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Abstract—Different from existing MOT (Multi-Object Track-
ing) techniques that usually aim at improving tracking accuracy
and average FPS, real-time systems such as autonomous vehicles
necessitate new requirements of MOT under limited computing
resources: (R1) guarantee of timely execution and (R2) high
tracking accuracy. In this paper, we propose RT-MOT, a novel
system design for multiple MOT tasks, which addresses R1
and R2. Focusing on multiple choices of a workload pair
of detection and association, which are two main components
of the tracking-by-detection approach for MOT, we tailor a
measure of object confidence for RT-MOT and develop how to
estimate the measure for the next frame of each MOT task.
By utilizing the estimation, we make it possible to predict
tracking accuracy variation according to different workload pairs
to be applied to the next frame of an MOT task. Next, we
develop a novel confidence-aware real-time scheduling framework,
which offers an offline timing guarantee for a set of MOT
tasks based on non-preemptive fixed-priority scheduling with
the smallest workload pair. At run-time, the framework checks
the feasibility of a priority-inversion associated with a larger
workload pair, which does not compromise the timing guarantee
of every task, and then chooses a feasible scenario that yields the
largest tracking accuracy improvement based on the proposed
prediction. Our experiment results demonstrate that RT-MOT
significantly improves overall tracking accuracy by up to 1.5×,
compared to existing popular tracking-by-detection approaches,
while guaranteeing timely execution of all MOT tasks.

I. INTRODUCTION

As Multi-Object Tracking (MOT) is essential for various

vision applications, there have been many attempts to improve

tracking accuracy and average FPS for MOT. In the case

of a system integrated with control, if object information is

not transmitted according to the control sample period, the

controller performs control based on previous data; in the

worst case, it can lead to a severe accident in a system such

as an autonomous emergency braking system. Therefore, real-

time systems such as autonomous vehicles necessitate new

requirements of MOT under limited computing resources: (R1)

guarantee of timely execution and (R2) high tracking accuracy.

Although a recent study in [1] has addressed both R1 and R2

Hyeongboo Baek is the corresponding author of this paper, and Jinkyu Lee
is the co-corresponding author.

for a single MOT task, no study has achieved both for multiple

MOT tasks to be applied to a vision system with multiple

cameras.

In this paper, we propose RT-MOT, a novel system design

for multiple MOT tasks, which achieves R1 and R2. To this

end, we first address the following question.

Q1. How can we design the system architecture of RT-MOT
to provide a control knob to explore a trade-off between

R1 and R2?

To answer Q1, we focus on the tracking-by-detection structure

(one of the most popular structures for MOT) consisting of

detection of objects in a single video frame and association to

match objects detected in the current frame with those from

previous frames. Based on the structure, RT-MOT implements

a new tracking-by-detection structure with multiple choices

of a pair of detection and association models. Since different

choices for each instance of an MOT task result in different

execution times (affecting R1) and different confidence of de-

tected/associated objects (affecting R2), the proposed system

architecture addresses Q1, which brings the next question.

Q2. How can we efficiently utilize the proposed system ar-

chitecture to achieve R1 and R2?

To answer Q2, we need to investigate how R1 and R2 are

affected by different pairs of detection and association models

selected by an instance of MOT. To address the R2 part, we

focus on the reliability of detected/associated objects, and re-

define a notion of object confidence for RT-MOT, consisting of

motion confidence and appearance confidence, updated by the

detection and association parts, respectively. We then develop

how to estimate object confidence for the next frame of each

MOT, which enables to predict tracking accuracy variation

according to different pairs of detection and association models

to be applied to the next framework of an MOT task. The

prediction is key to exploring a trade-off between R1 and R2

to be utilized in the scheduling framework.

We then develop a novel confidence-aware real-time
scheduling framework designed for RT-MOT. To this end,

we propose a new scheduling algorithm, NPFPflex (Non-
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Preemptive Fixed-Priority with flexible execution), which ad-

dresses the R1 and R2 parts of Q2, respectively by of-

fline/online timing guarantee and the estimation of object

confidence. NPFPflex has the following salient features.

• NPFPflex offers an offline guarantee of timely execution

for all instances of a set of MOT tasks scheduled by

non-preemptive fixed-priority scheduling, assuming every

instance executes with a pair of detection and association

models that requires the shortest execution time. This

achieves R1.

• At run-time, NPFPflex checks the feasibility of execution

of another instance (by priority-inversion) with another

pair (that may require a longer execution time), without

compromising the timely execution of all other instances.

Among all feasible scenarios (i.e., which instance and

how long to be executed), NPFPflex chooses the one

that yields the largest expected improvement of tracking

accuracy based on the estimation of object confidence.

This achieves R2 without compromising R1.

We implemented RT-MOT and evaluated its effectiveness

in achieving R2 without compromising R1. Our evaluation

results show RT-MOT to improve tracking accuracy by up

to 1.5× compared to existing popular tracking-by-detection

approaches without violating any timing constraint. In addi-

tion, we demonstrate that RT-MOT properly selects a pair of

detection and association models frame-by-frame, achieving

nearly maximum tracking accuracy (achievable without timing

constraints) with less total computation.

In summary, this paper makes the following contributions.

• We motivate the importance of choosing a proper pair of

detection and association models to explore a trade-off

between R1 and R2 (Sec. II).

• We propose the first system design RT-MOT, which ad-

dresses R1 and R2 for multiple MOT tasks (outlined in

Sec. III).

• We re-define and estimate a measure, which enables to

predict tracking accuracy variation to be used in the

scheduling framework (Sec. IV).

• We develop a novel confidence-aware real-time schedul-

ing framework for RT-MOT, which offers both offline and

online timing guarantees with flexible execution (Sec. V).

• We demonstrate the effectiveness of RT-MOT through

experiment on an actual computing system (Sec. VI).

II. TARGET SYSTEM AND MOTIVATION

This section explains our target system and makes key

observations by a measurement-based case study that underlies

the design policy of RT-MOT.

A. Target System: DNN-based Multi-Object Tracking

An autonomous vehicle is typically equipped with multi-

ple cameras (e.g., front/side/rear cameras) to sense ambient

environments. Each multi-object tracking task is implemented

as a periodic task that takes a video frame from a camera

and performs DNN-based computation to predict trajectories

of multiple targets in frame sequences; this process is repeated

Fig. 1. Tracking accuracy (by a well-known measure MOTA) and execution
time (normalized by the largest one) under different combinations of detection
and association schemes over 50 consecutive frames

periodically. Timely response with high tracking accuracy is

a necessity because each task has a deadline, and its result is

used as input for other components (i.e., motion planning) of

the car.

For multi-object tracking, the tracking-by-detection ap-

proach [2], [3] is one of the most popular ones, and it is

characterized by two main steps: 1) detection of objects in

a single video frame and 2) association to match objects

detected in the current frame with those from previous frames.

Thus, its tracking process can be divided into a front-end

detector followed by a back-end tracker. Since object detection

is a standalone step in the tracking process, one benefit is

the flexibility to pair different object detection models with

different association strategies.

B. Trade-off between Execution Time and Tracking Accuracy

Although the tracking-by-detection approach offers high

flexibility in utilizing various object detection models and

association methods, it is still very challenging to achieve both

accurate tracking and timely response on resource-constrained

computing platforms since the execution time and accuracy

often conflict with each other. We present a case study to in-

vestigate the effect of applying different detection models and

association methods on execution time and tracking accuracy

and identify the main challenges faced therein.

