accuracy while providing a stability

guarantee (Section 5).

• We demonstrate the effectiveness of MOT-AS through ex-

periments on both high-end and embedded GPU computing

systems (Section 6).

2 TARGET SYSTEM AND MOTIVATION
2.1 Target system
We target handover-awareMOT systems that operate on autonomous

vehicles equipped with 𝑛 cameras. Each camera can operate at dif-

ferent frame-per-second (FPS) due to different uses (e.g., forward-

facing cameras operate at higher rates, while side-facing cam-

eras typically work at lower rates). MOT-AS adopts a tracking-
by-detection method, where front-end detection and back-end asso-

ciation are consecutively performed for each frame continuously

inputted from each camera. For detection, a DNN-based stand-alone

detector (e.g., YOLO series [14] and R-CNN series [15]) is deployed

to identify the location and class of objects in an input frame. Then,

a local association is executed to match the two objects with the

highest similarities from consecutive frames of a single camera. Sub-

sequently, a global association is carried out to identify an object

of a handover between two adjacent cameras.

2.2 Motivation
Figure 1 presents the different states of objects that can be tracked

in a multi-camera-based MOT system. For an MOT task 𝜏𝑖 corre-

sponding to a camera and the 𝑡-th frame that the task processes, an

object can have four different states: new, confirmed, lost, and han-
dover (denoted by N, C, L, and H, respectively). Figure 1 illustrates
an example of objects with different states (i.e., N, C, L, and H) in
three consecutive frames 𝑡 , 𝑡 + 1, and 𝑡 + 2, being tracked by two

MOT tasks 𝜏𝑓 and 𝜏𝑠 for the front camera and the side camera of an

AV, respectively. In the figure, each circle presents an object with

an identification (ID) number in the circle. For the 𝑡-th frame of 𝜏𝑓 ,

the object① is referred to as a new object that is detected for the

first time by 𝜏𝑓 . Confirmed objects are those consecutively detected
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Figure 2: Differences in execution time and accuracy for var-
ious confidence thresholds in MOT execution

a specific number of times (e.g., twice in Figure 1) by the camera,

such as an object②. In the (𝑡 + 1)-th frame,① is again detected

by 𝜏𝑓 , becoming a confirmed object. Furthermore, a new object

③ is detected by 𝜏𝑠 , making it a new object to 𝜏𝑠 . In the (𝑡 + 2)-th
frame,③ is detected once more, becoming a confirmed object, and

② becomes a handover object, being a lost object to 𝜏𝑓 but a new

object to 𝜏𝑠 . From Figure 1, we have the following observation.

O1. It is possible to capture the timing of a handover by compar-

ing the states of objects in adjacent cameras, and a global

association can be selectively performed only when a han-

dover occurs.

To provide a trade-off between accuracy and execution times for

a local association, we focus on the notion of confidence threshold
used in the detector’s detection. A multi-object detector extracts

candidate objects before determining the detected objects’ class

(e.g., car or pedestrian) and location. These candidate objects have

a confidence value, indicating the likelihood of belonging to each

class. For instance, if an object signifies the pedestrian class with

a confidence of 0.9, it means that the detector model perceives

that object as a pedestrian with 90% certainty. If the confidence

threshold is set at 0.9, it means that only those candidate objects

with confidence exceeding 0.9 will be presented as the final detec-

tion result, and only these objects will become the targets for the

association.

Figures 2(a) and (b) illustrate the variation in execution time and

tracking accuracy, respectively, in accordance with different confi-

dence thresholds. The experiment results in the figures are obtained

using the NuScences dataset [2], on a high-end GPU (i.e., NVIDIA

Tesla V100 [8] comparable to NVIDIA Orin system-on-chip (SoC)

providing similar GPU capability for Tensor Core operations [10])

and a GPU embedded board (i.e., NVIDIA Jetson Xavier system-on-

chip (SoC) [9]).

A total of six cameras were considered (targeting the front, rear,

front-right, front-left, rear-right, and rear-left); YOLOv5 [17] and

OC-SORT [3] are employed as the detector and tracker, respectively.

As depicted in Figure 2(a), the higher the confidence threshold, the

time assigned to the association diminishes because the average

number of objects partaking in the association reduces (e.g., from

40 to 1.5 for confidence thresholds of 0.1 to 0.9).

Figure 2(b) represents the fluctuating accuracy contingent on

the alteration in the confidence threshold. We employed IDF-1 as
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the accuracy metric, commonly utilized for handover-aware MOT

systems [16]. Within the figure, FP denotes false positives, signify-

ing the count of objects mistakenly perceived as existing when they

do not, while FN refers to false negatives, symbolizing the count of

objects that are indeed present but remain undetected. As observed

in the figure, the apex of tracking accuracy is marked when the

confidence threshold is at 0.5. This pattern emerges because when

the confidence threshold is low, an excess of objects is detected

compared to what actually exists, thereby augmenting FP. Con-

versely, when the confidence threshold is high, a deficit of objects

are detected relative to what exists, giving rise to an escalation in

FN. Further particulars about IDF-1 are elaborated in Section 6.

Through Figures 2(a) and (b), it becomes evident that an overly

low confidence yields diminished accuracy relative to execution

time. Hence, after pinpointing the best confidence threshold with re-

spect to accuracy (e.g., 0.5 in Figure 2(b)), increasing the confidence

threshold reduces execution time but concurrently decreases accu-

racy. This dynamic facilitates a trade-off between the two, leading

to subsequent observation.

O2. Carefully selecting the range of the confidence threshold

provides a reasonable trade-off between tracking accuracy

and execution time for a local association.

3 MOT-AS: SYSTEM OVERVIEW
MOT-AS provides an MOT execution and scheduling framework

for a handover-aware MOT system operating in AVs, where high

accuracy should be achieved for both normal and handover objects

while providing stability under limited computing resources. To

address R1 and R2 in Section 1, the design of MOT-AS should

consider the following design issues.

