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Abstract—As real-time object detection systems, such as au-
tonomous cars, need to process input images acquired from
multiple cameras, they face significant challenges in delivering
accurate and timely inferences often based on machine learning
(ML). To meet these challenges, we want to provide different
levels of object detection accuracy and timeliness to different
portions within each input image with different criticality levels.
Specifically, we develop DNN-SAM, a dynamic Split-And-Merge
Deep Neural Network (DNN) execution and scheduling frame-
work, that enables seamless split-and-merge DNN execution for
unmodified DNN models. Instead of processing an entire input
image once in a full DNN model, DNN-SAM first splits a DNN
inference task into two smaller sub-tasks—a mandatory sub-task
dedicated for a safety-critical (cropped) portion of each image and
an optional sub-task for processing a down-scaled image—then
executes them independently, and finally merges their results into
a complete inference. To achieve DNN-SAM’s timely and accurate
detection of objects in each image, we also develop two scheduling
algorithms that prioritize sub-tasks according to their criticality
levels and adaptively adjust the scale of the input image to meet
the timing constraints while minimizing the response time of
mandatory sub-tasks or maximizing the accuracy of optional
sub-tasks. We have implemented and evaluated DNN-SAM on a
representative ML framework. Our evaluation shows DNN-SAM
to improve detection accuracy in the safety-critical region by
2.0–3.7× and lower average inference latency by 4.8–9.7× over
existing approaches without violating any timing constraints.

I. INTRODUCTION
Real-time object detection in autonomous vehicles (AVs)

is one of the most challenging and important functions for
safety. AVs are typically equipped with multiple cameras
and need to be able to detect and classify objects, such as
other cars and pedestrians, which are then sent to the motion
planner to decide subsequent maneuvering actions. To ensure
the useful and/or safe handling of detected objects, both their
accurate detection and timely response (i.e., meeting the timing
requirements) are key system design objectives.

There are two key characteristics to consider for real-time
object detection in AVs: (1) different criticality levels by
different portions within each scene image and (2) dynamic
variations in the safety-critical portion by scene-by-scene.

∗Co-leading authors.
†Corresponding author.

Given an input image, different portions of the image may
have different levels of importance or criticality for safety.
For example, other cars or pedestrians nearby on the road
are more important than those in other areas because failure
of their detection could lead to fatal accidents. Moreover,
such a safety-critical portion of each image dynamically varies
with various factors, such as the vehicle’s speed/heading and
moving objects in its vicinity. These distinct features must
additionally provide different levels of detection quality and
responsiveness to image portions of different criticality levels
while adapting to dynamically-varying safety-critical portions
in the driving scenes.

Recently, deep neural networks (DNNs) have been increas-
ingly used for object detection and have made significant
progress in using camera imagery to detect and classify ob-
jects. Unfortunately, the existing DNN-based object detection
systems [1]–[4] are not yet directly applicable to real-time
object detection while considering different image portions
with different criticality levels since they use an equal amount
of computation for all portions of the input image, perform
computations sequentially without prioritizing safety-critical
portions, and output all the results together. Moreover, most
approaches cannot achieve both accurate detection and timely
response on resource-constrained onboard computing plat-
forms since the execution time and accuracy often conflict with
each other. Adding sufficient DNN layers to improve detection
accuracy may easily create prohibitively high computational
workload, making it difficult to guarantee timely response.
Although DNN compression techniques, such as quantiza-
tion [5]–[8] and pruning [9]–[12], reduce the execution time
to some extent, their applicability is still limited in that they
generate only one network model from the original DNN,
which does not dynamically adapt itself once deployed.