In the case study, we employ YOLOv51 with two different

inputs: i) processing a full-size frame (referred to as high-
confidence detection) and ii) processing a partial portion of

a frame (referred to as low-confidence detection); the details

will be explained in Sec. III-B. We also employ two different

popular association strategies: i) performing both feature- and

Intersection-over-Union (IoU)-based methods (referred to as

high-confidence association) and ii) performing the IoU-based

method only (referred to as low-confidence association).

Fig. 1 shows the effect of applying 6 different combina-

tions of a pair of detection and association schemes over 50

consecutive video frames on the execution time and track-

ing accuracy. In the figure, the x-axis represents different

combinations; (Dx,Ay) expresses a choice of detection and

association schemes for a single frame, where x and y can

1https://github.com/ultralytics/yolov5
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be either H (high-confidence) or L (low-confidence). For

example, ((DH,AH)+(DL,AL))·25 denoted by (HH+LL)·25 refers

25 repetitions of two consecutive frames, which perform a

combination of high-confidence detection and high-confidence

association, and then that of low-confidence detection and low-

confidence association. We consider meaningful combinations

whose H (as well as L) ratio for detection/association is exactly

50%, including 50 identical frames, 25 identical chunks each

consisting of two different frames, and 25 identical frames

followed by another 25 identical frames. In addition, we add

all HH and all LL for reference.

We summarize the following observations from Fig. 1.

O1. There exists a trade-off between execution time and

tracking accuracy in choosing the ratio of high-confidence

detection/association.

A higher ratio of high-confidence detection/association

achieves higher tracking accuracy at the expense of more

execution time. For example, (HH) improves the tracking

accuracy by 48.9% but requires more execution time by 3.3×
over (LL). Note that we use MOTA (Multiple Object Tracking

Accuracy), one of the widely used object tracking accuracy

metrics, for accuracy measurement, which will be discussed

in Sec. VI. Also, note that the execution time shown in Fig. 1

is the total sum of the execution times of all frames and is

normalized to the case of (HH).

O2. Tracking accuracy varies greatly with different combina-

tions of a choice of detection and association schemes, al-

though the combinations yield similar computation time.

In Fig. 1, all combinations except (HH) and (LL) have the

same ratio (i.e., 50%) of high-confidence detection and as-

sociation applied to 50 consecutive video frames, resulting

in comparable execution times. On the other hand, tracking

accuracy varies widely up to a difference of 14.4 percentage

points (%p) depending on not only the choice of detection and

association schemes for each frame but also the collection of

choices for consecutive frames. For example, (HH+LL)·25 and

HL·25+LH·25 shows 46.6% and 32.2% of tracking accuracy,

respectively (meaning that the former yields 44.7% higher

accuracy than the former), while their total computation times

differ only by 16.4%.

Observation O1 and O2 give rise to opportunities and

challenges together in achieving both timely response and

maximum tracking accuracy under limited computing re-

sources. By O1, we can dynamically decide which detection

and association schemes are to be applied for each frame of

a multi-object tracking task by trading off the execution cost

for accuracy. If there is less spare time before the next frame

arrives, a multi-object tracking task can select low-confidence

detection and/or association to finish its execution before the

deadline at the expense of sacrificing tracking accuracy. On

the other hand, if there is enough spare time before the next

frame arrives, a multi-object tracking task can select both

high-confidence detection and association to improve tracking

accuracy.

By O2, it is nevertheless difficult to find an optimal com-

bination of a choice of detection and association schemes for

each task that maximizes tracking accuracy without compro-

mising the timely execution of the task. This is because i) there

exists a huge number of possible combinations of the choices

of detection and association schemes for a frame sequence, and

ii) the tracking accuracy of one combination also dynamically

varies with the input frame sequence. Moreover, when mul-

tiple tracking tasks are scheduled together by sharing limited

computing resources, a selected combination of detection and

association schemes for a task can affect not only the timely

execution and tracking accuracy of the task itself, but also

those of the other tasks. This makes it very challenging to

find the right solution.

III. RT-MOT: SYSTEM DESIGN

In this section, we present our goal and design of RT-MOT,

based on O1 and O2 in Sec. II.

A. System Goal and Overview

We aim to develop an online tracking-accuracy-aware

scheduling framework, which achieves the following goals for

real-time multi-object tracking tasks:

R1. It provides timing guarantees for real-time multi-object

tracking tasks; and

R2. It maximizes overall tracking accuracy.

To this end, we propose a new system abstraction, named

RT-MOT, that enables frame-level flexible scheduling of multi-

object tracking tasks. In particular, RT-MOT supports dynamic

selection of different execution models for detection and

association, respectively, for each frame; it makes run-time

frame-level scheduling decisions by considering the effect

of execution model selection on both timely execution and

tracking accuracy of multi-object tracking tasks. We address

the following key issues, which enables RT-MOT to maximize

overall tracking accuracy while meeting all timing constraints:

I1. How to estimate the variation of overall accuracy ac-

cording to different detector/tracker selections of the next

frame?

I2. How to provide an offline timing guarantee to multiple

MOT tasks while maximizing the overall accuracy at run-

time using the answer of I1?

I3. How to design the system architecture that supports

flexible tracking-by-detection and provides an interface

that can accommodate the answer of I1 and I2?

B. Design of RT-MOT

RT-MOT supports frame-level flexible scheduling for multi-

object tracking tasks to maximize overall tracking accuracy

while providing real-time guarantees. As depicted in Fig. 2,

the core design features of RT-MOT include dynamic tracking-

by-detection execution pipeline (addressing I3), multi-object

tracking confidence estimator (addressing I1 and to be detailed

in Sec. IV), and frame-level flexible scheduler (addressing I2

and to be detailed in Sec. V) as follows.
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Fig. 2. Overall system design of RT-MOT

Dynamic tracking-by-detection execution pipeline. RT-
MOT implements a new tracking-by-detection approach that

is capable of combining different front-end detectors with

different back-end trackers at frame by frame, each of which

exhibits different execution costs and tracking confidence.

Under RT-MOT, each input frame of a multi-object tracking

task is forwarded to its corresponding tracking-by-detection

execution pipeline. The front-end detector identifies the loca-

tion and size of each object’s bounding box in the input frame

and sends the detection information to the back-end tracker.

The back-end tracker then associates each detected object with

one of the existing tracks from previous frames (i.e., tracklets)

based on motion and/or appearance similarity and updates the

tracking information of the matched tracklets.

We consider two types of execution model for detection and

association, respectively: high-confidence and low-confidence
execution models as shown in Fig. 2. The high-confidence

execution models exhibit higher tracking confidence at the

expense of more execution time, while the low-confidence

execution models consume less execution time at the expense

of sacrificing tracking confidence.

The tracking-by-detection execution pipeline uses YOLOv5

as a front-end detector. It can accept variable frame sizes as

input, and its inference latency depends on the input size.

The front-end detector employs YOLOv5 with two different

inputs: i) processing an entire frame with the size of 672×672
(referred to as high-confidence detection) and ii) processing a

partial portion of a frame only containing objects of interest

with the size of 256 × 256 (referred to as low-confidence
detection). For low-confidence detection, we divide an input

frame into smaller portions with the size of 256 × 256,

extract a particular frame portion by image cropping, and

use the cropped image as input for YOLOv5. Processing a

cropped portion with a smaller size can effectively lower the

computational workload with no detection accuracy drop in

the cropped portion [4]. Note that the particular portion of

a frame will be henceforth referred to as Region-of-Interest
(RoI). Among the frame portions as large as RoI, we select

the one whose average confidence score of the tracklets therein

is the lowest, which efficiently improves tracking accuracy,

where confidence score will be explained in Sec. IV. To handle

the rest portions outside of RoI, a set of tracks outside of RoI

(obtained by the previous frame) is also included in the result

of detection to keep maintained by the back-end tracker.

