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ABSTRACT
Among CT (Computed Tomography) techniques that produce cross-
section images by acquiring X-ray data frommultiple angles around
the individual, CBCT (Cone Beam CT) that collects the data through
cone beam is popular due to its potential to reduce radiation risks.
Although employing low-dose and sparse-view CBCT is a corner-
stone approach to reducing radiation risks, reconstructing CBCT
from noisy and sparsely-acquired cone beam scans often result in
significant artifacts due to ill-posed inverse problem.

In this paper, we aim to suppress the artifacts derived from re-
constructing CBCT. To this end, we target the well-known existing
approach ASD-POCS (Adaptive Steepest Descent with Projections
Onto Convex Sets), focus on its downside of potentially introducing
over-smoothing near edges and removing intricate fine structures,
and develop an advanced ASD-POCS strategy that addresses the
downside by leveraging prior image information. Our approach
to integrating the prior information not only maintains structural
integrity (without compromising edge detail or erasing fine struc-
tures) but also diminishes artifacts, thereby counteracting noise
and blur to a significant extent. Our solution underwent stringent
testing using both simulated data and publicly available datasets.
The testing results demonstrate that the proposed technique is
robust to the prevailing challenges in sparse-view CBCT recon-
struction, skillfully mitigating artifacts (compared to contemporary
state-of-the-art methods) while safeguarding intricate structures.

CCS CONCEPTS
• Applied computing → Imaging; Bioinformatics; Health in-
formatics.
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1 INTRODUCTION
Tomographic methodologies are differentiated by their data acquisi-
tion methods. If radiation sources are positioned within the patient,
emission data is recorded. In contrast, when the sources are external,
the system collects transmission data. Our study primarily centers
on transmission data. Computed tomography (CT) uses this data
type to generate cross-sectional imagery of a patient’s body, neces-
sitating a substantial radiation amount [18]. Of the prevalent X-ray
CT techniques, Cone Beam Computed Tomography (CBCT) is in-
creasingly recognized across various fields, spanning from medical
imaging to material science. The capability to reconstruct compre-
hensive cross-section images with a minimized X-ray radiation dose
is a pivotal advancement for CBCT in the medical realm, leading to
enhanced volume reconstruction in micro-CT [21]. This has found
applications in areas such as maxillofacial imaging [9], radiation
therapy guidance for cancer treatment [7], insect visualization [13],
and material science investigations [3]. Regardless of the specific
CBCT application, the fundamental process remains consistent:
capturing 2D X-ray images from varying angles of the object, and
then employing a tomographic reconstruction algorithm to form a
cross-section image from the aggregated data.

CBCT has become a versatile tool utilized across various do-
mains, including industrial and medical sectors. In the scope of CT
applications, the reconstruction process is significantly influenced
by critical factors such as the specific scanning environment [31],
the nuances of imaging geometry [34], and the exact dosage of
X-ray radiation deployed [33]. Despite the accolades received for its
fast scanning capabilities and remarkable spatial resolution, CBCT
technology faces critical examination over its utilization of X-rays,
associated with potential health risks including cancer and genetic
disorders [30]. Consequently, there is an imperative drive among
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both medical professionals and patients to discover strategies to
reduce the radiation dose involved in CBCT procedures. This en-
deavor chiefly pursues two directions: lowering the product of the
tube current and exposure time (mAs) or strategically decreasing
the number of projection views [12]. The former pathway success-
fully reduces the dose but introduces direct noise into the projection
data. In contrast, the latter strategy, while curtailing the dose, brings
forth a unique set of challenges; notably, the limited observational
data culminates in the appearance of artifacts in the reconstructed
model [17]. Our study navigates this intricate landscape, focusing
on the nuanced task of reconstructing CBCT images from sparsely
acquired projections.

Early advancements in the domain saw the introduction of an-
alytical techniques, encompassing the seminal FDK method [11]
along with its evolved iterations [28], for a comprehensive view of
CBCT reconstruction. These methods, albeit pioneering, grapple
with significant artifacts when tasked with sparse view reconstruc-
tions, largely stemming from inadequate projection data. To counter
the shortcomings intrinsic to these analytical solutions, the schol-
arly community has pivoted towards iterative algorithms. This shift
perceives CBCT reconstruction not as a straightforward analyti-
cal problem but as an ill-posed linear issue, necessitating a more
nuanced and iterative approach for resolution.

The task of reconstructing images from partial projection data is
predominantly tackled through model-based iterative reconstruc-
tion strategies, including renowned algorithms such as the Alge-
braic Reconstruction Technique (ART) [14] and its counterpart,
the Simultaneous Algebraic Reconstruction Technique (SART) [2].
These iterative avenues often infuse additional image details into
the objective function, nurturing a solution that stands both con-
vergent and robust. A case in point is the recent advent of the
Compressed Sensing (CS) paradigm [8], which argues that a sig-
nal—provided it maintains a sparse or compressible representa-
tion—can be faithfully recovered from a limited set of measurements
with high likelihood.

