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Abstract—Due to its efficient and predictable utilization of
modern computing units, recent studies have paid attention to
gang scheduling in which all threads of a real-time task should
be concurrently executed on different processors. However, the
studies have been biased to preemptive gang scheduling, although
non-preemptive gang scheduling (NPG) is practical for inherently
non-preemptive tasks and tasks that incur large preemption over-
head. In this paper, focusing on a new type of priority-inversion
incurred by NPG, we design a generalized NPG framework,
called NPG∗, under which each task has an option to allow or dis-
allow the situation that incurs the priority-inversion specialized
for NPG. To demonstrate the effectiveness of NPG∗ in terms
of timing guarantees, we target NPG∗-FP by employing fixed-
priority scheduling (FP) as a prioritization policy, and develop
the first NPG∗-FP schedulability test and its improved version
under a given assignment of the allowance/disallowance option to
each task. We then develop the optimal allowance/disallowance
assignment algorithm, which finds an assignment (if exists) that
makes a target task set schedulable by the proposed schedula-
bility tests. Via simulations, we demonstrate that the assignment
algorithm associated with the schedulability tests for NPG∗-FP
can find a number of additional schedulable task sets, each of
which has not been covered by the traditional NPG framework.

I. INTRODUCTION

To support parallel programming models (e.g., [1–3]) that

utilize parallel architectures (e.g., [4–6]), scheduling a set of

parallel real-time tasks has been widely studied in the real-

time systems community (e.g., [7–9]). Among them, gang

scheduling determines the execution order of jobs invoked

by a set of gang tasks, each of whose multiple threads

should be concurrently executed on different processors as

shown in Fig. 1, and it has been known to yield efficient

and predictable utilization of modern computing units [10–

15]. However, studies for gang scheduling have been biased

to preemptive gang scheduling (PG) [16–25]. Although non-

preemptive gang scheduling (NPG) is not only practical for

tasks that incur large preemption overhead but also essential

for inherently non-preemptive tasks, only a few studies have

paid attention to NPG [26, 27].

Different from PG, NPG incurs a new type of priority-

inversion [26] as follows. Consider that a task τ3 released

at t = −2 and tasks τ1, τ2 and τ4 released at t = 0 are

scheduled by NPG on eight processors, as shown in Fig. 1(a).

Due to the non-preemptive execution of τ3 that occupies three

‡Jinkyu Lee is the corresponding author.
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Fig. 1. Four non-preemptive gang tasks τ1–τ4 scheduled by the traditional
NPG framework and the NPG∗ framework on eight processors P1–P8

processors in [−2, 2), τ2 that requires six processors cannot

start its execution at t = 0 regardless of its priority. On the

other hand, τ4 and τ1 that respectively require three and two

processors can start their executions at t = 0, which makes τ4
block τ2’s execution in [2, 4). This is because, if τ4 did not

start its execution at t = 0, τ2 could start its execution at t = 2,

as shown in Fig. 1(b). Therefore, if the priority of τ2 is higher

than that of τ4, NPG incurs a new type of priority-inversion,

which comes from an integration of different numbers of

required processors for each task (that makes τ4 start execution

at t = 0 instead of τ2) and non-preemptive execution (that

disallows τ2 to preempt τ4 at t = 2).

In this paper, we focus on the new type of priority-inversion

specialized for NPG, and design a generalized NPG framework

called NPG∗ that controls whether the new priority-inversion

is allowed or not (i.e., addressing the scheduling framework

design issue for NPG). To this end, we add a binary task

option that determines whether a higher-priority job allows

or disallows a lower-priority job to start its execution when

the number of available processors is sufficient for the lower-

priority job but not for the higher-priority job. To demonstrate

the effectiveness of NPG∗ in guaranteeing the schedulability

of a set of non-preemptive gang tasks, we target NPG∗-FP

by applying fixed-priority scheduling (FP) as a prioritization

policy to NPG∗, and address the following questions (i.e.,

addressing the timing guarantee issue for NPG).

Q1. How to develop a schedulability test for NPG∗-FP, when

an assignment of the allowance/disallowance option for

each task is given? How to improve the test by utilizing

properties of NPG∗-FP?
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Q2. How to assign the allowance/disallowance option that

makes a target task set schedulable (if exists) by the

schedulability tests to be developed by addressing Q1?

To answer Q1, we adapt an existing interference-based

schedulability analysis framework for preemptive sequential

(i.e., single-thread) scheduling in [28, 29] and that for non-

preemptive sequential scheduling in [30, 31], for a base struc-

ture of the schedulability test to be developed. We then derive

a sufficient condition for a job of interest to start its execution

no later than the last instant at which the job will miss

its deadline unless starting its execution. This is challenging

in that the job of interest of a lower-priority task under

NPG∗-FP cannot start its execution due to not only the lack

of available processors, but also the inability to execute a

ready (i.e., has been released) job of a higher-priority task

with the disallowance option. Considering the challenge, we

develop new notions and methods to upper-bound contribution

of other jobs to the duration in which the job of interest

cannot be executed under NPG∗-FP, and establish the first

schedulability test for NPG∗-FP under a given assignment

of the allowance/disallowance option to each task (in Sec-

tion IV-B). Note that the proposed schedulability test can

be also used for traditional NPG-FP, which is equivalent to

NPG∗-FP by assigning the allowance option to every task.

We then derive properties of NPG∗-FP that help to calculate

tighter upper-bounds, and develop a systematic method to

utilize the properties, yielding an improved schedulability test

for NPG∗-FP (in Section IV-C).

For Q2, we investigate how the allowance/disallowance

option affects the schedulability of the proposed schedulability

tests. Assuming the allowance/disallowance option is already

assigned to every task, we analyze whether the change of

the allowance/disallowance option for a single task of interest

is beneficial to the schedulability of its higher-priority tasks,

the task of interest itself, and its lower-priority tasks. We

then develop the optimal allowance/disallowance assignment

algorithm based on the analysis, which finds an assignment

that makes a target task set schedulable by the proposed

schedulability tests as long as such an assignment exists.

The simulation results show that the proposed NPG∗ frame-

work significantly improves the schedulability performance of

the traditional NPG framework. The proposed schedulability

test for NPG∗-FP with the optimal assignment algorithm

finds 161.2%–346.0% and 11.2%–15.6% additional schedu-

lable task sets, respectively compared to the only existing

schedulability test for the traditional NPG framework in [26]

and the proposed schedulability test for traditional NPG-FP.

This paper makes the following contributions:

• Design of a novel, generalized NPG framework NPG∗,

which employs a task-level option to allow or disallow

the priority-inversion specialized for NPG (Section III),

• Development of the first schedulability tests not only for

traditional NPG-FP but also for NPG∗-FP (Section IV),

• Development of an assignment algorithm that optimally

assigns the allowance/disallowance option to each task

(Section V), and

• Demonstration of the effectiveness of the proposed frame-

work in improving schedulability performance (Sec-

tion VI).

II. SYSTEM MODEL

We consider a task set τ consisting of n sporadic gang

tasks τi ∈ τ , each of which is specified by Ti (the minimum

separation or the period), Ci (the worst-case execution time),

Di (the relative deadline), and mi ≥ 1 (the number of threads

that should be executed on different processors in parallel,

called task parallelism) [17]. We assume that every task τi ∈
τ satisfies Di ≤ Ti. Each task τi invokes a series of jobs

as follows. The release times of two consecutive jobs of τi
are separated by at least Ti time units; once a job of τi is

released at t, it should finish its execution until t+Di. For each

job of τi, mi threads should be concurrently executed on mi

processors. We consider that every job is non-preemptive; once

mi threads of τi’s job start to execute at t, their executions last

until no later than t+Ci without any preemption. We consider

a computing unit that consists of m ≥ 2 identical processors

(cores).

In this paper, we consider fixed-priority scheduling (FP)

as a prioritization policy. Let τHP(τk) and τLP(τk) denote a

set of tasks in τ whose priority is higher and lower than τk,

respectively. A sporadic non-preemptive gang task set τ is

said to be schedulable by a scheduling framework on an m-

processor platform, if the following statement is true: every

legitimate job sequence generated by τ does not yield any

single job deadline miss when the job sequence is scheduled

by the framework on the platform. Presenting an equation or

inequality, we let LHS and RHS denote the left-hand side and

right-hand side, respectively.

A time interval L is not necessarily consecutive, unless we

explicitly specify it as a consecutive time interval. We apply

the same semantics of the following set operations to time

intervals. Let L′∪L′′, L′∩L′′, and L′ \L′′ respectively imply

the union of L′ and L′′, the intersection of L′ and L′′, and

the time interval that belongs to L′ but does not belong to

L′′; let L′ ⊆ L′′ implies that L′ belongs to L′′. Also, let

|L| denote the length of a time interval L. For example, time

interval L′ (which is non-consecutive) can be defined as L′ =
[−2, 2)∪ [6, 10) in which processor 5 is idle in Fig. 1(b), and

time interval L′′ can be defined as L′′ = [−2, 2) in which

processor 6 is idle. Then, L′ ∩ L′′ = [−2, 2) holds in which

processors 5 and 6 idle, and L′ \L′′ = [6, 10) holds in which

processor 5 idle but processor 6 is not idle. Also, |L′| = 8,

|L′′| = 4, |L′ ∩L′′| = 4 and |L′ \L′′| = 4 hold; and L′′ ⊆ L′

holds.

