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ABSTRACT
Despite the physical advance of an existing single-cell battery sys-

tem, mobile users are still suffering from low battery anxiety. With a

careful analysis of users’ battery usage behavior collected for 19,855

hours, we propose a heterogeneous battery system, MixMax, con-
sisting of three complementary battery types tailored to minimizing

the low battery time. While composing a heterogeneous battery

system opens up a chance to simultaneously improve the capacity

and the charging speed, one must face non-trivial challenges to

determine the ratio of enclosed batteries and charge/discharge poli-

cies during the run-time. They are highly dependent on each other,

which entails almost infinite candidates for the choice. MixMax
gracefully unwinds the dependencies as it formulates the decision-

making problem into an optimization problem and decomposes it

into multiple sub-problems instead. To evaluateMixMax, we fab-
ricate coin-cell batteries and experiment with them to model an

accurate battery emulator which sophisticatedly reproduces the

dynamics of battery systems. Our experimental results demonstrate

that MixMax can reduce the low battery time by up to 24.6% with-

out compromising capacity, volume, weight, and more importantly,

users’ battery usage behavior. In addition, we prototypeMixMax
on a smartphone, presenting the practicality of MixMax on mobile

systems.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; • Human-centered computing → Smart-
phones; • Hardware → Batteries.
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1 INTRODUCTION
As mobile devices increasingly permeate our lives, their roles in

our daily routines have become ever-important. Consequently, peo-

ple began to rely more and more on mobile devices and became

increasingly sensitive to the remaining energy in the battery of

their mobile devices. In particular, a myriad of people claims that

they feel uncomfortable or even anxious when their battery has low

energy. Worse yet, it becomes more critical when using a smart-

phone for mobile payment, map, or authentication. Indeed, many

existing studies proved that the so-called low battery anxiety [1] is

a common, critical issue in employing mobile devices. For example,

some surveys report that more than 90% of people suffer from low

battery anxiety [2]. It was reported that low battery anxiety causes

people to ask strangers to charge their mobile devices and even to

suspend using mobile devices [1].

One of the most user-friendly and effective ways to alleviate

low battery anxiety is to reduce the cause of its occurrence, that is,

reducing the period in which the device is in a low battery state,

which we call Low Battery Time (LBT). In this respect, this paper

aims to minimize the low battery time even without requiring the

modification of user behavior on battery charging and discharging.

To this end, we first seek to understand users’ battery usage patterns

by analyzing a total of 19,855 hours of battery usage behaviors

collected from 100 mobile users. Our careful analysis suggests two

insights for reducing LBT under some typical users’ battery usage

patterns: i) increase charging speed and ii) increase battery capacity.
However, it is expected that the physical limitations of a single

chemical type of battery on a mobile device make it difficult to

achieve a simultaneous increase in capacity and charging speed in

the near future [3].
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Several studies have been proposed, which can mitigate low bat-

tery anxiety; energy consumption monitoring and analysis tools [4–

12] provide users and software developers with guidance on how

to optimize energy consumption. Software-centric optimization

approaches such as application-level [2, 5, 7, 13–17] and system-

level [18] introduced various techniques to reconstruct the software

behavior to reduce energy consumption. As such, a number of stud-

ies proposed techniques to minimize energy consumption for a

single chemical type of battery. A few studies have proposed new

mobile battery systems [19–21], including multi-cell batteries, be-

yond a single chemical type of battery, focusing on how to improve

specific aspects of the battery performance in terms of capacity

and discharging. However, no studies have investigated the issues

of designing new battery systems of multiple chemical types to

reduce low battery time.

This paper aims at developing a practical method of utilizing

multiple types of batteries to mitigate the low battery from this

motivation. To this end, we proposeMixMax, a novel type of hetero-
geneous battery system that uses three different types of batteries

to jointly embody two approaches, large capacity and high-speed
charging, to reduce the LBT. At the core of MixMax is to find the

best solution for its three main components, 1) the composition of

different batteries, 2) discharge policy, and 3) charge policy, to collec-

tively minimize LBT without user behavior change. The impact of

the three main components on the LBT is not straightforward and,

further, mutually dependent. It is intractable to find an optimal so-

lution. We propose a practical approach to decompose the problem

into sub-problems to reach near-optimal solutions by disentangling

the complex dependencies between the main components and solv-

ing them step by step. We also devise charging/discharging circuits

that enable the operation of MixMax.
To evaluateMixMax, we fabricate coin-cell batteries and develop

a precise emulator that fully emulates the battery operation by

experimenting with the fabricated batteries. We replayed the users’

battery usage patterns with the emulator to measure LBT, discov-

ering an overall 20.6–26.8% reduction in the LBT compared to the

users’ mobile devices with a single-cell battery. In addition, we

evaluate the effectiveness of MixMax by comparing it with other

heterogeneous/multi-cell management solutions [20, 22, 23] and

test its applicability by adopting various battery form factors. The

evaluation results showMixMax is superior to other design options

and applicable to other battery systems with any battery type.

Lastly, we conduct a field test with a demo smartphone that

employs heterogeneous batteries according toMixMax. The field
test demonstrates the practicality of MixMax by confirming low-

cost overhead and operation stability in porting MixMax to the

smartphone.

This paper makes the following contributions:

• Derivation of the most important factors to minimize LBT,

based on the real battery usage data;

• Design of a novel heterogeneous battery system,MixMax,
which is, to the best of our knowledge, the first work that

handles low battery anxiety of mobile users through hetero-

geneous batteries;
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Figure 1: Example and analysis of battery usage patterns.

• Development of the core mechanisms of MixMax (i.e., the
charge/discharge policy and battery ratio optimization) that

effectively minimize LBT;

• Fabrication of the coin-cell batteries required by the system

and development of the sophisticated emulator by experi-

ment with the fabricated batteries;

• Extensive evaluation of MixMax with real users’ battery

usage, various battery types consideration, and competitive

research comparison; and

• A field test with a real-world demo smartphone that demon-

strates the practicality of MixMax.

2 MOTIVATION
In this section, we analyze users’ low battery experience and make

important observations to alleviate the experience.

2.1 Battery Usage Pattern Analysis
We first analyze smartphone users’ daily battery usage patterns

in order to understand why and how the users fall into the low

battery state. We collect 19,855 hours of battery usage patterns from

100 users, averaging 8.2 days per user, including the chronological

order of the battery level (the ratio of the remaining energy to its

maximum energy capacity) and charging time. Data of 50 users

was collected directly via Android dumpsys [24], and the other 50

users’ data was from ExtraSensory Dataset [25, 26], a smartphone

sensor-measurement dataset.

A battery usage pattern can be expressed as an alternating se-

quence of charging and discharging intervals as shown in Fig-

ure 1(a). In each battery usage pattern, we focus on the low battery

state where the remaining energy is no larger than the given low

battery threshold Δ (to be detailed in Section 3.1). A time interval

is called Low Battery Interval (LBI), if the interval is in the low

battery state and starts/ends at which the remaining energy is the

same as the low battery threshold as shown in Figure 1(a). Also, the

accumulation of the lengths of all LBIs is called Low Battery Time
(LBT).

Observation 1: Low battery is pervasive and users want
to avoid it. Our battery usage pattern analysis confirms that the

low battery is a very general but undesirable problem for mobile

device users. During a week, 86 out of 100 users experienced the

low battery at least once, and 51 users experienced it five times

or more. Each user underwent an average of 1.5 hours of LBT per

day, while 18 users stayed in the low battery state for more than
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3 hours. Also, users attempted to charge batteries to escape from

the low battery state. We observe from the battery usage patterns

that users in the low battery state tend to charge their devices more

frequently (308%) and longer (37%) than those not.