I1. It should design the system architecture that captures the

timing of handovers for selectively tracking handover objects

and provides different execution options for tracking normal

objects (using O1 and O2 in Section 2.2 to address R1).

I2. It shouldmaximize tracking accuracywhile enabling stability

guarantee using the answer of I1 (to address R2).

To address I1, MOT-AS develops an MOT execution pipeline

based on the tracking-by-detection methodology. Based on the

scheduling decisions of the MOT scheduler, the MOT execution

pipeline sequentially performs the followings:

• Detection to localize and classify objects in an input image,

• Local association to track normal objects with two different

execution options offering a trade-off between execution

times and accuracy,

• Handover identification to capture the timing of handover,

and

• Global association to selectively track handover objects,

which are detailed in Section 4. These executions are performed in

a single process and alternate with the thread-level MOT scheduler.

To address I2, the MOT scheduler utilizes the followings:

• Task model for representing the parameters of MOT exe-

cution, essential for both offline stability analysis and the

online scheduling algorithm, to be detailed in Section 5.1,

• Offline stability analysis to provide stability guarantee

before run-time, to be detailed in Section 5.2, and

• Online scheduling algorithm that determines the exe-

cution options of local association with or without global

association by identifying the available computing resources,

to be detailed in Section 5.3.

Both the MOT execution pipeline and the thread-level MOT

scheduler communicate using shared memory to exchange the rele-

vant information for MOT execution and schedule (e.g., scheduling

decisions, task parameters, and object states).

Workflow. Figure 3 depicts the workflow of MOT-AS. Every
MOT task periodically acquires frame images from its designated

camera, subsequently generating jobs to be in the queue (①). Using

an online scheduling algorithm, the MOT scheduler assigns priority

to MOT tasks and determines the execution options (low- or high-

workload local association with the possibility of global association)

for the highest-priority task (②). Following this decision, the MOT

execution pipeline first conducts detection using a pre-deployed

detector (③). The local association employs the detected results

from the current frame and performs IoU-based matching with

objects of the preceding frame (④). To identify handovers, the states

of objects in both the current and former frames of neighboring

cameras are compared (⑤). If a handover is detected and resources

are available for a global association, features from the handover

objects are extracted, setting the stage for feature-based matching

(⑥); otherwise, a global association is not conducted. Once all

matches are determined, the tracking results are passed to the

control subsystem, preparing the execution of the subsequent MOT

task.
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4 MOT EXECUTION PIPELINE
The MOT execution pipeline in Figure 3 supports four MOT execu-

tion steps: detection, local association, handover identification, and

global association.

Detection. In detection, the locations and classes (e.g., cars and

pedestrians) of objects in the designated input image are identified.

MOT-AS employs any existing stand-alone DNN-based detector

(e.g., YOLO and R-CNN series [14, 15]) for object detection. The

detector first extracts candidate objects (in the input image) of

which confidence values are from 0 to 1, reflecting its likelihood of

belonging to a particular class. We focus on the confidence threshold
used in the non-maximum suppression (NMS) process for extracted

candidate objects, which is adopted by most (if not all) DNN-based

detectors to finalize the detection results among candidate objects.

The NMS filters objects based on a dynamically adjustable con-

fidence threshold parameter, thereby determining the number of

detected objects, as discussed in Section 2.2. Once the MOT sched-

uler determines a confidence threshold (eventually determining the

workload of the local association), it is used for the deployed detec-

tor to set its confidence threshold. Note that we only dynamically

adjust the confidence threshold and make no other modifications

to the existing detector.

Local association. For anMOT task 𝜏𝑖 , local associationmatches

the detected objects of the current frame (e.g., at 𝑡 ) with the objects

from the previous frame (e.g., 𝑡-𝑓 (𝑓 > 0) at which the most recent

execution occurs before 𝑡 ).MOT-AS employs any existing tracker

(e.g., SORT [1], ByteTrack [18], and OC-SORT [3]) that supports IoU-

based matching for the association (and feature-based matching to

be used for global association). Depending on the given confidence

threshold, the local association can be performed in twomodes: low-
workload and high-workload. The low-workload local association

prioritizes reduced execution time over accuracy. In this mode,

only objects detected in the current frame with a high confidence

threshold (e.g., 0.9) or above and those being tracked in the previous

frame are considered for association. On the other hand, the high-

workload local association emphasizes accuracy at the expense

of longer execution times. In this mode, only objects detected in

the current frame with a low confidence threshold (e.g., 0.5) or

above and those tracked in the previous frame are included in the

association. Note that the confidence threshold for low- and high-

workload depends on the deployed detector model and dataset

and is determined emperically. Once the association is completed,

the states (i.e., new, confirmed, lost, or handover, as discussed in

Section 2.1) of the objects are updated, and a unique ID is assigned

to each object.

Hanover identification. Consider an MOT task 𝜏𝑖 that per-

forms local association on the current frame (e.g., at 𝑡 ), and two

tasks 𝜏 (𝑖−1) and 𝜏 (𝑖+1) of cameras physically adjacent to the camera

of 𝜏𝑖 , respectively. To identify the timing of handovers, MOT-AS
compares the object states (i.e., new, confirmed, lost, and handover

discussed in Section 2.1) from the 𝑡-th frame of 𝜏𝑖 with the states

from the (𝑡-𝑓 )-th and (𝑡-𝑔)-th frames of 𝜏 (𝑖−1) and 𝜏 (𝑖+1) , respec-
tively, where 𝑡-𝑓 (𝑓 >0) and 𝑡-𝑔 (𝑔>0) are the most recent execution

occurs before 𝑡 for 𝜏 (𝑖−1) and 𝜏 (𝑖+1) , respectively. If a lost object is
detected in 𝜏 (𝑖−1) or 𝜏 (𝑖+1) , and a new object is detected in 𝜏𝑖 , it is