In the domain of CS reconstruction, the Fast Iterative Shrinkage-
Thresholding Algorithm (FISTA) [6] is notable due to its streamlined
complexity and enhanced efficiency. Despite its merits, applying
FISTA to low-dose CT projections unveils a deficiency in reconstruc-
tion efficacy, a problem that chiefly originates from the pronounced
noise levels native to low-dose CT projections. During FISTA’s it-
erative cycle, the potential for information loss is high, catalyzing
substantial reconstruction inaccuracies. Where images bear piece-
wise constant features, Total Variation (TV) minimization [26] has
carved a name for itself, becoming a widely adopted solution for
grappling with the hurdles posed by partial data in tomographic
image construction. While TV minimization marks a stride forward
in diminishing streak artifacts, it carries with it a set of shortcom-
ings, including an over-smoothing effect on fine structures and
introduction of blocky and caricatured artifacts — repercussions of
TV’s isotropic operations coupled with the intrinsic limitations set
by incomplete projection datasets [29].

The Adaptive Steepest Descent with Projections Onto Convex
Sets (ASD-POCS) algorithm as introduced by Sidky and Pan [27],
operates through an optimization strategy focused on minimizing
the Total Variation (TV) of the estimated image while adhering

to data conditions and various constraints. This algorithm inte-
grates ART iterations with gradient descent steps targeting the TV
penalty, thus aiming to solve the intricate problem of constrained
minimization. However, it’s worth noting that the ASD-POCS algo-
rithm doesn’t inherently include a prior image as part of the recon-
struction process. Moreover, this technique can lead to excessive
smoothing near edges when dealing with noisy sparse projections.
Prior methodologies often necessitated a trade-off between these
qualities, requiring compromises that either compromised edge
clarity for artifact reduction or vice versa. However, in the context
of accurate diagnosis, all these attributes—sharp edges, fine details,
and minimal artifacts—carry the utmost significance. This under-
scores the pivotal importance of attaining a balanced reconstruction
approach that successfully upholds these diverse qualities.

We introduce a novel approach that utilizes prior information
to achieve enhanced reconstruction, drawing inspiration from the
promising attributes of FISTA reconstruction. This choice is an-
chored in the FISTA technique’s capacity to provide a robust ap-
proximation for our enhanced ASD-POCS algorithm. Such an ap-
proximation is a beneficial starting point for our algorithm, given its
capability to minimize artifacts, even amid noise from sparse projec-
tions. In our proposed method, we integrate a small-sized median
filter into the ART estimate beforehand to eliminate noise origi-
nating from low-dose projections and prior FISTA reconstruction.
Following this, we employ unsharp masking, using the smoothed
reconstruction from Filtered ART, to counteract the blur introduced
during the reconstruction process. The synergy of these modifi-
cations leads to a superior-quality reconstruction that skillfully
maintains sharp edges and detailed structures while effectively
diminishing pronounced artifacts and noise.

We evaluated our method against two prominent techniques:
the state-of-the-art iterative approach by [5] and the recent self-
supervised Convolutional Neural Network (CNN) technique from
[20]. The former, tested on a digital brain phantom [1], aims to
reconstruct CT from sparse views. It acquires interpolated projec-
tion views through optical flow-based frame interpolation and then
combines these for the final reconstruction. However, it operates
on 4-degree intervals for interpolation, while we utilize a wider 11-
degree gap, which caused inaccuracies during frame interpolation
and deteriorate reconstruction quality. The latter technique, tested
on a clinical dataset [22], employs a self-supervised CNN tomitigate
streak artifacts in sparse-view CT images. They train their CNN on
downsampled views with pronounced artifacts, generating prior
images to rectify original artifacts. Notably, their approach chiefly
targets streak artifacts, leaving CT noise unaddressed. Contrarily,
our method simultaneously suppresses both noise and artifacts,
leading to a notably superior reconstruction.

Our contributions in this paper encompass the following:

• We introduce a pioneering approach that relies on prior
image-based enhancements within the context of the en-
hanced ASD-POCS technique, yielding superior reconstruc-
tions in low-dose sparse-view scenarios.

• We establish the value of utilizing the prior FISTA reconstruc-
tion as potent prior information, enriching the enhanced
ASD-POCS methodology.
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• We introduce filtered ART, which incorporates a small-sized
filter, effectively reducing the initial noise typically found in
low-dose CT acquisitions.

• Our innovation involves introducing unsharp masking. By
utilizing the filtered reconstruction from the filtered ART
step, we enhance the reconstruction quality and reduce blur.

In sum, our approach represents a meaningful stride towards
achieving high-quality reconstruction, noise, and artifact suppres-
sion within the intricate domain of sparse-view reconstructions.