The back-end tracker adopts two popular association meth-

ods: i) performing both feature- and Intersection-over-Union

(IoU)-based methods (referred to as high-confidence associa-
tion) and ii) performing the IoU-based method only (referred

to as low-confidence association). The IoU-based method [3]

is known as the simplest form of object association. The

feature-based method [2] is one of the advanced association

methods to handle tracking loss due to occlusion between

objects. It incorporates a re-identification model as a feature

extractor to extract the feature vectors of the detected objects

and uses the feature vectors to match already confirmed targets

against new detected objects to re-identify occluded targets

that are temporally lost, which involves extra computational

cost. Therefore, our proposed tracking-by-detection execution

pipeline has four (2×2) different choices of a pair of detection

and association models in total; each pair is denoted as

(Dx,Ay), where x and y can be either H (high-confidence) or

L (low-confidence). Among them, the scheduler dynamically

chooses one pair to be processed for each frame of a multi-

object tracking task.

Multi-object tracking confidence estimator. We define a

novel multi-object tracking confidence metric to gauge the

confidence level of a list of tracklets for each multi-object

tracking task. Using this metric, the confidence estimator

estimates how the confidence level will vary depending on

the choice of a pair of detection and association models to

process the next frame of a task.

After each task finishes its tracking-by-detection execution

pipeline, the confidence estimator evaluates the confidence of

each tracklet in consideration of the length and continuity of

a tracklet and the similarity with the associated detection (see

Sec. IV-A for details). In general, a tracklet has a higher

confidence score if it is frequently and recently associated

with a detected object having a strong affinity. The confidence

estimator then predicts the amount of potential increase in each

tracklet’s confidence score depending on the choices of a pair

of detection and association models for the next frame of a

task (see Sec. IV-B for details). Such a predicted decrease in

the confidence score is utilized by the scheduler to determine

a pair of detection and association models for each frame and

a schedule for tasks.

Frame-level flexible scheduler. RT-MOT implements an

online scheduler that not only dynamically determines a pair

of detector and tracker for each frame but also adaptively
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generates a flexible schedule by considering confidence esti-

mates for tasks to maximize overall tracking accuracy without

violating any timing constraints at run-time.

The scheduler runs as a background daemon to communi-

cate with the tracking-by-detection execution pipelines through

the IPC-based communication stub interface implemented

within each task and the scheduler. The scheduler is invoked

upon arrival of a new frame for each task, or completion

of a task. Based on each task’s static model parameters (in

Sec. V-A), the scheduler determines each frame’s priority and

its pair of detector and tracker according to non-preemptive

fixed-priority with the minimum execution by default (in

Sec. V-B). However, upon each invocation, the scheduler

checks the possibility of execution of a frame (regardless of

its priority) with a pair of detector and tracker that yields

the maximum overall tracking accuracy without violating any

timing constraints guaranteed by the offline schedulability

analysis (in Sec. V-C).

IV. TRACKING CONFIDENCE ESTIMATION

This section describes the notion of tracklet confidence tai-

lored to the proposed dynamic tracking-by-detection execution

pipeline and presents a tracklet confidence estimation method

that plays a key role in pair selection and scheduling decisions

by the scheduling framework of RT-MOT.

A. Tracklet Confidence

We employ the notion of tracklet confidence to measure the

reliability of a tracklet constructed during object tracking over

time, which is widely used in the field of multi-object tracking;

a tracklet is generated by the frame-by-frame association

based on the tracking-by-detection approach [5], [6]. We tailor

the notion of tracklet confidence to the proposed dynamic

tracking-by-detection execution pipeline and explain how to

calculate the tracklet confidence score.

For a video frame, let Ot
i denote as the i-th object response

detected at the t-th frame, and it is characterized by (M t
i ,

At
i), where M t

i and At
i are the motion and appearance states

of Ot
i , respectively. The motion state M t

i is further specified

as M t
i = (pti, s

t
i, v

t
i), where pti = (xt

i, y
t
i), sti = (wt

i , h
t
i),

vti = (vxt
i, vy

t
i , vw

t
i , vh

t
i) are the position, size, and velocity

of Ot
i , respectively. The appearance state At

i is the feature

vector of Ot
i extracted by a feature extractor. Note that M t

i and

At
i can be obtained from the results of the front-end detector

and back-end tracker, respectively, in the tracking-by-detection

execution pipeline. We then define a tracklet χt
i of object Ot

i

as a set of tracks followed by Ot
i up to the t-th frame, and it

is expressed as χt
i = {Ok

i |1 ≤ tsi ≤ k ≤ tei ≤ t}, where tsi
and tei are the start- and end-frame of the tracklet. A set of

tracklets of all objects up to the t-th frame is denoted as Φ1:t.

We now explain how to calculate the tracklet confidence

score. A tracklet with a high confidence score is considered

as a reliable tracklet, while another tracklet with a low

confidence score is considered as an unreliable tracklet with

a fragmented trajectory due to inaccurate detection and/or

association. We model tracklet confidence Ω(χt
i) of χt

i as

Ω(χt
i) = ΩM (M t

i ) × ΩA(A
t
i), where ΩM (M t

i ) and ΩA(A
t
i)

are motion and appearance confidence of χt
i, respectively, each

of whose range is [0,1].

Under RT-MOT, after each task finishes its tracking-by-

detection execution pipeline for the t-th frame, the states of

each tracklet χt
i ∈ Φ1:t are updated as well as its confidence

score. Depending on the result of the association between a

set of tracklets and a set of detected objects at the t-th frame,

each tracklet χt
i ∈ Φ1:t can be classified into three categories:

CG1. χt
i is matched with one of the detected objects by

high-confidence association;

CG2. χt
i is matched with one of the detected objects by

low-confidence association; and

CG3. χt
i is unmatched with any of the detected objects.

Note that the detected objects shown in CG1–CG3 are the

results of either high- or low-confidence detection. Then, the

motion and appearance confidence scores of the tracklet χt
i,

which corresponds to one of the CG1, CG2, and CG3 cases,

can be updated as follow:

• ΩM (M t
i ) = ΩA(A

t
i) = 1,

if χt
i belongs to CG1; (1a)

• ΩM (M t
i ) = 1 and ΩA(A

t
i) =

[
ΩA(A

t-1
i )×ΔAt-1

i

]
0
,

if χt
i belongs to CG2; (1b)

• ΩM (M t
i ) =

[
ΩM (M t-1

i ) × ΔM t-1
i

]
0

and ΩA(A
t
i) =[

ΩA(A
t-1
i )×ΔAt-1

i

]
0
,

if χt
i belongs to CG3. (1c)

where [X]Y := max(X,Y ), and we denote by ΔM t-1
i and

ΔAt-1
i the amounts of variations of the motion and appearance

states (M t-1
i and At-1

i ) at the (t-1)-th frame from the most-

recently-updated motion and appearance states before the

(t-1)-th frame (denoted as M t-f
i and At-g

i ), respectively, where

f, g > 1. We can calculate ΔM t-1
i as

ΔM t-1
i = Λs(M

t-f
i ,M t-1

i )× Λv(M
t-f
i ,M t-1

i ), (2)

where

Λs(M
t-f
i ,M t-1

i ) = −1

4

(
ht-f
i − ht-1

i

ht-f
i + ht-1

i

+
wt-f

i − wt-1
i

wt-f
i + wt-1

i

)
+

1

2
, (3)

