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Abstract—This paper aims at developing a tight schedulability
analysis for real-time global gang scheduling, in which threads
of each task subject to timing requirements are assigned to
multiple processors in parallel (i.e., following the rigid gang
task model). Focusing on the RTA (Response Time Analysis)
framework known to exhibit high schedulability performance
for other task models, we address two following issues: i) how to
generalize the existing RTA framework to gang scheduling and
utilize existing RTA components of other task models for the
generalized framework, and ii) how to incorporate important
characteristics of gang scheduling into the RTA framework
in a systematic way to minimize the framework’s pessimism
in judging schedulability. By addressing the issues, our RTA
framework enables to derive tight schedulability analysis for
EDF, FP and potentially more scheduling algorithms for real-time
global gang scheduling. Also, our simulation results demonstrate
that the proposed RTA framework outperforms/complements
existing studies for real-time global/non-global gang scheduling,
in terms of schedulability performance.

I. INTRODUCTION

Parallel embedded architectures such as graphics processing

units, due to the advantage of handling large streams of

data at once, are chosen to take reciprocal benefit from the

advancement of various deep learning algorithms and the

industry they have made. Although the interest of parallel

embedded architectures and the boost of performance in the

recent decade are at their peak [1], [2], [3], comparatively little

is considered on building their time-predictable and safety-

critical. To support real-time tasks subject to timing constraints

by utilizing parallel embedded architectures, recent studies

have paid attention to real-time gang scheduling, in which

threads of each real-time task are assigned to multiple proces-

sors in parallel [4], [5], [6], [7], [8], [9], [10], [11]. However,

only a few of them are capable of providing timing guarantees

(i.e., schedulability) of a given set of real-time tasks [5],

[10], [11], and their schedulability analysis techniques have

not matured yet, compared to those for real-time sequential

scheduling.

Response Time Analysis (RTA) is one of the most popular

schedulability analysis frameworks due to its high schedula-

bility performance and its applicability to most (if not all)

task models and scheduling algorithms. Focusing on RTA, this

†Jinkyu Lee is the corresponding author.

paper aims at addressing the following issues for real-time

global1 gang scheduling.

Q1. How to generalize the existing RTA framework to the

gang task model, and how to utilize existing RTA compo-

nents of other task models for the generalized framework?

Q2. How to incorporate important characteristics of gang

scheduling into the RTA framework in a systematic

way to minimize the framework’s pessimism in judging

schedulability?

To address Q1, we interpret the existing RTA framework for

the sequential task model, and define some notions specialized

for gang scheduling. Using the notions, we generalize the

RTA framework to gang scheduling. We show that a typical

way to utilize the proposed RTA framework is to separate the

duration (i.e., one-dimensional value) of interference of a task

τi on another task τk, from calculating the amount (i.e., two-

dimensional value, which is the duration multiplied by the

number of occupied processors) of interference of τi on τk;

note that interference of τi on τk implies the state in which

τk cannot execute due to the execution of τi. This separation,

implicitly used in gang scheduling studies (e.g., [4], [10]),

enables reusing the existing techniques to calculate upper-

bounds of the duration of interference for the sequential task

model, yielding a natural, yet effective generalization of the

RTA framework for gang scheduling. However, the separation

incurs pessimism of calculating the amount of interference

due to the failure of full consideration of parallel execution

behavior of gang scheduling.

As to Q2, we develop two important techniques that reduce

the pessimism of the proposed RTA framework with the

separation. First, we focus on the most important characteristic

of gang scheduling: a task τk occupies mk multiple processors

whenever it is executed. Therefore, if the sum of mk for a set

of some tasks is larger than the number of processors, it is

impossible for the tasks to execute at the same time. Since

the RTA framework with the separation cannot address such

non-parallel execution constraints, we develop a technique of

i) how to efficiently find such a task set in which the sum of

each task’s mk is larger than the number of processors and ii)

how to calculate tight upper-bounds of the amount of inter-

ference of such a task set on a target task. Second, observing

1In global scheduling, there is no restriction for task-processor mapping.
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over-estimation of the contribution of a task to interference

in the RTA framework, we develop a systematic technique

to find the amount of execution of each task that cannot

contribute to interference on another task. Finally, we develop

how to compose the first and second techniques. We would

like to emphasize that, all techniques improve the proposed

RTA framework in terms of schedulability performance, and

they can be applied to any scheduling algorithm as long as

its upper-bounds for the duration of interference have been

derived.

To demonstrate the effectiveness of the RTA framework with

the proposed techniques, we apply it to FP (Fixed-Priority)

and EDF (Earliest Deadline First) [12]. Our simulation results

show three important characteristics of the proposed RTA

framework in terms of schedulability performance. First, if

we focus on global gang scheduling with FP and EDF, the

proposed RTA outperforms/complements the corresponding

existing studies. Second, if we focus on any gang schedul-

ing, the proposed RTA is superior to the existing highest-

performance schedulability test for non-global gang schedul-

ing in some settings (but not all settings). Third, the proposed

two techniques and its composition significantly improve the

schedulability performance of our basic RTA that addressed

Q1 only.

In summary, this paper makes the following contributions.

• Generalization of the existing RTA framework for gang

scheduling, and its utilization of existing RTA compo-

nents of other task models,

• Development of two novel techniques and their com-

position to improve the RTA framework, based on the

identification of two issues thereof, and

• Demonstration of the effectiveness of the proposed frame-

work via simulation.

The rest of this paper is structured as follows. Section II

explains our system model and related work. Section III gen-

eralizes the RTA framework to gang scheduling. Sections IV

and V develop the two techniques with their composition to

improve the RTA framework. Section VI evaluates the RTA

framework, and Section VII concludes the paper.

II. BACKGROUND

In this paper, we consider the sporadic gang task model [4],

which is a generalization of the sporadic sequential task

model [13]. A gang task τi in a task set τ is specified

as (Ti, Di, Ci,mi), where Ti is the minimum separation,

Di (≤ Ti) is the relative deadline, Ci is the worst-case

execution duration, and mi is the number of threads of τi to

be concurrently executed (i.e., subject to the rigid gang task

model [14]). A gang task τi invokes a series of gang jobs,

and the release times of any two consecutive gang jobs of τi
are separated by at least Ti time units. Once a job of τi is

released at t0, it should finish its execution until t0 +Di. The

duration of the execution of a job of τi is at most Ci, and the

job occupies exactly mi processors whenever it is executed.

A job is said to be active at t, if it is released no later than t
but has remaining execution at t.

We consider a system equipped with m identical proces-

sors, meaning that at most m threads of gang jobs can be

concurrently executed in each time slot. In this paper, we

consider global preemptive gang scheduling; the execution of

any lower-priority gang job can be preempted by that of a

higher-priority gang job, and any gang job can be executed in

any processor. Similar to existing studies on gang scheduling,

we consider work-conserving scheduling; there are m′ idle

processors, only if there is no active job of τi with mi ≤ m′.

Let one time unit denote a quantum length, and a time

slot denote an interval of length 1; note that all theories in

this paper can be immediately applicable to a continuous time

model, by replacing 1 with ε → 0. Let |τ | denote the number

of tasks in τ . Let LHS and RHS denote the left-hand-side and

the right-hand-side, respectively.

A task set τ is said to be schedulable by a target schedul-

ing algorithm on an m-processor platform, if the following

condition holds for every job set invoked by tasks in τ : there

is no job deadline miss when a job set is scheduled by the

scheduling algorithm on the m-processor platform.

Regarding global preemptive gang scheduling, most studies

have focused on EDF [4], [5], [15] and FP [6], [7], while some

studies have aimed to find optimal scheduling [8], [9]. Among

the studies, only a few of them [4], [5], [15] have presented

non-trivial schedulability analysis subject to our task model,

but it is not straightforward how to apply other scheduling

algorithms than EDF to the schedulability analysis; note that

the schedulability analysis in the study [4] has been shown to

be flawed [16]. Also, a study in [10] has focused on a new

task model of bundle parallel tasks; its schedulability analysis

with one bundle case can be applied to gang scheduling with

FP.

When it comes to non-global preemptive gang scheduling,

a study in [11] has introduced a new scheduling category

called stationary scheduling (a generalization of partitioned

scheduling for the sequential model) and developed its schedu-

lability analysis for FP. Also, there exist other studies on

gang scheduling subject to different system models, e.g., non-

preemptive scheduling [17], [18], [19], DAG gang tasks [20],

the mixed-criticality task model [21], and the soft real-time

task model [22], which are out of scope for this paper.