2 METHOD
2.1 X-ray CT measurement
The CBCT’s geometric configuration can be visualized as depicted
in Figure 1. An X-ray source, is positioned at a 𝐷𝑆𝑂 distance from
a rotation center, denoted as 𝑂 . This point 𝑂 also marks the origin
of a specific coordinate system. When the X-ray source is activated,
it emits a cone of rays that encompasses the image volume. As
these rays penetrate this region, a detector captures the photon
intensity that reaches it. The photons’ intensity diminishes based on
the Beer-Lambert law. The detector is situated at a 𝐷𝑆𝐷 distance
from the X-ray source, and its central point is marked as C. A
separate projection coordinate system, referred to as 𝑠𝑡 is based
on the detector’s midpoint. As the data collection process unfolds,
both the source and the detector orbit the y-axis, deviating at an
angle from their starting positions.

The X-ray CT measurement can be represented approximately
as a discrete linear system [15]:

𝑝𝑝𝑝 = 𝐴𝜇𝜇𝜇 (1)
In the context of X-ray CT, we can express the measurement pro-

cess using a discrete linear framework [15]. Here, the vector of atten-
uation coefficients is represented by 𝜇𝜇𝜇, such that 𝜇𝜇𝜇 = (𝜇1, 𝜇2, ..., 𝜇𝑁 )𝑇 ,
where the 𝑇 superscript indicates the matrix transpose operation.
Additionally, the obtained sinogram data, which corresponds to the
calibrated and logarithmically transformed projections, is denoted
by 𝑝𝑝𝑝 = (𝑝1, 𝑝2, ..., 𝑝𝑀 )𝑇 , where the T superscript indicates the ma-
trix transpose operation. The operator 𝐴 signifies the system or
projection matrix with dimensions𝑀 × 𝑁 , where𝑀 and 𝑁 repre-
sents the number of elements in 𝑝𝑝𝑝 and 𝜇𝜇𝜇 respectively. The element
𝐴𝑖 𝑗 specifies the length of intersection between projection ray 𝑖

and pixel 𝑗 . In our implementation, we compute this element using
an efficient ray-tracing technique [25]. The core objective of CT
image reconstruction revolves around estimating the attenuation
coefficients 𝜇𝜇𝜇 from the measurements 𝑝𝑝𝑝 . In an ideal scenario, the
image reconstruction task is equivalent to solving the inversion
problem presented by the linear system Equation (1), aimed at de-
termining 𝜇𝜇𝜇 based on the dataset𝑝𝑝𝑝 . However, even when conditions
are ideal, the solution to this linear system can be complicated by
the ill-conditioned nature of the system matrix 𝐴, to be detailed
now.

The ill-conditioned nature of the system matrix can arise due to
two primary factors: inadequate coverage within the scanning con-
figuration, which encompasses scenarios like projection data trun-
cation or incomplete X-ray source trajectories; and under-sampling,
which includes situations involving an insufficient number of pro-
jection views or low-resolution detectors. In the context of circular

Figure 1: CBCT geometry

cone-beam scanning configurations, both of these contributors
to ill-conditioning come into play. Specifically, when examining
circular scanning trajectories under the constraint of continuous
sampling, achieving a stable one-shot reconstruction for the volume
image becomes unattainable. This is compounded by the fact that
most points within the image fail to satisfy Tuy’s condition, further
complicating the reconstruction process.

2.2 ASD-POCS
The ASD-POCS technique offers a solution to the aforementioned
reconstruction challenge through the resolution of the subsequent
constrained optimization problem:

𝜇𝜇𝜇∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 ∥ 𝜇𝜇𝜇 ∥𝑇𝑉 (2)
subject to inequality constraints: data fidelity

| 𝐴𝜇𝜇𝜇 − 𝑝𝑝𝑝 |≤ 𝜖 (3)
and non-negativity

𝜇𝜇𝜇 ≥ 0 (4)
∥ 𝜇𝜇𝜇 ∥𝑇𝑉 is defined as:

∥ 𝜇𝜇𝜇 ∥𝑇𝑉 =
∑︁
𝑠,𝑡,𝑣

(
(𝜇𝜇𝜇𝑠,𝑡,𝑣 − 𝜇𝜇𝜇𝑠−1,𝑡,𝑣)2

+ (𝜇𝜇𝜇𝑠,𝑡,𝑣 − 𝜇𝜇𝜇𝑠,𝑡−1,𝑣)2

+ (𝜇𝜇𝜇𝑠,𝑡,𝑣 − 𝜇𝜇𝜇𝑠,𝑡,𝑣−1)2
)1/2 (5)

Here, the indices 𝑠 , 𝑡 , and 𝑣 denote the positions within the
discrete image.

The ASD-POCS algorithm integrates a crucial step designed to
enhance data consistency, where the core projection operation en-
forces non-negativity. Notably, ASD-POCS undertakes an iterative
approach to minimize the Total Variation (TV) norm, signifying
that image reconstruction precedes the reduction of the TV norm
in each iteration. To guide the image toward a solution with min-
imal TV, the algorithm interleaves POCS steps with TV-steepest
descent. Solely executing the TV-minimization step throughout the
algorithm would result in a uniformly flat image. In contrast, the
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ROF model ensures that significant changes are not imposed on the
image. The importance of selecting optimal parameters for image
quality has been emphasized in previous studies [10]. However,
the performance of ASD-POCS deteriorates due to the presence of
noise originating from low-dose projections and the amplification
of artifacts stemming from extremely sparse views. Additionally,
as a result of increased noise and artifacts, this approach tends
to eliminate fine details through an excessive smoothing process
during the TV minimization steps.