We develop DNN-SAM (Split And Merge)—a dynamic split-
and-merge DNN execution and scheduling framework—that
leverages both image scaling and cropping, two well-known
image processing techniques known to effectively reduce com-
putational workload. Instead of processing an entire input
image once in a full DNN model, DNN-SAM first splits a
DNN task into two smaller sub-tasks–a primary (mandatory)
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sub-task processing a safety-critical portion only by image
cropping and a secondary (optional) sub-task processing a
down-sampled entire image by image scaling—then executes
them independently, and finally merges their results into a
complete one. The mandatory sub-task should be completed by
the task’s deadline, and the optional sub-task can be executed
after the mandatory sub-task while still before the deadline
using adaptive scaling if there are enough resources that are
not committed to run a mandatory sub-task for any task.
For each input image of a DNN task, DNN-SAM efficiently
identifies its safety-critical portion, constructs corresponding
mandatory and optional sub-tasks on-the-fly by the split inter-
face, and merges their results by the merge interface, which
enables seamless split-and-merge DNN execution for unmodi-
fied DNN models. DNN-SAM also provides two new scheduling
algorithms—EDF-MandFirst and EDF-Slack—that determine not
only the order of executing mandatory and optional sub-
tasks but also the scales of optional sub-tasks at run-time by
adapting to the changes in the size of safety-critical portion.
EDF-MandFirst is designed to schedule mandatory sub-tasks as
early as possible to detect objects in the safety-critical region
as quickly as possible with a high resolution. EDF-Slack is
designed to schedule optional sub-tasks with as large a scale
as possible to maximize the overall accuracy while meeting
all timing constraints.

DNN-SAM offers three distinct benefits. First, it is generally
applicable to existing DNN-based object detection systems
since it does not require any modification on existing DNN
models but does only forward new inputs by scaling and
cropping to DNNs. Second, it enables to provide different
levels of accuracy and responsiveness to sub-tasks, i.e., faster
and more accurate response in the safety-critical portion by
prioritizing mandatory sub-tasks over optional ones. Third, it
enables to capture dynamic variations in the size of the safety-
critical portion at run-time and adaptively select the scales of
optional sub-tasks so as to meet timing requirements by trading
off the execution cost for accuracy.

We have implemented DNN-SAM on a representative ML
framework [13] and evaluated its effectiveness in terms of
detection accuracy and timely response. Our in-depth evalua-
tion results show DNN-SAM to improve detection accuracy in
the safety-critical region by 2.0–3.7× and reduce the average
inference latency by 4.8–9.7× compared to existing approaches
without violating any timing constraint. We have also shown,
via a case study of emergency braking on a 1/10 scale AV, that
DNN-SAM can improve quality of control with fast and accurate
object detection, thus enhancing safety.

This paper makes the following main contributions:
∙ Demonstration of a case study to motivate a split-and-

merge DNN execution: splitting a DNN task into two
smaller sub-tasks, one for processing only a safety-critical
portion and the other for processing a down-sampled im-
age by leveraging image cropping and scaling (Sec. III);

∙ Development of DNN-SAM, a software framework that
enables seamless split-and-merge DNN execution for
unmodified DNN models (Sec. IV);

∙ Development of new scheduling algorithms that prioritize
sub-tasks according to their criticality levels and adap-
tively adjust the scale of the input image to ensure the
timing constraints of DNN inference tasks (Sec. V); and

∙ Demonstration of DNN-SAM’s effectiveness, via in-depth
evaluation and a case study, in terms of detection accu-
racy and timely response (Sec. VI).

II. RELATED WORK
A number of recent studies have focused on timely infer-

ences for real-time object detection. A significant proportion of
existing solutions [14]–[17] focused on dynamic construction
of (sub)-network in a DNN to meet the timing constraint.
AnytimeNet [14] gradually inserts additional layers to support
adaptive timeliness by trading off execution cost for quality of
results. NestedNet [15] constructs a nested structure of a DNN
to meet diverse resource requirements. Some studies [16],
[17] proposed dynamic multi-path neural networks to satisfy
varying timing constraints. Although all of these studies have
made valuable contributions to supporting timely inferences,
they have not yet been directly applicable to real-time object
detection while considering different image portions with
different criticality levels since they use an equal amount of
computation for all portions of the input image.