τ1

τ2

τ3

s = 1 s = 2 s = 3

𝐽1
1 𝐽1

2 𝐽1
3

𝐽2
1 𝐽2

2 𝐽2
3

𝐽3
1 𝐽3

2 𝐽3
3

Highest

priority

Lowest

priority

Worst-case 

interference edge
Schedulable jobs

Deadline-miss allowable job set

𝑱𝒊(𝑱𝒌
𝒔) 𝑱𝒌

𝒔

Figure 4: Interference relation for 𝜏 = {𝜏1, 𝜏2, 𝜏3} where 𝜏1 and
𝜏3 are the highest and lowest priority task, with𝑚1=𝑚2=𝑚3=2

considered that there is a possibility of a handover between 𝜏𝑖 and

𝜏 (𝑖−1) , or 𝜏𝑖 and 𝜏 (𝑖+1) .
Global association. If handover identification indicates a han-

dover between two adjacent cameras, the global association can

be performed according to the MOT scheduler’s decision, which

will be detailed in Section 5.3. For two tasks, 𝜏𝑖 and 𝜏 (𝑖−1) with the

possibility of a handover, feature extraction is performed on objects

from both the current and previous frames (e.g., at times 𝑡 and 𝑡-𝑓 )

using convolutional neural network (CNN)-based models such as

OSNet [19] and IBN-Net [11]. Based on these extracted features,

the system matches the two objects exhibiting the highest feature

similarity. Once the global association is completed, for the same

object that exists in different cameras (e.g., for 𝜏𝑖 and 𝜏 (𝑖−1) , which
likely have different IDs assigned by 𝜏𝑖 and 𝜏 (𝑖−1) respectively), the
object’s ID is updated to have a consistent ID across both cameras.

5 MOT SCHEDULER
The thread-level MOT scheduler runs as a background daemon and

communicates with the MOT execution pipeline using the shared

memory. While the MOT is executing, the scheduler remains in a

waiting state and is invoked either when an MOT job is released

or completed. The MOT scheduler encompasses the task model,

offline stability analysis, and online scheduling algorithm to be

represented in the following subsections.

5.1 Task model
We consider an MOT system 𝜏 that consists of 𝑛 MOT tasks. An

MOT task 𝜏𝑖 ∈ 𝜏 is specified by a tuple of (𝑇𝑖 ,𝐶𝑖 ) where 𝑇𝑖 is a
period, and 𝐶𝑖 is the worst-case execution time (WCET). A series

of jobs are invoked by a task 𝜏𝑖 , each of which has the minimum

inter-arrival times for 𝑇𝑖 and requires at most 𝐶𝑖 time units to be

completed. We use𝑚𝑖 to denote the maximum number of allowable

consecutive job deadline misses without losing the stability of 𝜏𝑖 .

Based on the number of consecutive deadline misses, each job

possesses a distinct system state level (SSL), denoted by 𝑠 . 𝐽𝑠
𝑖
is

the job of 𝜏𝑖 after missing deadlines 𝑠-1 times for 1 ≤ 𝑠 ≤ 𝑚𝑖+1.

From the moment of its release at 𝑡 , a deadline miss occurs if a

job does not complete its execution before or at 𝑡 + 𝑇𝑖 . A job is
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considered active at 𝑡 if it has been released at or prior to this time

and still has remaining execution at 𝑡 . We consider fixed-priority

(FP) scheduling, in which a job with a higher SSL is given a higher

priority as its missed deadline is more likely to compromise stability.

Among jobs with the same SSL, a job released from a task with

a higher priority (that is pre-defined) is given a higher priority.

Figure 4 illustrates the priorities of each job for an example task set

𝜏 = {𝜏1, 𝜏2, 𝜏3} where 𝜏1 is the highest priority task, 𝜏3 is the lowest

priority task, and all share the same𝑚𝑖 = 2. As seen in the figure,

each task has three kinds of jobs with distinct SSL values, resulting

in a total of nine types of jobs with unique priorities. Specifically,

𝐽 3
1
holds the highest priority while 𝐽 1

3
is the lowest priority job. We

assume that each MOT job executes non-preemptively.

An MOT task 𝜏𝑖 sequentially processes input images from the

corresponding camera, which executes continuous detection to

determine the location and class of objects and performs association

to match objects present in two successive frames. 𝐶𝑖 of task 𝜏𝑖 is

derived from the sum of the worst-case detection time 𝐶𝐷
𝑖

and

the worst-case association time 𝐶𝐴
𝑖
. As MOT-AS provides different

execution options, 𝐶𝑖 can vary according to the options. MOT-
AS supports two execution options for local associations, namely

low-workload local association for 𝐶𝐴
𝑖
(L) and high-workload local

association for 𝐶𝐴
𝑖
(H). This execution can proceed with or without

the global association executing for𝐶𝐴
𝑖
(G). As the global association

requires DNN-based heavy computation, while the local association

does not, we assume that 𝐶𝐴
𝑖
(L) ≤ 𝐶𝐴

𝑖
(H) ≤ 𝐶𝐴

𝑖
(G) holds. As the

computation time for handover identification is negligible, we added

it to either 𝐶𝐴
𝑖
(L) or 𝐶𝐴

𝑖
(H). Therefore, there can be four possible

execution times for 𝐶𝑖 .

• 𝐶L
𝑖
= 𝐶𝐷

𝑖
+ 𝐶𝐴

𝑖
(L),

• 𝐶H
𝑖
= 𝐶𝐷

𝑖
+ 𝐶𝐴

𝑖
(H),

• 𝐶
L,G
𝑖

= 𝐶𝐷
𝑖

+ 𝐶𝐴
𝑖
(L) + 𝐶𝐴

𝑖
(G), and

• 𝐶
H,G
𝑖

= 𝐶𝐷
𝑖

+ 𝐶𝐴
𝑖
(H) + 𝐶𝐴

𝑖
(G);

therefore 𝐶L
𝑖
≤ 𝐶H

𝑖
≤ 𝐶

L,G
𝑖
≤ 𝐶

H,G
𝑖

holds.