2.3 Reconstruction Algorithm
In this section, we present our proposed technique. Our method
is designed to reconstruct CT images from low-dose and sparse
projections, challenges that often introduce significant noise and
artifacts into the reconstruction. To address these issues, we em-
ploy a multi-step approach. First, we utilize prior reconstruction
information from FISTA to initially suppress artifacts. This initial
reconstruction is then subjected to a filtered ART step to further
reduce noise. Following this, we apply unsharp masking to en-
hance the reconstruction by reducing blur. Finally, we employ a
steepest descent TV step to minimize the TV norm and further
reduce artifacts. This iterative process continues until we achieve
the minimum TV, resulting in a high-quality CT.

Figure 2 illustrates key stages of our proposed technique and
visualizes the enhancement in reconstruction at each step. Our pro-
posed approach commences with an initial estimate reconstructed
through FISTA by solving Equation (6).

𝜇𝜇𝜇𝐹𝐼𝑆𝑇𝐴 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜇𝜇𝜇
1
2
∥ 𝑝𝑝𝑝 −𝐴𝜇𝜇𝜇 ∥22 +𝜆𝐹 ∥ 𝜇𝜇𝜇 ∥1 (6)

In this expression, 𝜆𝐹 stands for the regularization parameter,
and ∥ . ∥1 symbolizes the 𝑙1 norm. This initial estimate offers a
representationwith a resemblance to the underlying structure while
also reducing artifacts, albeit retaining some noise.

To mitigate this noise, we introduce filtered ART in which the
noise from low-dose projections is suppressed using a small-sized
filter. This provides an improved residual estimate for the steepest
descent TV.

𝜇𝜇𝜇 = 𝜇𝜇𝜇 + 𝜆𝐴𝑖
𝑝𝑝𝑝 −𝐴𝑖𝜇𝜇𝜇

𝐴𝑖 .𝐴𝑖
(7)

𝜇𝜇𝜇 𝑓 𝑖𝑙 (𝑠, 𝑡, 𝑣) =𝑚𝑒𝑑𝑖𝑎𝑛{𝜇𝜇𝜇 (𝑠 + 𝑙, 𝑡 +𝑚, 𝑣 + 𝑛) | (𝑙,𝑚, 𝑛)𝜖𝑅} (8)

During, TV minimization and filtering of the noise in the main
loop the reconstruction was affected by blurring. We perform un-
sharp masking to enhance the reconstruction quality.

𝜇𝜇𝜇 = 𝜇𝜇𝜇 + (𝜇𝜇𝜇 − 𝜇𝜇𝜇 𝑓 𝑖𝑙 ) (9)
The optimization problem is defined by the projection data 𝑝𝑝𝑝

and the data-inconsistency tolerance parameter 𝜖 . There are six
parameters and two filters that govern the proposed algorithm.

The Prior-Based Enhanced ASD-POCS technique is presented in
the form of pseudocode in Algorithm 1. Initial parameters are set
during the parameter initialization phase (in lines 1-2). Then, we
reconstruct and initiate with FISTA (in lines 3-4) due to its pertinent
initial structure and, crucially, its minimal artifacts.

Algorithm 1 Prior-Based Enhanced ASD-POCS
Parameter initialization

1: 𝜆 = 1, 𝜆𝑟𝑒𝑑 = 0.99, 𝜂 = 15, 𝛾𝑚𝑎𝑥 = 0.94;
2: 𝛽 = 0.002, 𝛽𝑟𝑒𝑑 = 0.95; k = 10;

Prior reconstruction
3: 𝜇𝜇𝜇𝐹𝐼𝑆𝑇𝐴 = initial reconstruction using FISTA
4: 𝜇𝜇𝜇 = 𝜇𝜇𝜇𝐹𝐼𝑆𝑇𝐴