Some studies [18]–[22] proposed real-time scheduling
frameworks to schedule multiple DNN tasks to meet their
timing constraints. ApNet [18] guarantees deadlines of DNN
workloads via efficient approximation. S3DNN [19] gathers
DNN requests by data fusion and prioritizes multiple DNN
tasks by supervised streaming. The work in [20] employs
imprecise computation that offers mandatory and optional
parts for DNNs to meet their deadlines. [21], [22] propose
pipelined CPU/GPU scheduling frameworks to support concur-
rent execution of tasks. However, they are not able to prioritize
the computation of safety-critical portions of DNN tasks over
that of other portions.

A recent study [23] proposed a novel scheduling architecture
that separates input data into regions of different criticality and
assigns different priorities to the processing of the regions.
However, they did not deal with the timing constraint when
scheduling tasks, rendering them infeasible for time-critical
object detection systems. DNN-SAM is differentiated from exist-
ing studies as DNN-SAM provides high accuracy while meeting
timing guarantees by split-and-merge DNN execution.

III. TARGET SYSTEM AND MOTIVATION
This section describes our target system and demonstrates,

via a case study, the feasibility of leveraging image scaling
and cropping for real-time object detection that motivates split-
and-merge DNN execution.
A. Target System: DNN-based Object Detection

As shown in Fig. 1, an AV is typically equipped with an
embedded vision system that consists of multiple cameras
(e.g., front/side/rear cameras) and other sensors (e.g., LiDAR
and IMU) to sense ambient environments. In such a system,
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Fig. 1. An example of DNN-based object detection systems

Fig. 2. A safety-critical region of the front camera

each vision task (i.e., object detection) is implemented as a
periodic task that takes an image from a camera and performs
DNN-based computation (i.e., YOLOv3 [2]) and provides
useful information for motion planning, such as steering and
braking, of the car; this process is repeated periodically. For
instance, if the front camera detects a pedestrian, then the car
generates an emergency braking signal. Therefore, vision tasks
thereon must produce timely inference before their deadlines
for road safety and high control quality of the car.

Moreover, due to the nature of autonomous driving, some
portion of an image may have a different level of criticality
from other portions. For instance, as shown in Fig. 2, the road
where the car is heading is safety-critical since missing other
cars or pedestrians in this region may cause a serious accident.
Such a safety-critical portion may dynamically vary image-by-
image depending on the vehicle’s speed and moving objects in
its vicinity, i.e., time-to-collision. Therefore, each vision task
must identify a safety-critical portion of an image on-the-fly
and provide faster and more accurate inference results on the
safety-critical portion than non-safety-critical ones.

Such multiple DNN-based vision tasks often run on a GPU-
enabled embedded board (i.e., NVIDIA Xavier system-on-chip
(SoC) [24]) while sharing limited computation resources such
as a single GPU instance. For safety, it is mandatory to meet
the timing requirements of all vision tasks even when they
share the limited resources.
B. Feasibility of Leveraging Image Scaling and Cropping

We present a case study to investigate the effects of image
scaling and cropping on the execution time and detection
accuracy and check the feasibility of leveraging image scaling
and cropping for real-time DNN-based object detection.
Image scaling. In order to ensure the timely response under
resource constraints, we first consider adjusting computational
workloads of DNN tasks through image scaling. Note that,
when a smaller size of input is applied to the input layer of
a DNN, the input sizes of its subsequent layers are changed
accordingly. So, a DNN can alleviate its workload by pro-
cessing a down-sampled image as input. Fig. 3a shows the
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Fig. 3. Effects of image scaling and cropping on accuracy and execution time