III. GENERALIZING RTA FRAMEWORK TO GANG

SCHEDULING AND ITS UTILIZATION

In this section, we generalize the existing RTA framework

for the sequential task model, to gang scheduling. To this end,

we first interpret the existing RTA framework for the sequential

task model for a multiprocessor platform (which is equivalent

to the gang task model with mi = 1 for every task τi ∈ τ ) in

[23]. Consider a continuous interval of length L (≤ Dk) that

starts at the release time of a job of τk of interest, called the

target interval of length L for τk.

Definition 1: Let X denote the duration in the target interval

of length L for τk, in which a job of τk is active but cannot be

executed. If X is larger than (L−Ck+1), we arbitrarily select
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(L−Ck+1) time slots among the X time slots; otherwise, we

select all X time slots. We define the selected time slots, as

k-interference time slots of the target interval of length L for

τk.

Then, the existence of (L−Ck+1) k-interference time slots

in the target interval is a necessary condition for the job

of τk of interest not to finish its execution for Ck in the

target interval. To express the contribution of jobs of τi to

k-interference time slots, we define the following notion.

Definition 2: Ik←i(L) is defined as the duration of execution

of jobs of τi in k-interference time slots of the target interval of

length L for τk. We call Ik←i(L) the duration of interference

of τi on τk in an interval of length L.

Under the sequential task model, there should be m other

jobs (than a job of τk) executed in each k-interference slot.

Therefore, the existence of (L−Ck+1) k-interference time

slots of the target interval implies
∑

τi∈τ,τk �=τi
Ik←i(L) =

m · (L−Ck+1). Therefore, if there exists Ck ≤ L ≤ Dk that

satisfies Eq. (1) (which is equivalent to Eq. (2) by considering

the quantum length of 1), the job of τk finishes its execution

for Ck in the target interval of length L for τk.

∑
τi∈τ,τi �=τk

Ik←i(L) < m · (L− Ck + 1) (1)

⇐⇒ Ck +

⌊∑
τi∈τ,τi �=τk

Ik←i(L)

m

⌋
≤ L (2)

To utilize Eq. (1) for an offline schedulability test, an upper-

bound of Ik←i(L) for all jobs of τk (denoted by I+k←i(L))
under each target scheduling algorithm has been derived. Then,

if every τk ∈ τ has L (≤ Dk) that satisfies Eq. (1) with

Ik←i(L) = I+k←i(L), τ is schedulable by the target scheduling

algorithm on an m-processor platform under the sequential

task model [23].

We now generalize Eq. (1) to the gang task model. For gang

scheduling, we express the amount of execution, as a two-

dimensional value, which is the duration (or the number of

time slots) of interest multiplied by the number of processors

of interest. While we keep the definitions of the target interval

of length L for τk, k-interference slots, Ik←i(L) and I+k←i(L),
we need additional notions.

Definition 3: In each k-interference time slot, there should

be at least (m−mk+1) processors occupied by other jobs than

a job of τk; otherwise, the job of τk executes on mk processors,

which contradicts the definition of the k-interference time slot.

We arbitrarily select (m−mk+1) processors occupied by other

jobs (than the job of τk) in a k-interference time slot. We

define the selected processors, as k-interference processors of

a k-interference time slot.

In order to extend the notion of the duration of interference

(i.e., Ik←i(L) as one-dimensional value) to that of the amount

of interference (as two-dimensional value), we define the

following notion.

Definition 4: Ak←i(L) is defined as the amount of execution

of jobs of τi on k-interference processors in k-interference

time slots of the target interval of length L for τk. We call

Ak←i(L) the amount of interference of τi on τk in an interval

of length L.

Then, the following lemma records an exact condition for

a job not to finish its execution.

Lemma 1: Eq. (3) is a necessary and sufficient condition

for a job of τk not to finish its execution for Ck within the

interval of length L (≤ Dk) that starts at its release time,

∑
τi∈τ,τi �=τk

Ak←i(L) = (m−mk + 1) · (L− Ck + 1) (3)

Proof: Suppose that Eq. (3) holds. By definition, there

are exactly (m−mk+1) k-interference processors in each k-

interference time slot. By dividing the RHS by (m−mk+1),
we have (L−Ck+1) k-interference time slots, implying the

job of τk cannot finish its execution for Ck. Therefore,

sufficiency holds.

Suppose that the job of τk cannot finish its execution for

Ck within the interval of length L, meaning that it cannot

execute for at least (L−Ck+1) time slots in the interval.

By the definition of k-interference time slots, the job of τk
has (L−Ck+1) k-interference time slots. By the definition

of k-interference processors, each k-interference time slot has

exactly (m−mk+1) processors. Therefore, Eq. (3) holds.

Similar to the relationship between Ik←i(L) and I+k←i(L)
(i.e., an upper-bound of Ik←i(L)), let A+

k←i(L) denote an

upper-bound of Ak←i(L) under each target scheduling al-

gorithm. By negating Lemma 1, we can develop the RTA

framework for gang scheduling.

Theorem 1: If there exists Ck ≤ L ≤ Dk that satisfies

Eq. (4), the job of τk finishes its execution for Ck in the

target interval of length L for τk.

∑
τi∈τ,τi �=τk

Ak←i(L) < (m−mk + 1) · (L− Ck + 1) (4)

⇐⇒ Ck +

⌊∑
τi∈τ,τi �=τk

Ak←i(L)

m−mk + 1

⌋
≤ L (5)

Also, suppose that we derive A+

k←i(L), an upper-bound of

Ak←i(L) for all jobs of τk under a target scheduling algorithm,

for every pair of τk and τi (�= τk). If every τk ∈ τ has Ck ≤
L ≤ Dk that satisfies Eq. (4) with Ak←i(L) = A+

k←i(L), τ
is schedulable by the target scheduling algorithm on an m-

processor platform. We call the minimum of such L for τk
the response time of τk (denoted by Rk).

Proof: Suppose that even though Eq. (4) holds for Ck ≤
L ≤ Dk, the job of τk cannot finish its execution for Ck within

the interval of length L starting from its release time. By the

definition of Ak←i(L), the LHS of Eq. (4) is an upper-bound

of the amount of execution of all jobs other than the job of τk
on k-interference processors in k-interference slots. Therefore,

the supposition contradicts Lemma 1, which proves the first
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Algorithm 1 RTA for a set of gang tasks τ for given

{A+

k←i(L)}

1: Sk ← 0 for every task τk ∈ τ
2: while TRUE do
3: for every task τk ∈ τ do
4: Rk ← Ck

5: while Rk ≤ Dk do
6: Atotal

k (Rk) ← the numerator of the LHS of Eq. (5), by
applying Ak←i(L) = A+

k←i(Rk) for τi ∈ τ, τi �=τk
7: if Eq. (5) holds with L = Rk and

∑
Ak←i(L) =

Atotal
k (Rk) then

8: Sk ← Dk −Rk and exit the inner while loop.
9: else

10: Rk ← the LHS of Eq. (5) with
∑

Ak←i(L) =
Atotal

k (Rk)
11: end if
12: end while
13: end for
14: if Rk ≤ Dk holds for every τk ∈ τ then Return schedulable
15: if There is no update of any Sk for τk ∈ τ in the current

iteration of the outer while loop then Return unschedulable
16: end while

part of the theorem. Note that Eq. (4) and (5) are equivalent

by applying the quantum length of 1.

Since Ak←i(L) ≤ A+

k←i(L) holds by definition, the second

part of the theorem also holds.

Using Theorem 1, Algorithm 1 calculates the response time

(Rk) of every task τk ∈ τ , which is the same as that for the

sequential model [23] except for the difference between the

fraction part of Eqs. (2) and (5). The algorithm utilizes the

slack of τk, denoted by Sk; a higher value of Sk will result

in a smaller upper-bound of interference to be derived for a

target scheduling algorithm, e.g., Wi(L) and Ek←i in Eqs. (7)

and (8). Sk > 0 implies RTA guarantees that every job of τk
finishes Sk ahead of its deadline. On the other hand, Sk = 0
implies we cannot use the slack value because RTA cannot

guarantee any Sk > 0.

From zero slack for every task (Line 1), Lines 3–13

calculate every Rk starting from Rk = Ck (Line 4) as

long as Rk does not exceed Dk (Line 5). We calculate∑
τi∈τ,τi �=τk

A+

k←i(Rk) (Line 6). If Eq. (5) holds for current

L = Rk, update the slack value by setting Sk to (Dk − Rk)
and exit the inner while loop (Lines 7–8); otherwise, increase

Rk based on Eq. (5) (Lines 9–10). After each iteration of Lines

3–13, if Rk ≤ Dk holds for every τk ∈ τ , return schedulable

(Line 14). If there is no slack update, return unschedulable

(Line 15). Otherwise, we repeat Lines 3–13 with new slack

values.