Repeat main loop
5: 𝜇𝜇𝜇0 = 𝜇𝜇𝜇

Filtered ART
6: for 𝑖 = 1 : 𝑁𝑑 do
7: 𝜇𝜇𝜇 = 𝜇𝜇𝜇 + 𝜆𝐴𝑖

𝑝𝑝𝑝−𝐴𝑖𝜇𝜇𝜇

𝐴𝑖 .𝐴𝑖

8: 𝜇𝜇𝜇 𝑓 𝑖𝑙 =𝑚𝑒𝑑𝑖𝑎𝑛𝑓 𝑖𝑙𝑡𝑒𝑟 (𝜇𝜇𝜇 )
Enforce positivity

9: if 𝜇𝜇𝜇𝑖 < 0 then
10: 𝜇𝜇𝜇𝑖 = 0
11: end if
12: end for

Unsharp masking
13: 𝜇𝜇𝜇 = 𝜇𝜇𝜇 + (𝜇𝜇𝜇 − 𝜇𝜇𝜇 𝑓 𝑖𝑙 )
14: 𝜇𝜇𝜇𝑟𝑒𝑠 = 𝜇𝜇𝜇

15: 𝑝𝑝𝑝 = 𝐴𝜇𝜇𝜇

16: 𝑑𝑑 = |𝑝𝑝𝑝 − 𝑝𝑝𝑝0 |
17: 𝑑𝑝 = |𝜇𝜇𝜇 − 𝜇𝜇𝜇0 |
18: if 𝑖𝑡𝑒𝑟 == 1 then
19: 𝑑𝑡𝑣𝑔 = 𝛽 ∗ 𝑑𝑝
20: end if
21: 𝜇𝜇𝜇0 = 𝜇𝜇𝜇

TV steepest descent
22: for 𝑖 = 1 : 𝜂 do
23: 𝑑𝜇𝜇𝜇 =∥ 𝜇𝜇𝜇 ∥𝑇𝑉
24: 𝑑𝜇𝜇𝜇 =

𝑑𝜇𝜇𝜇

|𝑑𝜇𝜇𝜇 |
25: 𝜇𝜇𝜇 = 𝜇𝜇𝜇 − 𝑑𝑡𝑣𝑔 ∗ 𝑑𝜇𝜇𝜇
26: end for

Residual
27: 𝑑𝑔 = |𝜇𝜇𝜇 − 𝜇𝜇𝜇0 |
28: if 𝑑𝑔 ≥ 𝛾𝑚𝑎𝑥 and 𝑑𝑑 > 𝜖 then
29: 𝑑𝑡𝑣𝑔 = 𝑑𝑡𝑣𝑔 ∗ 𝛽𝑟𝑒𝑑
30: end if
31: 𝜆 = 𝜆 ∗ 𝜆𝑟𝑒𝑑

until {stopping criteria}
32: return 𝜇𝜇𝜇𝑟𝑒𝑠

The primary loop (in lines 5-31) comprises two fundamental
elements: steps that ensure data consistency within the loop, and a
steepest descent towards images with lower TV. The essence of the
algorithm lies in managing the step sizes for both the main loop
and the TV steepest descent. The reconstructed image vector 𝜇𝜇𝜇0 (in
lines 5 and 21) serves as a temporary variable for the computation
of alterations in the current estimate. During the filtered ART step
(in lines 6-12), low-dose CT noise is effectively suppressed, while
ensuring data consistency and maintaining positivity. This control
over noise reduction and data fidelity is governed by the relaxation
parameter 𝜆. The current image reconstruction (in line 14), denoted
as 𝜇𝜇𝜇𝑟𝑒𝑠 , is attained by applying unsharp masking (in line 13) to
mitigate the blurring introduced during the TV steepest descent
step. The residual data is recalculated (in lines 15-16), while the
alteration in the image attributed to the filtered ART is determined
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Figure 2: Schematic of the proposed technique

(in line 17). Line 19 serves the purpose of converting the initial
steepest-descent step size, originally expressed as a fraction of a
step size, into an absolute image distance during the first itera-
tion. The implementation of TV steepest descent can be observed
within lines 22-26. The step size for the TV steepest descent evolves
from a fraction of the initial step size to an absolute image dis-
tance as the iteration progresses. The TV steepest descent-induced
changes in the reconstructed image are assessed (in line 27). In
cases where the ratio of the change in the reconstructed image
due to the steepest descent to the change in the image caused by
the main loop surpasses the threshold 𝛾𝑚𝑎𝑥 , the gradient descent
step size is adjusted downward by a factor of 𝛽𝑟𝑒𝑑 (in line 29). By
regulating the steepest-descent step size in this manner, the cur-
rent image estimate meets the data-tolerance condition. In the end,
the filtered ART-relaxation parameter is decreased by a consistent
fraction represented by 𝜆𝑟𝑒𝑑 (in line 31). This specific parameter
governs the overall iteration count, as it influences the step size of
data consistency. Consequently, this also impacts the size of the
steepest-descent step.

The stopping criteria encompass several checks. Initially, the
current reconstruction estimate undergoes scrutiny to determine
whether it complies with the constraints outlined in Equations (3)
and (4). Subsequently, the parameter 𝑐 is evaluated, as defined in
Equation (10), to ascertain its proximity to the value of −1.0. Finally,
the process is halted if the 𝜆 value is found to be excessively small.

𝑐 =
𝑑𝑔 · 𝑑𝑝
|𝑑𝑔| |𝑑𝑝 | (10)

In an ideal scenario, the value of 𝑐 should be exactly −1.0. How-
ever, in practical applications, achieving this precise value is chal-
lenging due to the substantial number of iterations required. Based
on our extensive numerical studies, we have observed that 𝑐 is an

exceptionally sensitive parameter. It is common for the image to
exhibit only barely perceptible changes once 𝑐 falls below -0.5.