Λv(M
t-f
i ,M t-1

i ) = 1− 2

∣∣∣∣σ(vx
t-f
i − vxt-1

i

vxt-f
i + vxt-1

i

+
vyt-f

i − vyt-1
i

vyt-f
i + vyt-1

i

)− 1

2

∣∣∣∣,
(4)

and σ is a sigmoid function [7], [8]. We also calculate ΔAt-1
i

as

ΔAt-1
i = Λa(A

t-g
i , At-1

i ) =
(At-g

i ·At-1
i )

|At-g
i ||At-1

i | . (5)

The terms Λs(M
t-f
i ,M t-1

i ), Λv(M
t-f
i ,M t-1

i ), and

Λa(A
t-g
i , At-1

i ) shown in Eqs. (3)–(5) measure the amounts of

variations of size, velocity, and appearance, respectively, each

of whose range is in [0,1].2 Intuitively, if the size (likewise
acceleration/deceleration) of a tracklet becomes smaller

2Those terms are widely used in other object tracking papers, e.g., [9], as
a form of exponential functions. For simplicity, we normalize the exponential
functions to be in the range of [0,1].
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Fig. 3. An example of a series of tracklet confidence change according to
each frame’s situation among CG1–CG3

(likewise larger) from the (t-f )-th to (t-1)-th frame, the value

of Λs(M
t-f
i ,M t-1

i ) (likewise Λv(M
t-f
i ,M t-1

i )) is close to 0,

yielding a large decrease in the motion confidence score of

the tracklet if unmatched at the t-th frame. Similarly, if there

exists a large dissimilarity between the feature vectors of the

tracks at the (t-g)-th and (t-1)-th frame due to occlusion,

the value of Λa(A
t-g
i , At-1

i ) is close to 0, yielding a large

decrease in the appearance confidence score of the tracklet if

unmatched at the t-th frame. For the newly detected objects

that are not associated with any of the existing tracklets

in Φ1:t, we create a new tracklet for them to track their

trajectories from the t-th frame.

Fig. 3 demonstrates how tracklet confidence (accordingly

with its motion and appearance confidence) varies depending

on CG1–CG3. From frame (t+3) to frame (t+5), a target object

is temporarily occluded by other objects, so its corresponding

tracklet is unmatched (belonging to CG3). Therefore, Eq. (1c)

updates its motion and appearance confidence scores (repre-

sented by black dots in the figure). As seen in Eq. (1c), the

motion confidence score of the current frame is calculated

by multiplication of that of the previous frame and its state

variation (represented by red crosses in the figure); considering

the state variation in [0, 1], the motion confidence score of

the current frame decreases. The same holds for the appear-

ance confidence scores as shown in Eq. (1c). Therefore, the

tracklet confidence score (i.e., multiplication of the motion

and appearance confidence scores) decreases from 1 at frame

(t+2) to 0.31 at frame (t+5). In frame (t+6), the occluded

object is correctly re-identified by high-confidence association

(belonging to CG1). Then, the tracklet confidence score is

set to 1. A similar trend can be seen from frame (t+10) to

frame (t+12) when the target object exhibits rapid movement

with high acceleration. Meanwhile, the tracklet exhibits a large

variation in its motion state, yielding a larger decrease in its

motion confidence score so does the tracklet confidence score.

B. Tracklet Confidence Prediction for the Next Frame

We now present a method to predict tracklet confidence

depending on different choices of a pair of detection and

association models for the next frame, which will play a key

role in pair selection and scheduling decision by the scheduling

Confidence estimate

By (1a)

Confidence estimate

By (1b)

High confidence

Low confidence

672

672

Detection Association
High confidence

Low confidence

Confidence estimate

By (1c)

256

256

Fig. 4. An illustration of how each tracket calculates its confidence estimate
according to different choices of a pair of detection and association models

framework (to be discussed in Sec. V) to improve overall

tracking accuracy. For a given set of tracklets Φ1:t up to

the t-th frame, we construct Φ1:t+1 and calculate a tracklet

confidence estimate Ω(χt+1
i ) at the (t+1)-th frame based on

the following assumptions, for four cases of (DH,AH), (DL,AH),

(DH,AL), and (DL,AL) as shown in Fig. 4:

• In case of (DH,AH), all tracklets in Φ1:t belong to CG1;

• In case of (DL,AH), a subset of tracklets in RoI belongs

to CG1, and the rest of tracklets outside RoI belongs to

CG3;

• In case of (DH,AL), all tracklets in Φ1:t belong to CG2;

• In case of (DL,AL), a subset of tracklets in RoI belongs

to CG2, and the rest of tracklets outside RoI belongs to

CG3.

Tracklet confidence estimate Ω(χt+1
i ) at the (t+1)-th frame

is then calculated by using Eqs. (1a)–(1c) in accordance

with the category of χt+1
i . Finally, we define the expected

confidence score Ωτk(Φ1:t+1, (Dx,Ay)) of a MOT task τk for

the choice of (Dx,Ay), where x, y ∈ {H,L}, at the (t+1)-th
frame as

Ωτk(Φ1:t+1, (D
x,Ay)) =

∑
∀χt+1

i ∈Φ1:t+1
Ω(χt+1

i )

|Φ1:t+1| , (6)

where |Φ1:t+1| is the total number of tracklets at the

(t+1)-th frame. We also define the measured confidence score

Ωτk(Φ1:t) of a task τk at the t-th frame as

Ωτk(Φ1:t) =

∑
∀χt

i∈Φ1:t
Ω(χt

i)

|Φ1:t| . (7)

Using the measure, the amount of expected increase in τk’s

confidence score for the choice of (Dx,Ay) at the (t+1)-th
frame (denoted as ΔΩτk(Φ1:t+1, (Dx,Ay))) can be calculated

as

ΔΩτk(Φ1:t+1, (D
x,Ay)) = Ωτk(Φ1:t+1, (D

x,Ay))−Ωτk(Φ1:t).
(8)

For simplicity of presentation, we will use the notation of

ΔΩτk , for ΔΩτk(Φ1:t+1, (Dx,Ay)). By deriving ΔΩτk , we

establish a reasonable criterion to determine which MOT task’s

frame should be executed among multiple MOT tasks, to be

utilized by the scheduler. That is, if we focus on improving
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overall tracking accuracy only, the scheduler chooses the MOT

task with the largest ΔΩτk (that yields the largest confidence

score improvement). However, the scheduler also considers the

timing guarantees of multiple MOT tasks, to be addressed in

the following section.

V. SCHEDULING FRAMEWORK FOR RT-MOT

In this section, we consider NPFPmin, a traditional non-

preemptive fixed-priority scheduling in which every instance

(i.e., job) of a set of multi-object tracking tasks executes for the

minimum execution requirement by selecting (DL,AL). We then

develop a novel scheduling framework designed for RT-MOT,

called NPFPflex (Non-Preemptive Fixed-Priority with flexible

execution), so as to achieve two important design principles.

• First, NPFPflex shares the existing offline schedulability

test for NPFPmin (to be presented in Lemma 1), which

offers timely execution of every instance (i.e. job) of a

set of multi-object tracking tasks.