III. SCHEDULING FRAMEWORK DESIGN FOR

NON-PREEMPTIVE GANG SCHEDULING

In this section, we first investigate a property of NPG,

which yields a new type of priority-inversion specialized

for NPG. We then design a generalized NPG framework by

incorporating a task-level option to allow or disallow the

priority-inversion.
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Since we target non-preemptive gang scheduling (NPG), we

need to pay attention to the keywords “non-preemptive” and

“gang” in NPG. We first present a property of NPG due to

non-preemptiveness as follows.

PR1. A lower-priority job Ji can block the execution of a

higher-priority job Jk, if it starts execution before the

release time of Jk.

While PR1 is known to hold under non-preemptive sequen-

tial (i.e., single-thread) scheduling [32], the property also holds

under NPG. For example, consider the job of τ3 and that of τ2
on eight processors in Fig. 1(b). Due to the execution of the

job of τ3 that occupies three processors started at t = −2, the

job of τ2 that requires six processors cannot start its execution

at t = 0, at which it is released, even if the job of τ2 has a

higher priority than the job of τ3.

Second, the following property holds for NPG due to each

job’s different parallelism (mi) under gang scheduling.

PR2. Suppose that a lower-priority job (Ji) invoked by τi and a

higher-priority job (Jk) invoked by τk are released before

t but do not start their executions before t. At t, if there

are m′ available processors such that mi ≤ m′ < mk

holds, Ji can start its execution while Jk cannot.

Under PG (preemptive gang scheduling), PR2 not only (i)

makes the completion time of Ji earlier due to utilizing the

unused processors, but also (ii) does not delay the completion

time of Jk assuming no preemption/migration cost (because

Jk can preempt Ji when necessary). On the other hand, under

NPG, (i) is true while (ii) is not. This is because, once Ji starts

its execution, it cannot be preempted by any job. As explained

in Section I with Fig. 1(a), due to the execution of the job of τ4
in [0, 4), the job of τ2 cannot start its execution before t = 4,

even if the priority of the job of τ2 is higher than that of the

job of τ4 and the job of τ2 is ready to be executed at t = 0.

However, if we disallow the job of τ4 to start its execution at

t = 0 despite the number of available processors sufficient, the

job of τ2 can start its execution at t = 2, as shown in Fig. 1(b).

This means, different from PR2 under PG, PR2 under NPG

causes a new type of priority-inversion due to the execution

of a lower-priority job instead of a higher-priority job that is

ready to be executed; this is called 2-dimension blocking in

[26].

Since PR2 yields a new type of priority-inversion special-

ized for NPG, we may have the following question regarding

PR2: what if we disallow a lower-priority job to start its

execution when a higher-priority job is ready but cannot

start its execution? The following example shows that such

disallowance may and may not improve the schedulability of

a task set.

Example 1: Consider the following four tasks exe-

cuted on eight processors: τ1(T1=25, C1=4, D1=25,m1=2),
τ2(25, 4, D2, 6), τ3(25, 4, 25, 3) and τ4(25, 4, D4, 3). A job of

τ3 is released at t = −2, and jobs of other tasks are released at

t = 0; the job of τ1 and that of τ4 have the highest and lowest

priority, respectively. If we allow the situation of PR2 for the

Algorithm 1 NPG∗ Framework

Selection of jobs to be executed upon job release or completion:

1: for every job (denoted by Jk that is invoked by τk) in the ready
queue from the highest-priority job to the lowest-priority job
(sorted by the prioritization policy) do

2: if the number of available processors is zero then return
3: else if the number of available processors is no smaller than

mk then start to execute Jk

4: else if ϕk = F then return
5: end if
6: end for

job of τ2 (as a higher-priority job), the job of τ4 (as a lower-

priority job) starts its execution at t = 0, yielding the schedule

in Fig. 1(a). Otherwise, the job of τ4 is not allowed to start

its execution until the job of τ2 starts its execution, yielding

the schedule in Fig. 1(b). In this example, if D2 = 6 and

D4 = 10 hold, the disallowance option for τ2 enables every

job deadline to be met while the allowance option yields the

job deadline miss of τ2. On the other hand, if D2 = 8 and

D4 = 8 hold, the allowance option for τ2 enables every job

deadline to be met while the disallowance option yields the

job deadline miss of τ4. □

According to Example 1, we need to employ the following

task option for τk: whether a higher-priority, ready job of τk
allows a lower-priority job of τi to start its execution when

the number of available processors is smaller than mk but no

smaller than mi. To this end, we employ an additional binary

task option ϕk for each τk ∈ τ as follows. Suppose that a job

of τk is ready to be executed because the number of available

processors is not sufficient (i.e., less than mk).

• If ϕk = T, it is allowed to start the execution of jobs

whose priority is lower than the job of τk (which is a

mechanism for traditional NPG).

• If ϕk = F, it is not allowed to start the execution of jobs

whose priority is lower than the job of τk.

Using the binary task option ϕk, we can formally state the

NPG∗ framework in Algorithm 1. The difference between the

traditional NPG framework and the NPG∗ framework lies in

Line 4 in Algorithm 1. That is, while the former finds the next

job to be executed until there is no more available processor or

there is no more job to be checked in the ready queue, the latter

stops finding the next job to be executed if a higher-priority

job of τk with ϕk = F cannot start its execution. Therefore,

the NPG∗ framework is a generalization of the traditional NPG

framework; NPG is equivalent to NPG∗ by assigning ϕi = T

for every τi ∈ τ . While the NPG∗ framework can be applied to

most (if not all) prioritization policies, the rest of this paper

focuses on NPG∗-FP by applying fixed priority scheduling

(FP) to NPG∗.

From now on, a job is said to be pending at t under

NPG∗-FP, if the job is ready (i.e., has been released) at t,
but cannot execute for whatever reasons (i.e., due to either

the lack of available processors, or the existence of a ready

job of a higher-priority task τh with ϕh = F that cannot be

executed).
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IV. SCHEDULABILITY ANALYSIS FOR NPG∗-FP

In this section, we develop a schedulability test for

NPG∗-FP for a set of tasks, each of whose ϕk is given. To

this end, we develop a condition for each job’s schedulability,

which relies on some values only revealed at run-time (Theo-

rem 1 in Section IV-A). We then derive offline upper-bounds of

each of those unknown values individually, developing the first

schedulability test for NPG∗-FP (Theorem 2 in Section IV-B).

Finally, we develop a way to tightly upper-bound a group

of individual values, yielding an improved version of the

schedulability test for NPG∗-FP (Theorem 3 in Section IV-C).

A. Development of Each Job’s Schedulability Condition

As a base structure of the schedulability test, we adapt

an existing interference-based framework for preemptive se-

quential (i.e., single-thread) scheduling in [28, 29] and that for

non-preemptive sequential scheduling in [30, 31]. It derives a

sufficient condition for a job of interest to start its execution

no later than the last instant at which the job will miss its

deadline unless starting its execution. We focus on a job of τk
of interest (denoted by Jk) whose release time is rk, and target

the interval ∆k = [rk, rk+Dk−Ck) of length (Dk−Ck). If the

length of the time interval in ∆k during which Jk is pending

is strictly less than (Dk −Ck), the job can start its execution

within ∆k, which implies that the job can finish its execution

until its deadline at rk +Dk due to the job’s non-preemptive

execution. To calculate the length of the time interval, we

should consider an important property of NPG∗-FP: a job

of a lower-priority task τk cannot start its execution, when

there exists at least one pending job of a higher-priority task

τh with ϕh = F. To express the time interval itself and that

associated with/without the important property of NPG∗-FP,

we define the following notations, where ∆ is a consecutive

time interval.

• τHPF(τk) is a set of tasks {τh ∈ τ} whose priority is

higher than τk and whose ϕh is F, i.e., τHPF(τk) = {τh ∈

τHP(τk)|ϕh = F}.

• LP
k(∆) is the time interval in ∆, where a job of τk is

pending.

• LPH
k (∆) is the time interval in ∆, where a job of τk is

pending and there exists at least a task τh ∈ τHPF(τk)
such that a job of τh is pending, i.e., LPH

k (∆) = LP
k(∆) ∩

⋃

τh∈τ
HPF(τk)

LP
h(∆).

• LPN
k (∆) is the time interval in ∆, where a job of τk is

pending and there exists no task τh ∈ τHPF(τk) such that

a job of τh is pending, i.e., LPN
k (∆) = LP

k(∆) \ LPH
k (∆). For

the sake of simplicity, we represent LPN
k (∆) as Lk(∆) in

the rest of the paper.