The filtered ART operator relies on the relaxation parameter 𝜆.
The ART-relaxation parameter undergoes reduction by a constant
fraction 𝜆𝑟𝑒𝑑 . The TV hyperparameter is denoted as 𝛽 . Variables
𝛽𝑟𝑒𝑑 and 𝛾𝑚𝑎𝑥 are utilized to steer the evolution of 𝛽 . The vari-
able 𝜂 represents the iteration number for the TV-steepest descent
and k represents the number of iterations for the main algorithm.
Image-space variables are signified by the bold notation (e.g., 𝜇𝜇𝜇),
while data-space variables are denoted with a tilde (e.g., 𝑝𝑝𝑝). The
vector 𝐴 corresponds to the row of the system matrix responsible
for producing the 𝑖-th data element. 𝑝𝑝𝑝0 defines the optimization
problem specified by the projection. Lastly, 𝜖 represents the data-
inconsistency-tolerance parameter.

3 ANALYSIS AND FINDINGS FROM
EXPERIMENTAL INVESTIGATIONS

3.1 Implementation and Data
In our investigation, we assess the efficacy of the proposed method
for low-dose and sparse-view CT reconstruction. Our experimen-
tation is conducted on a Windows 10 x64 platform, utilizing MAT-
LAB’s image processing and computer vision toolbox. The hardware
configuration includes an Intel i5-9400K processor running at 2.90
GHz with dual cores, accompanied by 16 GB of RAM. The algorithm
is implemented using MATLAB 2022 for the evaluation process.

The validation procedure utilizes the digital brain phantom, con-
structed from authentic MRI data of the human brain, and serves
as a widespread benchmark for evaluating CBCT reconstruction
techniques [1]. This phantom consists of 256×256×256 voxels, with
each voxel possessing a resolution of 1×1×1 mm3. For assessing per-
formance under conditions of both low-dose and sparse-view sce-
narios, we employ the actual clinical dataset from the 2016 AAPM
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Figure 3: Brain phantom reconstruction using recent techniques

Low-Dose CT Grand Challenge [22], provided by the Mayo Clinic.
We create the projection data within a cone-beam geometry system
using Siddon’s ray-driven algorithm [25]. This dataset is already
infused with realistic noise.

Figure 1 illustrates the CBCT geometry employed for object
scanning. The detailed descriptions of the CBCT geometry system
for image generation are explained as follows. The distances from
the source to the iso-center and from the source to the detector were
1000 and 1536 mm, respectively. For sparse-view CT, the number of
projection views was 256, 128, and 64. The rotation angle for each
set of projection views covered a complete 360 degrees.

3.2 Assessment of Image Quality
To assess the reconstruction outcomes, we employ four qualitative
metrics: the root mean square error (RMSE), normalized root mean
square error (NRMSE), structural similarity index (SSIM), and peak
signal-to-noise ratio (PSNR).

The RMSE is expressed as

𝑅𝑀𝑆𝐸 =

√√√
1
𝑁

𝑁∑︁
𝑖=1

(𝜇𝜇𝜇 − 𝜇𝜇𝜇𝑟𝑒 𝑓 )2 (11)

The NRMSE is expressed as

𝑁𝑅𝑀𝑆𝐸 (𝜇𝜇𝜇, 𝜇𝜇𝜇𝑟𝑒 𝑓 ) =
𝑅𝑀𝑆𝐸

𝑚𝑎𝑥 (𝜇𝜇𝜇𝑟𝑒 𝑓 ) −𝑚𝑖𝑛(𝜇𝜇𝜇𝑟𝑒 𝑓 )
(12)

In this context, 𝜇𝜇𝜇 represents the reconstructed image, while 𝜇𝜇𝜇𝑟𝑒 𝑓
stands for the reference image.

SSIM evaluates the visual elements of an image in terms of lumi-
nance, contrast, and structure, and it is defined as:

𝑆𝑆𝐼𝑀 (𝜇𝜇𝜇, 𝜇𝜇𝜇𝑟𝑒 𝑓 ) =
2𝜇𝜇𝜇𝜇𝜇𝜇𝑟𝑒 𝑓 + 𝑐1

𝜇𝜇𝜇2 + 𝜇𝜇𝜇2
𝑟𝑒 𝑓

+ 𝑐1
·

2𝜎𝜇𝜇𝑟𝑒𝑓𝜇𝜇𝑟𝑒𝑓𝜇𝜇𝑟𝑒𝑓 + 𝑐2
𝜎2𝜇𝜇𝜇 + 𝜎2𝜇𝑟𝑒𝑓𝜇𝑟𝑒𝑓𝜇𝑟𝑒𝑓

+ 𝑐2
(13)

Here, 𝛿𝜇𝜇𝜇 represents the average value of 𝜇𝜇𝜇, and 𝜎𝜇𝜇𝜇 is its variance.
The terms corresponding to 𝜇𝜇𝜇 are defined analogously. The term
𝜎𝜇𝜇𝑟𝑒𝑓𝜇𝜇𝑟𝑒𝑓𝜇𝜇𝑟𝑒𝑓 denotes the covariance between 𝜇𝜇𝜇 and 𝜇𝜇𝜇𝑟𝑒 𝑓 . The constants
𝑐1 and 𝑐2 are defined as (0.01𝐿)2 and (0.03𝐿)2 respectively, where
L indicates the maximum pixel value in 𝜇𝜇𝜇𝑟𝑒 𝑓 .