By extending the existing fault-tolerant CPS task model [7] to

encompass the multiple MOT execution options aptly, MOT-AS
allows up to𝑚𝑖 consecutive deadline misses for 𝜏𝑖 before losing

stability. To avoid terminating the running non-preemptive MOT

execution at its deadline (i.e., meaning a deadline miss), at every

scheduling decision in online scheduling at 𝑡 , if𝐶L
𝑖
for the scheduled

job 𝐽𝑠
𝑖
at 𝑡 is strictly larger than 𝐽𝑠

𝑖
’s earliest deadline from 𝑡 (i.e.,

indicating a potential deadline miss), MOT-AS’s policy is not to

execute 𝐽𝑠
𝑖
inducing a deadline miss for 𝐽𝑠

𝑖
. We apply a single-

processor scheduling model, which allows only a single job to be

executed at any given time.

5.2 Offline stability analysis
The offline stability analysis tailored toMOT-AS ensures that ev-

ery MOT job from the provided task set completes its minimum

execution (i.e., 𝐶L
𝑖
for every 𝜏𝑖 ) without more than𝑚𝑖 consecutive

deadline misses. To this end, we employ the existing response time

analysis (RTA) in which the response time of a job 𝐽𝑠
𝑘
is defined

as the latest completion time upon its release at a time 𝑡 . Let 𝑅𝑠
𝑘

be the upper bound of the response time of 𝐽𝑠
𝑘
. Our new RTA to

test the stability of 𝜏 derives 𝑅𝑠
𝑘
for every job with distinct SSL, and

𝐽𝑖
1 𝐽𝑖

2𝐽𝑖
3

ℓ

Pi(𝐽𝑘
𝑠) ∙ Ti= 3 ∙ Ti 3 ∙ Ti

𝐽𝑖
1 𝐽𝑖

2 𝐽𝑖
3 𝐽𝑖

2 𝐽𝑖
3 𝐽𝑖

1 𝐽𝑖
3

3 ∙ Ti

Ti

Ti - 𝐶𝑖
L

ℓ+(Ti - 𝐶𝑖
L) - 3∙3∙Ti

Higher priority execution

Job release/deadline

(a)𝑊𝑖 (ℓ, 𝐽 𝑠𝑘 ) = 4 · 𝐶L
𝑖 case: no execution of lower-priority jobs (i.e., 𝐽 1𝑖 or 𝐽 2𝑖 )

𝐽𝑖
3 𝐽𝑖

2𝐽𝑖
3

ℓ

𝐽𝑖
1 𝐽𝑖

1 𝐽𝑖
2 𝐽𝑖

1 𝐽𝑖
2 𝐽𝑖

1 𝐽𝑖
3

Ti

Ti - 𝐶𝑖
L

i

Lower priority execution

(b) 3 · 𝐶L
𝑖 case: : some execution of lower-priority jobs (i.e., 𝐽 1𝑖 or 𝐽 2𝑖 )

Figure 5: Two scenarios where the execution of 𝜏𝑖 ’s jobs ex-
ecuting for 𝐶L

𝑖
with 𝐽𝑖 (𝐽𝑠𝑘 ) = 𝐽 3

𝑖
in an interval of length ℓ is

𝑊𝑖 (ℓ, 𝐽𝑠𝑘 ) = 4 ·𝐶L
𝑖
and 3 ·𝐶L

𝑖

then tests whether 𝑅𝑠
𝑘
is less than or equal to 𝑇𝑘 to ascertain no

deadline miss for 𝐽𝑠
𝑘
in the worst-case. If 𝑅𝑠

𝑘
≤ 𝑇𝑘 holds, then 𝐽𝑠

𝑘
is

called schedulable. Understanding that the response time of 𝐽𝑠
𝑘
can

be influenced by higher-priority jobs, our initial step is to calculate

the maximum execution time of higher-priority jobs from 𝜏𝑖 in an

interval of length ℓ . Let 𝐽𝑖 (𝐽𝑠𝑘 ) be the lowest-priority job from 𝜏𝑖

with a priority strictly higher than that of 𝐽𝑠
𝑘
, and 𝑃𝑖 (𝐽𝑠𝑘 ) be the SSL

of 𝐽𝑖 (𝐽𝑠𝑘 ). If there are no jobs from 𝜏𝑖 with a higher priority than 𝐽𝑠
𝑘
,

then 𝐽𝑖 (𝐽𝑠𝑘 ) = ∅ and 𝑃𝑖 (𝐽
𝑠
𝑘
) are not defined. For example, in Figure 4,

𝐽3 (𝐽 1
2
) = 𝐽 2

3
and 𝑃3 (𝐽 1

2
) = 2 hold as 𝐽 2

3
is the lowest-priority job

from 𝜏3 with a priority strictly higher than that of 𝐽 1
2
. Subsequently,

we denote𝑊𝑖 (ℓ, 𝐽𝑠𝑘 ) as the upper-bounded execution time of 𝜏𝑖 ’s

jobs with priority strictly higher than 𝐽𝑠
𝑘
in an interval of length ℓ .