In short, a job of τk is pending at any time instant in LPH
k (∆)

due to at least one pending job of a task τh ∈ τHPF(τk), while

a job of τk is pending at any time instant in Lk(∆) due to the

lack of available processors (i.e., less than mk) when there is

no pending job of a task τh ∈ τHPF(τk).
We investigate the following example that shows the situa-

tion where a job is pending under NPG∗-FP.

Example 2: Consider the four tasks (similar to Example 1)

are scheduled by NPG∗-FP on eight processors: τ1(T1=25,
C1=4, D1=25,m1=2), τ2(25, 4, 25, 6), τ3(25, 4, 25, 3) and

τ4(25, 4, 25, 3). A job of τ3 is released at t = −2, and

jobs of other tasks are released at t = 0; τ1 and τ4 have

the highest and lowest task priority, respectively. If we set

ϕ2 = F, the schedule under NPG∗-FP is shown in Fig. 1(b).

In the figure, the job of τ4 (with ∆4 = [0, 0+25−4=21)) is

pending in LP
4(∆4) = [0, 6). In particular, the job is pending in

LPH
4 (∆4) = [0, 2), although the number of available processors

(i.e., 3) is the same as m4 = 3. This happens due to the

salient feature of NPG∗; the job of τ2 with ϕ2 = F does not

allow any lower-priority job to start its execution when the

job of τ2 is pending. On the other hand, the job is pending in

L4(∆4) = [2, 6), because the number of available processors

(i.e., 0 in [2, 4) and 2 in [4, 6)) is less than the number of

its threads to be executed concurrently (i.e., m4 = 3). This

type of inability to execute a ready job also happens under

the traditional NPG framework.

In the existing interference-based schedulability test frame-

work in [28–31], the schedulability of a job of τk is judged

by calculating an upper-bound of the duration in which the

number of processors unoccupied by other jobs is not sufficient

for the execution of the job of interest. However, in LPH
k (∆k)

under NPG∗-FP, it is possible for the job of interest to be

pending, even though the number of unoccupied processors

is sufficient for the job’s execution; this happens when there

exists a pending job of a higher-priority task τh ∈ τHPF(τk).
Therefore, in order to utilize the existing interference-based

schedulability test framework for NPG∗-FP, we need to ex-

press the length of LPH
k (∆k) as the length of Lh(∆k) for

τh ∈ τHPF(τk), which is addressed by the following lemma.

Lemma 1: The following inequality holds for a job of

interest of τk ∈ τ released at rk (i.e., Jk), where ∆k =
[rk, rk +Dk − Ck):

|LPH
k (∆k)| ≤

∑

τh∈τ
HPF(τk)

|Lh(∆k)|. (1)

Proof: We now prove LPH
k (∆k) ⊆

⋃

τh∈τ
HPF(τk)

Lh(∆k),

which is a sufficient condition for the lemma.

By definition, LPH
k (∆k) = LP

k(∆k) ∩
⋃

τh∈τ
HPF(τk)

LP
h(∆k)

holds; therefore, LPH
k (∆k) ⊆

⋃

τh∈τ
HPF(τk)

LP
h(∆k) holds. Ap-

plying this relation, it suffices to prove
⋃

τh∈τ
HPF(τk)

LP
h(∆k) =

⋃

τh∈τ
HPF(τk)

Lh(∆k). Let τhx
denote the xth highest-priority

task in τHPF(τk). We prove it by mathematical induction.

(Base case) Since τh1
is the highest-priority task in

τHPF(τk), LPH
h1
(∆k) = ∅ holds, which implies LP

h1
(∆k) =

Lh1
(∆k).

(Inductive case) Suppose that
⋃

1≤x≤n−1 L
P
hx

(∆k) =
⋃

1≤x≤n−1 Lhx(∆k) holds for any n ≥ 2. The following holds.
⋃

1≤x≤n
LP

hx
(∆k)

=
⋃

1≤x≤n−1 L
P
hx

(∆k) ∪ LP
hn

(∆k)

=
⋃

1≤x≤n−1 L
P
hx

(∆k) ∪ LPH
hn

(∆k) ∪ Lhn(∆k)

(by the definition of LP
hn

(∆k))
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=
⋃

1≤x≤n−1 L
P
hx

(∆k) ∪ {L
P
hn

(∆k) ∩
⋃

1≤x≤n−1 L
P
hx

(∆k)} ∪

Lhn(∆k) (by the definition of LPH
hn

(∆k))

=
⋃

1≤x≤n−1 L
P
hx

(∆k) ∪ Lhn(∆k) (by L ∪ {L′ ∩ L} = L)

=
⋃

1≤x≤n−1 Lhx(∆k)∪Lhn(∆k) (by the supposition)

=
⋃

1≤x≤n
Lhx(∆k)

By the base and inductive case,
⋃

τh∈τ
HPF(τk)

LP
h(∆k) =

⋃

τh∈τ
HPF(τk)

Lh(∆k) holds, which proves the lemma.

Using the lemma, we can test Jk’s schedulability by using

terms for Lx(∆k) only (without using terms for LPH
x (∆k) and

LP
x(∆k)) as follows.

Lemma 2: Suppose that a task set τ is scheduled by

NPG∗-FP on an m-processor platform. If Eq. (2) holds, a

job of interest of τk released at rk (i.e., Jk) cannot miss its

deadline, where ∆k = [rk, rk +Dk − Ck).

∣

∣Lk(∆k)
∣

∣+
∑

τh∈τ
HPF(τk)

∣

∣Lh(∆k)
∣

∣ < Dk − Ck (2)

Proof: By the definition of LP
k(∆k), Lk(∆k) and

LPH
k (∆k), the following conditions hold: Lk(∆k)∪L

PH
k (∆k) =

LP
k(∆k) and Lk(∆k) ∩ LPH

k (∆k) = ∅, which yields the

relation of |LP
k(∆k)| = |Lk(∆k)|+ |LPH

k (∆k)|. Once we apply

Eq. (1) to the relation, |LP
k(∆k)| ≤ the LHS of Eq. (2) holds.

Therefore, if Eq. (2) holds, |LP
k(∆k)| < Dk − Ck holds.

Considering the definition of LP
k(∆k) and the length of ∆k

(that is (Dk − Ck)), |LP
k(∆k)| < Dk − Ck is a sufficient

condition for Jk to start its execution no later than the end of

∆k (i.e., rk+Dk−Ck), meaning that Jk finishes its execution

no later than its deadline rk+Dk by non-preemptive execution.

To express the contribution of jobs of a single task τi (̸= τk)

to |Lk(∆k)| and |Lh(∆k)| for τh ∈ τHPF(τk) in Eq. (2), we

define the following notation, where ∆ is a consecutive time

interval.

• Lk←i(∆) is the time interval in Lk(∆), where a job of

τi is executed. By definition, Lk←i(∆) ⊆ Lk(∆) holds.

Then, we can upper-bound |Lk(∆k)| and |Lh(∆k)| for τh ∈
τHPF(τk) in Eq. (2), respectively using the terms |Lk←i(∆k)|
and |Lh←i(∆k)| for τh ∈ τHPF(τk), as follows.

Lemma 3: Suppose that a task set τ is scheduled by

NPG∗-FP on an m-processor platform. Then, Eq. (3) holds

for a job of interest of τk ∈ τ released at rk (i.e., Jk), where

∆k = [rk, rk +Dk − Ck).

∣

∣Lk(∆k)
∣

∣ ≤
∑

τi∈τ\{τk}

∣

∣Lk←i(∆k)
∣

∣ ·min(mi,m−mk + 1)

m−mk + 1
(3)

Also, if there is no execution of Jk in ∆k, Eq. (4) holds

for every τh (̸= τk) ∈ τ .

∣

∣Lh(∆k)
∣

∣ ≤
∑

τi∈τ\{τh,τk}

∣

∣Lh←i(∆k)
∣

∣ ·min(mi,m−mh + 1)

m−mh + 1

(4)

Proof: Suppose that Eq. (3) does not hold; we show the

contradiction of the supposition.

We define the amount of execution as follows: if a job Jk of

τk is executed in an interval L on mk processors, its amount of

execution in L is |L| ·mk. By the definition of Lk(∆k), there

should be at least (m−mk+1) processors that perform other

jobs’ execution at any time instant in Lk(∆k); otherwise, there

should be at least mk available processors, which contradicts

that Jk is pending without any task τh ∈ τHPF(τk) such that

a job of τh is pending. Therefore, at each time instant in

Lk(∆k), we can select arbitrary (m−mk+1) busy processors

and call them “counted processors”; then, the amount of

execution of all jobs in Lk(∆k) on the counted processors

is exactly |Lk(∆k)| · (m−mk + 1).
On the other hand, the amount of execution of jobs of a

task τi ∈ τ \ {τk} in Lk(∆k) on the counted processors is

upper-bounded by |Lk←i(∆k)| ·min(mi,m−mk+1). Hence,

the amount of execution of jobs of all tasks τi ∈ τ \ {τk}
in Lk(∆k) on the counted processors is upper-bounded by
∑

τi∈τ\{τk}
|Lk←i(∆k)| ·min(mi,m−mk + 1). The suppo-

sition implies that the upper-bound is strictly smaller than the

exact value, which contradicts.