The PSNR measures the ratio in decibels between two images.
This ratio is commonly utilized to compare the quality of the origi-
nal image to the resulting image. A higher PSNR value indicates
the superior quality of the output image. To determine the PSNR,
we employ the MSE. The PSNR is computed as

𝑃𝑆𝑁𝑅(𝜇𝜇𝜇, 𝜇𝜇𝜇𝑟𝑒 𝑓 ) = 20 ∗ 𝑙𝑜𝑔(
𝑚𝑎𝑥 (𝜇𝜇𝜇𝑟𝑒 𝑓 )
𝑅𝑀𝑆𝐸

) (14)

In this context,𝑚𝑎𝑥 (𝜇𝜇𝜇𝑟𝑒 𝑓 ) represents the highest potential value
of the reference image, while MSE denotes the mean squared error
between the reference and the reconstructed images.

3.3 Digital Brain Phantom Reconstruction
Siddon’s ray-driven algorithm [25] is employed to simulate projec-
tion data from 32 sparse views. For sparse CT reconstruction, recent
iterative techniques like MSIRT [4] and OS-MSIRT [5] are utilized.
In addition, two classical methods, namely FDK and ASD-POCS, are
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Figure 4: Zoom in on ROI in Figure 3

included for comparative analysis, as discussed in the Introduction
section.

The reconstruction results, employing both classical and recent
techniques, are depicted in Figure 3. We specifically selected the
66th slice in the horizontal direction for comparison due to its rich
structural information. In all cases, 32 projections were used for
reconstruction. The FDKmethod, designed for full-view reconstruc-
tion, fails to produce a clinically acceptable image from the limited
32 projection data, resulting in significant streak artifacts. On the
other hand, the ASD-POCS method effectively removes artifacts
and noise, but it tends to blur edges and omit critical structural
details. The MSIRT maintains the structural integrity of the recon-
structed slice but introduces noticeable artifacts, obstructing fine
information. The OS-MSIRT slightly improves artifact reduction
but still struggles to recover small structures while exhibiting blurry
edges. Our proposed technique performs reconstruction using 32
projections. The reconstruction quality excels in noise and artifact
suppression and accurately preserves fine structures.

For a more detailed comparison, we zoomed in on the region of
interest (ROI) marked by the green box in the ground truth image
in Figure 3, as shown in Figure 4. Upon magnification, it becomes
evident that the proposed technique, restores nearly perfect edges.
In contrast, the edges reconstructed by ASD-POCS appear smoother
but noticeably lose structural details andmay contain artifacts when
compared to the ground truth in Figure 4.

3.3.1 Quantitative Analysis. The results of the quantitative evalua-
tion are presented in Table 1. This table compares three qualitative
metrics to assess the proposed reconstruction . In alignment with

the visual inspection depicted in Figures 3 and 4, the proposed algo-
rithm attains the highest scores for all three indices when utilizing
32 views.

3.4 Clinical Data Reconstruction
We utilize Siddon’s ray-driven algorithm to generate projection
data from 64, 128, and 254 sparse views. Our proposed method’s re-
construction quality is then benchmarked against recent techniques
such as SAR-SSNR [19] and Sparsier2Sparse [20].

In Figure 5, we showcase images derived from the reference,
SAR-SSNR, Sparsier2Sparse, and our proposed method, all of which
uses the clinical dataset. For a more detailed assessment of fine
structures, artifacts, and noise, zoomed-in views of the Regions of
Interest (ROIs) are highlighted with green boxes within Figures
5. For the 64 views, it is evident that while both SAR-SSNR and
Sparsier2Sparse can reconstruct structures akin to the reference
image, they are not devoid of noise and artifacts. On the other hand,
our proposed method demonstrates a superior ability to mitigate

Table 1: Quantitative analysis for digital brain phantom

Methods RMSE PSNR SSIM

FDK 0.1263 17.9711 0.1479
ASD-POCS 0.0439 27.1528 0.8423
MSIRT 0.0396 28.0414 0.8154

OS-MSIRT 0.0383 28.3311 0.8265
Proposed 0.03150.03150.0315 30.043630.043630.0436 0.92700.92700.9270
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Figure 5: Clinical dataset reconstruction

both noise and artifacts, offering a crisper structural representation.
However, when evaluating the 128 and 256 views, the proficiency
of SAR-SSNR and Sparsier2Sparse in artifact reduction improves.
Despite this enhancement, our method still surpasses both in terms
of reducing noise and artifacts, as well as preserving fine details.