In order to derive A+

k←i(L), we can decompose Ak←i(L)
(i.e., the amount of interference) into Ik←i(L) (i.e., the dura-

tion of interference) and the number of processors of interest.

Lemma 2 (Implicitly used in many studies, e.g., [4], [10]):

Eq. (6) holds for a job of τk in its target interval of length L,

where τi ∈ τ (τi �= τk).

Ak←i(L) ≤ Ik←i(L) ·min(mi,m−mk + 1) (6)

Proof: By Definitions 1 and 3 for k-interference slots and

k-interference processors, any job of τi cannot be executed on

more than (m−mk+1) k-interference processors. Considering

any job of τi in a time slot is executed on mi processors, the

amount of execution of jobs of τi that belongs to Ak←i(L)
cannot be larger than Ik←i(L) ·min(mi,m−mk +1), which

proves the lemma.

Once we apply Lemma 2, we can reuse existing upper-

bounds for Ik←i(L) (denoted by I+k←i(L)) developed for the

sequential task model as they are. For example, we can use

I+k←i(L) under FP, derived in [23]:

I+k←i(L) = 0, if τk has a higher priority than τi,

I+k←i(L) ≤ min
(
Wi(L), L− Ck + 1

)
, otherwise. (7)

The physical meaning of Wi(L) is the maximum duration

of execution of jobs of τi in an interval of length L, and

therefore Wi(L) is an upper-bound of Ik←i(L) for any

scheduling algorithm. Also, it is calculated by Wi(L) =
Ni(L) ·Ci +min

(
Ci, L+Di −Si −Ci −Ni(L) · Ti

)
, where

Ni(L) =
⌊
L+Di−Si−Ci

Ti

⌋
[23]. Also, by the definitions of k-

interference time slots and Ik←i(L), any I+k←i(L) cannot be

larger than (L− Ck + 1).
Similarly, we can use I+k←i(L) under EDF, derived in [23]:

I+k←i(L) ≤ min
(
Wi(L), Ek←i, L− Ck + 1

)
. (8)

The physical meaning of Ek←i is the maximum duration of

execution of jobs of τi in an interval of length Dk, whose

deadlines are no later than the job of τk of interest. Ek←i is

calculated by
⌊
Dk

Ti

⌋
·Ci +min

(
Ci,max(0, Dk −

⌊
Dk

Ti

⌋
· Ti −

Si)
)

[23].

The upper bounds of the duration of interference I+k←i(L)
under FP and EDF in Eqs. (7) and (8) developed for the

sequential task model can be applied to our RTA framework

for gang scheduling in Algorithm 1 with A+

k←i(L) = I+k←i(L)·
min(mi,m − mk + 1). This is because the upper-bounds

depend only on the sequential task parameters Ti, Di and Ci

and the interval length L (≤ Dk), and they are not changed

by the difference between sequential (i.e., mi = 1) and gang

tasks. Similarly, we can reuse I+k←i(L) for most (if not all)

prioritization policies (such as EDZL, FPZL and LLF) for the

sequential task model. We record the RTA for EDF and FP in

the following theorem.

Theorem 2: Algorithm 1 by applying A+

k←i(L) = I+k←i(L) ·
min(mi,m − mk + 1) to Line 6 yields the schedulability

analysis for FP and EDF, if we apply the RHS of Eq. (7)

and that of Eq. (8) for I+k←i(L), respectively.

Proof: By Algorithm 1, Lemma 2, and Eqs. (7) and (8),

the theorem holds.

As demonstrated, reusing I+k←i(L) developed for the se-

quential task model offers simplicity and applicability, with-

out developing A+

k←i(L) for gang scheduling under target

scheduling algorithms. However, since the advantage comes
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from the separation between the duration of interest and the

processors of interest to be executed, this incurs pessimism

of calculating the amount of interference due to the fail-

ure of full consideration of parallel execution behavior of

gang scheduling. Therefore, we will develop two important

techniques that reduce the pessimism of the proposed RTA

framework while allowing reuse of existing I+k←i(L). First,

we investigate the behavior of gang scheduling and address

non-parallel execution constraints in which some jobs cannot

be executed in parallel (in Section IV). Second, we investigate

how jobs of each task occupy k-interference processors, and

address over-estimation of k-interference processor occupation

(in Section V).

IV. ADDRESSING NON-PARALLEL EXECUTION

CONSTRAINTS

In the previous section, we succeeded to naturally generalize

the existing RTA framework and enabled to utilize I+k←i(L)
developed for the sequential task model. As a result, Algo-

rithm 1 can be used as a schedulability analysis for popular

prioritization policies whose I+k←i(L) for the sequential model

has been developed, e.g., EDF and FP. Despite such a big ad-

vantage, Algorithm 1 with reuse of I+k←i(L) (e.g., Theorem 2)

cannot fully take account of the most important characteristic

of gang scheduling. That is, while any m tasks affiliated with

the sequential task model can be concurrently executed on an

m-processor platform, the same cannot be said to m tasks

affiliated with the gang task model. For example, it is easily

observed that a job of τi and a job of τk cannot be concurrently

executed on an m-processor platform, if mi +mk > m.

Algorithm 1 with reuse of I+k←i(L) (e.g., Theorem 2)

cannot accommodate such constraints regarding concurrent

execution, called non-parallel execution constraints, which

yields pessimistic calculation of the amount of interference,

as shown in the following example.

Example 1: Three gang tasks are executed on a platform

of m = 10 processors: τ1(T1=10, D1=10, C1=5,m1=6),
τ2(10, 10, 5, 5), τ3(5, 5, 1, 2). We apply FP scheduling where

the priority of τ1 and that of τ3 are the highest and lowest,

respectively. First, we can confirm τ1 and τ2 are schedulable

for any job arrival pattern invoked by the tasks (such as two

patterns in Figure 1), because their Ti and Di are 10 while their

Ci is half of 10. Second, since m1+m2=6+5=11 > m=10
holds, any job of τ1 and that of τ2 cannot be concurrently

executed. Therefore, at least four processors are not occupied

by τ1 and τ2 at any time, as shown in Figure 1, implying τ3
cannot miss its job deadlines as well.

Apart from actual results, if we apply Theorem 2 for τ3, the

interference term for τ1 (I+3←1(L)) and that for τ2 (I+3←2(L))
are added to the numerator of the fraction in Eq. (5), yielding

no guarantee of the schedulability of τ3. This is because

Theorem 1 counts I+3←1(L) and I+3←2(L) independently using

Eq. (7), and therefore it does not take the fact that the

interval which I+3←1(L) targets should not overlap with the

interval which I+3←2(L) targets into account. That is, since

t = 0    1    2    3    4    5    6    7    8    9    10

m
1

=
  6

m
2

=
  5

t = 0    1    2    3    4    5    6    7    8    9    10

1 2

(a)

1 2

(b)

2

m
 =

 1
0

Fig. 1. Schedules of τ1 and τ2 in Example 1 by FP on 10 processors:
(a) when a job of τ1 and that of τ2 are released at t=0, and (b) when
a job of τ2 is released at t = 0 but a job of τ1 is released at t=2

W1(L) = W2(L) = L holds for every C3=2 ≤ L ≤ D3=5
by Eq. (7), the numerator of the fraction in Eq. (5) for τ3
is L ·min(m1,m −m3 + 1) + L ·min(m2,m −m3 + 1) =
L · 6 + L · 5 = L · 11. Then, Eq. (5) for τ3 is calculated by

C3 +
⌊

L·11
m−m3+1

⌋
= 1 +

⌊
L·11
9

⌋
≥ 1 + L. This means there is

no C3 ≤ L ≤ D3 that satisfies Eq. (5), implying Theorem 2

cannot guarantee that τ = {τ1, τ2, τ3} is schedulable by FP

on 10 processors.

Motivated by Example 1, we would like to address the

following issues for non-parallel execution constrains for

the proposed RTA framework: (Step 1) how to express a

constraint regarding concurrent execution for two tasks, and

how to incorporate the constraint into the RTA framework,

(Step 2) how to generalize the expression and incorporation

of constraints for more than two tasks, and (Step 3) how to

develop a systematical way to fully utilize the constraints to

improve RTA, including finding a set of tasks subject to each

constraint.

We first focus on two tasks that cannot be executed at the

same time in the following lemma.

Lemma 3: If mi+mj > m holds for τi and τj (�= τi), then

the following inequality holds.

Ik←i(L) + Ik←j(L) ≤ L− Ck + 1 (9)

Proof: Suppose that Eq. (9) is violated even though mi+
mj > m holds. By the definition of Ik←i(L) and Ik←j(L),
each of them is no larger than (L−Ck+1). By the pigeonhole

principle, the supposition implies there exists at least one k-

interference time slot where a job of τi and a job of τk are

executed at the same time. This contradicts mi +mj > m in

the supposition, which means no concurrent execution of any

job of τi and any job of τj .