Once we replace τk with τh in Eq. (3), we can prove Eq. (4)

under the condition that there is no execution of jobs of τk in

∆k, by removing the term regarding τk in the summation of

the RHS of Eq. (4).

By applying Lemma 3 to Lemma 2, we have the following

condition for each job’s schedulability condition.

Theorem 1: Suppose that a task set τ is scheduled by

NPG∗-FP on an m-processor platform. If Eq. (5) holds, a job

of interest of τk released at rk (i.e., Jk) can start its execution

no later than rk + Dk − Ck (and therefore cannot miss its

deadline), where ∆k = [rk, rk +Dk − Ck).

∑

τh∈τ
HPF(τk)

(

∑

τi∈τ\{τh,τk}

∣

∣Lh←i(∆k)
∣

∣ ·min(mi,m−mh + 1)

m−mh + 1

)

+
∑

τi∈τ\{τk}

∣

∣Lk←i(∆k)
∣

∣ ·min(mi,m−mk + 1)

m−mk + 1
< Dk − Ck

(5)

Proof: By applying Eqs. (3) and (4) to Eq. (2), we have

Eq. (5).

We would like to summarize the main reason why we

succeed to derive Theorem 1. First, we separate the time

interval where Jk is pending (i.e., LP
k(∆k)), into the interval

where there is a pending job of a higher-priority task with

ϕh = F (i.e., LPH
k (∆k)) and the interval where there is no

pending job of a higher-priority task with ϕh = F (i.e.,

Lk(∆k)). Second, considering the latter (i.e., Lk(∆k)) can

be utilized by the existing interference-based schedulability

test framework while the former (i.e., LPH
k (∆k)) cannot, we

develop a way to express the term of LPH
k (∆k) as the terms

of Lh(∆k) for τh ∈ τHPF(τk).
Since Eq. (5) requires the values of |Lh←i(∆k)| and

|Lk←i(∆k)| that are only available at run-time, we need to
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τi’s job release τi’s job deadline τi’s job execution

Ti Ti Ti

Di

Interval of interest of length

Di−Ci Ci Ci Ci

Di Di

Fig. 2. The job release and execution scenario for Wi(ℓ) [29]

derive an upper-bound of the values in order to develop an

offline schedulability test that requires the task parameters

only. To this end, we utilize two conditions for |Lx←i(∆k)|
where τx is τk or τh ∈ τHPF(τk): a job of τx is pending in

∆k, but a job of τi executes in ∆k. While Section IV-B upper-

bounds individual terms (i.e., |Lx←i(∆k)|), Section IV-C will

derive different types of upper-bounds for a group of terms.

B. Developement of Schedulability Analysis for NPG∗-FP

We now explain how to upper-bound |Lk←i(∆k)| with two

cases ϕk = T and ϕk = F.

For τk that satisfies ϕk = T, we consider three cases for the

relationship between τi (̸= τk) and τk; (i) τi ∈ τHP(τk), (ii)

τi ∈ τLP(τk)|mi ≥ mk, and (iii) τi ∈ τLP(τk)|mi < mk, by

adapting the techniques in [28–31].

First, if τi ∈ τHP(τk) holds, we can upper-bound

|Lk←i(∆k)| by Wi(Dk −Ck), where Wi(ℓ) is the maximum

duration of execution of jobs of τi in a consecutive interval

of length ℓ [29]. As shown in Fig. 2, the maximum duration

occurs when the first job of τi is executed at the latest and

the following jobs of τi (that are periodically released) are

executed as early as possible; also, the interval of interest

begins at which the first job’s execution starts. Then, the

number of jobs of τi whose next job’s release time is within the

interval of interest (e.g., the first and second jobs in Fig. 2) is

calculated by Ni(ℓ) =
⌊

ℓ+Di−Ci

Ti

⌋

, and the jobs are executed

for Ci each. Also, if there exists a job in the interval of interest,

which does not belong to the Ni(ℓ) jobs (e.g., the third job in

Fig. 2), the job is executed for min
(

Ci, ℓ+Di−Ci−Ni(ℓ)·Ti

)

in the interval. Considering the interval length ℓ, Wi(ℓ) can

be calculated as follows [29].

Wi(ℓ) = min
(

ℓ,Ni(ℓ) · Ci +min
(

Ci, ℓ+Di − Ci −Ni(ℓ) · Ti

)

)

(6)

Second, if τi ∈ τLP(τk)|mi ≥ mk holds, we can upper-

bound |Lk←i(∆k)| by min(Dk − Ck, Ci), which is no larger

than Wi(Dk − Ck). Since mi is no smaller than mk, the

situation of PR2 in Section III cannot occur for a pair of

a lower-priority job of τi and a higher-priority job of τk.

Therefore, the only situation where any job of τi can prevent

Jk from executing is PR1 in Section III, which is, the job

of τi starts its execution before rk. In this case, the duration

of the execution of jobs of τi in ∆k is upper-bounded by a

single execution of a job of τi and the interval length, yielding

min(Dk − Ck, Ci) [30, 31].

Third, if τi ∈ τLP(τk)|mi < mk holds, min(Dk − Ck, Ci)
is not a safe upper-bound of |Lk←i(∆k)|. This is because, if

the number of available processors at t is smaller than mk but

no smaller than mi, a ready job of τi can start its execution

while the ready job of τk cannot; this results in a situation

where multiple jobs of τi start their executions while the ready

job of τk cannot. PR2 in Section III explains this priority-

inversion, which is also shown in Example 1 associated with

Fig. 1(a). Therefore, we upper-bound |Lk←i(∆k)| by Wi(Dk−
Ck), which is an upper-bound of the duration of the execution

of jobs of τi in an interval of length (Dk − Ck).
Let Ek←i denote an upper-bound of |Lk←i(∆k)|. Then, we

summarize the case for ϕk = T as follows.

For ϕk = T,

Ek←i =







Wi(Dk − Ck), if τi ∈ τHP(τk),
min(Dk − Ck, Ci), if τi ∈ τLP(τk)|mi ≥ mk,

Wi(Dk − Ck), if τi ∈ τLP(τk)|mi < mk.

(7)

On the other hand, for τk that satisfies ϕk = F, we consider

two cases for the relationship between τi (̸= τk) and τk: (i)

τi ∈ τHP(τk), and (ii) τi ∈ τLP(τk).
First, if τi ∈ τHP(τk) holds, we can upper-bound

|Lk←i(∆k)| by Wi(Dk −Ck), which is the same as the case

for ϕk = T.

Second, if τi ∈ τLP(τk) holds, any job of τi cannot start its

execution when a job of τk with ϕk = F is pending due to

the mechanism of the NPG∗ framework. Therefore, we need

to consider PR1 only, but not PR2; this is the main feature

of NPG∗. This implies that we can use min(Dk −Ck, Ci) as

an upper-bound of |Lk←i(∆k)| not only for the case for τi ∈
τLP(τk)|mi ≥ mk but also for the case for τi ∈ τLP(τk)|mi <
mk, which is different from the cases for ϕk = T.

Then, we summarize the case for ϕk = F as follows.

For ϕk = F,

Ek←i =

{

Wi(Dk − Ck), if τi ∈ τHP(τk),
min(Dk − Ck, Ci), if τi ∈ τLP(τk).

(8)

Finally, the following lemma records the upper-bound of

|Lk←i(∆k)|.

Lemma 4: Suppose that a task set τ is scheduled by

NPG∗-FP on an m-processor platform. Then, Eq. (9) holds

for a job of interest of τk ∈ τ released at rk (i.e., Jk), and

τi ∈ τ \ {τk}.

∣

∣Lk←i(∆k)
∣

∣ ≤ Ek←i, (9)

where ∆k = [rk, rk +Dk − Ck), and Ek←i for ϕk = T and

ϕk = F is shown in Eqs. (7) and (8), respectively.

Proof: By the definition of Lk←i(∆k), a job of τi is

executed at any time instant in Lk←i(∆k). By the calculation

of Wi(Dk −Ck), jobs of τi cannot be executed for more than

Wi(Dk−Ck) in any consecutive interval of length (Dk−Ck).
Therefore, considering Lk←i(∆k) is a subset of ∆k, Eq. (9)

holds for all the cases where Ek←i = Wi(Dk − Ck), which

are τi ∈ τHP(τk) and τi ∈ τLP(τk)|mi < mk for ϕk = T in

Eq. (7), and τi ∈ τHP(τk) for ϕk = F in Eq. (8).

Then, the remaining cases to be proved are τi ∈
τLP(τk)|mi ≥ mk for ϕk = T in Eq. (7), and τi ∈ τLP(τk)
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for ϕk = F in Eq. (8). In the former case, mi ≥ mk makes it

impossible for a job of τi (Ji) to start its execution at t when

Ji and Jk are active at t; this implies, PR2 in Section III does

not occur. Therefore, PR1 in Section III (i.e., blocking) is the

only situation where a job of τi is executing while Jk is not.