Observation 2: Themore remaining energy, themore chance
to avoid the low battery state. Our analysis of user behavior dur-
ing the discharging intervals, as presented in Figure 1(b), reveals

that the probability of a user experiencing the low battery decreases

rapidly as the battery level after charging increases linearly. From

this pattern, we derive two effective ways to reduce LBT without

changing battery usage patterns: increasing i) the charging speed

and ii) the capacity of the battery system.

First, a faster charging speed increments the remaining energy

and accelerates the low battery state escape. According to the bat-

tery usage pattern analysis, we discovered that 67% of charging

intervals end before fully charged, and about one-third of LBT is im-

posed in charging intervals. This indicates that increasing charging

speed can effectively raise the remaining energy of many charging

intervals and reduce LBT by getting out of the low battery state

earlier.

Second, increasing the capacity yields more remaining energy

when fully charged. The increased capacity helps reduce LBT if

there exists a situation where a user connects the device to a charger

even if the battery is already fully charged. Our battery usage

pattern analysis disclosed that about 30% of charging intervals

belong to the situation; a typical scenario is a user sleeping while

charging.

2.2 Limitation of Other Battery Types
In section 2.1, we observed that most users suffer from low battery,

and an effective strategy to address that is increasing capacity and

charging speed. We now discuss employing other battery types to

increase capacity or charging speed.

Lithium Cobalt Oxide (LCO) battery, the predominant battery

type in the mobile industry, has well-balanced capacity and charg-

ing speed [27, 28]. However, the physical nature of energy-storing

devices like batteries shows an inverse correlation between capacity

and charging speed. Thereby, no other current batteries outperform

LCO in both aspects; also, it is difficult to develop such a battery in

the near future [3].

Then, one may wonder what would happen if a mobile replaces

LCO with another battery type to improve one aspect and give

up another; however, this approach does not help reduce LBT. We

compare an LCO with the following two batteries: Lithium Titanate

Oxide (LTO) and Lithium-Sulfur (Li-S). For the comparison, we

fabricate the batteries and build a precise battery emulator, which

will be detailed in Section 5. LTO can provide 207% faster charging

speed than LCO but has 50% less capacity. Li-S has 99% more capac-

ity than LCO but provides 32% slower charging speed. According

to our emulation, LTO and Li-S exhibit 463% and 89% longer LBT,

respectively, than LCO.

Observation 3: A battery biased to a single performance
aspect is unfit for mobile devices. In short charging/discharging

intervals, the LTO can charge more energy by exploiting its fast

charging speed; on the other hand, its small capacity is unfavor-

able for long charging/discharging intervals. Due to the opposite
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Figure 2: Battery usage patterns of 100 mobile users.

characteristics, the converse holds for the Li-S. While each of the

two batteries fits either short or long intervals, mobile users show

a complex usage pattern where long and short intervals are mixed.

Using the battery usage patterns from Section 2.1, Figure 2(a) rep-

resents the distribution of charging time (i.e., the time duration of

each charging interval), and Figure 2(b) represents the distribution

of discharging amount (i.e., the variance in battery level during each
discharging interval). Both distributions indicate that the users not

only frequently charge/discharge the battery for short intervals but

also considerably charge/discharge for long intervals correspond-

ing to the long tails of the distributions. Due to this incongruity of

the battery usage pattern, it cannot yield LBT reduction to employ

either LTO or Li-S instead of the LCO battery.

As such, at the current level of battery material engineering,

no other battery type can further reduce LBT by increasing both

capacity and charging speed simultaneously. Therefore, this paper

proposes a novel mobile battery system, MixMax, that utilizes a
multi-cell heterogeneous battery system to alleviate low battery

time instead of a single-cell battery system.

3 SYSTEM OVERVIEW
3.1 Problem Statement
In this paper, we aim to design a heterogeneous battery system,

MixMax, to alleviate the low battery time (LBT) of smartphones

based on typical battery usage patterns. This raises several issues

that need to be explored as follows:

Battery Types. As discussed in Section 2, we seek to extend the

performance of the prevailing battery type in the battery industry

by increasing capacity and improving charging speed simultane-

ously. To this end, we construct MixMax with the following three

battery types (see Figure 3) sorted by a descending order of power

density (that determines charging speed per volume) or an ascend-

ing order of energy density (that determines capacity per volume):

• A-type that exhibits higher power density but lower energy

density than B-type (e.g., LTO),
• B-type that is widely used in the state-of-the-art mobile de-

vices (e.g., LCO), and
• C-type that exhibits higher energy density but lower power

density than B-type (e.g., Li-S).
Note that although we mainly focus on the trade-off between power

density and energy density, the cycle life of the B-type is shorter

and longer than A- and C-type, respectively.

Battery Ratio. Once the battery types are chosen, the next issue
is determining the ratio of each type of battery in terms of physical
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Figure 3: Overview of MixMax.

volume. Let denote the ratio of A-, B-, and C-type batteries as 𝑅𝐴:

𝑅𝐵 : 𝑅𝐶 . According to the 𝑅𝐴: 𝑅𝐵 : 𝑅𝐶 , the absolute physical volumes

of the three battery types are calculated from any given total battery

volume budget.

Charge & Discharge Policies. A heterogeneous battery system

introduces new issues, which are not considered in a single-cell

battery system. It needs to determine which types of battery to use

for charging and discharging. For example, when all three types of

batteries are available for charging or discharging, one may strate-

gically choose some or all of them for performance optimization.

We formally state the optimization problem to be solved by Mix-
Max as follows.

Given some typical battery usage patterns of mobile devices,

Determine (i) the battery volume ratio, (ii) charge policy and

(iii) discharge policy of a three-type heterogeneous battery sys-

tem,

In order to minimize the low battery time (LBT), where LBT
is the duration in which the sum of the remaining energy in A-,

B- and C-type batteries is less than some given threshold Δ,
Subject to the given volume budget, the minimum capacity and

the maximum aging.

In order to design a heterogeneous battery system that outper-

forms the state-of-the-art mobile battery (i.e., LCO in B-type), the

usability constraints in the optimization problem are set to the

volume, capacity and aging of a representative B-type battery.

In the constraints, the given volume budget
1
is responsible for

the physical deployment of the heterogeneous batteries of MixMax
in mobile devices, while the minimum capacity enables it to sat-

isfy users’ demand for the maximum energy. Also, the maximum

aging ensures no more capacity degradation from battery aging.

It is worth noting that although we do not explicitly consider the

constraints of weight and cost, our solution to the above optimiza-

tion problem is comparable to existing B-type batteries in terms of

weight and cost to be discussed in Section 9.

Similarly, the threshold Δ can also be set to the energy level at

which most smartphones start displaying low battery warnings.

This is equivalent to 15% of the capacity of the B-type battery for

1
Note that the given volume budget considers the total volume of batteries only.

Operating a heterogeneous battery system necessitates additional components which

incur extra volume, but their volumes are tiny and even non-deterministic at this

stage [29–31]. Therefore, the stated optimization problem considers the volume of

batteries. Details will be discussed in Section 7.

Android smartphones and 20% for iOS smartphones. In this paper,

we set the threshold to 20% by referring to other studies [1, 2].

3.2 Challenges and Approach Overview
Challenges.We address the problem of reducing the LBT by deter-

mining how to charge/discharge and compose the three different

battery types. This problem necessitates the design of a heteroge-

neous battery system and the porting of the designed system into

an actual system.

Designing a heterogeneous battery system entails interdepen-

dent sub-problems. One can easily expect that increasing the ratio of

A-type battery results in faster charging speed. However, it is quite

difficult to figure out the exact charging speed of the heterogeneous

batteries. Unlike a single-cell battery system that typically has a

constant maximum charging speed, a heterogeneous battery sys-

tem exhibits the unique characteristics that its maximum charging

speed varies as its design components: charge/discharge policies

and battery ratio. Additionally, the impact of one component on

the charging speed depends on the design of other components.

Therefore, it is challenging to understand the complicated effects of

these interdependent components and to design them in favor of re-

ducing LBT. Even worse, reducing LBT requires deeply considering

users’ battery usage patterns.