• Second, NPFPflex checks the feasibility for each active job

to be executed (regardless of its priority by FP) beyond

its minimum execution requirement, without compromis-

ing the schedulability of any future jobs to executed

according to NPFPmin. Among the active jobs that do

not compromise the schedulability, NPFPflex chooses to

execute the job that yields the largest expected improve-

ment of confidence score among all pairs of a task and

(DL/H,AL/H) from Eq. (8), which in turn improves overall

accuracy of MOT.

While it is difficult to embrace the second principle only,

it is more challenging to establish the two principles together.

In this section, we address this real-time scheduling problem.

A. Task Model

To model multi-object tracking tasks that utilize RT-MOT,

we use a strictly periodic task model [10]. A task τi ∈ τ is

specified by (Ti, Ci), where Ti is the period and Ci is the

worst-case execution time (WCET). A task τi invokes a series

of jobs every Ti times; once a job is released at t0, it should

finish its execution no later than t0 + Ti. A job is said to be

active at t0, if it is released no later than t0 and has remaining

execution at t0. Considering the non-preemptiveness of each

job (executed on GPU without preemption), a job does not

pause before completion, once it starts to execute. We consider

uniprocessor scheduling in which only a single job can be

executed on the computing platform at any time; this accords

with our system architecture in which every instance of a MOT

task monopolizes GPU when it is executed.

The WCET Ci can be decomposed by CD
i and CA

i , i.e.,

Ci = CD
i + CA

i . The former is for the detection part, while

the latter is for the association part.

In the detection part, cinferi (L or H) is the total inference

time for YOLOv5 that has the two different WCETs for

low-confidence (L) and high-confidence (H) detection. Then,

CD
i can be calculated as follows: CD

i (L or H) = cpre +
cinferi (L or H), where cpre denotes the WCET for RoI iden-

tification and image cropping.

In the association part, casi (L or H) is the WCET for low-

confidence (L) and high-confidence (H) association. As ex-

plained in Sec. III-B, the low-confidence association performs

a simple IoU-based matching algorithm (whose WCET is

denoted by cIoUi ), while high-confidence association addi-
tionally performs a feature-based method (whose WCET is

denoted by ccascadei ). Therefore, casi (L) = cIoUi and casi (H) =

ccascadei +cIoUi hold, which implies casi (L) < casi (H). Then, we

can express CA
i as follows: CA

i (L or H) = casi (L or H)+cpost,
where cpost denotes the WCET for updating the confidence of

all tracklets in each task.

Since we have two options (i.e., L and H) for each of the

detection and association parts, we have four options of Ci

(i.e., the WCET of τi), where the first and second characters

in the superscript of Ci (each of which is either L or H)

correspond to the detection and association parts, respectively.

• CLL
i = CD

i (L) + CA
i (L): the WCET of τi for (DL,AL)

• CHL
i = CD

i (H) + CA
i (L): the WCET of τi for (DH,AL)

• CLH
i = CD

i (L) + CA
i (H): the WCET of τi for (DL,AH)

• CHH
i = CD

i (H) + CA
i (H): the WCET of τi for (DH,AH)

In this section, we employ FP (Fixed-Priority) scheduling

in which each task has a static priority and each job inherits

the priority of its invoking task. Let HP(τi) and LP(τi)
respectively denote a set of tasks whose priority is higher than

τi and lower than τi. The response time of a job of τi is defined

as the duration between the release and completion of the job.

A level-i busy period is defined as the longest consecutive time

interval during which the computing unit is occupied by jobs

whose priority is higher than or equal to τi. Let LHS and RHS

denote the left-hand-side and right-hand-side, respectively.

B. NPFPmin: Base Scheduling Algorithm

To develop NPFPflex, we first explain its base scheduling

algorithm NPFPmin, which is the same as the traditional non-

preemptive fixed-priority scheduling with Ci = CLL
i for every

τi ∈ τ . We focus on t0, at which at least one job is released

when the computing platform is idle, or a job finishes its

execution. At every t0, we choose the job of τi, whose priority

(inherited by its invoking task) is the highest among the jobs

active at t0. We then execute the chosen job for (DL,AL) during

at most CLL
i .

Then, we present an existing offline schedulability test for

NPFPmin in the following lemma.

Lemma 1 (In [11]–[13]): Suppose that a task set τ is

scheduled by the NPFPmin scheduling algorithm. If every task

τi ∈ τ satisfies Eq. (9), every job invoked by tasks in τ cannot

miss its deadline.

Ri ≤ Ti, (9)

where Ri, the worst-case response time of τi, is calculated by

finding Ri(x + 1) = Ri(x) through iteration from Ri(0) =
CLL

i +maxτj∈LP(τi)C
LL
j in Eq. (10).
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Ri(x+ 1) = CLL
i + max

τj∈LP(τi)
CLL

j +
∑

τh∈HP(τi)

⌈
Ri(x)

Th

⌉
· CLL

h

(10)

Proof: Without loss of generality, let t = 0 be the

release time of the job of τi (denoted by Ji). Lemma 6 in

[14] proves that the worst-case response time of τi (which

is not necessarily from Ji, but can be from the following

job of τi) is found in a level-i busy period when all higher-

priority jobs are released at t = 0 and a lower-priority job

whose execution time is the largest is released right before

t = 0. In an interval of length L that starts at t = 0, the

amount of execution of all jobs belonging to the former is

upper-bounded by
∑

τh∈HP(τi)� L
Th

� · CLL
h , while the amount

of the job that coincides with the latter is upper-bounded by

maxτj∈LP(τi) C
LL
j . Therefore, the RHS of Eq. (10) is the sum

of the WCET of Ji (i.e., CLL
i ) and that of all jobs executed

before Ji’s execution. Therefore, if Eq. (9) holds for τi, the

earliest job of τi (i.e., Ji) in any level-i busy period does not

miss its deadline if it executes for up to CLL
i .

In the second part of the proof, we prove tx+1 − tx ≤ Ti,

where tx and tx+1 respectively denote the time instants at

which the xth and (x + 1)th earliest jobs of τi start their

execution in the same level-i busy period; the proof is similar

to Lemma 2 of [12] that shows no self-pushing phenomenon

under some conditions. At tx, there is no higher-priority active

job; otherwise, the xth job cannot start its execution at tx.

Therefore, in an interval of length L that starts at tx, the

amount of executions of the xth job of τi and other jobs

whose priority is higher than τi is CLL
i +

∑
τh∈HP(τi)� L

Th
�·CLL

h

(denoted by R′
i(L)). We can confirm that R′

i(L) is no larger

than the RHS of Eq. (10) with Ri(x) = L. Therefore, the

supposition (i.e., τi satisfies Eq. (9)) implies that there exists

L = R′
i(L) that satisfies R′

i(L) ≤ Ti, meaning that the

(x + 1)th job of τi can start its execution no later than Ti

time units after tx.

The first and second parts of the proof respectively operate

as the base and inductive cases for mathematical induction,

which proves the lemma.