By considering the interval length of Lk←i(∆k) is at most

(Dk − Ck) (because Lk←i(∆k) is a subset of ∆k) and only

one job of τi can block Jk, Ek←i = min(Dk−Ck, Ci) holds.

In the latter case, since Jk disallows a lower-priority job to

be executed when it is pending (by ϕk = F) by NPG∗, PR1

in Section III (i.e., blocking) is the only situation where a job

of τi is executing while Jk is not. The remaining proof is the

same as the former case.

The next step is to upper-bound |Lh←i(∆k)| for τh ∈
τHPF(τk) in Eq. (5). In any interval that belongs to Lh←i(∆k),
(i) a job of τi is executed, (ii) a job of τh is pending, and (iii)

there is no pending job of τg ∈ τHPF(τh). Since it is complex

to upper-bound |Lh←i(∆k)| by considering conditions (ii) and

(iii), we now use condition (i) only; however, conditions (ii)

and (iii) will be used in the next subsection. As we explained,

Wi(ℓ) is the maximum duration of execution of jobs of τi in

an interval of length ℓ; therefore, |Lh←i(∆k)| ≤ Wi(Dk−Ck)
holds regardless of ϕk. Let Eh←i(τk) for τh ∈ τHPF(τk) and

τk ̸= τi ̸= τh denote an upper-bound of |Lh←i(∆k)|, which

can be calculated as follows.

For both ϕk = T and ϕk = F,

Eh←i(τk) = Wi(Dk − Ck). (10)

We record this derivation in the following lemma.

Lemma 5: Suppose that a task set τ is scheduled by

NPG∗-FP on an m-processor platform. Then, Eq. (11) holds

for a job of interest of τk ∈ τ released at rk (i.e., Jk), and

every combination of τh ∈ τHPF(τk) and τi ∈ τ \ {τh, τk}.

∣

∣Lh←i(∆k)
∣

∣ ≤ Eh←i(τk), (11)

where ∆k = [rk, rk +Dk − Ck), and Eh←i(τk) is shown in

Eq. (10).

Proof: By the definition of Lh←i(∆k), a job of τi is

executed in Lh←i(∆k). By the calculation of Wi(Dk − Ck),
jobs of τi cannot be executed for more than Wi(Dk −Ck) in

any consecutive interval of length (Dk − Ck). Therefore, the

lemma holds.

Applying Lemmas 4 and 5 to Theorem 1, we develop a

schedulability test for NPG∗-FP.

Theorem 2: A task set τ is schedulable by NPG∗-FP on

an m-processor platform, if the following inequality holds for

every τk ∈ τ .

∑

τh∈τ
HPF(τk)

(

∑

τi∈τ\{τh,τk}

Eh←i(τk) ·min(mi,m−mh + 1)

m−mh + 1

)

+
∑

τi∈τ\{τk}

Ek←i ·min(mi,m−mk + 1)

m−mk + 1
< Dk − Ck (12)

Proof: Suppose that there exists a job of τk released at rk
(denoted by Jk) that misses its deadline, even though Eq. (12)

holds. We show the contradiction of the supposition.

By Lemmas 4 and 5, the LHS of Eq. (5) is upper-bounded

by the LHS of Eq. (12). This means, the supposition (i.e.,

Eq. (12) holds) implies that Eq. (5) holds. Therefore, The-

orem 1 guarantees there is no deadline miss of Jk, which

contradicts the supposition.

Considering NPG-FP is the same as NPG∗-FP by assigning

ϕi = T for every τi ∈ τ , Theorem 2 is not only the first

schedulability test for NPG∗-FP, but also that for NPG-FP

under our system model. Note that there exists a schedulability

test for NPG-FP, but it works only when there are a finite

number of jobs whose release patterns are known a priori [27].

Time-complexity of Theorem 2. Let n′ and n denote the

number of tasks τi ∈ τ that satisfy ϕi = F and the number

of tasks in τ , respectively. For given τk ∈ τ , we need O(n)
computations to calculate the summation of the fraction that

includes Ek←i. For given τk ∈ τ and τh ∈ τHPF(τk), we also

need O(n) computations to calculate the inner summation of

the fraction that includes Eh←i(τk). Since we have at most

(1 + n′) tasks in {τk} ∪ τHPF(τk), the calculation of the LHS

of Eq. (12) for given τk takes O(n ·n′) time-complexity. Since

Eq. (12) should be checked for every τk ∈ τ (i.e., n tasks),

the time-complexity of Theorem 2 is O(n2 · n′).

C. Improvement of Schedulability Analysis for NPG∗-FP

Although we successfully developed a schedulability test

for NPG∗-FP in Theorem 2, we may have room for further

improvement of the schedulability test. If we focus on a single

task τi ∈ τ \{τk} when we test the schedulability of τk in the

theorem, τi can contribute to the LHS of Eq. (12) not only

by Eh←i(τk) for different tasks τh ∈ τHPF(τk) but also by

Ek←i. This means, it may be possible for jobs of τi to make

excessive contributions to those upper-bounds beyond the jobs’

execution capability, to be explained in the following example.

Example 3: Consider the four tasks (similar to Example 2)

are scheduled by NPG∗-FP on eight processors: τ1(T1=25,
C1=4, D1=25,m1=2), τ2(25, 4, 25, 6), τ3(25, 4, 25, 3) and

τ4(25, 4, 25, 3), with ϕ2 = ϕ3 = F. τ1 (= τi) can contribute

to the LHS of Eq. (12) for τ4 (= τk) by E4←1, E3←1(τ4)
and E2←1(τ4). Since τ1 cannot be executed for more than

W1(D4 −C4) = 8 in the interval of length D4 −C4, the sum

of their contributions should not exceed W1(D4−C4), which

cannot be captured by the LHS of Eq. (12).

If we carefully deduct those excessive contributions, we can

improve the schedulability performance, which is a matter of

this subsection. To this end, we derive properties of NPG∗-FP

that can address such pessimism in calculating the upper-

bounds in the theorem. As a first step, we derive the disjoint

property of the intervals shown in Lemma 2 as follows.

Lemma 6: Suppose that a task set τ is scheduled by

NPG∗-FP on an m-processor platform. For every τh, τh2 ∈
τHPF(τk) where τh ̸= τh2, Eqs. (13) and (14) hold for
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∆k = [rk, rk +Dk − Ck), an interval for the job of interest

of τk released at rk.

Lk(∆k) ∩ Lh(∆k) = ∅ (13)

Lh2
(∆k) ∩ Lh(∆k) = ∅ (14)

Proof: Suppose that Eq. (13) does not hold, meaning that

there exists a non-empty interval L = Lk(∆k) ∩ Lh(∆k).
By the definition of Lh(∆k) and the fact that L belongs to

Lh(∆k), there exists a job of τh that is pending in L. By the

definition of Lk(∆k) and the fact that L belongs to Lk(∆k),
there exists no job of τh ∈ τHPF(τk) that is pending in L.

This contracts the existence of the interval L, which proves

Eq. (13).

Without loss of generality, we assume τh2
has a lower

priority than τh. Then, the proof of Eq. (14) is the same as

the proof of Eq. (13), if we replace τk with τh2.

Lemma 6 indicates that all intervals in Eq. (2) (i.e., Lk(∆k)
and Lh(∆k) for every τh ∈ τHPF(τk)) are disjoint. Since

Lk←i(∆k) ⊆ Lk(∆k) and Lh←i(∆k) ⊆ Lh(∆k) hold by

definition, the lemma also indicates that all intervals that

related to given τi in Eq. (5) (i.e., Lh←i(∆k) for every

τh ∈ τHPF(τk) and Lk←i(∆k)) are disjoint. Also, by definition,

in any interval within Lh←i(∆k) for every τh ∈ τHPF(τk) and

that within Lk←i(∆k), there exists a job of τi that is executing.

We focus on the situation where there is no execution of Jk
in ∆k (whose beginning is the release time of Jk). Then, in any

interval that related to given τi in Eq. (5), Jk is pending while

a job of τi is executing. Considering the disjoint property for

the intervals that related to given τi in Eq. (5), we can upper-

bound the length of the intervals, by the maximum duration in

which jobs of τi are executed while Jk is not in ∆k, recoreded

as follows.

Lemma 7: Suppose that a task set τ is scheduled by

NPG∗-FP on an m-processor platform. Let rk denote the

release time of Jk invoked by τk. If there is no execution

of Jk in ∆k = [rk, rk +Dk − Ck), Eq. (15) holds for every

τi ∈ τ \ {τk}.

∣

∣Lk←i(∆k)
∣

∣+
∑

τh∈τ
HPF(τk)

∣

∣Lh←i(∆k)
∣

∣ ≤ Ek←i (15)

Proof: First, we prove the following: if Jk does not

start its execution in ∆k, the duration of the execution of

jobs of τi in ∆k is upper-bounded by Ek←i. Recall the

process of deriving Ek←i as an upper-bound of |Lk←i(∆k)|
in Section IV-B. In the process of deriving an upper-bound

of |Lk←i(∆k)|, we use the conditions of Lk←i(∆k): (i) a job

of τi is executed, and (ii) a job of interest of τk (i.e., Jk) is

pending. Therefore, Ek←i upper-bounds the duration of the

execution of jobs of τi in ∆k when Jk is not executed in ∆k.