Even if we develop the design solution, it remains to be seen

whether the heterogeneous battery system can be deployed to

mobile systems from a practical point of view. A mobile system

must be capable of supporting electrical functions like switching

and converting in order to apply the heterogeneous battery system.

Design Overview. In this paper, we divide and conquer the

above challenges. The problem of reducing LBT by the heteroge-

neous battery system is divided into design and practical aspects,

and the design problem is solved step by step in the order of less

affected by the users’ battery usage pattern. From a practical aspect,

we first establish MixMax-support circuits since existing smart-

phone circuits cannot operate heterogeneous battery systems. Then

we design the charge/discharge policies, which are highly corre-

lated with the battery properties, and based on the policies, we

optimize the battery ratios considering the user battery usage pat-

tern. For the last step, we verify its practicality with real system

implementation.

4 MIXMAX SYSTEM DESIGN
In this section, we design MixMax that minimizes low battery time

(LBT), which consists of three components: charge policy, discharge

policy, and battery ratio optimization. We begin by devising charg-

ing/discharging circuits to support the operation of MixMax. Based
on this support, we first develop an ideal charge policy that is inde-

pendent of other components and then design a discharge policy

that maximizes the charged energy under the charge policy. Fi-

nally, we determine the battery ratio that minimizes LBT under the

charge/discharge policies.

4.1 Charging & Discharging Circuits
Operating multiple types of batteries requires special circuits. Mix-
Max involves heterogeneous batteries, and it is not trivial to manage

them due to their different electrical characteristics. Traditional
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Figure 4: A schematic of MixMax circuitry.

smartphone circuits targeting single-cell battery system cannot han-

dle them. To operate heterogeneous battery systems, there are some

circuit design options available [20, 32]. However, a circuit configu-

ration that is overly complex or too simplistic will cause operation

failure, higher costs, and power loss, or impose constraints on de-

signing the core components of MixMax (i.e., charge/discharge

policies and battery ratio). Hence, it is crucial to select the appropri-

ate circuitry forMixMax based on its functionality requirements.

We refer to existing circuit design options and choose the most suit-

able circuitry for MixMax. Our proposed charging and discharging

circuits for MixMax are conceptually depicted in Figure 4. With

the support of the circuitry, we further design other components

of MixMax.
MixMax’s charging circuits charge heterogeneous batteries sep-

arately in parallel. When power is inputted and undergoes AC/DC

conversion at a charger adaptor, MixMax needs to charge its indi-

vidual batteries with the given power input. With the given sin-

gle power input, it is necessary to individually charge each bat-

tery as each battery has its own charging characteristics (e.g., cur-

rent/voltage limits). To this end, MixMax places individual charger
integrated circuit (IC) with each battery (illustrated in Figure 4),

which converts and manages current/voltage and the charging pro-

cess. Since this approach is not much different from traditional

smartphone charging circuits, it does not incur critical issues or

technical challenges.

The discharging circuitry of MixMax distributes a given dis-

charge load to heterogeneous batteries. When a power load is given

by the user behavior (the rightmost in Figure 4), MixMax discharg-
ing circuits distribute that load to batteries. In detail, MixMax dis-
charges batteries one by one and switches the discharging among

batteries at a high frequency in a round-robin manner. One can

adjust the granularity and respective discharging load of batteries

with the switching frequency. Additionally, as the power out to the

smartphone must have a specific voltage range, the different output

voltages of different batteries are converted by DC/DC convert-

ers. The described switching approach was originally proposed by

Badam et al. [20], and is known to have high power efficiency while

demanding few numbers of circuit components. Unlike Badam’s

work, since MixMax does not require a charge migration function-

ality that transfers power between batteries sacrificing significant

power loss, MixMax’s circuitry is much simpler.

The devised circuits, especially discharging circuits, can affect

other components of MixMax, from its power efficiency to design

choices. However, we confirm that such effects are not considerable

from our field test, which will be discussed in Section 7. Thus, we

further design other components of MixMax on top of the proposed
circuitry.
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Figure 5: The charging characteristics of MixMax.

4.2 Charge Policy
AsMixMax deploys heterogeneous batteries,MixMax involves new
design issues that do not exist in the single-cell battery system. One

of the key issues is how to charge each of the three batteries to

minimize LBT. Once we decide the charge policy, we can explore

the charging behavior of MixMax, which can be used to determine

other MixMax components.

Different from the single-cell battery system, MixMax needs to
determine the charging speed of the individual batteries within their

different maximum charging speed. WhileMixMax, for example,

may apply the maximum charging speed to A-type, no charging to

B-type, and half of the maximum charging speed to C-type, it does

not help LBT reduction to deliberately slow down the charging

speed of any batteries. This is because, such a slower charging

speed yields the lower remaining energy inMixMax, which always

has a negative impact on LBT.

Therefore, we letMixMax use the best-effort charge policy, which
charges all chargeable batteries (i.e., batteries that are not fully

charged yet) with their ownmaximum charging speed.When charg-

ing,MixMax assumes that the charger can support sufficient power

to allow all batteries to charge at their own maximum speed (which

is a typical situation where the charger is connected to the power

outlet). If not (e.g., when using the charger connected to a laptop),

MixMax distributes the given budget of power to the three batteries

proportional to their maximum charging speed. As a result, Mix-
Max always charges all the chargeable batteries proportional to
their own maximum charging speed.

When the best-effort charge policy is applied, each battery has a

different capacity and charging speed, so the full charging time of

batteries varies. This characteristic entails a multi-stage charging
speed in MixMax. The charging speed of MixMax at a time instant

is the sum of the charging speed of the batteries being charged, so

the charging speed of MixMax decreases whenever one battery is

fully charged, to be detailed in Section 4.4 with Figure 5(b).

We also find the multi-stage charging speed varies according to

the distribution of remaining energy in each battery at the start of

the charging interval, even if the total energy is fixed. For example,

Figure 5(a) shows two different initial energy cases when the energy

of the MixMax is charged from 1.8mWh to 6.4mWh; one is the

case where the initial energies of A-, B-, and C- types are 0mWh,

0mWh, and 1.8mWh, and another is the casewhere those are equally

distributed (i.e., 0.6mWh each). As shown in the figure, the charging

speed of MixMax highly depends on the distribution of energy in
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each battery type. This finding indicates the importance of the

discharge policy that determines the distribution, to be discussed

in the following subsection.

4.3 Discharge Policy
We develop a discharge policy that maximizes charging speed. As

confirmed in Sections 2.1 and 4.2, increasing the charging speed

can reduce LBT, and the charging speed varies depending on the

discharge policy. Thus, a discharge policy to be developed should be

designed in order to increase the charging speed in the subsequent

charging interval.

Considering the charging speed of MixMax is maximized when

all batteries are being charged simultaneously, it is desirable to

develop a discharge policy to charge multiple batteries simultane-

ously.MixMax’s charging speed slows down whenever one battery

is fully charged, losing that battery’s charging speed. Therefore,

we makeMixMax discharge the battery that will be fully charged

at the earliest time instant under the best-effort charge policy pro-

posed in Section 4.2. In other words, our discharge policy delays

the earliest time for one of the battery types to be fully charged

as late as possible (i.e., maximizing the minimum full charging

time). We call this discharge policy MaxiMin, and it always ensures
the optimal

2
fastest charging speed in a subsequent charging in-

terval. Note that the MaxiMin discharge policy works with any

multi-cell/heterogeneous battery system, although MixMax em-

ploys three battery types.

Let 𝑇 (𝑋 ) denote the time to fully charge the 𝑋 -type battery3

(where 𝑋 can be 𝐴, 𝐵 or 𝐶) when MixMax is charged according to

the best-effort charge policy. We first check whether a battery must

be discharged or not. The𝑋 -type battery is flagged to be discharged

(denoted by 𝑓 𝑙𝑎𝑔𝑋 ), only when it has the minimum 𝑇 (𝑋 ) among

𝐴-, 𝐵- and 𝐶-type batteries and is dischargeable, as follows.