In Example 1, while Eq. (7) for τ3 calculates interference

upper-bounds I+3←1(L) and I+3←2(L) for C3=2 ≤ L ≤ D3=5,

as W1(L) = L and W2(L) = L, respectively, Lemma 3 proves

that those upper-bounds are over-estimated because W1(L) +
W2(L) = 2 ·L is strictly larger than (L−C3+1) = L. Using

the lemma, we can reduce the upper-bound of the numerator

of the fraction in Eq. (5) (i.e,. sum of Ak←j(L)), as follows.

Lemma 4: If mi +mj > m holds for τi and τj (�= τi) and

mi ≥ mj , then the following inequality holds.
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Ak←i(L) +Ak←j(L)

≤ Ik←i(L) ·min
(
mi,m−mk + 1

)
+ Ik←j(L) ·min

(
mj ,m−mk + 1

)
≤ I+k←i(L) ·min

(
mi,m−mk + 1

)
+ ̂Ik←j(L) ·min

(
mj ,m−mk + 1

)
, (10)

where ̂Ik←j(L) is set to the minimum between (a) I+k←j(L)

and (b)
(
(L−Ck + 1)− I+k←i(L)

)
. Recall that Ak←i(L) and

Ik←i(L) are the actual amount of execution (interference) and

the actual duration of interference, respectively, while I+k→i(L)
is an upper bound of the duration of interference.

Proof: Since the first inequality is proved in Lemma 2,

we now prove the second inequality with two cases: Case 1

where I+k←i(L)+I+k←j(L) ≤ L−Ck+1 holds, and its opposite

Case 2.

(Case 1) In this case, ̂Ik←j(L) is set to (a); therefore, the

LHS of Eq. (10) is simply upper-bounded by the RHS, by

considering the definition of the actual interference terms and

their upper-bounds.

(Case 2) Let I ′k←i(L) (≤ I+k←i(L)) and I ′k←j(L) (≤

I+k←j(L)) denote new interference upper-bounds for Ik←i(L)
and Ik←j(L), respectively. As they are interference upper-

bounds, we can apply Eq. (9), meaning that the new constraint

I ′k←i(L)+I ′k←j(L) ≤ L−Ck+1 holds. We need to calculate

a safe upper-bound of the LHS of Eq. (10), using the new

constraint. Since mi ≥ mj , the upper-bound is maximized

when I ′k←i(L) is the largest, which is equal to I+k←i(L). In

this case, I ′k←j(L) is the smallest, which is (b) by applying

the new constraint. Therefore, the lemma holds.

Applying Lemma 4 to τ3 in Example 1, we can upper-bound

the LHS of Eq. (10) for {τ1, τ2} as W1(L) ·m1+
(
(L−C3+

1) − W1(L)
)
· m2 = L · 6 + (L − L) · 5 = L · 6, instead of

W1(L)·m1+W2(L)·m2 = L·6+L·5 = L·11. Then, Eq. (5) for

τ3 is calculated as C3+
⌊

L·6
m−m3+1

⌋
= 1+

⌊
L·6
9

⌋
≤ L for every

C3=2 ≤ L ≤ D3=5, meaning that Theorem 2 in conjunction

with Lemma 4 guarantees τ = {τ1, τ2, τ3} is schedulable by

FP on a 10-processor platform.

We now generalize Lemmas 3 and 4 (focusing on only two

tasks) to the situation where there are g (≥ 2) tasks in τ ′ in

which any h (≤ g) of them cannot be executed at the same

time. The following example presents the situation where g =
3 and h = 3.

Example 2: Recall the task set in Example 1. Dividing τ1
into two tasks, we consider a set of four gang tasks executed on

m = 10 processors: τ1a(T1a=10, D1a=10, C1a=5,m1a=3),
τ1b(10, 10, 5, 3), τ2(10, 10, 5, 5), and τ3(5, 5, 1, 2). We apply

FP scheduling where the priority of τ1a and that of τ3 are the

highest and lowest, respectively. Then, among three jobs of

tasks in τ ′ = {τ1a, τ1b, τ2}, any two of them can be executed

in parallel (because of m1a+m2=3+5=8 ≤ m=10), while

the three jobs cannot be executed at the same time (because

of m1a+m1b+m2=3+3+5=11 > m=10). Since any two of

jobs of tasks in τ ′ can be executed at the same time, tasks in

τ ′ cannot miss their job deadlines for any job arrival pattern

invoked by the tasks (such as two patterns in Figure 1 with

splitting τ1 into τ1a and τ1b). Also, since the three jobs of

tasks in τ ′ cannot be concurrently executed, at least two (i.e,.

10−5−3=2) processors are not occupied by {τ1a, τ1b, τ2} in

any time, meaning that τ3 does not miss its job deadlines.

However, we cannot apply Lemmas 3 and 4 to yield tight

response time calculation of τ3, because there is no pair of two

tasks τi and τj with mi+mj > m among {τ1a, τ1b, τ2}. There-

fore, Theorem 2 for τ3 calculates I+3←1a(L), I+
3←1b(L) and

I+3←2(L) independently as W1a(L) = W1b(L) = W2(L) = L
for every C3=2 ≤ L ≤ D3=5, yielding Eq. (5) for τ3
as C3 +

⌊
L·3+L·3+L·5
m−m3+1

⌋
= 1 +

⌊
L·11
9

⌋
≥ 1 + L, which is

the same result as Example 1. Therefore, Theorem 2 cannot

guarantee that τ = {τ1a, τ1b, τ2, τ3} is schedulable by FP on

10 processors.

Motivated by the example, we extend Lemma 3 for g (≥ 2)

and h (≤ g), such that there are a set of g tasks in τ ′, in which

any h tasks of the set cannot be executed at the same time.

Lemma 5: If there exists a set of g (≥ 2) tasks τ ′ ⊂ τ
(τk /∈ τ ′) such that

∑
h tasks τi∈τ ′ mi > m holds for any h

(≤ g) tasks in τ ′, then the following inequality holds.

∑
τi∈τ

′

Ik←i(L) ≤ (h− 1) · (L− Ck + 1) (11)

Proof: The proof is similar to that of Lemma 3. Suppose

that Eq. (11) is violated even though the “if” statement of

the lemma is true. By Definition 1, Ik←i(L) for τi ∈ τ ′ is

not larger than (L − Ck + 1). By the pigeonhole principle,

the supposition implies there exists at least one k-interference

time slot where at least h jobs of tasks in τ ′ are executed. This

contradicts
∑

h tasks τi∈τ ′ mi > m holds for any h tasks in τ ′

in the supposition, which means that there is no concurrent

execution of at least h jobs of tasks in τ ′.

Applying Lemma 5, we can generalize Lemma 4 as follows.

Theorem 3: If there exists a set of g (≥ 2) tasks τ ′ ⊂ τ
(τk /∈ τ ′) such that

∑
h tasks τi∈τ ′ mi > m holds for any h

(≤ g) tasks in τ ′, then the following inequality holds.

∑
τi∈τ

′

Ak←i(L) ≤
∑
τi∈τ

′

Ik←i(L) ·min
(
mi,m−mk + 1

)

≤
∑
τi∈τ

′

̂Ik←i(L) ·min
(
mi,m−mk + 1

)
, (12)

where ̂Ik←i(L) is assigned as follows, assuming tasks τi in τ ′

are indexed from τ1 to τg and sorted in a descending order of

mi, without loss of generality.

⎧⎪⎨
⎪⎩
I+k←i(L), if C1 holds;

(h− 1) · (L− Ck + 1)−
∑i−1

z=1
I+k←z(L), if C2 holds;

0, otherwise.
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Note that C1 is
∑i

z=1
I+k←z(L) ≤ (h−1) ·(L−Ck+1). Also, C2

is
∑i−1

z=1
I+k←z(L) ≤ (h− 1) · (L−Ck +1) and

∑i

z=1
I+k←z(L) >

(h− 1) · (L− Ck + 1).

Proof: Since the first inequality is proved in Lemma 2,

we now prove the second inequality with two cases: Case 1

where
∑

τi∈τ ′ I
+

k←i(L) ≤ (h − 1) · (L − Ck + 1) holds, and

its opposite Case 2.

(Case 1) In this case, ̂Ik←i(L) for every task τi ∈ τ ′ is set

to I+k←i(L) because C1 holds for every task τi ∈ τ ′. Therefore,

the LHS of Eq. (12) is simply upper-bounded by the RHS, by

considering the definition of the actual interference duration

Ik←i(L) and their upper-bounds I+k←i(L).