Based on this property, we can now prove the lemma.

Suppose that Eq. (15) is violated even though there is no

execution of Jk in ∆k. Since Lh←i(∆k) belongs to Lh(∆k)
for every τh ∈ τHPF(τk) and Lk←i(∆k) belongs to Lk(∆k),

all Lh←i(∆k) for τh ∈ τHPF(τk) and Lk←i(∆k) are disjoint

by Lemma 6. Also, by definition, in any interval within

Lh←i(∆k) for every τh ∈ τHPF(τk) and that within Lk←i(∆k),
there exists a job of τi that is executing. Therefore, the

summation of the interval length of Lh←i(∆k) for every

τh ∈ τHPF(τk) and that of Lk←i(∆k) is upper-bounded by the

duration of the execution of jobs of τi in ∆k when there is no

execution of Jk in ∆k. Therefore, the supposition contradicts

the above proof, which proves the lemma.

Applying Lemma 7 to Theorem 1, we can develop a

schedulability test for NPG∗-FP.

Lemma 8: A task set τ is schedulable by NPG∗-FP on an m-

processor platform, if the following statement is true for every

τk ∈ τ : Eq. (16) holds for every combination of E′k←i ≥ 0 for

τi ∈ τ \ {τk} and E′h←i(τk) ≥ 0 for a pair of τh ∈ τHPF(τk)
and τi ∈ τ \ {τh, τk} that satisfy Eq. (17).

∑

τh∈τ
HPF(τk)

(

∑

τi∈τ\{τh,τk}

E′h←i(τk) ·min(mi,m−mh + 1)

m−mh + 1

)

+
∑

τi∈τ\{τk}

E′k←i ·min(mi,m−mk + 1)

m−mk + 1
< Dk − Ck (16)

E′k←i +
∑

τh∈τ
HPF(τk)

E′h←i(τk) ≤ Ek←i (17)

Proof: Suppose that there exists a job of τk released at rk
(denoted by Jk) that misses its deadline, even though Eq. (16)

holds for every combination of E′k←i for τi ∈ τ \ {τk} and

E′h←i(τk) for a pair of τh ∈ τHPF(τk) and τi ∈ τ \ {τh, τk}
that satisfy Eq. (17).

By Eq. (15), Eq. (16) subject to Eq. (17) is a sufficient con-

dition for Eq. (5). Therefore, Theorem 1 guarantees that there

is no deadline miss of Jk, which contracts the supposition.

If we compare the LHS of Eq. (16) subject to Eq. (17)

with the LHS of Eq. (12), the former is always smaller

than or equal to the latter. This is because, Eq. (17) dis-

allows E′h←i(τk) to have a larger value than Eh←i(τk), as

Eh←i(τk) = Wi(Dk−Ck) holds by Eq. (10) that is no smaller

than Ek←i in Eqs. (7) and (8). Eq. (17) also disallows E′k←i

to have a larger value than Ek←i, as the RHS of Eq. (17)

is Ek←i. Therefore, Lemma 8 is an improved version of the

schedulability test in Theorem 2. However, since Lemma 8

entails many assignments to be investigated, we would like

to find a single maximum assignment of E′k←i = E∗k←i

and {E′h←i(τk) = E∗h←i(τk)}τh∈τHPF(τk) for given τi, which

maximizes the LHS of Eq. (16) subject to Eq. (17).

Algorithm 2 represents how to calculate E∗k←i and

{E∗h←i(τk)} for given τk and τi (̸= τk). We distribute the

budget of Ek←i (i.e., the RHS of Eq. (17)) to E∗k←i or one

of {E∗h←i(τk)} (i.e., terms in the LHS of Eq. (17)), such that

the LHS of Eq. (16) is maximized. In Lines 1–2, E∗k←i and

{E∗h←i(τk)} are set to 0. Since an increment of E∗x←i or one

of {E∗x←i(τk)} by 1 results in an increment of min(mi,m−
mx+1)/(m−mx+1) in the LHS of Eq. (16), we find τx that
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Algorithm 2 Calculation of E∗k←i and {E∗h←i(τk)}

For given τk and τi (̸= τk);

1: E∗k←i ← 0
2: E∗h←i(τk)← 0 for every task τh in τHPF(τk)
3: Let τx denote a task with the largest value of min(mi,m−mx+

1)/(m−mx + 1) in {τk} ∪ τHPF(τk)
4: if τx = τk then E∗k←i ← Ek←i;
5: else E∗x←i(τk)← Ek←i;
6: end if

has the largest value of min(mi,m−mx +1)/(m−mx +1)
in {τk} ∪ τHPF(τk) (Line 3). If the selected task τx is τk,

we assign Ek←i to E∗k←i (Line 4). Otherwise (i.e., if the

selected τx belongs to τHPF(τk)), we assign Ek←i to E∗x←i(τk)
(Line 5); this holds by Ek←i ≤ Eh←i(τk) (because of the

RHS of Eqs. (7) and (8), which are no larger than the RHS

of Eq. (10)).

Then, we can prove an important property of Algorithm 2

regarding the maximum assignment.

Lemma 9: E′k←i = E∗k←i and {E′h←i(τk) = E∗h←i(τk)}
assigned by Algorithm 2 for given τk and τi (̸= τk) maximize

Eq. (18) (i.e., the terms that include a given τi ∈ τ \ {τk} in

the LHS of Eq. (16)) subject to Eq. (17).

∑

τh∈τ
HPF(τk)

E′h←i(τk) ·min(mi,m−mh + 1)

m−mh + 1

+
E′k←i ·min(mi,m−mk + 1)

m−mk + 1
(18)

Proof: Suppose that there exist other assignments

E′k←i = E′′k←i and {E′h←i(τk) = E′′h←i(τk)} which yield

a larger value of Eq. (18) than that by E′k←i = E∗k←i and

{E′h←i(τk) = E∗h←i(τk)}. We consider two cases for τx
assigned by Line 3: (i) E′′k←i ̸= E∗k←i (if τx = τk by Line 4),

and (ii) E′′x←i(τk) ̸= E∗x←i(τk) (otherwise by Line 5).

We will prove the case of τx = τk; the proof of the case

for τx = τh ∈ τHPF(τk) is similar to that for τx = τk. First,

we consider E′′k←i > E∗k←i. Then, E′′k←i > Ek←i holds by

Line 4 in the algorithm, implying Eq. (17) is violated.

Second, we consider E′′k←i < E∗k←i holds. We focus on

the case where the LHS of Eq. (17) is the same as the

RHS; otherwise, we increase any arbitrary E′′k←i or one of

{E′′h←i(τk)} to further increase Eq. (18) without compro-

mising Eq. (17). Then, it is possible to increase E′′k←i by
(

E∗k←i − E′′k←i

)

at the expense of decreasing E′′h←i(τk) (for

some τh) by
(

E∗k←i−E′′k←i

)

; this results in increasing Eq. (18)

by
(

E∗k←i−E′′k←i

)

·
(min(mi,m−mk+1)

m−mk+1 − min(mi,m−mh+1)
m−mh+1

)

≥
0, for the assignment of E′′k←i and {E′′h←i(τk)}. Then, E′′k←i

and {E′′h←i(τk)} become the same as E∗k←i and {E∗h←i(τk)},

respectively after this increment/decrement; this contracts the

supposition (i.e., the existence of the assignments which yield

a larger value of Eq. (18) than that assigned by Algorithm 2).

Then, we can present an improved schedulability test for

NPG∗-FP, by replacing Ek←i and Eh←i(τk) in Eq. (12) with

E∗k←i and E∗h←i(τk) assigned by Algorithm 2, respectively,

which is recorded in the following theorem.

Theorem 3: A task set τ is schedulable by NPG∗-FP on

an m-processor platform, if the following inequality holds for

every τk ∈ τ :

∑

τh∈τ
HPF(τk)

(

∑

τi∈τ\{τh,τk}

E∗h←i(τk) ·min(mi,m−mh + 1)

m−mh + 1

)

+
∑

τi∈τ\{τk}

E∗k←i ·min(mi,m−mk + 1)

m−mk + 1
< Dk − Ck, (19)

where E∗k←i for every τi ∈ τ \ {τk} and E∗h←i(τk) for every

pair of τh ∈ τHPF(τk) and τi ∈ τ \ {τh, τk} are assigned by

Algorithm 2.

Proof: By Lemma 9, the LHS of Eq. (19) is the maximum

of the LHS of Eq. (16) subject to Eq. (17). Therefore, the

theorem holds by Lemma 8.

Time-complexity of Theorem 3. Algorithm 2 needs O(n′)
computations to find τx with the largest value of min(mi,m−
mh +1)/(m−mh +1), for a given pair of τk and τi (̸= τk),

where n′ is the number of tasks τi ∈ τ that satisfy ϕi = F.