C. NPFPflex: Novel Scheduling Framework for RT-MOT

We now develop NPFPflex in Algorithm 1, designed for RT-
MOT. In terms of the job prioritization and the job execu-

tion requirement, NPFPflex by default follows the policy of

NPFPmin by setting flex to F (Line 1), at every t0 where at

least a job is released when the computing platform is idle,

or a job finishes its execution. Then, we check the feasibility

for each active job (denoted by Jk of τk in Line 2) to be

executed for the given execution requirement Ck (either CLL
k ,

CLH
k , CHL

k , or CHH
k in Line 3). To guarantee the feasibility of

a job, we need to guarantee (a) no deadline miss of Jk if it

starts its execution for Ck at t0, and (b) no deadline miss of

all future jobs to be executed after Jk according to NPFPmin

(i.e., according to FP with Ci = CLL
i ); (a) corresponds (i) in

Line 4, while (b) corresponds to (ii) and (iii), to be explained

Algorithm 1 The NPFPflex scheduling algorithm

At t0, at which at least a job is released when the computing platform
is idle, or a job finishes its execution,

1: flex ← F
2: for Every active job (denoted by Jk of τk) do
3: for Ck ∈ {CLL

k ,CLH
k , CHL

k , CHH
k }, respectively for

{(DL,AL),(DL,AH), (DH,AL), (DH,AH)} do
4: if The following three conditions hold for assigned Ck:

(i) Eq. (11) holds, (ii) Eq. (12) holds for all τj ∈ τ with
Zj(t0) = T, and (iii) Eq. (13) holds for all τj ∈ τ with
Zj(t0) = F then

5: Calculate ΔΩτk in Eq. (8) for given (DL/H,AL/H)
6: flex ← T
7: end if
8: end for
9: end for

10: if flex=T then
11: Execute Jk for Ck, whose ΔΩτk is the largest.
12: else
13: Execute the job of τi, whose priority is the highest among all

the jobs active at t0, during at most CLL
i for (DL,AL), which

is the same as NPFPmin.
14: end if

in the later lemmas. If it is deemed feasible to execute Jk for

given Ck, we calculate ΔΩτk in Eq. (8) (Line 5), and update

flex as T (Line 6). After investigating the feasibility of all pairs

of an active feasible job and its execution requirement (Lines

2–9), we have two cases. If flex = T, we choose to execute

Jk for Ck, whose ΔΩτk is the largest among all pairs of an

active feasible job and given execution requirement (Lines 10–

11). Otherwise, we follow NPFPmin, implying we choose the

highest-priority active job according to FP and execute the job

during CLL
i for (DL,AL) (Lines 12–13).

We now present online feasibility tests for NPFPflex in

Line 4, which are conditions for the job of interest Jk and

other jobs than Jk not to miss their deadlines. We then prove

that NPFPflex shares the same offline schedulability analysis

for NPFPmin as Lemma 1.

For ease of presentation, we define two notions. First, let

Zi(t) denote the existence of an active job of τi at t; if Zi(t) =
T and Zi(t) = F, there exists an active job and no active job

of τi at t, respectively. Second, let ri(t) denote the earliest

release time of any job of τi after or at t. Since we consider

the implicit-deadline periodic task model, ri(t) is not only a

release time of the next job of τi, but also an absolute deadline

of the job of τi that is active at t (if Zi(t) = T).

We focus on t0 in Algorithm 1, at which at least one job is

released when the computing platform is idle, or a job finishes

its execution under NPFPflex. Suppose that we start to execute

an active job of τk (denoted by Jk) for given Ck (either CLL
k ,

CLH
k , CHL

k , or CHH
k ) at t0. Jk’s schedulability is simply checked

in the following lemma.

Lemma 2: Suppose that we start to execute a job of τk
(denoted by Jk) at t0 for at most Ck. Then, if Eq. (11) holds,

Jk cannot miss its deadline.
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Ck ≤ rk(t0)− t0 (11)

Proof: By the non-preemptiveness, the execution time no

larger than the time to its absolute deadline implies no deadline

miss.

Then, we check whether the earliest job of τj ∈ τ to be

executed after Jk’s execution is schedulable or not, with two

cases: when there exists an active job of τj at t0 (i.e., Zj(t0) =
T), and no active job of τj at t0 (i.e., Zj(t0) = F), respectively

in Lemmas 3 and 4.

Lemma 3: Suppose that (i) we start to execute an active job

of τk (denoted by Jk) at t0 for at most Ck, and (ii) all jobs to

be executed after Jk’s execution are scheduled by NPFPmin. If

Eq. (12) holds, the earliest job of a given τj with Zj(t0) = T
to be executed after Jk’s execution (denoted by Jj) cannot

miss its deadline. Note that τj can be τk.

CLL
j + Ck +

∑
τh∈HP(τj)\{τk}|Zh(t0)=T

CLL
h

+
∑

τh∈HP(τj)|rh(t0)<rj(t0)

⌈
rj(t0)− rh(t0)

Th

⌉
· CLL

h

≤ rj(t0)− t0 (12)

Proof: Suppose that Jj misses its deadline, even though

Eq. (12) holds. Recall rj(t0) is the absolute deadline of Jj
that is active at t0. Since the activeness of Jj at t0 and (ii)

in the supposition of Lemma 3, a job whose priority is lower

than Jj (which is not Jk) cannot be executed in [t0, rj(t0))
before Jj’s execution. Therefore, the only jobs that can execute

before Jj’s execution in [t0, rj(t0)) are (a) Jk, (b) all higher-

priority jobs active at t0 except Jk (the “except” phrase is

required only if τk ∈ HP(τj)), (c) all higher-priority jobs to

be released after t0. The WCET of (a) is Ck, and that of (b) is

the first summation term of the LHS of Eq. (12). Considering

rh(t0) is the earliest job release time of given τh ∈ HP(τj)
after t0, the WCET of (c) is upper-bounded by the second

summation term of the LHS. Therefore, missing Jj’s deadline

implies that the sum of the WCET of Jj itself (i.e., CLL
j ), the

WCET of (a), the WCET of (b), and the WCET of (c) should

be strictly larger than the interval length of [t0, rj(t0)) (i.e.,

the RHS of Eq. (12)). The sum is upper-bounded by the LHS

of Eq. (12), which contradicts Eq. (12). Therefore, Jj cannot

miss its deadline if it executes for up to CLL
j .

Lemma 4: Suppose that (i) we start to execute an active job

of τk (denoted by Jk) at t0 for at most Ck, (ii) all jobs to

be executed after Jk’s execution are scheduled by NPFPmin,

and (iii) Eq. (9) holds for every τi ∈ τ . If Eq. (13) holds, the

earliest job of a given τj with Zj(t0) = F to be executed after

Jk’s execution (denoted by Jj) cannot miss its deadline. Note

that τj cannot be τk, as the existence of Jk implies Zk(t0) =
T.

CLL
j + Ck +

∑
τh∈HP(τj)\{τk}|Zh(t0)=T

CLL
h

+
∑

τh∈HP(τj)|rh(t0)<rj(t0)+Tj

⌈
rj(t0) + Tj − rh(t0)

Th

⌉
· CLL

h

≤ rj(t0) + Tj − t0 (13)

Proof: Suppose that Jj misses its deadline, even though

Eq. (13) holds. Recall rj(t0) + Tj is the absolute deadline of

Jj because Jj is not active at t0 implying rj(t0) is the release

time of Jj . We consider two cases.

(Case 1) We consider the case where the computing plat-

form is idle or occupied by a job that is not Jk but has lower

priority than Jj . Let t′ denote the latest time instant belongings

to the case. By the definition of t′, the interval from t′ to the

end of Jj’s execution is included in a level-j busy period that

starts from t′. By (ii) in the supposition of Lemma 4, all jobs

executed after Jk’s execution are scheduled by NPFPmin. On

the other hand, the proof of Lemma 1 shows that if Eq. (9)

holds for τj ∈ τ , any job of τj in any level-j busy period

does not miss its deadline when τ is scheduled by NPFPmin.

Therefore, if we consider the proof of Lemma 1, Jj’s deadline

miss contradicts (iii) in the supposition of Lemma 4.