(Case 2) The remaining proof is similar to that of Case 2

of Lemma 4, and aims at maximizing
∑

τi∈τ ′ I ′k←i(L) ·
min

(
mi,m − mk + 1

)
for new interference upper-bounds

{I ′k←i(L)}τi∈τ ′ such that I ′k←i(L) ≤ I+k←i(L) is satisfied for

every τi ∈ τ ′ and Eq. (11) for {I ′k←i(L)}τi∈τ ′ holds. To this

end, we assign the maximum budget for I ′k←i(L) (which is

I+k←i(L)) to a set of multiple τis that have the largest mi

(satisfying C1), the remaining budget to a single τi that has

the next largest mi (satisfying C2), and no budget to remaining

τis. Therefore, the LHS of Eq. (12) with any {I ′k←i(L)}τi∈τ ′

is upper-bounded by the RHS.

Applying Theorem 3 to τ3 in Example 2, we can upper-

bound of the LHS of Eq. (12) for τ ′ = {τ1a, τ1b, τ2} as

W2(L) ·m2 +W1a(L) ·m1a +
(
2 · (L−C3 + 1)−W2(L)−

W1a(L)
)
· m1b = L · 5 + L · 3 + 0 · 3 = L · 8, instead of

W1a(L)·m1a+W1b(L)·m1b+W2(L)·m2 = L·3+L·3+L·5 =
L·11. Then, Eq. (5) for τ3 is calculated by C3+

⌊
L·8

m−m3+1

⌋
=

1 +
⌊
L·8
9

⌋
≤ L for every C3=2 ≤ L ≤ D3=5, meaning

that Theorem 1 in conjunction with Theorem 3 guarantees

τ = {τ1a, τ1b, τ2, τ3} is schedulable by FP on 10 processors.

The remaining issue is how to find τ ′ that can efficiently

utilize Theorem 3. Algorithm 2 explains the overall process of

calculating Atotal
k (Rk) (i.e., an upper-bound of the numerator

of the fraction in Eq. (5) for given τk) by utilizing Theo-

rem 3, which can replace Line 6 of the RTA framework in

Algorithm 1.

Algorithm 2 finds τ ′ such that
∑

h tasks τi∈τ ′ mi > m holds

for any h tasks, and then applies Theorem 3 to τ ′. This process

is performed from h = 2, and the first index for each τ ′ that

shares the same h is set to x∗ = 1 (Line 2). For each task

τx sorted in a descending order of mx, Lines 4–6 find the

case where we will not apply Lemma 5. If the reason is due

to the insufficient number of target tasks in τ ′ = {τi}
x
i=x∗

for current h, we include τx in τ ′ by “continue” (Line 4). If

the reason is due to the insufficient parallelism of tasks in τ ′,
we increase h and include τx in τ ′ by “continue” (Line 5).

If the reason is τx is not the last task in τ ′ (checked by the

sum of my of h tasks with the smallest my including the

current task (τx) and next task (τx+1)), we include τx in τ ′

by “continue” (Line 6). If all the “if” statements in Lines 4–6

are not satisfied, Line 7 applies Lemma 5. If Eq. (11) in the

lemma is violated, we apply Theorem 3, set the first index of

Algorithm 2 Calculation of Atotal
k (Rk) in Algorithm 1 for

given {I+k←i(L)}, by addressing non-parallel execution con-

straints
1: Assuming {τx ∈ τ |τx �= τk} are sorted in a descending order of

mx, index them from 1 to n− 1 (where n is τk’s index)
2: h← 2, x∗ ← 1, and Atotal

k (Rk)← 0
3: for x = 1, 2, 3, ..., n− 1 do
4: if x− x∗ + 1 < h, then continue
5: if

∑x

y=x∗ my ≤ m, then h← h+ 1 and continue

6: if x �= n− 1 and
∑x+1

y=x−h+2
my > m, then continue

7: if Eq. (11) with {Ik←i(L) = I+k←i(L)} does not hold for

τ ′ = {τy|x
∗ ≤ y ≤ x} with L = Rk, then Atotal

k (Rk) ←
Atotal

k (Rk)+ the RHS of Eq. (12) for τ ′ with L = Rk, x∗ ←
x+ 1, h← h+ 1

8: else h← h+ 1
9: end for

10: for x = x∗, x∗ + 1, ..., n− 1 do
11: Atotal

k (Rk)← Atotal
k (Rk)+ I+k←x(Rk) ·min(mx,m−mk +1)

12: end for

the next τ ′ to x∗ = x+1, and increase h; otherwise, we keep

the current τ ′ without applying Theorem 3 and increase h.

If we apply Algorithm 2 to the task set in Example 2 on

10 processors, τ2, τ1a and τ1b are sequentially investigated as

τx, when τk = τ3 (by Line 1). For τx = τ2, Line 4 executes

“continue.” For τx = τ1a, m2+m1a=5+3 ≤ m=10 holds,

so Line 5 executes h ← 3 and “continue”. Finally, for τx =
τ1b, Line 7 confirms the violation of Eq. (11), and applies

Theorem 3. As a result, C3+
⌊
L·5+L·3+L·0
m−m3+1

⌋
= 1+

⌊
L·8
9

⌋
≤ L

holds for C3=2 ≤ L ≤ D3=5, yielding schedulability of τ3.

Using Algorithm 2, we can develop a tighter schedulability

test for FP and EDF.

Theorem 4: Algorithm 1 by replacing Line 6 with Algo-

rithm 2 yields the schedulability analysis for FP and EDF, if

we apply the RHS of Eq. (7) and that of Eq. (8) for I+k←i(L),
respectively.

Proof: By Algorithm 1, Lemma 2, and Eqs. (7) and (8),

the remaining proof is to prove that Atotal
k (Rk) calculated by

Algorithm 2 is an upper-bound of
∑

τi∈τ Ak←i(Rk).

Regarding an upper-bound of
∑

τi∈τ Ak←i(Rk), the RHS of

Eq. (12) is applied to individual τ ′s in Line 7, and I+k←x(Rk) ·
min(mx,m−mk+1) is applied to tasks that do not belong to

individual τ ′s (i.e., a set of tasks in Line 10); the former and

the latter are proven to be a safe upper-bound by Theorem 3

and Lemma 2, respectively. Therefore, it suffices to prove that

(i) each task belongs to either a set of tasks in Line 10 or only

one τ ′ and (ii) every τ ′ satisfies the supposition of Theorem 3.

In Lines 4–8, x is not changed. Line 7 is the only line that

completes the current τ ′ and generates a next τ ′ by assigning

x∗ = x+ 1. Therefore, the first index that does not belong to

any τ ′ is x∗ after Lines 2–9. Therefore, (i) holds.

Line 4 guarantees h ≤ g, where g is the number of tasks

in τ ′. Since tasks are sorted in descending order of mx in

Line 1, Line 6 checks whether the h tasks with the smallest

mx satisfy
∑

the h tasks mx > m if we add the current task (τx)
and the next task (τx+1) to the current τ ′. Therefore, Line 6
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along with Line 5 guarantees
∑

h tasks τi∈τ ′ mi > m for any

τ ′ to be performed in Line 7. Therefore, (ii) holds.

V. ADDRESSING OVER-ESTIMATION OF k-INTERFERENCE

PROCESSOR OCCUPATION

In this section, we focus on the issue of over-estimation

of k-interference processor occupation by the proposed RTA

framework. Suppose that a job of τi (Ji) and a job of τj
(Jj) are executed in a k-interference time slot. If (mi+mj >
m−mk+1) holds, the amount of execution of Ji and Jj in

the k-interference slot (which is larger than (m−mk+1))
cannot fully contribute to the amount of execution on k-

interference processors in the k-interference slot (which is

exactly (m−mk+1) by Definition 3). In this situation, Al-

gorithm 1 with reuse of I+k←i(L) yields over-estimation of

k-interference occupation, as follows.

Example 3: We consider a set of four gang tasks executed

on m = 10 processors: τ1(T1=10, D1=10, C1=9,m1=4),
τ2(10, 10, 9, 3), τ3(10, 10, 9, 2), and τ4(10, 10, 1, 3). We apply

FP scheduling where the priority of τ1 and that of τ4 are the

highest and lowest, respectively. We can confirm that τ1, τ2
and τ3 are schedulable for any job arrival pattern, because

the sum of their mi (4+3+2) is not larger than the number of

processors (10), as shown in Figure 2.