Figure 5(a) presents the worst-case scenario in which𝑊𝑖 (ℓ, 𝐽𝑠𝑘 )
occurs for 𝐽𝑖 (𝐽𝑠𝑘 ) = 𝐽 3

𝑖
. As seen in Figure 5(a), the leftmost job 𝐽 3

𝑖
,

having a higher priority than 𝐽𝑠
𝑘
, initiates its execution at the start

of the interval ℓ and completes by the deadline of 𝐽 3
𝑖
. Because 𝐽 3

𝑖
completes either before or at its deadline, the SSL for the subsequent

job is set to one, leading to the execution of 𝐽 1
𝑖
. Subsequently, 𝐽 3

𝑖

appears as early as possible, after consecutive deadline misses by 𝐽 1
𝑖

and 𝐽 2
𝑖
, thereby resulting in𝑊𝑖 (ℓ, 𝐽𝑠𝑘 ) = 4 ·𝐶L

𝑖
. Note that, based on

the scheduling policy of MOT-AS, an MOT job at 𝑡 , whose WCET is

greater than its deadline and does not start its execution. Therefore,

𝐽 1
𝑖
and 𝐽 2

𝑖
do not perform any execution with deadline misses due

to 𝐽𝑖 (𝐽𝑠𝑘 ) = 𝐽 3
𝑖
as seen in Figure 5(a).

Figure 5(b) presents a different situation compared to the worst-

case scenario depicted in Figure 5(a) for𝑊𝑖 (ℓ, 𝐽𝑠𝑘 ). Unlike 5(a), both
𝐽 1
𝑖
and 𝐽 2

𝑖
have successfully executed once without missing their

deadlines between executions of 𝐽 3
𝑖
. However, 𝐽 1

𝑖
and 𝐽 2

𝑖
do not

interfere with 𝐽𝑠
𝑘
because of a lower priority than 𝐽𝑠

𝑘
but delay the

appearance of 𝐽 3
𝑖
. As a result, 𝐽 3

𝑖
executes three times for 𝐶L

𝑖
as

shown in Figure 5(b), while 𝐽 3
𝑖
executes four times in as shown

Figure 5(a) for𝑊𝑖 (ℓ, 𝐽𝑠𝑘 ).
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Let us define a job of 𝐽𝑖 (𝐽𝑠𝑘 ) ≠ ∅ in the interval [𝑡, 𝑡 + ℓ) as a
carry-in job if its release is earlier than 𝑡 (e.g., the leftmost job of 𝐽 3

𝑖
in Figure 5(a)). Also, a job is referred to as a body job if its release is

the same as or later than 𝑡 and its deadline is the same as or earlier

than 𝑡 + ℓ (e.g., two middle jobs of 𝐽 3
𝑖
in Figure 5(a)). Additionally,

let us refer to a job as a carry-out job if its release is earlier than

𝑡 + ℓ and its deadline is later than 𝑡 + ℓ (e.g., the rightmost job of

𝐽 3
𝑖
in Figure 5(a)). For a job 𝐽𝑠

𝑘
of a task 𝜏𝑘 with system state level 𝑠 ,

the minimum execution 𝐶L
𝑖
of 𝐽𝑖 (𝐽𝑠𝑘 ) ≠ ∅ in an interval of length ℓ

is upper-bounded by

𝑊𝑖 (ℓ, 𝐽𝑠𝑘 ) = 𝑛𝑖 (ℓ, 𝐽𝑠𝑘 ) ·𝐶
L
𝑖

+𝑚𝑖𝑛(ℓ + (𝑇𝑖 −𝐶L
𝑖 ) − 𝑛𝑖 (ℓ, 𝐽

ℓ
𝑘
) · 𝑃𝑖 (𝐽 ℓ𝑘 ) ·𝑇𝑖 ,𝐶

L
𝑖 ), (1)

where 𝑛𝑖 (ℓ, 𝐽𝑠𝑘 ) is the number of carry-in or body jobs of 𝜏𝑖 of which

execution is fully performed in an interval of length ℓ , which is

obtained by

𝑛𝑖 (ℓ, 𝐽𝑠𝑘 ) =
⌊
ℓ + (𝑇𝑖 −𝐶𝑖 )
𝑃𝑖 (𝐽𝑠𝑘 ) ·𝑇𝑖

⌋
. (2)

The first term in Equation (1) represents the maximum execution

from carry-in or body jobs of 𝜏𝑖 , and the second term is from a carry-

out job.

Lemma 1. For a job 𝐽𝑠
𝑘
of a task 𝜏𝑘 with system state level 𝑠 ,

𝑊𝑖 (ℓ, 𝐽𝑠𝑘 ) in Equation (1) upper-bounds the execution of 𝐽𝑖 (𝐽𝑠𝑘 ) ≠ ∅
in an interval of length ℓ .

Proof. Let us assume the worst-case scenario where the execu-

tion of 𝐽𝑖 (𝐽𝑠𝑘 ) is maximized in an interval [𝑡, 𝑡 + ℓ). In this scenario,

the carry-in job begins its execution at time 𝑡 and is completed by

its deadline. For the body-job execution to start as early as possible,

jobs from 𝜏𝑖 with a priority lower than 𝐽𝑖 (𝐽𝑠𝑘 ) (if any) must miss their

deadlines. Then, the body and carry-out jobs start their execution

at their release upon its release. For this execution configuration

of the carry-in, body, and carry-out jobs, if we shift the beginning

of the interval (e.g. at 𝑡 ) to the left (e.g., to 𝑡− < 𝑡 ), the execution

of the carry-out job can decrease within that interval. Conversely,

shifting to the right (e.g., to 𝑡+ > 𝑡 ) could reduce the carry-in job’s

execution in the interval. Both cases contradict the assumption, and

thus the lemma holds. □

For a given job 𝐽𝑠
𝑘
and task 𝜏𝑖 , if there’s no job 𝐽𝑖 (𝐽𝑠𝑘 ) (i.e., 𝐽𝑖 (𝐽

𝑠
𝑘
)

= ∅), we set𝑊𝑖 (ℓ, 𝐽𝑠𝑘 ) to zero. Based on Lemma 1, we can itera-

tively calculate an upper-bound of the response time 𝑅𝑠
𝑘
of 𝐽𝑠

𝑘
with

minimum execution for 𝐶L
𝑘
, which is similar to RTA under non-

preemptive FP scheduling [4].