𝑓 𝑙𝑎𝑔𝑋 =

{
1, if 𝑇 (𝑋 ) =𝑚𝑖𝑛(𝑇 ) & 𝑋 is dischargeable,

0, otherwise.

In the case of existence of multiple non-zero flags, the discharge

power load is distributed according to their corresponding charg-

ing speed 𝑆𝑋 . Let 𝐷𝐿
+ (𝑡) denote the total discharge power load

of MixMax with the 𝐴-, 𝐵- and 𝐶-type batteries at 𝑡 . Then, the

discharge power of the 𝑋 -type battery at 𝑡 (denoted by 𝐷𝐿𝑋 (𝑡))
can be calculated as follows.

𝐷𝐿𝑋 (𝑡) = 𝑆𝑋 · 𝑓 𝑙𝑎𝑔𝑋∑
𝑖=𝐴,𝐵,𝐶 𝑆𝑖 · 𝑓 𝑙𝑎𝑔𝑖

· 𝐷𝐿+ (𝑡).

The following lemma explains an optimal property of the Max-

iMin discharge policy.

Lemma 1. The MaxiMin discharge policy along with the best-effort
charge policy always charges more (or the same) energy than any
other discharge policy along with the best-effort charging during
[0, 𝑡), where 0 and 𝑡 are the beginning and arbitrary end time of a
subsequent charging interval.

2
The optimality holds under the assumption that the amount of discharged energy is

unchanged regardless of the discharge policy. Effects such as battery resistance and

rate capacity effects are ignored here, but considered later in evaluation.

3𝑇 (𝑋 ) is estimated considering charger behavior (e.g., CCCV charging)

Proof. Suppose thatMixMax discharges three battery types in a
given discharging interval by discharge policy 𝐷𝑃 and charge them

in [0, 𝑡). Let𝑇𝐷𝑃
𝑋

and𝐶𝐷𝑃
{𝑋,𝑌,𝑍 } (0, 𝑡) denote the required time to fully

charge 𝑋 -type battery of MixMax and the total charged energy in

{𝑋,𝑌, 𝑍 }-type batteries of MixMax in [0, 𝑡), respectively. Lemma 1

implies the following statement holds for any 𝑡 and discharge policy

𝐴𝑁𝑌 (For an abbreviation, we denote MaxiMin as𝑀𝑀):

Statement. When batteries are discharged by MaxiMin, let 𝑚𝑛

denote a battery with the 𝑛-th shortest full charging time. That is,

𝑇𝑀𝑀
𝑚1

≤ 𝑇𝑀𝑀
𝑚2

≤ 𝑇𝑀𝑀
𝑚3

holds for𝑚1 ≠ 𝑚2 ≠ 𝑚3 ∈ {𝐴, 𝐵,𝐶}. Then,
the following holds:

𝐶𝑀𝑀
{𝐴,𝐵,𝐶 } (0, 𝑡) ≥ 𝐶𝐴𝑁𝑌

{𝐴,𝐵,𝐶 } (0, 𝑡) . (ST)

We now prove ST holds for the following individual cases:

• Case 1: 𝑡 <= 𝑇𝑀𝑀
𝑚1

. As all the three batteries are charged until 𝑡

with best-effort, ST holds.

• Case 2: 𝑇𝑀𝑀
𝑚1

< 𝑡 <= 𝑇𝑀𝑀
𝑚2

. Since 𝑇𝑀𝑀
𝑚1

< 𝑇𝑀𝑀
𝑚2

holds, in

this case, either 𝑚1 is fully discharged or the total discharge

energy load has been already met. Therefore, MaxiMin could not

have discharged the battery (𝑚1) further during the discharging

interval. Therefore, the following inequality holds:

𝐶𝑀𝑀
{𝑚1 } (0, 𝑡) ≥ 𝐶𝐴𝑁𝑌

{𝑚1 } (0, 𝑡) .

Since {𝑚2,𝑚3}-type batteries are charged until 𝑡 with best-effort,

the following inequality holds:

𝐶𝑀𝑀
{𝑚2,𝑚3 } (0, 𝑡) ≥ 𝐶𝐴𝑁𝑌

{𝑚2,𝑚3 } (0, 𝑡) .

Therefore, ST holds.

• Case 3: 𝑇𝑀𝑀
𝑚2

< 𝑡 <= 𝑇𝑀𝑀
𝑚3

. As in Case 2, the following two

inequalities hold:

𝐶𝑀𝑀
{𝑚1,𝑚2 } (0, 𝑡) ≥ 𝐶𝐴𝑁𝑌

{𝑚1,𝑚2 } (0, 𝑡), and 𝐶
𝑀𝑀
{𝑚3 } (0, 𝑡) ≥ 𝐶𝐴𝑁𝑌

{𝑚3 } (0, 𝑡).

Therefore, ST holds.

• Case 4: 𝑇𝑀𝑀
𝑚3

< 𝑡 . As all batteries are fully charged at 𝑇𝑀𝑀
𝑚3

, ST

holds.

Therefore, 𝐶𝑀𝑀
{𝐴,𝐵,𝐶 } (0, 𝑡) ≥ 𝐶𝐴𝑁𝑌

{𝐴,𝐵,𝐶 } (0, 𝑡) holds for any 𝑡 . □

While the proposed MaxiMin results in the optimal fastest charg-

ing speed under the assumption of ignoring some internal battery

characteristics, Section 6 will evaluate MaxiMin under realistic

environments without the assumption.

4.4 Battery Ratio Optimization
In this section, we determine the battery ratio 𝑅𝐴: 𝑅𝐵 : 𝑅𝐶 that min-

imizes LBT under the optimal charge/discharge policies developed

in Sections 4.2 and 4.3, where 𝑅𝐴 , 𝑅𝐵 and 𝑅𝐶 (each ≤ 1.0) denote the

volume proportion for the 𝐴-, 𝐵- and 𝐶-type batteries inMixMax,
satisfying 𝑅𝐴 +𝑅𝐵 +𝑅𝐶 = 1.0. It is challenging to determine the bat-

tery ratio because 1) the relationship between the battery ratio and

LBT depends on several factors (such as charge/discharge pattern

and the performance trade-off among different battery types) in a

complicated manner and 2) the problem has numerically infinite

search space. To address the challenges, we perform the following

steps.

Overview of S1. Based on analyzing important physical charac-

teristics of MixMax that are independent of users’ battery usage
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pattern, we limit the range of the battery ratio, and derive an intu-

ition of how to decompose the problem of determining the battery

ratio.

Overview of S2. By establishing a model that predicts the ex-

pected LBT using users’ battery usage pattern, we suggest decom-

posing the problem into (P1) finding the relative ratio between

𝑅𝐴 and 𝑅𝐶 under given 𝑅𝐵 (P2) determining 𝑅𝐴 , 𝑅𝐵 and 𝑅𝐶 under

given 𝑅𝐴/𝑅𝐶 .4
Overview of S3. Utilizing properties derived from S1 and S2, we

determine the battery ratio in a systematical manner, for the actual

battery usage pattern with the proposed charge/discharge policies.

S1. The battery ratio determines important physical character-

istics of MixMax: charging speed, capacity and power output. As a

first step, we analyze the charging speed of MixMax. Figure 5(b)
shows the amount of accumulated energy stored in MixMax in

[0, 𝑡), which is denoted by 𝐸MixMax (𝑡) in Equation 1. In the equa-

tion, 𝐸𝑋 denotes the maximum energy to be stored in the single

𝑋 -type battery that has the same volume as MixMax, while 𝑆𝑋
denotes the maximum charging speed of the single 𝑋 -type battery

(where 𝑋 can be 𝐴, 𝐵 or 𝐶). Therefore, the maximum energy to be

stored in the𝑋 -type battery of MixMax and the maximum charging

speed of the𝑋 -type battery of MixMax can be calculated as 𝑅𝑋 ·𝐸𝑋
and 𝑅𝑋 · 𝑆𝑋 , respectively. As shown in Figure 5(b) and Equation 1,

MixMax exhibits the multi-stage charging speed behavior with 𝑡𝐴 ,

𝑡𝐵 and 𝑡𝐶 at which the A-, B- and C-type batteries are fully charged.