Apart from actual results, if we apply Theorem 2 for τ4,

the interference term for τ1 (I+4←1(L)), τ2 (I+4←2(L)) and τ3
(I+4←3(L)) are added to the numerator of the fraction in Eq. (5),

yielding no guarantee of the schedulability of τ4. For example,

in case of L = D4, since W1(D4) = W2(D4) = W3(D4) = 9,

the numerator of the fraction in Eq. (5) is 9·4+9·3+9·2 = 81,

implying C4 +
⌊

81

m−m4+1

⌋
= 1 + 	 81

8

⌋
= 11 > 10; other

C4 ≤ L ≤ D4 also cannot guarantee the schedulability of τ4.

However, considering m1+m2+m3 = 9 > m−m4+1 = 8
holds, if jobs of τ1, τ2 and τ3 are concurrently executed at a

time slot, some of the amount of their execution (i.e., some

of 9) should not be executed on the 4-interference proces-

sors (whose number is 10−3+1=8); recall Definition 3 that

indicates the existence of exactly (m−mk+1) k-interference

processors in each k-interference time slot. Next, in any case

where each job of τ1, τ2 and τ3 executes for 9 time units

in [0, 10), all the three jobs should be executed at the same

time in at least 7 time units, e.g., Fig. 2(b). In each of those

time slots, one amount of execution (marked by “X”) cannot

be executed on the 4-interference processors, which should be

deducted to the amount of interference of τ1, τ2 and τ3 on

τ4. Considering those interference deductions, τ4, in reality, is

schedulable in any case (e.g., adding a job of τ4’s execution

to the two cases in Fig. 2 is possible), which is different from

the schedulability analysis result.

Motivated by Example 3, the following lemma develops

how to deduct over-estimation of k-interference processor

occupation, based on the calculation of IΔk , the minimum

number of k-interference time slots in which I+k←i(L) for

every τi ∈ τ ′ contributes to
∑

τi∈τ ′ Ak←i(L).

1

3

2

1

3

2

t = 0    1    2    3    4    5    6    7    8    9    10 t = 0    1    2    3    4    5    6    7    8    9   10 
(a) (b)

m
-m

4+
1

m
-m

4+
1

Fig. 2. Schedules of τ1, τ2, and τ3 in Example 3 by FP on 10 processors:
(a) when every job of all the three tasks are released at t = 0, and (b) a job
of τ1, that of τ2 and that of τ3 are periodically released from t = −1, t = 0,
and t = 1, respectively. The execution marked as “X” cannot contribute to
the amount of interference on τ4 with m4 = 3.

Lemma 6: The following inequality holds for τ ′ ⊂ τ (τk /∈
τ ′), if τ ′ satisfies both

∑
τi∈τ ′ min(mi,m−mk + 1) > m−

mk + 1 and IΔk > 0.

∑
τi∈τ

′

Ak←i(L) ≤
∑
τi∈τ

′

I+k←i(L) ·min(mi,m−mk + 1)

− IΔk ·
( ∑
τi∈τ

′

min(mi,m−mk + 1)− (m−mk + 1)
)
, (13)

where IΔk = (L− Ck + 1)−
∑
τi∈τ

′

(
(L− Ck + 1)− I+k←i(L)

)
.

Proof: We focus on (L−Ck+1) k-interference time slots

of the target interval of length L. We first prove that there

exists at least IΔk k-interference time slots in which I+k←i(L)
for every τi ∈ τ ′ contributes to

∑
τi∈τ ′ Ak←i(L). Since

I+k←i(L) ≤ (L−Ck+1) holds by definition,
(
(L−Ck+1)−

I+k←i(L)
)

is the number of k-interference time slots where τi
does not contribute to

∑
τi∈τ ′ Ak←i(L). By disallowing any

overlap of the set of
(
(L−Ck +1)− I+k←i(L)

)
time slots for

every τi ∈ τ ′,
∑

τi∈τ ′

(
(L−Ck +1)− I+k←i(L)

)
(denoted by

X) implies an upper-bound of the number of k-interference

time slots in which at least one τi ∈ τ ′ do not contribute

to
∑

τi∈τ ′ Ak←i(L). This means, (L−Ck+1−X), which is

equal to IΔk , is a lower-bound of the number of k-interference

time slots in which I+k←i(L) for every τi ∈ τ ′ contributes to∑
τi∈τ ′ Ak←i(L).
Considering

∑
τi∈τ ′ min(mi,m−mk + 1) > m−mk + 1

in the supposition of the lemma, the first part implies that

there should exist at least IΔk k-interference time slots in

which the amount of execution of jobs of tasks in τ ′ is

larger than (m−mk+1). Considering the definition of the k-

interference processors in Definition 3, there should exist at

least IΔk k-interference time slots, in each of which at least∑
τi∈τ ′ min(mi,m−mk + 1)− (m−mk+1) amount of ex-

ecution of jobs of tasks in τ ′ is not executed on k-interference

processors. This means, IΔk ·
(∑

τi∈τ ′ min(mi,m−mk + 1)−

(m−mk+1)
)

amount of execution of jobs of tasks in τ ′ cannot

contribute to
∑

τi∈τ ′ Ak←i(L) by Definition 4. Therefore, we

can deduct those amount as shown in Eq. (13).

If we apply Lemma 6 to τk = τ4, τ ′ = {τ1, τ2, τ3} and L =
D4 = 10 of Example 3, IΔk = 10−(10−9)−(10−9)−(10−
9) = 7 holds. Therefore, 7·

(
4+3+2−(10−3+1)

)
= 7 amount

of execution should be deducted from 9 · 4+9 · 3+9 · 2 = 81,
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and then C4 +
⌊

81−7

m−m4+1

⌋
= 1 + 	 74

8

⌋
= 10 holds, implying

τ4 is schedulable.

We now generalize Lemma 6 in order to more tightly deduct

over-estimation of k-interference processor occupation.

Theorem 5: The following inequality holds for τ ′ ⊂ τ (τk /∈
τ ′).

∑
τi∈τ

′

Ak←i(L) ≤
∑
τi∈τ

′

I+k←i(L) ·min(mi,m−mk + 1)−AΔ
k

(14)

where AΔ
k =

∑|τ ′|
x=1

AΔ
k←x, assuming τx ∈ τ ′ are indexed

from τ1 to τ|τ ′|, sorted in any given order. Let IΔk (i) denote

(L−Ck+1)−
∑i

x=1

(
(L−Ck+1)−I+k←x(L)

)
, and msum(i)

denote
∑i

x=1
min(mx,m−mk+1). Then, AΔ

k←x is calculated

sequentially from τ1 to τ|τ ′|, by AΔ
k←x =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

IΔk (i) ·min(mi,m−mk + 1),

if msum(i− 1) > m−mk + 1 and IΔk (i) > 0;

IΔk (i) ·
(
msum(i)− (m−mk + 1)

)
,

else if msum(i) > m−mk + 1 and IΔk (i) > 0;

0, otherwise.

(15)

Proof: We consider the amount of interference deduction

for (Case 1) “if”, (Case 2) “else if” and (Case 3) “otherwise”

conditions for Eq. (15).

Case 2 holds by applying τ ′ = {τx}
i
x=1 to Lemma 6, and

Case 3 does not deduct the amount of interference. Therefore,

we need to prove Case 1.

The “if” statement in Case 1 implies that we al-

ready have a set of i−1 tasks {τx}
i−1
x=1 that satisfies∑i−1

x=1
min(mx,m−mk + 1) > m−mk+1 without including

τi itself. If we apply the first part of the proof of Lemma 6,

there exists at least IΔk (i) k-interference time slots where

all tasks {τx}
i
x=1 contribute to

∑
τi∈τ ′ Ak←i(L). Considering

∑i−1

x=1
min(mx,m−mk + 1) > m − mk + 1 holds without

adding τi, IΔk · mi is an additional amount of execution of

jobs of tasks in τ ′ that cannot contribute to
∑

τi∈τ ′ Ak←i(L),
which proves Case 1.

Algorithm 3 explains the overall process for calculating

Atotal
k (Rk) (i.e., an upper-bound of the numerator of the

fraction in Eq. (5) for given τk) by utilizing Theorem 5, which

can replace Line 6 of the RTA framework in Algorithm 1. In

Lines 1–4, we calculate Atotal
k (Rk) using the known upper-

bounds of the duration of interference {I+k←i(Rk)}. We sort

tasks {τi ∈ τ |τi �= τk} in a given order2 (Line 5). Then,

for each task, we check whether it can be included in τ ′ for

applying Theorem 5 (Lines 7–12). In Lines 8–11, IΔk and msum

respectively correspond to IΔk (i) and msum(i) in Eq. (15). If

the “if” statement in Line 8 holds (meaning that IΔk (i) ≤ 0
in Eq. (15)), we do not include τi in τ ′ by not executing

2While we can apply any sorting order (but it yields more/less tight
calculation of AΔ

k
), we apply a descending order of

(
(Rk − Ck + 1) −

I+
k←i

(Rk)
)
/mi, a reasonable heuristic.