Theorem 1. Consider a task set 𝜏 scheduled by non-preemptive FP.
The upper-bounded response time 𝑅𝑠

𝑘
of 𝐽𝑠

𝑘
with minimum execution

for 𝐶L
𝑘
is derived by 𝑅𝑥 of the following formula such that it satisfies

the relation 𝑅𝑥+1
𝑘
≤ 𝑅𝑥

𝑘
, initialized with 𝑅0

𝑘
= 𝐶L

𝑘
:

𝑅𝑥+1 ← 𝐶L
𝑘
+ max

𝜏 𝑗 ∈LP(𝜏𝑘 )
𝐶L
𝑗 +

∑︁
𝜏𝑖 ∈𝜏−{𝜏𝑘 }

𝑊𝑖 (𝑅𝑥 , 𝐽𝑠𝑘 ) . (3)

Proof. To ensure 𝐽𝑠
𝑘
responds within the interval𝑅𝑥 , three types

of execution must be met within that interval: from (i) higher prior-

ity job(s), (ii) an executing lower-priority job (that incurs blocking),

and (iii) a job of 𝐽𝑠
𝑘
itself. Based on Lemma 1, (i) cannot be larger than∑

𝜏𝑖 ∈𝜏−{𝜏𝑘 }𝑊𝑖 (𝑅𝑥 , 𝐽𝑠𝑘 ). Also, due to non-preemptive characteristics,

𝐽𝑠
𝑘
can be blocked by (ii), which does not exceed max𝜏 𝑗 ∈LP(𝜏𝑘 ) 𝐶

L
𝑗
.

Lastly, (iii) is upper-bounded by the first term, 𝐶L
𝑘
. Thus, the theo-

rem holds. □

Using Theorem 1, we determine that 𝐽𝑠
𝑘
is schedulable if 𝑅𝑠

𝑘
is less

than𝑇𝑘 . Stability compromised by 𝜏𝑘 necessitates𝑚𝑖 +1 consecutive
deadline misses. Hence, if every task 𝜏𝑘 has at least one schedulable

job 𝐽𝑠
𝑘
among𝑚𝑖 + 1 jobs with different SSL, stability is ensured.

We employ Theorem 1’s RTA to conduct our stability analysis

for 𝜏 . This process starts from a job with the lowest SSL of the

highest-priority task and progresses to a job with the highest SSL of

the lowest-priority task, examining the schedulability of each 𝐽𝑠
𝑘
. It

is essential to note that if 𝐽𝑠
𝑘
is found to be schedulable, job 𝐽𝑠+1

𝑘
does

not exist. Thus, during the sequential application of Theorem 1’s

RTA, any job 𝐽𝑖 deemed non-existent exerts no interference on 𝐽𝑠
𝑘

during its RTA.

For a task set 𝜏 that clears the stability analysis, we introduce the

deadline-miss allowable job set, denoted by 𝐽 M. This set comprises

the union of jobs (if any) with an SSL lower than the schedulable job

𝐽𝑠
𝑖
of each task 𝜏𝑖 . A notable attribute of a job 𝐽𝑠

𝑖
∈ 𝐽 M is that, despite

a potential deadline miss, a job with a superior SSL is guaranteed

to remain schedulable, ensuring that stability remains guaranteed.

As illustrated in Figure 4, if 𝐽 1
1
, 𝐽 3

2
, and 𝐽 3

3
are deemed schedulable

(represented by blue dotted circles), jobs with an SSL below these

are categorized as the deadline-miss allowable job set (highlighted

within the red dotted lines in the figure).

5.3 Online scheduling algorithm
We now develop NPFP

ML
as our online scheduling algorithm. At

each scheduling decision at 𝑡 , NPFPML
evaluates the feasibility of

execution options from MOT-AS excluding 𝐶L
𝑖
whose stability is

guaranteed by the offline stability analysis discussed in Section 5.2.

At every scheduling decision at 𝑡 , the highest-priority active job

𝐽𝑠
𝑘
in the ready queue is chosen for scheduling. Let 𝑑

(𝑡 )
𝑘

represent

the earliest deadline of 𝐽𝑠
𝑘
from 𝑡 . Furthermore, we introduce a

function, Γ(𝐽 M, 𝑡, 𝑡 +𝑥), which returns true if all active jobs—except
for the highest priority at 𝑡—and upcoming jobs that will be released

within the interval [𝑡, 𝑡 +𝑥) are members of 𝐽 M; otherwise, it returns

false.MOT-AS supports the following scenarios, which are also

illustrated in Figure 3.

S1. (𝑡 + 𝐶L
𝑘
≤ 𝑑
(𝑡 )
𝑘

< 𝑡 + 𝐶H
𝑘
) or (𝑡 + 𝐶H

𝑘
≤ 𝑑
(𝑡 )
𝑘

and Γ(𝐽 M, 𝑡, 𝑡 +
𝐶H
𝑘
)=false): NPFPML

conducts detection and local associ-

ation for 𝐶L
𝑘
, with inherent stability ensured by the offline

analysis for all MOT executions for 𝐶L
𝑘
.

S2. 𝑡 +𝐶H
𝑘
≤ 𝑑
(𝑡 )
𝑘

< 𝑡 +𝐶L,G
𝑘

and Γ(𝐽 M, 𝑡, 𝑡 +𝐶H
𝑘
)=true: NPFPML

performs detection and local association for 𝐶H
𝑘
, preserving

stability since any potential deadline miss of a job 𝐽𝑠
𝑖
in 𝐽 M

ensures a higher SSL job remains schedulable.