3.4.1 Quantitative Analysis. In Figure 5, we have also presented
quantitative results togetherwith specific reconstruction techniques,
specifically the NRMSE and SSIM scores. Upon analyzing these
scores, it becomes evident that our proposed technique excels in
both 64 and 128 views. However, when it comes to 256 views, there
is a slight dip in the NRMSE and SSIM. In general, our evaluation
shows that our proposed method significantly outperforms recent
techniques in quantitative assessments, especially when the number
of projections are very sparse.

4 RELATEDWORK
Techniques aimed at sparse-view reconstruction, including API-TV,
as suggested in [16], leverage a prior image to serve as the inaugu-
ral estimate for the ASD-POCS algorithm, significantly aiding in
the reduction of artifacts in sparse-view data contexts. However,
this methodology harbors a substantial downside: it necessitates a
prior scan from the identical patient to furnish the requisite prior
information, a stipulation that potentially curtails its practical util-
ity. As a parallel development, the streamlined ASD-POCS method

highlighted in [24] employs a simplified matrix-form depiction of
the TV gradient, maintaining the reconstruction precision synony-
mous with the original ASD-POCS initiative. A standout feature
of this strategy is its capacity to bolster computational velocity,
accelerating processes by a factor ranging between 1.8 and 2.7
times. Despite these forward strides, the overarching academic dis-
course still grapples with an unresolved critical issue: orchestrating
a reconstruction approach that not only safeguards sharp edges
and delicate fine structures but also actively diminishes the severe
artifacts born from sparse projection datasets.

In the realm of sparse-view CT reconstruction, a diverse array of
deep learning (DL) methodologies has been explored. Among them,
the research delineated in [32] presented an innovative technique
intertwining deep embedding-attention-refinement modules with
a residual error feedback mechanism, operational in both sinogram
and image domains. Concurrently, other scholars have embarked
on crafting the MIST-net, spotlighted in [23], which addresses the
issue of streak artifacts through the dual training of a convolutional
neural network (CNN) and a transformer-based network, enhanc-
ing the capture of long-range features. It is worth noting that CNNs,
with their restricted receptive fields, predominantly concentrate
on local image details. These strides in technology have indeed
showcased encouraging outcomes; however, they largely hinge
on a fully supervised learning paradigm. This approach demands
pairs of sparse-view and full-view CT images showcasing identical
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anatomical structures to facilitate network training. This prerequi-
site poses a significant roadblock in genuine clinical scenarios, given
that executing two distinct scans on patients — one embracing full
views and another accommodating sparse views — fundamentally
violates the ALARA (as low as reasonably achievable) principle that
governs radiological safety. Moreover, discrepancies in patients’
positioning across separate scans can potentially induce movement,
culminating in subpar training data. Offering a divergent pathway,
some propose the synthesis of sparse-view CT images via computer
simulations of CT geometry, an approach viable when full-view
CT images are at hand. Nevertheless, this strategy hits a bottleneck
owing to the occasional unavailability of high-resolution full-view
CT images, thus throwing a spanner in the works of a seamless
reconstruction process.

5 CONCLUSION
In this research, we introduced an enhanced ASD-POCS technique
that leverages prior images for the purpose of reconstructing CT
scans from sparsely available low-dose projections. Our primary
objective was to effectively mitigate noise and artifacts arising
from the reduced dose and a limited number of projections while
ensuring the accurate recovery of intricate details.

To assess the efficacy of our proposed technique, we conducted
reconstructions using both digital phantom data and real clinical
data. The clinical data, in particular, posed a greater challenge due
to its inherent noise stemming from the lower dose levels. Our
technique exhibited impressive performance in terms of noise and
artifact suppression, alongside the accurate reconstruction of fine
structures when compared to recent methods.

For a more comprehensive evaluation, we employed quantita-
tive metrics such as the NRMSE and SSIM for the clinical dataset.
These measurements clearly indicate that our technique surpasses
recent approaches by a considerable margin, especially when con-
sidering 64 and 128 views. From the reconstruction results using
256 views, it’s evident that our method performs slightly below
the learning-based techniques. This is understandable, as learning-
based approaches benefit considerably from robust training with
256 views. The training data at this view count exhibits minimal
artifacts, which offers a more precise prior approximation for the
learning-based method.

Our technique demonstrates the ability to achieve good-quality
reconstruction, characterized by effective artifact reduction and
noise suppression when using sparse projections. This suggests
the potential application of our method in transmission X-ray mi-
croscopy (TXM) systems. In TXM, the rotation of a scanned sample
may be constrained within a limited angular range to prevent colli-
sions with other system components or to avoid high attenuation
at specific tilting angles. However, it’s important to note that image
reconstruction from such limited angle data often leads to artifacts
due to the absence of complete data.
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