Algorithm 3 Calculation of Atotal
k (Rk) in Algorithm 1 for

given {I+k←i(L)}, by addressing the over-estimation issue

1: Atotal
k (Rk)← 0

2: for τi ∈ τ |τi �= τk do

3: Atotal
k (Rk)← Atotal

k (Rk) + I+k←i(Rk) ·min(mi,m−mk +1)
4: end for
5: Assuming {τi ∈ τ |τi �= τk} are sorted in any given order.
6: AΔ

k ← 0, IΔk ← Rk − Ck + 1, msum ← 0
7: for τi ∈ τ |τi �= τk do

8: if IΔk −
(
(Rk − Ck + 1)− I+k←i(Rk)

)
≤ 0 then continue

9: IΔk ← IΔk −
(
(Rk −Ck + 1)− I+k←i(Rk)

)
, msum ← msum +

min(mi,m−mk + 1)
10: if msum−min(mi,m−mk + 1) > m−mk+1 then AΔ

k ←
AΔ

k + IΔk ·min(mi,m−mk + 1)
11: else if msum > m − mk + 1 then AΔ

k ← AΔ
k + IΔk ·(

msum − (m−mk + 1)
)

12: end for
13: Atotal

k (Rk)← Atotal
k (Rk)−AΔ

k

Line 9. Otherwise, we include τi in τ ′. Then, Lines 10 and

11 correspond to the “if” and “else if” cases in Eq. (15), and

we add the corresponding AΔ
k←i in Eq. (15) to AΔ

k . Finally,

Line 13 deducts AΔ
k from Atotal

k (Rk).
Using Algorithm 3, we can develop a tighter schedulability

test for FP and EDF.

Theorem 6: Algorithm 1 by replacing Line 6 with Algo-

rithm 3 yields the schedulability analysis for FP and EDF, if

we apply the RHS of Eq. (7) and that of Eq. (8) for I+k←i(L),
respectively.

Proof: By Algorithm 1, Lemma 2, and Eqs. (7) and (8),

the remaining proof is to prove that Atotal
k (Rk) calculated by

Algorithm 3 is an upper-bound of
∑

τi∈τ Ak←i(Rk).
Once we perform Algorithm 3, we can have τ ′ that consists

of all {τi ∈ τ |τi �= τk} except tasks that satisfy the “if”

condition in Line 8. After performing Line 9, we can easily

check that IΔk and msum respectively correspond to (i.e., equals

to) IΔk (i) and msum(i) in Eq. (15). For τ ′, we can confirm that

the “if” and “else if” cases of Eq. (15) respectively correspond

to Lines 10 and 11. Also, the “otherwise” case of Eq. (15)

corresponds to no line for the case where both “if” and “else

if” conditions in Lines 10–11 are not satisfied. Therefore, by

Theorem 5, Theorem 6 holds.

Utilizing Algorithm 2 or 3, we can address either the issue

of non-parallel execution constraints or that of over-estimation

of k-interference processor occupation, for the proposed RTA

framework. Now, we combine the two techniques to address

both issues at the same time, recorded in Algorithm 4. The idea

is to apply Algorithm 2 and then Algorithm 3. In Line 1, we set

new interference upper-bounds {I∗k←i(Rk)} to be used for Al-

gorithm 3, to {I+k←i(Rk)}. In Line 2, we perform Algorithm 2

using the original upper-bounds {I+k←i(Rk)}; meanwhile, for

a subset τ ′ where the first technique in Theorem 3 is applied,

we update {I∗k←i(Rk)} as { ̂Ik←i(Rk)} in Eq. (12). In Line 3,

we apply the new interference upper-bounds {I∗k←i(Rk)} to

the second technique in order to deduct over-estimation by

Lines 5–13 of Algorithm 3.
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Algorithm 4 Calculation of Atotal
k (Rk) in Algorithm 1 for

given {I+k←i(L)}, by addressing the two issues together

1: Set I∗k←i(Rk) to I+k←i(Rk) for every τi ∈ τ (τi /∈ τk).

2: Perform Algorithm 2 using {I+k←i(Rk)}; meanwhile, if the “if”
statement of Line 7 is true for τ ′, we set I∗k←i(Rk) for every

τi ∈ τ ′, to ̂Ik←i(Rk) in Eq. (12).
3: Perform Lines 5–13 of Algorithm 3 using {I∗k←i(Rk)} instead

of {I+k←i(Rk)}.

Finally, applying Algorithm 4, we develop a tighter schedu-

lability test for FP and EDF.

Theorem 7: Algorithm 1 by replacing Line 6 with Algo-

rithm 4 yields the schedulability analysis for FP and EDF, if

we apply the RHS of Eq. (7) and that of Eq. (8) for I+k←i(L),
respectively.

Proof: By Algorithm 1, Lemma 2, and Eqs. (7) and (8),

the remaining proof is to prove that Atotal
k (Rk) calculated by

Algorithm 4 is an upper-bound of
∑

τi∈τ Ak←i(Rk).

Theorem 3, which is a basis of Algorithm 2, applies a

“duration” constraint of Eq. (11) in Lemma 5 for {I+k←i(L)}.

To safely upper-bound
∑

τi∈τ Ak←i(L), Theorem 3 selects

to include the largest mi’s first to each I+k←i(L) until the

duration constraint holds, which is represented by ̂Ik←i(L)

in Eq. (12), where ̂Ik←i(L) = 0 means the corresponding

I+k←i(L) is not selected. Therefore, it suffices to prove that

any other selection cannot yield a larger upper-bound of∑
τi∈τ Ak←i(L) in Algorithm 4 that performs Algorithm 2

in Line 2 and then Algorithm 3 in Line 3.

Let { ̂I ′k←i(L)} denote a different selection from { ̂Ik←i(L)}.

We will explain the case where h = g = 2 of Theorem 3,

i.e., mh + mj > m; the proof of other cases is similar to

this case. Suppose we exchange one time unit between τh
and τj with mh > mj . That is, ̂I ′k←h(L) = ̂Ik←h(L) − 1

and ̂I ′k←j(L) =
̂Ik←j(L) + 1 holds; all other { ̂I ′k←i(L)} are

the same as { ̂Ik←i(L)}. Then, by the difference between mh

and mj , min(mh,m −mk + 1) −min(mj ,m −mk + 1) ≥
0 is a decrease of the total amount of interference by the

new selection in Algorithm 2 (that utilizes Theorem 3), i.e.,

the RHS of Eq. (12) with { ̂Ik←i(L)} subtracted by that with

{ ̂I ′k←i(L)}.

Therefore, the remaining step is to prove that min(mh,m−
mk + 1) −min(mj ,m −mk + 1) ≥ 0 is an upper-bound of

decrease of the total amount of interference deduction by the

new selection in Algorithm 3 (that utilizes Theorem 5), i.e., the

amount of interference deduction (AΔ
k ) with { ̂Ik←i(L)} in the

RHS of Eq. (14), subtracted by that with { ̂I ′k←i(L)}. Suppose

that { ̂Ik←i(L)} are assigned to processors in k-interference

time slots. If we replace { ̂Ik←i(L)} with { ̂I ′k←i(L)}, the only

difference is the decrease of the amount of min(mh,m −
mk + 1) − min(mj ,m − mk + 1) contribution on a single

time slot, derived from mh+mj > m. Therefore, the optimal

lower-bound (not its lower-bound from Theorem 5) AΔ
k with

{ ̂Ik←i(L)}, subtracted by that with { ̂I ′k←i(L)} is at most

min(mh,m − mk + 1) − min(mj ,m − mk + 1). Therefore,

min(mh,m − mk + 1) − min(mj ,m − mk + 1) is also an

upper-bound of the difference between the lower-bound of

AΔ
k with { ̂Ik←i(L)} from Theorem 5 and the optimal AΔ

k

with { ̂I ′k←i(L)}, which proves this step.

By repeating the exchange of one time unit between two

tasks, we prove that any selection of { ̂Ik←i(L)} subject to

Eq. (11) cannot yield a larger upper-bound of
∑

τi∈τ Ak←i(L)
in Algorithm 4 than the original selection. This proves the

theorem.

Time-complexity. Since Algorithms 2 and 3 exhibit O(n2)
and O(n) time-complexity, respectively, Algorithm 4 exhibits

O(n2) time-complexity, where n is the number of tasks in τ .