(Case 2: the opposite of Case 1) In this case, the proof is the

same as that of Lemma 3 by changing the interval of interest

from [t0, rj(t0)) to [t0, rj(t0) + Tj).
By Cases 1 and 2, Jj cannot miss its deadline if it executes

for up to CLL
j .

While Lemmas 3 and 4 guarantee the schedulability of the

earliest job of each τj to be executed after Jk’s execution, we

need to guarantee the schedulability of every job of τj to be

executed after Jk’s execution, as follows.

Lemma 5: Suppose that (i) a job of τj (denoted by Jj) starts

its execution at t1 and does not miss its deadline if it executes

for up to CLL
j , (ii) all jobs to be executed after Jj’s execution

are scheduled by NPFPmin, and (iii) Eq. (9) holds for every

τi ∈ τ . Then, any job of τj to be executed after Jj’s execution

cannot miss its deadline.

Proof: Let J ′
j denote the next job of Jj invoked by τj .

We focus on [t1, t2), where t2 is the time instant at which J ′
j

starts its execution. We prove no deadline miss of J ′
j .

(Case 1: no processor idle status and no execution of

jobs whose priority is lower than τj in [t1, t2)) Since Jj
and J ′

j are executed in the same level-j busy period, we

can prove that t2 − t1 ≤ Tj , by applying the technique in

the second part of the proof of Lemma 1 (corresponding to

tx+1− tx ≤ Ti). Therefore, (i) in the supposition of Lemma 5

implies no deadline miss of J ′
j if it executes up to CLL

j (which

is guaranteed by (ii) in the supposition of Lemma 5).

(Case 2: the opposite case of Case 1) Let t′ denote the

latest time instant in [t1, t2) at which the computing platform

is idle or occupied by a job whose priority is lower than J ′
j .

The remaining proof is the same as Case 1 of the proof of

Lemma 4.
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By Cases 1 and 2, J ′
j cannot miss its deadline. Applying

the same technique as proving no deadline miss of J ′
j from

no deadline miss of Jj , we can prove that all following jobs

of τj do not miss their deadlines.

Utilizing Lemmas 2, 3, 4, and 5, we develop an offline

schedulability analysis for NPFPflex, which is the same as that

for NPFPmin (i.e., Lemma 1).

Theorem 1: Suppose that a task set τ is scheduled by

NPFPflex in Algorithm 1. If every task τi ∈ τ satisfies Eq. (9),

every job invoked by tasks in τ cannot miss its deadline.

Proof: Suppose that a job misses its deadline at ta. Then,

there should exists the latest time instant t0 before ta, at which

a job of τk (denoted by Jk) starts its execution although it is

not the highest-priority active job and/or it executes for more

than CLL
k . Otherwise, until ta, all jobs are scheduled according

to NPFPmin; the existence of a job deadline miss contradicts

Lemma 1.

By the definition of t0, in the time interval from the end

of Jk’s execution to ta, all jobs are scheduled according

to NPFPmin. Also, by the policy of NPFPflex, Jk starts its

execution at t0 only if the following three conditions hold for

assigned Ck (in Line 4 of Algorithm 1): (i) Eq. (11) holds,

(ii) Eq. (12) holds for all τj ∈ τ with Zj(t0) = T, and (iii)

Eq. (13) holds for all τj ∈ τ with Zj(t0) = F. (i) implies

Jk cannot miss its deadline by Lemma 2, (ii) and (iii) imply

the earliest job of every τj to be executed after Jk’s execution

cannot miss its deadline by Lemmas 3 and 4. By Lemma 5,

(ii) and (iii) imply every job of τj to be executed after Jk’s

execution cannot miss its deadline. Therefore, the existence of

a job deadline miss at ta contradicts either Lemma 2, 3, 4, or

5, which proves the theorem.

Run-time complexity of NPFPflex. At each t0 (at which

a job is released or completed in Algorithm 1), we need to

perform Line 4 of Algorithm 1 for every active job Jk. Since

checking Eq. (12) or (13) takes O(n) for given Jk and τj , it

takes O(n2) to perform Line 4 of Algorithm 1 for given Jk,

where n is the number of tasks in τ . Therefore, at each t0,

NPFPflex requires O(n2 ·n′), where n′ is the number of active

jobs at t0. Note that the number of cameras of an autonomous

vehicle (i.e., n) is only a few, e.g., one each in the front,

rear and both sides of the vehicle, and one each between the

front and both sides; therefore, RT-MOT provides an acceptable

scheduling overhead with O(n2 · n′) time-complexity, to be

demonstrated with experimental results in Sec. VI-A.

VI. EVALUATION

In this section, we first explain our experimental setup. We

then present experimental results of RT-MOT, compared to

existing methods.

A. Experimental Setup

Hardware and software. We conduct experiments on a

computer equipped with an Intel(R) Xeon(R) Silver 4215R

CPU @ 3.20GHz, 251.5GB RAM, and NVIDIA V100 GPU.

We use Ubuntu 18.04.4 with CUDA 10.2, and PyTorch 1.10.2

.
TABLE I

EXECUTION TIME MEASUREMENT FOR EACH COMPONENT

Time(ms)
CD

i CA
i

cpre cinfer
i (L) cinfer

i (H) casi (L) casi (H) cpost

Average 0.6 12.6 13.1 3.2 23.4 0.7
Maximum 0.9 17.6 23.2 9.6 32.7 0.9

for implementation. We employ YOLOv5 as a front-end detec-

tor with the different input sizes of 672× 672 and 256× 256,

for high- and low-confidence detection, respectively. We also

employ SORT [3] and DeepSORT [2] with the re-identification

model of OSNet [15] for high- and low-confidence association,

respectively. We use the Waymo Open Dataset [16] in our

evaluation.

Execution time profiling and run-time overhead. RT-MOT
conducts DNN-based computations on a GPU, while others

including IoU matching and confidence estimation use a CPU.

We take a measurement-based approach to estimate the worst-

case execution time of detection and association parts for each

multi-object tracking task, CD
i and CA

i , under RT-MOT. Our

experiments measure the execution time of each component in

CD
i and CA

i by running it 1,000 times, taking the maximum

value among the measured ones as the WCET, summarized in

Table I. For example, the WCETs for low- and high-confidence

detection (cinferi (L) and cinferi (H)) are 17.6ms and 23.2ms,

while the WCETs for low- and high-confidence association

(casi (L) and casi (H)) are 9.6ms and 32.7ms, respectively. The

two key modules for RoI extraction and confidence estimation

(cpre and cpost) in RT-MOT take 0.6ms and 0.7ms on average,

respectively, a relatively short delay compared to the execution

times for detection and association (cinferi and casi ).

We also measure the run-time overhead of our scheduling

framework for RT-MOT as a function of the number of MOT

tasks (n). When n is increased from 1 to 10, the run-time

scheduling overhead increases from 0.5ms to 0.7ms, which is

almost linear in n with low slope.

B. Experimental Results

We would like to demonstrate the capability of RT-MOT
making a significant improvement in multi-object tracking

accuracy while meeting all timing requirements for multiple

MOT tasks. We use MOTA [17], a primary metric to evaluate

the accuracy of multi-object tracking algorithms. The MOTA

metric deals with both detection and tracker outputs by taking

into consideration of miss detection, false detection, and false

tracking. Note that a higher MOTA score indicates higher

overall tracking accuracy.