effect of image scaling on YOLOv3.1 In the figure, the x-axis
represents the normalized execution time of YOLOv3 with
different input image scales (the longest side of the image)
from 160, 256, 320, 416, 512, and 608 (from the left) while the
y-axis represents the corresponding accuracy in detecting cars
and pedestrians. Note that the execution time is normalized
to the baseline with the resolution of 608 × 608. We observe
a trade-off between execution time and detection accuracy in
choosing the input image scale. A smaller scale requires less
execution time at the expense of high detection accuracy loss.
As the scale increases, the execution time increases, but the
accuracy loss decreases.
Image cropping. For a more responsive and accurate detection
of a particular image portion, we also consider image cropping
that uses the cropped image only containing the safety-critical
region as input. Note that the safety-critical region will hence-
forth be referred to as Region-of-Interest (RoI). As shown in
Fig. 3b, processing a cropped image with the size of 256×256
can effectively lower the computational workload (the green
bar on the right) by 5.2× with no accuracy drop in the cropped
portion (the orange and blue lines on the right) as compared
to the original image2. Since the cropped region still contains
an image portion with the original resolution, a DNN task
can effectively reduce the execution time while preserving
accuracy (or even improving accuracy as shown in the figure
due to the property of YOLOv3 model in that it shows better
detection performance for small objects by utilizing a fixed
number of anchors).

This measurement-based case study suggests that we can
selectively apply image scaling and cropping to different por-
tions of an image having different criticality levels: processing
a cropped image corresponding to the safety-critical region
to provide high accuracy within RoI and fast response, and
processing an adaptively scaled image by trading off the
execution cost for accuracy to meet the timing requirements
subject to available resources at run-time.

IV. DNN-SAM: SYSTEM DESIGN
A. Overview

Leveraging both image scaling and cropping explained in
Sec. III-B, we design DNN-SAM, a software framework that

1We run YOLOv3 on an NVIDIA Xavier SoC, and inference accuracy is
evaluated with 7,481 images on the KITTI in-vehicle camera dataset [25].

2The accuracy of RoI is defined as the average precision of detected objects
inside the RoI over the total ground truth.
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Fig. 4. System-level overview of DNN-SAM

supports split-and-merge execution for multiple DNN tasks.
DNN-SAM splits a DNN task into two smaller sub-tasks—(i)
a primary (mandatory) sub-task processing a safety-critical
portion by image cropping and (ii) a secondary (optional)
sub-task processing a down-sampled entire image by im-
age scaling—then executes them independently, and finally
merges their results into a complete one. By maximizing
the image scale for optional sub-tasks without compromising
the timely execution of mandatory sub-tasks, DNN-SAM can
provide different levels of detection accuracy and timeliness
to different portions with different criticality levels for each
input image while meeting all timing constraints. To this end,
the key idea behind DNN-SAM is to enable RoI identification,
transparent DNN decomposition into mandatory and optional
sub-tasks, prioritization of mandatory and optional sub-tasks,
and adaptive scaling of optional sub-tasks. The core design
features of DNN-SAM can be summarized as follows.
∙ RoI identification. DNN-SAM implements its RoI identifi-

cation module using sensor fusion of camera, LiDAR, and
IMU, to extract RoI within each input image at a low cost.

∙ Transparent split-and-merge (S&M) DNN execution.
DNN-SAM implements split and merge operations embedded
in an existing ML framework to enable seamless S&M DNN
execution for unmodified DNN models.

∙ Sub-task scheduling and adaptive scaling. DNN-SAM im-
plements a lightweight real-time scheduler that not only
automatically orchestrates the execution of mandatory and
optional sub-tasks at the system level but also continuously
monitors available resources (slack) and adaptively selects
the scales of optional sub-tasks at run-time to meet the
timing requirements.