This complexity exhibits one higher order than the correspond-

ing part in the RTA framework that reuses existing {I+k←i(L)},

i.e., Atotal
k (Rk) in Line 6 of Algorithm 1 is calculated by∑

τi∈τ,τi �=τk
I+k←i(L) · min(mi,m − mk + 1) that requires

O(n). Therefore, Algorithm 1 by replacing Line 6 with

Algorithm 4 yields O
(
n4·(maxDi)

2
)
, since the corresponding

original RTA for the sequential task model is known to exhibit

O
(
n3 · (maxDi)

2
)

time complexity [23].

VI. EVALUATION

In this section, we compare our RTA framework designed

for global gang scheduling, with existing schedulability tests

for both global and non-global gang scheduling.

A. Evaluation Setting

The randomly generated task sets are based on [5]. For each

number of processors m (i.e., 8, 16, 32, 64, 128 and 256), we

consider four parameters: (S1) the type of the task set, i.e.,

implicit-deadline (Di = Ti) and constrained-deadline (Di ≤

Ti), (S2) the distribution of task utilization ui
def.
= Ci/Ti, i.e.,

the binomial distribution with p = 0.1, 0.3, 0.5, 0.7 and 0.9,3

(S3) the range of task parallelism mi, i.e., [1, 1

2
m] and [1,m),

and (S4) the range of task set utilization U
def.
=

∑
τi∈τ

ui·mi

m
,

i.e., [0.0, 0.1), [0.1, 0.2), ... ,[0.9, 1.0). For each task, the period

Ti is uniformly selected in [10ms, 1000ms]; Ci is set to ui·Ti,

where ui is generated by S2; for implicit- and constrained-

deadline tasks, Di is set to Ti and uniformly selected in [Ci,

Ti], respectively; and mi is uniformly distributed in the range

assigned by S3. For every combination of S1, S2, S3 and S4,

we generate 1000 task sets, yielding 2·5·2·10·1000 = 200, 000
task sets in total for each m.

Using the generated sets, we compare our schedulability

tests designed for preemptive global gang scheduling, with

all existing schedulability tests for preemptive global/non-

global gang scheduling subject to our task model (explained

in Section II), as follows.

3For given p, task utilization is uniformly distributed in [0.5, 1.0] and
[0.0, 0.5] with probability of p and 1.0−p, respectively. Therefore, the average
number of tasks in each task set decreases as p increases.

101

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on December 27,2022 at 04:37:34 UTC from IEEE Xplore.  Restrictions apply. 



(a) Global gang FP scheduling under (C,L) (b) Global gang FP scheduling under (I,H) (c) Global gang EDF scheduling under (C,L)

(d) Global gang EDF scheduling under (C,H) (e) Any gang scheduling under (I,H) (f) Any gang scheduling under (C,L)

Fig. 3. Schedulability performance comparison of our schedulability tests with existing ones

• WaPe: global scheduling for FP in [10]

• DoLi: global scheduling for EDF in [5], [15]

• UGB: non-global scheduling (i.e., a generalization of

partitioned scheduling) for FP in [11]

• RTA-FP and RTA-EDF: Theorem 2 for FP and EDF

• RTA
1-FP and RTA

1-EDF: Theorem 4 for FP and EDF

• RTA
2-FP and RTA

2-EDF: Theorem 6 for FP and EDF

• RTA
∗-FP and RTA

∗-EDF: Theorem 7 for FP and EDF

For fair comparison for the tests that employ FP as a prioriti-

zation policy, we apply DM (Deadline Monotonic) [24] to all

the tests.

We count the number of task sets deemed schedulable by

each of the above schedulability tests, and show the ratio of

those task sets. We observe that the trend for the relative ratio

among individual tests does not much vary with m. Therefore,

we explain the representative results for m = 64 in the next

subsections. For m = 64, we present the overall results for all

generated task sets without any figure, and some interesting

results with Fig. 3 for a subset of generated task sets subject

to a pair of S1 and S3, denoted by (I/D,L/H), where I and D

imply implicit-deadline and constrained-deadline task sets in

S1, respectively, and L and H imply mi ∈ [1, 1

2
m] (i.e., low

mi) and mi ∈ [1,m) (i.e., high mi), respectively. In each of

Fig. 3, the X-axis represents the task set utilization U (i.e.,

S4), while the Y-axis represents the ratio of task sets deemed

schedulable by each schedulability tests. Therefore, each point

in Fig. 3 targets task sets subject to a given combination of

S1, S3 and S4 while the target task sets include all parameters

of S2.

B. Comparison of Global Gang Scheduling

As our RTA framework targets global gang scheduling, we

now compare our RTA framework with a given prioritization

policy, to an existing schedulability test for global gang

scheduling with the same policy, i.e., RTA∗-FP (and RTA-FP)

versus WaPe, and RTA
∗-EDF (and RTA-EDF) versus DoLi.

For global gang FP scheduling, RTA∗-FP and RTA-FP out-

perform WaPe under every combination of S1 and S3, and they

respectively achieve 37.4% and 23.0% overall improvement

over WaPe. This is because, while RTA-FP and WaPe share

a similar schedulability analysis structure, RTA-FP tightly

calculates a response time using the notion of k-interference

slots/processors (and RTA
∗-FP more tightly does). The most

favorable and unfavorable settings for RTA∗-FP against WaPe,

are (C,L) and (I,H), respectively, shown in Figs. 3(a) and

(b); under the settings, RTA∗-FP respectively finds 73.1% and

12.0% more schedulable task sets, compared to WaPe.

When it comes to global gang EDF scheduling, RTA∗-EDF

cannot outperform DoLi in that RTA∗-EDF finds 13.1% less

schedulable task sets than DoLi; however, the same does not

hold under every setting. Since DoLi uses a notion of the

maximum idle parallelism when a task cannot be executed,

it is more effective for task sets with low mi. Therefore,

the performance of RTA∗-EDF against DoLi varies with the

setting for S3. For example, as shown in Figs. 3(c) and (d),

RTA
∗-EDF finds 15.2% more and 31.3% less schedulable task

sets compared to DoLi, respectively under (C,L) and (C,H).

In summary, RTA∗-FP significantly outperforms the existing

schedulability test that targets global gang FP scheduling, and

RTA
∗-EDF complements the existing schedulability test for

global gang EDF scheduling.
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C. Comparison of Any Gang Scheduling

We now present the performance of our schedulability tests

with all other existing ones, regardless of prioritization policies

(i.e., EDF or FP) and scheduling categories (i.e., global or

non-global). Overall, the schedulability ratio of RTA
∗-EDF,

DoLi, WaPe, and UGB, normalized by that of RTA
∗-FP,

is 52.2%, 60.1%, 72.8% and 105.0%, respectively. Between

the two highest schedulability-performance tests RTA
∗-FP

and UGB, we observe different schedulability performance

behavior depending on the settings for S3. That is, under (I, H)

and (C, H), RTA∗-FP finds 5.2% and 0.3% more schedulable

task sets than UGB (the former of which is shown in Fig. 3(e)).

On the other hand, under (I, L) and (C, L), RTA∗-FP finds

8.0% and 14.9% less schedulable task sets than UGB (the

latter of which is shown in Fig. 3(f)). Considering there has

been discussion of superiority between global and partitioned

scheduling for the sequential task model, e.g., [25], [26],

[27], it is interesting to observe comparable schedulability

performance between global scheduling and a generalization

of partitioned scheduling for the gang task model that shares

the same prioritization policy.

We also observe that the schedulability performance of

RTA
∗-EDF is much less than that of RTA∗-FP. This accords

with the corresponding results for the RTA framework for the

sequential task model [23].

D. Comparison of Our RTA Frameworks

Finally, we present how our novel techniques in Sections IV

and V and its composition (corresponding to RTA
1, RTA2,

RTA
∗) improve our basic response time analysis RTA. Com-

pared to RTA for EDF, RTA1, RTA2 and RTA
∗ for EDF yield

7.1%, 15.7% and 22.0% overall schedulability improvement,

respectively. A similar trend is observed for FP, yielding

4.3%, 9.2% and 11.7% overall schedulability improvement,

respectively. In particular, if we focus on task sets with (C,

L), the improvement for EDF and FP is increased to 9.0%,

25.1% and 34.0%, and 4.1%, 10.7% and 13.6%, respectively.

The results demonstrate the effectiveness of the proposed

two techniques and its composition in reducing pessimistic

interference calculation.

VII. CONCLUSION

In this paper, we generalized the existing RTA framework

to gang scheduling, and utilized it with existing interference

calculation for the sequential task model. We then improved

the RTA framework by addressing non-parallel execution

constraints and over-estimation of k-interference processor

occupation. As a result, the proposed RTA framework applied

to FP and EDF outperforms/complements existing studies. In

the future, we would like to apply the framework to other

scheduling algorithms shown to be effective in the sequential

model, e.g., FPZL.
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