𝐸MixMax (𝑡) =


(𝑅𝐴 · 𝑆𝐴 + 𝑅𝐵 · 𝑆𝐵 + 𝑅𝐶 · 𝑆𝐶 ) · 𝑡, 0 ≤ 𝑡 < 𝑡𝐴,

𝑅𝐴 · 𝐸𝐴 + (𝑅𝐵 · 𝑆𝐵 + 𝑅𝐶 · 𝑆𝐶 ) · 𝑡, 𝑡𝐴 ≤ 𝑡 < 𝑡𝐵,

𝑅𝐴 · 𝐸𝐴 + 𝑅𝐵 · 𝐸𝐵 + 𝑅𝐶 · 𝑆𝐶 · 𝑡, 𝑡𝐵 ≤ 𝑡 < 𝑡𝐶 ,

𝑅𝐴 · 𝐸𝐴 + 𝑅𝐵 · 𝐸𝐵 + 𝑅𝐶 · 𝐸𝐶 , 𝑡𝐶 ≤ 𝑡 .

(1)

In Figure 5(b), we also plot 𝐸𝐵 (𝑡), the amount of cumulative

stored energy in the single B-type battery that has the same volume

asMixMax in [0, 𝑡). If the battery is not fully charged, 𝐸𝐵 (𝑡) = 𝑆𝐵 ·𝑡 ;
otherwise, 𝐸𝐵 (𝑡) = 𝐸𝐵 . Then, depending on 𝑅𝐴 , 𝑅𝐵 , and 𝑅𝐶 , time

instants 𝑡1 and 𝑡2 exist where the cumulative energy in MixMax
is the same as that in the single B-type battery (i.e., 𝐸MixMax (𝑡) =
𝐸𝐵 (𝑡)), as shown in the figure. We observe that the cumulative

energy inMixMax is larger than that in the single B-type battery

in [0, 𝑡1) and [𝑡2, 𝑡𝐶 ), and the converse holds in [𝑡1, 𝑡2).
Although it seems very complex how the battery ratios 𝑅𝐴 ,

𝑅𝐵 and 𝑅𝐶 affect 𝐸MixMax (𝑡), we discover two important prop-

erties. First, if we focus on the time instants 𝑡1 and 𝑡2, which deter-

mine whether MixMax exhibits worse or better performance than

the corresponding single B-type battery in terms of the cumula-

tive stored energy, we can arrange them by solving the equation

𝐸MixMax (𝑡) = 𝐸𝐵 (𝑡). Then the following formulas imply that 𝑡1 and

𝑡2 depend on the relative ratio between 𝑅𝐴 and 𝑅𝐶 , but not on 𝑅𝐵 .

𝑡1 = 𝑅𝐴 · 𝐸𝐴/(𝑅𝐴 · 𝑆𝐵 + 𝑅𝐶 · 𝑆𝐵 − 𝑅𝐶 · 𝑆𝐶 ),
𝑡2 = (𝑅𝐴 · 𝐸𝐵 + 𝑅𝐶 · 𝐸𝐵 − 𝑅𝐴 · 𝐸𝐴)/(𝑅𝐶 · 𝑆𝐶 ) .

Second, if we focus 𝐸MixMax (𝑡) − 𝐸𝐵 (𝑡), its amount depends on

𝑅𝐵 for a given relative ratio between 𝑅𝐴 and 𝑅𝐶 . The two prop-

erties are related to P1 and P2 as follows: solving P1 corresponds

4
Note that P2 is equivalent to determining 𝑅𝐵 under the solution of P1 since 𝑅𝐴 +
𝑅𝐵 + 𝑅𝐶 = 1.0 holds.
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Figure 6: Expected LBT of MixMax varying 𝑅𝐴 and 𝑅𝐵 (blue
line), compared to that of the single B-type battery (red line).

to determining the interval length of [0, 𝑡1) and [𝑡2, 𝑡𝐶 ) in which

𝐸MixMax (𝑡) > 𝐸𝐵 (𝑡) holds and [𝑡1, 𝑡2) in which 𝐸MixMax (𝑡) < 𝐸𝐵 (𝑡)
holds, while solving P2 under the solution of P1 corresponds to

determining the amount of the difference between 𝐸MixMax (𝑡) and
𝐸𝐵 (𝑡). Hence, we try to decompose the problem of determining the

battery ratio into P1 and P2, to be justified more rigorously in S2.

When it comes to the maximum capacity of MixMax, it was al-
ready derived in the last line of Equation 1. Applying the constraint

of the problem statement, which is the capacity of MixMax no less

than 𝐸𝐵 , we derive 𝑅𝐴/𝑅𝐶 ≤ (𝐸𝐶 −𝐸𝐵)/(𝐸𝐵 −𝐸𝐴), yielding a range
of the ratio as 𝑅𝐴/𝑅𝐶 ≤ 2.0.

Finally, each battery type should be capable of supplying the

maximum power load even when only a single battery type in

MixMax has remaining energy. By applying the maximum power

load to the maximum discharge power of each battery type, we

derive a lower bound of each battery ratio, yielding 𝑅𝐴 ≥ 0.05,

𝑅𝐵 ≥ 0.09, and 𝑅𝐶 ≥ 0.18.

S2. We now investigate how the battery ratio changes LBT. To

this end, we establish a model that predicts the LBT trend accord-

ing to the battery ratio based on the users’ battery usage pattern

data. To address the complexity issue for the model, we choose a

representative situation where the charging starts at a 0% energy

level of MixMax, by considering the followings: 1) the charging

starts at 0–20% energy level most frequently, 2) the probability of

entering the low battery state is lower if the charging starts at a

higher battery level, and 3) the situation makes it possible to calcu-

late the remaining energy by Equation 1 without considering the

initial energy distribution of each battery type inMixMax. Then,
the expected LBT under the situation can be calculated by mul-

tiplying the probability of entering the low battery state and the

distribution of the low battery interval’s length, both of which can

be derived from the users’ battery usage patterns according to the

remaining energy.

Figure 6 shows the expected LBT of MixMax according to the

model, under varying 𝑅𝐴 (as x-axis) and 𝑅𝐵 (shown in different sub-

figures). Note that since𝑅𝐴+𝑅𝐵+𝑅𝐶 = 1.0 holds,𝑅𝐶 is automatically

determined if 𝑅𝐴 and 𝑅𝐵 are fixed; therefore, each sub-figure also

represents the expected LBT according to different 𝑅𝐴/𝑅𝐶 for given

𝑅𝐵 . We observe two important properties of the expected LBT

from the model. First, once we fix 𝑅𝐴/𝑅𝐶 , the expected LBT is

convex with respect to 𝑅𝐵 . For example, for given 𝑅𝐴/𝑅𝐶 = 1.0, the

expected LBT is minimized with 𝑅𝐵 = 0.2 (where 𝑅𝐴 = 𝑅𝐶 = 0.4

in the second sub-figure) or 𝑅𝐵 = 0.4 (where 𝑅𝐴 = 𝑅𝐶 = 0.3 in the

third graph, and it increases as 𝑅𝐵 converges to 0.0 or 1.0. Second,

once we fix 𝑅𝐵 (i.e., focusing on a single sub-figure), the expected

LBT is also convex with respect to 𝑅𝐴/𝑅𝐶 . For example, with 𝑅𝐵 =

0.2 in the second sub-figure, the expected LBT is minimized with
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Figure 7: Value of objective function during ratio optimiza-
tion. It returns aging (orange) when the evaluated aging is
greater than the B-Type and returns LBT (blue) otherwise.