S3. 𝑡+𝐶L,G
𝑘
≤ 𝑑
(𝑡 )
𝑘

< 𝑡+𝐶H,G
𝑘

and Γ(𝐽 M, 𝑡, 𝑡+𝐶L,G
𝑘
)=true: detection

and local association for 𝐶L
𝑘
are executed, followed by a

global association for 𝐶𝐴
𝑘
(G) in case of a handover.
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Figure 6: Comparison of maximum accuracy achieved with
combined local and global association versus local associa-
tion only on Tesal V100

S4. 𝑡 + 𝐶H,G
𝑘
≤ 𝑑

(𝑡 )
𝑘

and Γ(𝐽 M, 𝑡, 𝑡 + 𝐶H,G
𝑘
)=true: detection and

local association for 𝐶H
𝑘
are executed, and in the event of a

handover, a global association for 𝐶𝐴
𝑘
(G) is conducted con-

secutively.

S5. 𝑡 +𝐶L
𝑘
> 𝑑
(𝑡 )
𝑘

: the execution for 𝐽𝑠
𝑘
is skipped to avoid poten-

tial termination during its non-preemptive run, but even if

this leads to a deadline miss, stability remains assured due

to the offline stability analysis.

Upon the completion of the execution of the highest-priority

job (or no execution satisfying the condition in S5), the job is then

removed from the ready queue.

6 EVALUATION
6.1 Experimental setup
Hardware and software. To evaluate the performance of MOT-AS,
we utilized both a high-end GPU environment and a GPU-enabled

embedded board (NVIDIA Jetson Xavier system-on-chip (SoC) [9]).

Our first setup (denoted by Tesla V100) features Intel(R) Xeon(R)

Silver 4215R CPUs@ 3.20GHz, 251.5GB RAM, and an NVIDIA Tesla

V100 GPU. Conversely, our second setup (denoted by Jetson Xavier)

boasts a 64-bit 8-core CPU, 32GB RAM, and a 512-core Volta GPU.

MOT-AS is developed in Python, incorporating YOLOv5 [17] for a

detector, IBN-Net [11] for feature extraction, and OC-SORT [3] for

tracker.

Dataset. To evaluate the performance of MOT-AS, we conducted
experiments using the Nuscenes dataset [2], which is widely em-

ployed for assessing handover-aware multi-object tracking systems.

The Nuscenes dataset encompasses six cameras (front, front-right,

front-left, rear, rear-right, and rear-left), each containing approx-

imately 200 frames, amounting to around 1,200 frames per video

sequence. Among 900 videos, the detector and feature extractor

were trained using 750 videos, and the remaining 150 videos were

used for testing. Figure 6 illustrates the achieved maximum accu-

racy when executing both local and global associations for every

frame, as opposed to conducting the local association only across 30

videos (among 150 testing videos), under the deployed detector (i.e.,

YOLOv5) and tracker (i.e., OC-SORT) on Tesla V100. The changes in

performance improvements seen during global association are due

to the different number of handovers in each video. For instance,

in a high-handover scenario (e.g., video index 3), the maximum

accuracy when performing global association is 46.8, compared

Environment Time (ms) 𝐶𝐷
𝑖

𝐶𝐴
𝑖 𝐶𝑠𝑐ℎ𝑒

𝑖𝐶𝐴
𝑖
(L) 𝐶𝐴

𝑖
(H) 𝐶𝐴

𝑖
(G)

Tesla V100

Average 12.2 1.2 3.3 21.7 0.1

Maximum 23.3 5.8 16.9 65.3 0.2

Jetson Xavier

Average 39.7 3.4 10.0 51.2 0.2

Maximum 42.0 15.2 43.5 185.2 0.7

Table 1: Execution time measurement

to 33.9 without it, showing a difference of 13.1. In contrast, in a

moderate-handover scenario (e.g., video index 26), the accuracy

figures are 49.1 and 41.9, reflecting a difference of 7.2. Experiments

conducted on the Jetson Xavier exhibit a similar trend. We exam-

ined the influence of MOT-AS on accuracy enhancement in relation

to these varying handover frequencies on two different platforms,

Tesla V100 (in Figure 7) and Jetson Xavier (in Figure 8).

Excution time profiling and scheduling overhead. For our
experimental setup, we measured theWCET of MOT-AS’s detection
(𝐶𝐷

𝑖
) and association (𝐶𝐴

𝑖
) components. The association is catego-

rized into three distinct options within MOT-AS: low-workload
𝐶𝐴
𝑖
(L), high-workload 𝐶𝐴

𝑖
(H), and global 𝐶𝐴

𝑖
(G). Moreover, we as-

sessed the WCET required by the online scheduling algorithm to

conduct a scheduling decision (𝐶𝑠𝑐ℎ𝑒
𝑖

). After conducting about 1,000

individual measurements for each component, we derived both the

average and max execution times. To ensure consistency in our

experiments across different computing environments, we tested

the components on both the Jetson Xavier and Tesla V100. Notably,

due to the Jetson Xavier’s relatively constrained computing capa-

bilities compared to the Tesla V100, it consistently recorded longer

execution times. For example, 𝐶𝐴
𝑖
(𝐻 ) peaked at 16.9ms on Tesla

V100, in contrast to 43.5ms on Jetson Xavier as shown in Table 1.

Considered approaches.We focus on MOT systems wherein

stability cannot be ensured by Theorem 1 for every MOT execution

involving both high-workload local association and global associ-

ation (i.e., 𝐶
H,G
𝑖

), although stability with the minimum execution

(i.e., 𝐶L
𝑖
) is guaranteed. Following this, we explore the following

approaches, all of which utilize non-preemptive rate-monotonic

(RM) scheduling:

• Local-Only: for each MOT execution, both detection and

local association (without global association) are performed,

with the latter operating at its maximum workload (i.e., with

the minimum confidence threshold) that meets the stability

test in Theorem 1.

• Global-Mandate: for each MOT execution, detection, local

association, and global association are performed, with the

local association operating at its maximum workload (i.e.,

with the minimum confidence threshold) that meets the sta-

bility test in Theorem 1.