Therefore, to calculate E∗k←i and {E∗h←i(τk)}τh∈τHPF(τk) for

every pair of τk and τi (̸= τk), we need O(n2 · n′), where n
is the number of tasks in τ .

Once we have E∗k←i and {E∗h←i(τk)}τh∈τHPF(τk) for every

pair of τk and τi (̸= τk) by Algorithm 2, the time-complexity

of the remaining calculation for Theorem 3 is the same as

the total time-complexity of Theorem 2, which is O(n2 · n′).
Therefore, the total time-complexity of Theorem 3 is O(n2 ·
n′).

V. OPTIMAL ASSIGNMENT OF {ϕj} FOR NPG∗-FP

In Section IV, we developed schedulability tests for

NPG∗-FP with given assignments of {ϕj}τj∈τ . Since ϕj is

a task option controllable by the scheduler, we can find

an assignment of {ϕj}τj∈τ associated with the proposed

schedulability tests, which makes τ (that is unschedulable by

other assignments) schedulable. In this section, we first derive

the properties of the proposed schedulability tests, and then

develop an algorithm that optimally assigns {ϕj}τj∈τ based

on the properties.

We investigate how a change of ϕh for a single task τh ∈ τ
affects the schedulability of its higher-priority tasks, its lower-

priority tasks, and τh itself, summarized as follows.

Lemma 10: Suppose τ is scheduled by NPG∗-FP on an m-

processor platform, and ϕj for every τj ∈ τ \ {τh} is set (to

either T or F, independently). Then, S1–S3 hold for τk ∈ τ ,

when we change a single ϕh for τh ∈ τ .

S1. If τh ∈ τLP(τk) holds, the LHS of Eq. (12) for τk when

ϕh = T is the same as the LHS of Eq. (12) for τk when

ϕh = F.

S2. If τh ∈ τHP(τk) holds, the LHS of Eq. (12) for τk when

ϕh = T is no larger than the LHS of Eq. (12) for τk when

ϕh = F.

140

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on December 27,2022 at 04:38:05 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 3 Optimal Assignment of {ϕj}τj∈τ
1: ϕj ← T for every task τj ∈ τ
2: for every task τj in τ from the highest-priority task to the lowest-

priority task do
3: if Eq. (19) does not hold for τk = τj then ϕj ← F

4: if Eq. (19) does not hold for τk = τj then return unschedu-
lable

5: end if
6: end if
7: end for
8: Return schedulable

S3. If τk = τh holds, the LHS of Eq. (12) for τk when ϕh =
T is no smaller than the LHS of Eq. (12) for τk when

ϕh = F.

Also, S1–S3 hold by replacing the LHS of Eq. (12) with that

of Eq. (19).

Proof: First, we prove S1–S3 for the LHS of Eq. (12).

In the LHS of Eq. (12), the only parts that can be affected by

{ϕj}τj∈τ are Ek←i, Eh←i(τk), and the target task set τHPF(τk)
in the summation.

If we focus on Ek←i, they are affected by ϕk. This is

because, the value of Ek←i depends on ϕk: either Eq. (7) for

ϕk = T or Eq. (8) for ϕk = F. The only difference between

Eq. (7) for ϕk = T and Eq. (8) for ϕk = F is the case for

τi ∈ τLP(τk)|mi < mk. Since Wi(Dk −Ck) for ϕk = T with

τi ∈ τLP(τk)|mi < mk is no smaller than min(Dk − Ck, Ci)
for ϕk = F with τi ∈ τLP(τk)|mi < mk, ϕk = F yields the

same or a smaller value of Ek←i than ϕk = T. On the other

hand, Eh←i(τk) is not affected by ϕk as shown in Eq. (10).

Therefore, S3 holds.

Different from ϕk, both Ek←i and Eh←i(τk) are not

affected by ϕi and ϕh by their definitions, which proves

S1. On the other hand, if a higher-priority task τh as-

signs ϕh = F, a lower-priority task τk has a new term

of
∑

τi∈τ\{τh,τk}
Eh←i(τk)·min(mi,m−mh+1)

m−mh+1 in the LHS of

Eq. (12). This is why S2 holds although Ek←i and Eh←i(τk)
are not affected by ϕi.

Second, we prove S1–S3 for the LHS of Eq. (19). Since

E∗k←i and E∗h←i(τk) in the LHS of Eq. (19) are calculated

from Algorithm 2 based on Lemma 8, we need to show that

every upper-bound in Lemma 8 accords with S1–S3. We can

observe that the upper-bound shown in Eq. (17) in Lemma 8

is Ek←i only, whose impact on the schedulability is already

addressed in the proof of S1–S3 for the LHS of Eq. (12).

Hence, S1–S3 for the LHS of Eq. (19) also hold.

Using Lemma 10, we present how to assign {ϕj}τj∈τ in

Algorithm 3. After setting ϕj to T for all τj ∈ τ as default

(Line 1), we determine ϕj for every τj ∈ τ from the highest-

priority task to the lowest-priority task (Lines 2–7) because

the schedulability of a higher-priority task τj is not affected

by its lower-priority tasks’ ϕh (explained in S1).

For each task τj whose ϕj is selected to be assigned, we

check whether ϕj = T makes Eq. (19) for τk = τj true. If

so, the final assignment of ϕj is T (by no change of ϕj = T

due to no “else” statement for the “if” statement in Line 3);

this is because, the assignment of ϕj = T is beneficial to

its lower-priority tasks’ schedulability compared to that of

ϕj = F (explained in S2). Otherwise, the only way for τj
to be schedulable without changing ϕh of its higher-priority

tasks τh ∈ τHP(τj) (which is already determined) is to assign

ϕj = F according to S3 (Line 3). If τj cannot be deemed

schedulable even after assigning ϕj = F, there is no way

for τj to be schedulable according to S3; in this case, we

return unschedulable (Line 4). Finally, if ϕj of every task

τj ∈ τ is assigned without returning unschedulable, we return

schedulable (Line 8). We state and prove the optimality of

Algorithm 3 in the following theorem.

Theorem 4: If Algorithm 3 returns unschedulable for a

task set τ , there is no assignment of {ϕj}τj∈τ such that

Theorem 3 deems τ schedulable by NPG∗-FP on an m-

processor platform.

Proof: Suppose that Algorithm 3 returns unschedulable,

but there exists an assignment of {ϕj}τj∈τ such that Theo-

rem 3 deems τ schedulable by NPG∗-FP on an m-processor

platform; we denote the assignment as {ϕ′j}τj∈τ . By the

supposition, there should be a task τk that makes Algorithm 3

return unschedulable in Line 4. This means, Eq. (19) for τk
does not hold for both ϕk = T and ϕk = F, under the

assignment of ϕh for every τh ∈ τHP(τk) by Algorithm 3;

we denote the assignment as {ϕ∗h}τh∈τHP(τk).
We investigate every τh ∈ τHP(τk) that satisfies ϕ′h ̸= ϕ∗h

from the highest-priority task to the lowest-priority task. (Case

1) If there is no such τh, ϕ′h is equal to ϕ∗h for every

τh ∈ τHP(τk). This contradicts the unschedulability of τk
when {ϕ′h} = {ϕ∗h} for every τh ∈ τHP(τk) is assigned by

Algorithm 3, because {ϕ′g} for every τg ∈ τLP(τk) does not

affect the schedulability of τk by S1.

(Case 2) If there is at least one τh that satisfies ϕ∗h = F and

ϕ′h = T, it contradicts the mechanism of Algorithm 3. This is

because, Algorithm 3 checks whether τh is schedulable with

ϕh = T (in Line 3) before that with ϕh = F (in Line 4), and

any assignment of {ϕg} for τg ∈ τLP(τh) does not affect the

schedulability of τh (by S1).

(Case 3) Therefore, the remaining case is that there are at

least one task τh that satisfies ϕ∗h = T and ϕ′h = F. This

also contradicts the schedulability and unschedulability of τk
under the assignment of {ϕ′j}τj∈τ and {ϕ∗j}τj∈τ , respectively.

This is because, such ϕh = F non-decreases the LHS of

Eq. (19) for τk, compared to ϕh = T (as explained in S2).

Therefore, τk under the assignment of {ϕ∗h}τh∈τHP(τk) cannot

return unschedulable if τk under the assignment of {ϕ′j}τj∈τ
is schedulable.

In summary, τh ∈ τHP(τk) that satisfies ϕ′h ̸= ϕ∗h cannot ex-

ist, which implies non-existence of τk that makes Algorithm 3

return unschedulable. This contradicts the supposition, which

proves the lemma.

Note that the optimality of Algorithm 3 also holds if we

apply Theorem 2 to Algorithm 3 by replacing Eq. (19) with

Eq. (12). Also, the time-complexity of Algorithm 3 is the same

as that of its underlying schedulability test (i.e., O(n2 ·n′) for
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Fig. 3. Schedulability performance of DoLi, NPG-FP, NPG∗-FP(1) and NPG∗-FP(2) under different settings when m = 8

Theorems 2 and 3), because each task τk checks its underlying

schedulability test at most twice in Algorithm 3.