𝑅𝐴 = 𝑅𝐶 = 0.4; as 𝑅𝐴/𝑅𝐶 deviates from 1.0, the expected LBT

increases.

The properties suggest the following guidelines for solving the

problem of determining the battery ratio, to be utilized in S3. First,

it is feasible not only to solve P1 under a given solution of P2, but

also to solve P2 under a given solution of P1. Second, when solving

P1 and P2, we can efficiently find the solution using the convexity.

S3. We now solve the optimization problem of finding the bat-

tery ratio that minimizes LBT for the actual battery usage pattern

with the charge/discharge policies proposed in Sections 4.2 and 4.3,

which entails the following challenges. First, actual LBT (not de-

rived by the model, but obtained by experiment/emulation) is not a

closed-form function of the battery ratio, disallowing mathematical

derivation of the battery ratio that minimizes LBT. Second, it takes

a long time to obtain actual LBT of the actual battery usage pattern

by experiment/emulation, even for a single instance of the battery

ratio. Third, the constraint of aging (not larger than the single B-

type battery) in the problem statement should be considered along

with LBT minimization.

To this end, we develop an empirical optimization process as

follows. First, we split the actual battery usage pattern data of 100

users into training and test data at 7:3, and we use only the training

data for the optimization. Second, to address the aging constraint,

we design the objective function such that it evaluates both LBT and

aging for a given battery ratio with the training data and returns i)

aging when the evaluated aging for MixMax is greater than that

for the single B-type battery or ii) LBT otherwise. Then, finding the

battery ratio that minimizes the objective function is equivalent

to finding the ratio that minimizes LBT without increasing aging

over the single B-type battery. Third, we narrow down the search

space of the problem according to the constraints derived from S1.

Finally, by applying the guidelines of S2 within the search space, we

repeat to alternatively search the optimal 𝑅𝐴/𝑅𝐶 for given 𝑅𝐵 and

the optimal 𝑅𝐵 for given 𝑅𝐴/𝑅𝐶 . To reduce the time for searching

and avoid over-fitting, we limit the number of evaluations for each

search as 𝑁𝐸 . During each search, Brent’s method [33] selects the

next battery ratio to minimize the objective function by utilizing

the convexity observed from S2.

As a result, only seven iterations to search the optimal 𝑅𝐴/𝑅𝐶
for given 𝑅𝐵 and the optimal 𝑅𝐵 for given 𝑅𝐴/𝑅𝐶 (with 𝑁𝐸 = 7)

result in finding the ratio that minimizes LBT, which are 𝑅𝐴 =

0.0998, 𝑅𝐵 = 0.6962, 𝑅𝐶 = 0.204. Although the iterations utilize

the training data only, we confirm that LBT of the test data is also

efficiently reduced. Also, during the iterations, the return value of

the objective function shows convexity, as shown in Figure 7. The

detailed evaluation results will be explained in Section 6.

(a) Fabricated coin-cell batteries. (b) Battery testing equipment.

Figure 8: Coin-cell batteries for MixMax.

5 IMPLEMENTATION
We fabricated real A-, B-, and C-type coin-cell batteries and devel-

oped accurate enough models of batteries for a proof-of-concept

prototype as an emulator. The emulator accurately reflects each

cell’s physical characteristics (e.g., polarization, internal resistance,
or voltage) obtained from the experiment of physical cells, precisely

emulating the heterogeneous battery system behavior according to

the proposed charge/discharge policies and the battery ratio.

It is a common way of system-level simulation with the battery

emulator since the system-level simulation, including electronics

and batteries, requires a significant amount of time. The battery em-

ulator is accurate enough to capture the widely known non-linear

effects of batteries (e.g., rate-capacity and temperature effects) and

is indispensable for evaluating battery system performance over

long periods of time (e.g., about 19,855 hours of our battery us-

age pattern). Attesting to this, battery system studies typically

evaluate their system through emulation, for instance, electric ve-

hicles [34–38], energy storage systems [39, 40], and even mobile

systems [20, 41]. Therefore, we employed the battery emulator for

evaluation rather than real-world measurement albeit we imple-

mented MixMax on a demo smartphone, which will be detailed in

Section 7.

We fabricated physical batteries of LTO, LCO, and Li-S in the

same form factor for a fair comparison as shown in Figure 8(a). The

cells to be evaluated should have an identical form factor, as the

physical characteristics of a battery widely vary according to its

form factor. Unfortunately, we could not find our target batteries in

the same form factor among commercial off-the-shelf (COTS) ones.

The batteries were fabricated in the coin-cell form factor has the

size of 2032, the cathode of 1.13 𝑐𝑚2
, and the anode of 2.0 𝑐𝑚2

. We

conducted the Hybrid Pulse Power Characterization (HPPC) test to

build and evaluate the battery model in a temperature-controlled

environment (Figure 8(b)). We built Equivalent Circuit Model, which
emulates battery behavior with circuit components. The emulator

is based on an open-source [42] and incorporates two Resistor-
Capacitor (RC) networks, which trace the polarization of battery

internals to elaborate battery behavior [43]. Note that we also mod-

eled other types of batteries: LTO, LFP, and NCA batteries in the

cylindrical form factor for the applicability test.

Finally, the battery emulator shows high accuracy. As shown in

Figure 9(a), the emulator and the physical battery show virtually

identical behavior. The emulator makes an average voltage error

of up to 1.28%. For each battery cell, the average errors are 1.04%,

0.58%, 1.28%, 0.29%, 0.46%, and 0.48% for LTO (coin), LCO, Li-S,
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Figure 9: Accuracy test of MixMax emulator.

LTO (cylindrical), LFP, and NCA, respectively. Figure 9(b) shows

additional experiment result; the energy changes over time of the

emulated and physical batteries (composed of LTO-LFP-NCA) with

multiple charge-discharge cycles of the identical usage. The emu-

lator shows accurate results only with a 0.3% of energy error on

average.

6 EVALUATION
In this section, we evaluateMixMax on top of the proposed battery

emulator in order to show the effectiveness in minimizing low bat-

tery time (Section 6.2), the efficacy of the proposed charge/discharge

policies of MixMax compared to other approaches (Section 6.3), and

the applicability of MixMax to other battery systems (Section 6.4).

6.1 Evaluation Setup
We measured the battery behavior with the emulator while charg-

ing/discharging the battery system according to the usage patterns

which consist of 19,855-hours-long data collected from 100 users.

Note that we divided the data set into 70 training data and 30

test data as described in Section 4.4. The battery ratio parameters

(i.e., 𝑅𝐴 , 𝑅𝐵 , and 𝑅𝐶 ) were determined based on the training data,

and performance measurements were conducted with the test data.

While alternating charging and discharging along with the usage

patterns, we emulated the battery and measured the performance,

including low battery time (LBT), the charging speed, the remaining

energy distribution and the battery aging.

It is worth noting how we replay the charge/discharge patterns

for different battery systems. While MixMax has the multi-stage

charging speed nature, the usage patterns were collected with the

single-cell battery. Thereby, it is impossible to replay the charge

pattern as is. For a fair comparison, we carefully handle the charge

patterns; for each charging interval, we maintain the charging time

as in the pattern and recalculate the charging amount according to

the charging speed of the battery system. Note that, even in a single-

cell battery, the charging speedmay vary depending on the charging

environment. For instance, the speed may slow down when the

device is used during charging, charged at the Constant Voltage

(CV) stage, or plugged into a low-power charger. To handle this

case, we adjust the charging speed of MixMax for those charging
intervals as slowly as the single battery slows down. In contrast,

for each discharging interval, we keep the discharging time and

rate as they are, since they depend only on the user behavior, not

on the battery system.