• Best-Effort: it first substitutes 𝑑 (𝑡 )
𝑘

in S1–S5 in Section 5.3 to

the nearest deadline or future release from 𝑡 and executes

based on NPFP
ML

’s decision only if a single task is active at

𝑡 ; otherwise, it defaults to the minimum execution 𝐶L
𝑖
(for

S1-S4) or no execution (for S5).

• NPFP
ML

: the online scheduling proposed in Section 5.3.
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(d) Moderate-handover scenario,𝑚𝑖 = 5

Figure 7: Experiment results on Tesla V100

Note that Local-Only represents traditional MOT techniques

without considering handover, whereas Global-Mandate takes han-
dover into account. Both have been adapted to meet the stability

constraints outlined in the stability analysis proposed by Theorem 1.

6.2 Experiment result
To evaluate the accuracy of multi-camera multi-object tracking,

we utilized the IDF–1 metric [16], which captures handovers. We

consider various videos presenting different handover scenarios,

allowable maximum deadline miss counts𝑚𝑖 , and task periods to

demonstrate the efficacy of MOT-AS in enhancing the accuracy of

different parameters for handover-aware MOT systems.

Figure 7 presents the performance comparison results executed

on the Tesla V100. Frames from a total of six cameras are fed at dif-

ferent intervals, and the period for eachMOT task is specified on the

x-axis of Figure 7. For the datasets, we consider two types of videos

corresponding to high-handover and moderate-handover scenarios,

as discussed in Figure 6. The red dashed line and the blue dashed

line represent the maximum accuracy achievable when performing

both local and global association for every frame, and when per-

forming the local association only, respectively. All six MOT tasks

share the same allowable deadline miss counts of two (i.e.,𝑚𝑖 = 2

for Figures 7(a) and (c)) and five (i.e.,𝑚𝑖 = 5 for Figures 7(b) and (d)).

Also, we respectively measured the proportions of high-workload
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Figure 8: Experiment results on Jetson Xavier

local association executions and global association executions for

each approach, during the entire MOT execution. For the Local-
Only and Global-Mandate approaches, since the local association
operates with only a sole execution option, we did not measure the

ratio of high-workload local association executions. Furthermore,

the global association is always zero for Local-Only and always

one for Global-Mandate. Therefore, we did not separately indicate

these proportions for these two approaches in Figures 7 and 8.

As seen in Figure 7(a), for the high-handover scenario with

𝑚𝑖 = 2, Local-Only demonstrates improved accuracy as the pe-

riod of tasks increases, eventually reaching the maximum accuracy

achievable solely through local association. For instance, with the

first task set, it achieves an accuracy of 9.6. However, from the third

task set onwards, it attains its maximum accuracy. On the other

hand, Global-Mandate fails the stability test for the first task set

and only passes from the fourth task set onwards. As evident from

Table 1, this is because the global association demands significantly

higher WCET than the high-workload association. Nevertheless,

with an accuracy of 37.9 for the fourth task set, Global-Mandate
outperforms Local-Only, indicating that while global association
requires high WCET, it plays a crucial role in enhancing accuracy.

For Best-Effort, due to the constraint that it can operate with an

execution option other than the minimum execution (i.e., 𝐶L
𝑖
) only
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when there’s a single active job, it shows substantially lower per-

formance across all task sets. For NPFP
ML

, it exhibits performance

close to the max accuracy even with the first task set. This arises

because it can perform high-workload local and global associations

together, or either one of them at run-time on scenarios S2–S4. As

evident from Table 1, there is a significant gap between the average

execution time and the maximum execution time for each compo-

nent. This indicates that the actual execution of the components at

run-time finishes much smaller than their WCET, suggesting that

there are ample opportunities for online scheduling decisions to

opt for high-workload local execution and global association. The

ratio for high-workload local execution approaches one from the

first task set, while the ratio for global execution starts nearing one

from the third task set.

As depicted in Figure 7(b), for 𝑚𝑖 = 5, both Local-Only and

Global-Mandate demonstrate higher accuracy compared to when

𝑚𝑖 = 2. This enhancement can be attributed to the offline stability

analysis, which allows more deadline misses for each task. Conse-

quently, each task can undergo a more demanding workload of local

association (i.e., a lower confidence threshold) and still pass the

stability test. Thus, Local-Only and Global-Mandate with𝑚𝑖 = 5

operate with a more intensive workload, resulting in improved

accuracy when compared to their counterparts with𝑚𝑖 = 2. Ob-

serving Figures 7(c) and (d), it is evident that themoderate-handover

scenario presents a trend similar to the high-handover scenario

depicted in Figures 7(a) and (b). However, the attainable maximum

accuracy varies depending on whether the global association is

performed.

Figure 8 presents an evaluation conducted on Jetson Xavier, us-

ing the same experimental settings as Figure 7 for the Tesla V100,

except for the task period. Table 1 indicates that the Jetson Xavier,

an embedded board environment, yields a higher WCET than the

Tesla V100, which operates in a high-end GPU environment. Given

this observation, we investigated five different task sets with peri-

ods greater than those in Figure 7. Similar to the results observed

for Tesla V100, each method exhibits analogous trends on Jetson

Xavier.

7 CONCLUSION
In this paper, we proposed MOT-AS, a novel handover-aware MOT

execution and scheduling framework tailored for AVs with multi-

cameras, which aims to maximize tracking accuracy without sac-

rificing system stability. Recognizing the resource constraints of

AVs, MOT-AS decomposes the handover-aware MOT execution

into tracking handover objects and normal objects, each along with

global and local associations. It selectively performs the global

association only when essential and carries out local association

with multiple execution options to explore the trade-off between

accuracy and stability. Building upon MOT-AS, we developed a

new scheduling framework encompassing a new MOT task model,

offline stability analysis, and online scheduling algorithm to maxi-

mize accuracy without compromising stability. We implemented

MOT-AS on both high-end and embedded GPU platforms using

the Nuscenes dataset, demonstrating enhanced tracking accuracy

and stability over conventional MOT systems, irrespective of their

handover considerations.
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