VI. EVALUATION

In this section, we evaluate the effectiveness of the pro-

posed NPG∗-FP framework in improving schedulability per-

formance, via simulations.

We randomly generate a number of task sets, based on

recent studies for gang scheduling [21, 23]. We consider four

options for the number of processors m (8, 16, 32 and 64),

with three parameters: (i) the distribution of the task utilization

ui
def.
= Ci/Ti

(

the exponential distribution with λ = 0.1, 0.3,

0.5, 0.7 and 0.9, denoted by exp(λ)
)

, (ii) the range of the task

parallelism mi

(

[1, 1
2m] and [1,m)

)

, and (iii) the range of the

task set utilization U
def.
=

∑

τi∈τ
ui·mi

m

(

[0.0, 0.1), [0.1, 0.2),

[0.2, 0.3), ... , [0.9, 1.0)
)

. For given (i) and (ii), a task is

generated as follows. The period Ti is uniformly selected in

[10ms, 1000ms]; the relative deadline Di is set to Ti; Ci is

set to ui ·Ti, where ui is generated according to the given (i);

and mi is uniformly distributed in the given (ii). For every

combination of (i), (ii) and (iii), we generate 1,000 task sets,

yielding 5·2·10·1,000=100,000 task sets in total for each m.

We compare the following schedulability tests for NPG and

those for NPG∗:1

• DoLi (from the authors’ name): an existing schedula-

bility test for NPG-EDF [26], which is the only known

existing schedulability test for traditional NPG under our

system model,

• NPG-FP: Theorem 2 for NPG-FP (i.e., NPG∗-FP by

assigning ϕi = T for every τi ∈ τ ), and2

• NPG∗-FP(1) and NPG∗-FP(2): Theorems 2 and 3 for

NPG∗-FP with the assignment of {ϕj} by Algorithm 3,

respectively.

For each m, we count the number of schedulable task sets

by the four schedulability tests, which are presented in Table I.

We have the following observations. First, NPG∗-FP(2) covers

161.2%–346.0% and 11.2%–15.6% more schedulable task sets

1We apply DM (Deadline Monotonic) as a task priority assignment policy
to both NPG-FP and NPG∗-FP. It is beyond the scope of this paper to find
the optimal task priority assignment for FP.

2Theorems 2 and 3 are equivalent for NPG-FP.

TABLE I
THE NUMBER OF SCHEDULABLE TASK SETS, AND ITS NORMALIZED

VALUE BY NPG-FP (SHOWN IN THE PARENTHESES)

m DoLi NPG-FP NPG∗-FP(1) NPG∗-FP(2)

8 10655 (43.0%) 24806 (100.0%) 26070 (105.1%) 27836 (112.2%)
16 8070 (35.5%) 22718 (100.0%) 24190 (106.5%) 25994 (114.4%)
32 6233 (29.1%) 21446 (100.0%) 22863 (106.6%) 24813 (115.7%)
64 5423 (25.9%) 20929 (100.0%) 22337 (106.7%) 24187 (115.6%)

than DoLi and NPG-FP, respectively. In terms of schedu-

lability performance, the former implies that our schedula-

bility test for NPG∗ significantly outperforms the existing

schedulability test for traditional NPG, and the latter implies

that NPG∗ fairly enhances traditional NPG under the same

prioritization policy. Second, NPG∗-FP(2) finds 6.8%–8.5%

additional schedulable task sets that are not proven schedulable

by NPG∗-FP(1), which demonstrates the effectiveness of the

techniques in Section IV-C. Third, as m gets larger, the number

of schedulable task sets by DoLi significantly decreases while

that by our schedulability tests does not. This indicates that

the schedulability performance of our schedulability tests is

more robust to larger m, than the existing one.

While NPG∗-FP(2) and NPG∗-FP(1) respectively dominate

NPG∗-FP(1) and NPG-FP, our schedulability tests cannot

dominate DoLi. However, almost all task sets deemed schedu-

lable by DoLi are also deemed schedulable by our tests; for

example, out of 100,000 task sets with m = 64, there are 5,423

task sets schedulable by DoLi, out of which only ten task

sets are not proven schedulable by NPG∗-FP(2). Note that the

huge performance gap between DoLi and NPG-FP does not

necessarily mean FP outperforms EDF for NPG scheduling;

DoLi is an instance of EDF schedulability analysis, and the

performance comparison between FP and EDF is a long-term

question that researchers will try to answer in the future by

developing tighter schedulability analysis.

We then investigate how the schedulability performance

varies according to a change of (i) the range of U , (ii) the

distribution of ui, and (iii) the range of mi. To show the

representative results, Fig. 3 focuses on m = 8, and presents

the number of task sets schedulable by the four schedulability

tests under different settings for one of (i), (ii) and (iii) while

fixing the settings for the other two of (i), (ii) and (iii) by

U ∈ [0.3, 0.4), ui ∼ exp(0.9) and mi ∈ [1,m), respectively.
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First, we confirm that similar observations to the first and

second ones for Table I hold in most ranges of U , as shown

in Fig. 3(a) that presents different (i).

Second, Fig. 3(b) for different (ii) shows that, as λ in

exp(λ) increases from 0.1 to 0.9, the number of schedulable

task sets by our schedulability tests increases. This holds

mainly because, a smaller λ in exp(λ) tends to assign a

smaller ui for each task, yielding a larger number of tasks

in each task set for a given U . In our schedulability tests,

as the number of tasks in each task set gets larger, the more

pessimism is accumulated to the upper-bounds calculated in

the tests, yielding less schedulability performance; this has

been reported in the existing interference-based schedulability

tests (e.g., [28–31]).

Third, Fig. 3(c) for different (iii) shows that the schedu-

lability performance of all the schedulability tests under

mi ∈ [1, 1
2m] is better than that under mi ∈ [1,m); this is

because, a task with a larger mi makes it more difficult to

yield its schedulability. On the other hand, we observe that

the schedulability improvement of NPG∗-FP(2) over NPG-FP

under mi ∈ [1,m) (i.e., 32.0%) is higher than that under

mi ∈ [1, 1
2m] (i.e., 16.7%). This is because, although the

priority-inversion specialized for NPG increases with a larger

range of mi, our NPG∗ framework can effectively eliminate

such blocking by properly assigning ϕj = F.

VII. RELATED WORK

There have been studies on gang scheduling for real-time

systems, most of which deal with preemptive gang scheduling

(PG). Among the studies on PG, a group of them have targeted

the most fundamental prioritization policies, which are EDF

(Earliest Deadline First) and FP (Fixed-Priority scheduling),

and developed schedulability tests for PG-EDF [17, 21, 23,

33] and for PG-FP [18, 19, 33]; note that flaws in [17] were

reported in [22]. Also, an optimal scheduling algorithm for

PG has been explored in [16, 20]. A new concept of stationary

scheduling, which is a generalization of partitioned scheduling,

has been developed for PG [34], and it has been addressed

how to schedule DAG-structured tasks, in which each node

is expressed as a gang task [35]. While those studies have

focused on a set of single-criticality hard real-time tasks, they

have been extended to a set of mixed-criticality hard real-time

tasks [24] and that of single-criticality soft real-time tasks [25].

On the other hand, only a few studies have focused on

non-preemptive gang scheduling (NPG). The study in [26]

has developed the first schedulability test for NPG-EDF

(traditional NPG with EDF), and introduced a new type of

priority-inversion incurred by NPG (i.e., PR2 in Section III).

A schedulability test of NPG-FP has been recently devel-

oped [27], but its applicability is limited to a set of a finite

number of jobs whose release patterns are known in advance.

Different from the previous studies, our study proposes a

new, generalized design of NPG, called the NPG∗ framework.

We then developed schedulability tests for NPG∗-FP under

a given setting of {ϕj}, addressed an assignment problem

that finds an assignment of {ϕj} (if exists) that makes a

target task set schedulable by the schedulability tests, and

compared the schedulability performance of NPG∗-FP with

the {ϕj} assignment algorithm, with that of the traditional

NPG framework. All of the proposed design, development and

comparison are the first attempt in the area of scheduling a set

of non-preemptive gang tasks.

VIII. CONCLUSION

In this paper, we proposed a new generalized NPG frame-

work, NPG∗, under which each task has an option to allow

or disallow the priority-inversion specialized for NPG. To

demonstrate the effectiveness of the NPG∗ framework, we

developed a schedulability test for NPG∗-FP, its improved

version, and an algorithm that optimally assigns the task-

level option. The simulation results showed that the NPG∗

framework associated with the proposed schedulability tests

and the optimal assignment algorithm finds a number of

additional schedulable task sets, each of which has not been

proven schedulable by the traditional NPG framework. In the

future, we would like to further improve the schedulability

performance of the NPG∗ framework. One direction is to

derive tighter upper-bounds of the terms shown in the pro-

posed schedulability tests. It is also a promising direction to

develop a schedulability test for NPG∗ associated with other

prioritization policies such as EDF.
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