Workflow. Under DNN-SAM, as shown in Fig. 4, each image
input of a DNN task is forwarded to its corresponding S&M
DNN execution pipeline and RoI identification module (①).
The RoI identification module segments objects and calculates
the time-to-collision for each object using LiDAR and IMU
sensors, allowing the extraction of RoI (②). The S&M DNN
execution pipeline then constructs two copies of the original
DNN model—one for processing a cropped image correspond-
ing to RoI (mandatory sub-task) and the other for processing
a down-scaled image (optional sub-task)—and sends a ready

message to the scheduler (③). Then, the scheduler controls the
execution times of sub-tasks (④) according to the scheduling
algorithms to be discussed in Sec. V. When a mandatory sub-
task completes its execution, the pipeline sends a complete
message to the scheduler. Note that the inference result of
the mandatory sub-task can be used in advance as input
to other components of the car (⑤). Then, the subsequent
optional sub-task becomes ready and waits for its execution
by the scheduler. When an optional sub-task is scheduled for
execution, the scheduler determines its scale by considering
available slack (⑥) to be discussed in Sec. V. When an
optional sub-task completes its execution, the pipeline merges
the results of mandatory and optional sub-tasks into a complete
one by removing duplicated objects detected by both sub-tasks
(⑦) and sends a completion message to the scheduler.
Benefit. DNN-SAM offers three benefits. First, it is generally
applicable to existing DNN-based object detection systems
since it does not require any modification on the original
DNN models’ layer architecture and internals but does only
forward new inputs by scaling and cropping to DNNs. Second,
it enables a scheduler to use a smaller sub-task as the basic unit
of scheduling, thus utilizing resources efficiently, and to make
it possible to prioritize safety-critical mandatory sub-tasks over
optional ones. Then, the outputs of mandatory sub-tasks can
be used in advance as input for other computations, such as the
motion planner, improving quality of control. Third, it enables
adaptive selection of the scales of optional sub-tasks while
considering the varying size of RoI at run-time by trading off
the execution cost for detection accuracy. If there is less spare
time before the deadline, an optional sub-task can select a
small scale to finish its execution before the deadline at the
expense of sacrificing detection accuracy. On the other hand,
if there is enough spare time before the deadline, an optional
sub-task can select an even larger scale than the original input
image to improve detection accuracy.
B. Technical Challenges

To enable split-and-merge DNN execution, DNN-SAM ad-
dresses the following challenges:
C1. How to efficiently identify RoI?
C2. How to decompose the original DNN model into two sub-

tasks in a transparent way without incurring significant
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space and time overheads and enable use of the output
of the mandatory sub-task in advance?

C3. How to merge the outputs of mandatory and optional sub-
tasks by effectively removing duplicated objects?

C4. How to schedule sub-tasks while considering system-
wide information?

C1. Since the RoI identification is included in the S&M
DNN execution, its processing time should be short and pre-
dictable. One may consider a DNN-based approach to extract
RoI, but it usually incurs a high computation, making timely
response of S&M DNN execution difficult. Instead, DNN-SAM
employs a sensor fusion approach with camera, LiDAR, and
IMU sensors that is known to be able to localize objects fast
and accurately, and thus is widely used in AVs [26].

C2. DNN-SAM aims to provide seamless S&M DNN execu-
tion for unmodified DNN models. Current state-of-the-art ML
frameworks employ a single process per DNN model [22].
One simple approach to split a DNN task is to fork two
independent processes for mandatory and optional sub-tasks,
but it creates 2x the memory footprint, thus making it infea-
sible for resource-constrained computing platforms. Another
simple approach is to use a single process with a single thread
which executes mandatory and optional sub-tasks sequentially.
However, this cannot produce the output of a mandatory sub-
task in advance without modifying the user-level source code.
Instead, DNN-SAM supports a multi-thread execution model that
enables seamless S&M DNN execution for unmodified DNN
models with minimal memory overhead and early use of the
output of the mandatory sub-task.