6.2 Low Battery Time Reduction
According to the emulation with the usage patterns and the various

battery systems (LTO only, LCO only, Li-S only, and MixMax), we
have confirmed that MixMax successfully reduces the low battery

time (LBT) without changing users’ behavior. As the left side of

Figure 10(a) shows,MixMax reduces the overall LBT by 24.6% com-

pared to LCO and exhibits 85.2% less LBT than other single-cell

batteries. And the right side of the figure shows that 26 out of 30

users experienced reduced LBT than LCO single-cell.

Two major factors of LBT is the number and length of the low

battery interval (LBI). The right side of Figure 10(b) shows that

MixMax reduces the number of LBI by 31.9% than LCO only, which

implies that users are less likely to enter the low battery state. And

the left side of the figure shows that the average LBI length of

MixMax is similar to that of LCO. Despite this similar LBI length,

MixMax effectively reduces LBT compared to LCO, because the

number of LBI is greatly reduced. In contrast, Li-S shows a worse

LBT performance, albeit the lowest number of LBI, because the

average LBI length of Li-S is too long due to its slow charging

speed.

To further break down the results, we measure how effectively

MixMax improves battery performance in terms of the charging

speed and energy capacity, and examine how they contribute to

reducing LBT. For the charging speed, MixMax has multi-stage

charging speed due to the nature of heterogeneous batteries. As

Figure 10(c) shows, the minimum and maximum charging speed of

MixMax is 6.02 mWh/h and 0.7 mWh/h, and the average speed for

charging a fully discharged battery to its fully charged state is 1.94

mWh/h.

AlthoughMixMax’s average full charging speed is slower than

LCO,MixMax successfully reduces LBT and escape time (defined

by the cumulative length of charging time to escape the low battery

state). This implies that our discharge policy well exploits the multi-

stage charging speed so that it maximizes the benefits of maximum

charging speed, while minimizing the drawback of minimum charg-

ing speed. Indeed, we have confirmedMixMax’s average remaining

energy after each charging/discharging is 16.7% higher than that of

LCO. Furthermore, althoughMixMax’s maximum charging speed

is only 14.1% higher, its average time to escape LBI is 25.7% shorter,

compared to those of LCO. This is because the amount of energy

required to escape the low battery state itself has decreased due to

the benefit of improving both the charging speed and the capacity.

As for the capacity,MixMax supports 15.2%more energy than the

corresponding same-volume LCO battery without compromising

any other usability, which is a staggering achievement that would

take about seven years ([44, 45], 2011-2018, 14.7%) to advance in

battery material alone. The capacity and charging speed increase

leads to the remaining energy increase. Figure 10(d) shows the

distribution of the remaining energy after charging intervals. It

shows that the remaining energy of MixMax is distributed in the

higher range compared to LCO. Note that the remaining energy

distribution of MixMax is not simply right-shifted from that of

LCO; instead,MixMax effectively reduces the lower range of the

remaining energy distribution, in particular, less than 20%. This

result confirms that MixMax is effective in rapidly escaping LBI

and keeping more energy, compared to the single-cell LCO battery.
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(a) Low battery time (LBT) results of test data over a week.
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Figure 10: Evaluation of MixMax compared to single-cell battery systems.
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Figure 11: Low battery time reduction of MixMax according
to discharge policies and battery ratios.

6.3 Comparison Study
We compare components of MixMax with other design candidates

to investigate how each component contribute to reducing LBT.

In comparison, we target the intricately designed discharge policy

and battery ratio optimization.

We first compare the discharge policy with the following other

policies from recent work. Software-defined battery (SDB) [20]

proposes two discharge policies aiming for mobile systems; one to

balance the aging of each battery type (CCB) and another to min-

imize the energy loss from internal resistance (RBL). Multi-cell

battery systems generally adopt a discharge policy for cell balanc-

ing (Bal) [23], which equalizes the remaining energy of multiple

batteries, and for EVs, a policy proposed (EV) prioritizing to dis-

charge a battery with the smallest power performance (i.e., charge
speed and maximum power output) to prepare peak power load.

Then, we compare the case where the battery ratio is optimized for

each discharge policy as MixMax does in Section 4.4 (opt) and the

case used in a naive 1:1:1 ratio (1:1:1). Figure 11 shows the overall
results. From the figure, we make the following two observations.

First, as shown in Figure 11, when using our MaxiMin discharge

policy, users undergo the shortest LBT. A user experiences an av-

erage of 6.6 hours of LBT over a week when employing MixMax

(opt), which fully exploitsMixMax’s designs, while all other ap-
proaches show worse results. Since our discharge policy is designed

to maximize the charging speed of the upcoming charging intervals,

the ratio of charge intervals ending up with full capacity should

be larger than other policies. Applying our policy comes up with

the highest ratio, i.e., 29.5%, of the charge intervals in which the

battery is fully charged for (opt) case. For all other policies, this
ratio shows the opposite trend to the average LBT, as expected. CCB
shows a ratio of 23.9%, which is higher than the remaining ones,

and all the other policies show a lower ratio of 19.7%. It is trivial

that the more frequently the battery is fully charged, the less likely

users suffer from the LBT.

Second, the LBT reduction of ratio optimization depends on the

discharge policy. For example, in Figure 11, our battery ratio op-

timization halves the LBT a user experiences over a week when

using the RBL discharge policy, whereas it rather increases by 9.8%

in the case of Bal. The S3 step of our battery ratio optimization

searches the optimal battery ratio minimizing LBT subject to less

aging than LCO single-cell battery. The discharge policies Bal and

EV cause the most battery aging because they utilize the C-type

battery more than other discharge policies. Thus, the optimization

processes of Bal and EV have no room to minimize LBT as they allo-

cate much A-type battery ratio to lessen aging than LCO single-cell.

This indicates that ratio optimization cannot effectively minimize

the LBT for bad discharge policy and endorses our solution ap-

proach of ratio optimization after designing the discharge policy

first in Section 3.2.

6.4 MixMax in Other Environments
Other battery types. Thanks to the general design of MixMax,
it is possible to make up MixMax with other battery types, for

example, LTO, LFP and NCA, although they are mainly used in

other than the mobile environment. To verify that our approach
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Figure 12: Average low battery time of users over a week with
different battery types and low battery threshold.

is applicable to other environments, we composed MixMax∗ with
18650 cylindrical cells of the other battery types, in particular, LFP,

LTO, and NCA as A-, B-, C-types, respectively. Afterward, we again

emulated MixMax∗ to measure the LBT. As shown in Figure 12(a),

MixMax∗ still shows the better performance with regard to the LBT

compared to other single-cell batteries.

Various low battery thresholds. Changing the low battery

threshold also changes the LBT that users experience. To show how

the threshold affects the LBT, we vary the low battery threshold

from 15% to 25% of the total amount of energy, and measure the

average LBT. Except for the low battery threshold, all other eval-

uation environments are the same as in Section 6.2. Figure 12(b)

shows that even with different low battery thresholds, employing

MixMax always achieves the LBT lower than the LCO battery. For

instance, when the threshold is set to that of Android (i.e., 15%),
users experience an average of 6.0 and 4.4 hours over seven days

with the LCO battery and MixMax, respectively.

7 FIELD TEST: A DEMO SMARTPHONE
In this section, we demonstrate the practicality of MixMax as a

demo smartphone field test. A heterogeneous battery system, unlike

a single-cell battery system, requires switching and voltage conver-

sion of batteries. Thus, MixMax can be commercialized only when

the switching and converting require affordable physical costs and

ensure system stability. Our field test on the smartphone addresses

these concerns.