We evaluate three versions of RT-MOT, which (i) employ

different job prioritization and execution requirements for

detection and association, but (ii) share the same offline

schedulability analysis of Eq. (9) in Lemma 1.

• RT-MOTmin employs NPFPmin (i.e., always performing L
detection and L association).

• RT-MOTflex-NPI employs NPFPflex but does not allow pri-

ority inversion, i.e., the feasibility of Jk for H detection

327

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on December 27,2022 at 04:38:39 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5. Tracking accuracy comparison for task sets with two tasks

and/or H association in Lines 3–8 of Algorithm 1 is tested

only for the job whose priority is the highest among all

active jobs rather than every active job in Line 2.

• RT-MOTflex: RT-MOT employs NPFPflex in Algorithm 1 as

it is.

As a prioritization policy for FP, we employ RM (Rate

Monotonic).

We compare the RT-MOT versions with two existing popular

multi-object tracking approaches.

• H+SORT employs YOLOv5 with the original frame size

(672×672) for detection and SORT for association (that

corresponds to L association of RT-MOT).

• L+DeepSORT employs YOLOv5 with the down-scaled

frame size (256×256) for detection and DeepSORT for

association (that corresponds to H association of RT-
MOT).

• H+DeepSORT employs YOLOv5 with the original frame

size (672×672) for detection and DeepSORT for associ-

ation.

Note that we exclude L+SORT for comparison because it

shows a similar result to RT-MOTmin. For a fair compari-

son, H+SORT, L+DeepSORT, and H+DeepSORT employ non-

preemptive fixed-priority scheduling with the same offline

schedulability analysis of Eq. (9).

Fig. 5 compares the average MOTA scores (plotted as

bar graphs) and the maximum and minimum MOTA scores

(plotted as error bars) under six different approaches for five

different task sets. Each of the task sets consists of two tasks

with different FPS requirements, from the smallest workload

(6FPS and 4FPS) in the left-most, to the largest one (10FPS

and 8FPS) in the right-most, increased by 1FPS each for

both tasks. Note that, if a task set is not deemed schedulable

by the offline schedulability analysis in Eq. (9) under the

target MOT approach, we do not include to plot MOTA

scores as we cannot offer an offline timing guarantee. We

observe that RT-MOTflex-NPI and RT-MOTflex consistently show

much higher overall accuracy than RT-MOTmin across all task

sets (1.5× accuracy improvement). H+DeepSORT shows the

highest overall accuracy (with a marginal improvement over

RT-MOTflex by 1.0%p) for the task set with 6FPS and 4FPS,

but it cannot achieve timely execution for other task sets due

to heavy computational workloads. H+SORT also shows a

comparable accuracy with RT-MOTflex for three task sets with

up to 9FPS and 7FPS, but it cannot achieve timely execution

for the task set with 10FPS and 8FPS.

Fig. 6. Tracking accuracy comparison for task sets with four tasks

Fig. 6 shows the accuracy results for three task sets, each

of which consists of four tasks. In general, we observe a

similar trend to Fig. 5; all MOT approaches except RT-MOTmin

and L+DeepSORT exhibit comparable MOTA scores under

the smallest workload (8FPS, 4FPS, 2FPS, and 1FPS), while

only RT-MOTflex-NPI and RT-MOTflex perform well under the

largest workload (10FPS, 6FPS, 4FPS, and 3FPS). However,

for the task set with the largest workload, RT-MOTflex exhibits

a smaller difference in accuracy among tasks by only up to

4.4%p, while RT-MOTflex-NPI exhibits a larger difference by

up to 13%p; also, we observe 3.1%p accuracy degradation

of RT-MOTflex-NPI, compared to RT-MOTflex. Such a result

can be interpreted as the benefit of RT-MOTflex that enables

flexible job-level scheduling by allowing bounded priority

inversions without violating any FPS requirement. Although

RT-MOTmin, H+SORT, L+DeepSORT, and H+DeepSORT are

static approaches that apply a fixed choice of detection

and association models across all frames, RT-MOTflex-NPI and

RT-MOTflex dynamically determine a pair of detection and

association models frame-by-frame by considering both avail-

able resources and expected confidence improvement at run-

time, achieving higher overall tracking accuracy while sat-

isfying all FPS requirements. For example, for the task set

with the largest workload, RT-MOTflex flexibly selects (DL,AL),

(DH,AL), and (DH,AH) for 52, 70, and 336 frames, respectively,

out of 458 total jobs. Note that (DL,AH) is rarely selected in our

experiment because i) casi (H) is larger than cinferi (H) by 1.4×
as observed in Table I, and ii) L+DeepSORT shows a marginal

accuracy improvement over RT-MOTmin as observed in Figs. 5

and 6. Also, note that the maximum achievable MOTA score

by H+DeepSORT without timing guarantees is 60 (marked as

red cross) for the task set with the largest workload, while the

MOTA score of RT-MOTflex is 59.1. Therefore, RT-MOTflex can

achieve nearly maximum tracking accuracy with 0.84× less

total computation time as compared to H+DeepSORT, making

the task set schedulable.

In summary, RT-MOTflex can be adapted to various task sets

through the dynamic selection of a pair of detection and as-

sociation execution models and flexible scheduling frame-by-

frame, achieving high overall tracking accuracy while meeting

all FPS requirements at run-time in addition to offline timing

guarantees.

VII. RELATED WORK

328

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on December 27,2022 at 04:38:39 UTC from IEEE Xplore.  Restrictions apply. 



MOT can be categorized into one-stage and two-stage

models depending on where in detection and association the

AI (Artificial Intelligence) model is used. RT-MOT uses two-

stage MOT algorithms such as DeepSORT [2] and Strong-

SORT [18], which employ two different models each for both

detection and association. Two-stage MOT uses the detection

model to extract the detected object with the re-identification

model and then associates it with matching algorithms. On the

other hand, a one-stage MOT only uses a single model during

detection and association. Objects and their features can be

found within a single inference, and much like a two-stage

MOT, the association process utilizes matching algorithms,

e.g., FairMOT [19] and BytesTrack [20].

While most one-stage and two-stage models for MOT have

focused on high tracking accuracy and average FPS, several

studies have attempted to address both timing guarantee and

high detection accuracy for the object detection [21]–[24],

which is one of the main parts of two-stage MOT. Since

those studies do not take the execution for association into

consideration, their techniques for timing guarantee cannot be

directly applied to MOT. When it comes to MOT itself, there

has been a sole study that has achieved both timing guarantee

and high tracking accuracy [1]. By defining and utilizing the

notion of uncertainty, the study in [1] has achieved a timing

guarantee of the scheduling horizon while improving location

accuracy. However, since the study has targeted a single MOT

task, it cannot be applied to multiple MOT tasks, which is

different from RT-MOT.

VIII. CONCLUSION

In this paper, we proposed a novel confidence-aware real-

time scheduling framework for multiple MOT tasks, RT-MOT,

which consists of (i) a method to estimate the overall accuracy

variation according to different detector/tracker selections, (ii)

a scheduling framework that provides offline timing guar-

antees while maximizing overall accuracy at run-time using

the method, and (iii) a system architecture that supports the

framework. Through experiments, we demonstrated that RT-
MOT achieves high accuracy and timely execution of a set

of MOT tasks, which has not been accomplished by existing

tracking-by-detection methods. In the future, we would like to

extend our framework towards more combinations of various

detectors and trackers. In addition, we would like to improve

the scheduling framework in terms of schedulability perfor-

mance, e.g., by allowing a preemption between the completion

of detection and the beginning of association for each MOT

task.
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