Setup details. Figure 13 depicts the prototyped demo smart-

phone. We applied MixMax on a smartphone named SM-G525N

with 18650-sized cylindrical LTO, LFP, and NCA batteries (cor-

responding to A-, B-, and C- type). Note that we used cylindrical

batteries instead of fabricated coin-cell batteries for sufficient power

output. As the COTS smartphone regulates its input voltage (al-

though it already converts voltage internally), we added DC/DC

converters to meet the input voltage requirement. The circuit topol-

ogy was designed based on Section 4.1; each battery powers the

smartphone through each DC/DC converter, and the microcon-

troller controls the usage of batteries (i.e., discharge policy) by

switching batteries. TPS61022EVM-034, Arduino UNO, and MOS-

FET switches were used for DC/DC converter, microcontroller, and

turning on/off batteries, respectively, and the battery switching

granularity is in the order of milliseconds.

Operation stability. The demo smartphone is stably powered

by heterogeneous batteries according to the design of MixMax. We

Figure 13: MixMax applied to demo smartphone.

test the operation of the demo smartphone by booting, running the

YouTube app for an hour, and turning off the device. In the test,

the demo smartphone operates without any failure, even during

switching, and fully follows MixMax’s MaxiMin discharge policy.

Energy loss. One may worry that the additional circuits of het-

erogeneous battery systems incur significant energy dissipation,

degrading performance. We measure and find that circuits for three

batteries require 1.57% more power than those for one battery due

to energy loss. Considering we handmade the demo and only used

one type of DC/DC converter, the loss will be much lower in prac-

tice. SDB [20] confirms that the energy loss from the additional

circuits of heterogeneous batteries is no more than 1%, although

their circuits support complicated operations such as energy mi-

gration between batteries. As MixMax does not require a circuit as
complex as SDB, we can assume that MixMax ’s energy loss is less

than 1% in practice. Even if we harshly assume there is always a

1% loss during usage, the LBT of MixMax is still 9.7% less than the

single-cell LCO battery.

Additional costs for required parts. Looking at Figure 13,

MixMax seems to require many massive and costly parts, which

is not true in practice. Firstly, the demo smartphone looks huge

just because we used bulky ready-made boards of the DC/DC con-

verters for ease of implementation. The sole volume of the DC/DC

converters themselves is smaller than 4 mm
3
[46], and their weight

and price are also negligible, around 43mg and 0.6$, respectively.

The volume, weight, and size of other parts are even smaller.

In addition, the costs associated with the required parts can

be minimized during the production stage. One way to achieve

this is by placing these parts in empty spaces inside smartphones,

taking advantage of their tiny sizes. Another way is to replace

the required DC-DC converters with existing converters that are

already included in modern smartphones. Note that modern smart-

phones have some empty spaces [29, 30] and include several tens

of converters that are versatile in dealing with multiple sources

of charge in various conditions [30, 31]. The selection process of

heterogeneous batteries can also be integrated into the power path

without incurring much extra cost. For instance, a multiple-input

DC-DC converter selects the proper battery without extra input

power gates.

8 RELATEDWORK
Improving battery performance for mobile devices without
battery change: A large body of research has studied techniques
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to improve the performance of batteries for mobile systems. They

improve it from various aspects: measurement and analysis tech-

niques [5–12], charging techniques [41, 47–49], and energy man-

agement at application-level [5, 7, 13–17] and at system-level [18].

Recently, Tang et al. [2, 50] alleviated the low battery anxiety of

mobile users’ using a technique of low power video streaming.

However, all of the above studies considered single-cell battery, and

most of them compromised users’ behavior. Therefore, the studies

handle totally different layers from our research, which enables to

apply them in parallel with MixMax.
Heterogeneous batteries in other applications: Many differ-

ent batteries have their own advantages and disadvantages in terms

of various performance metrics. A few studies have developed het-

erogeneous batteries to exploit the advantages of different batteries

while hiding their disadvantages. They have mainly focused on

the development of hardware and software components [51], cir-

cuit topology [52], and control and management strategies [53, 54].

However, none of the above studies considered the usage charac-

teristics of mobile devices and aimed at minimizing the low battery

time, which are the focus of this paper.

Battery change for mobile devices: Software-Defined Batter-

ies [20] developed an operating system and circuit for heteroge-

neous batteries and proposed two discharge policies for general

purposes. A multi-cell system [19] utilizes homogeneous multiple

batteries of different shapes and sizes to form a large battery, while

cooling-sensing battery management [21] simulates cooling and

power demand to optimize the use of heterogeneous big.LITTLE

batteries. However, they do not consider the battery ratio, and the

all their performance improvement only comes from discharge in-

tervals. As we demonstrated from design and evaluation of MixMax,
the charge and discharge intervals and the battery ratio should all

be considered for low battery anxiety; as a result, those studies are

not effective in reducing the low battery time.

9 DISCUSSION
Universal battery design. We determine one universal battery

ratio of MixMax based on all users’ charge/discharge patterns in the
training data and evaluateMixMax with the test data. To validate

the effectiveness of this global decision, we compare the evaluation

results of the test data with that of training data. The result shows

that MixMax reduces LBT by 33.6% and 24.6% compared to LCO,

with the training data and the test data, respectively. Although the

battery ratio is more fitted to the training data, we confirm that

MixMax robustly reduces LBT even for test data that is not involved

in determining design parameters of MixMax. If we have a large
number of usage patterns, we can categorize the data with similar

patterns and customize the battery ratio to each user group, which

is expected to further reduce LBT, which is our future work.

Integration with low power management software. Mobile

OSes already manage the low battery situation by power saving

modes [55–57], and there are many power-saving software tech-

niques [7, 14–16] which limit background services, CPU, or screen.

Since such approaches are orthogonal toMixMax, we can further

improve the low battery experience by adopting those software and
MixMax at the same time. And if the device driver or scheduler can

be aware of the multi-stage charging speed of MixMax, they may

offer more advanced charge/discharge policies taking the user and

system contexts into account. We leave it as future work.

Users’ battery usage patterns. Our evaluation method of re-

playing users’ battery usage patterns is reasonable.MixMax will
not change the user behavior much as it does not change the battery

much, e.g., a 15% increase in capacity. Our battery usage pattern data

find there are very small correlations [58] between the maximum

battery capacity and key battery usage patterns, such as average

charging time, charging trials, and discharging amount. This is

because the key patterns mainly depend on the usage situation (e.g.,

charging during sleeping) rather than the battery itself.

Other constraints—price and weight. While MixMax consid-
ers volume, capacity, and aging as optimization constraints, other

factors such as weight and price would be important for someone.

Although our optimization framework does not explicitly consider

these factors, we found that the weight and price of MixMax are
-0.4% and 9.48% higher than those of LCO, respectively. To deter-

mine this, we calculated the price of cathode, anode, electrolyte,

separator, and coin-cell cases per one coin-cell battery and mea-

sured the average weight of each battery. For reference, the price

and weight of the fabricated single LTO, LCO, and Li-S coin-cells

are approximately $5.380, $3.946, and $5.079, and 3.7365g, 3.7526g,

and 3.7365g, respectively. Note that the increase in the price would

be affordable since the price of a battery possesses only a small

portion (i.e., 1.4% [30]) of the cost of a smartphone and such price

differences can be similar for other battery form factors because

the material costs account for more than 76% of the total battery

production costs [59].

Impact of a charging policy. Slow battery charging speed can

help decelerate battery aging. There have beenmany studies [41, 47–

49] decelerating battery aging by slowing down the charging speed.

Thanks to these studies, modern smartphones now employ charging

slowdown and charging delay during sleeping hours to decelerate

battery aging, like Apple’s optimized charging [60]. Futurework can

retrofit MixMax’s charging policy with a better one that leverages

the advantages of the slow charging speed.

10 CONCLUSION
We presentMixMax, a heterogeneous mobile battery system that

mitigates the low battery experience.MixMax develops the charge/
discharge policies for the three different battery types and deter-

mines the battery composition ratio, achieving LBT minimization,

which is demonstrated by the precise battery emulator based on

fabrication of coin-cell batteries and field test. We expect MixMax
to evolve in various directions such as predicting usage patterns,

expanding data sets and integrating with OS, which we leave as

future work.
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