C3. In order to merge the outputs of mandatory and optional
sub-tasks, the objects detected by mandatory and optional sub-
tasks should be localized in a global coordinate system, and
duplicated objects detected by both mandatory and optional
sub-tasks should be removed for better accuracy. Intersection
over union (IoU) is the most widely used evaluation metric
to measure the area of overlap between two bounding boxes.
Although IoU is powerful and efficient, it is not enough for
S&M DNN execution. Since a mandatory sub-task performs
an inference job with a cropped image, some objects at the
edge are detected cut off. Such cut-off objects result in low
IoU scores with their corresponding intact objects detected
in a scaled image by optional sub-tasks. DNN-SAM supports
a coordinate transformation formula to localize objects in a
global coordinate system and a new evaluation metric that can
handle those cut-off objects in addition to IoU.

C4. State-of-the-art ML frameworks employ a simple
scheduling principle, i.e., FIFO, that sequentially schedules
DNN tasks without prioritizing them according to their timing
requirements, i.e., without considering real-time DNN tasks
with different timing requirements. Moreover, the ML frame-
works cannot consider system-wide information since they
work as a library. Instead, DNN-SAM supports a lightweight
real-time scheduler to automatically orchestrate the execution
of mandatory and optional sub-tasks at the system level and to
adaptively select the scales of optional sub-tasks at run-time
subject to available slack to meet the timing requirements.

C. RoI Identification Module
The RoI identification module extracts RoI from the input

image using the following three steps: i) LiDAR segmentation,
ii) bounding box projection, and iii) time-to-collision (ToC)
calculation. The LiDAR segmentation step receives 3D range
data from a LiDAR sensor as input and segments the data
into individual objects by employing a range image-based
segmentation technique [27], which enables fast and accurate
localization of objects. Specifically, the range data, which
is out of the Field-of-View of a camera, is filtered out to
perform object segmentation and distance estimation within
each image input of a camera. The bounding box projection
step receives the 3D position information (bounding boxes)
from detected objects as input and projects each bounding
box onto a corresponding 2D camera input image with the
distance information by employing the technique in [28]. Step
iii computes the ToC for each object based on its distance
from the vehicle and the vehicle’s velocity measured by IMU
sensors [29].3 Finally, the location and size of a RoI are
determined so that all objects within a constant ToC threshold
are included. For simplicity, we restrict RoI to a rectangular
region and set a constant ToC threshold to 2 seconds, i.e., 33m
away from the vehicle traveling at 60𝑘𝑚∕ℎ.
D. Network Split Module

To enable the multi-thread execution model, the network
split module decomposes a DNN task into two sub-tasks by
creating two inference threads (i.e., a thread for a mandatory
sub-task and that for an optional sub-task) that share the same
context of their DNN task. Since all threads in a process use
identical address space, the inference threads inherently share
all their network model parameters, e.g., inputs, weights, and
outputs. One concern is a possible race condition when the two
threads access the network parameters at the same time, but,
during S&M DNN execution, both threads access the network
parameters in a mutually exclusive manner as they are executed
sequentially. Another issue is that an optional thread may
overwrite the inference result of a mandatory one. To avoid
this, DNN-SAM provides a dedicated memory space for each
thread to store its inference result while sharing other network
parameters. Besides, the multi-thread execution model allows
the mandatory thread to immediately return its inference result
even before completing the whole S&M pipeline without any
modification of the user-level source code.

To address the transparency issue, we focus on fully con-
volutional networks (FCN) [31] that naturally operate on an
input of any size and produce an output of the corresponding
(possibly re-sampled) spatial dimensions. Thanks to such a
powerful feature of FCNs, DNN-SAM does not require any
modification on the original DNN model’s layer architecture
and internals. Instead, different inputs are fed into the original
DNN model by two threads, i.e., cropped and scaled images
for mandatory and optional threads, respectively. Then, each

3Note that estimating safe time-to-collision is a topic of active research [30],
but it is beyond the scope of this paper.
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thread goes through a forward pass of the DNN model with
its input and produces an output whose size is determined
corresponding to its input size. Due to such a powerful feature,
FCN-based object detection systems are now dominant in
the field [32]. Thereby, DNN-SAM can transparently provide
S&M DNN execution for various FCN-based object detection
systems. Note that some techniques have been proposed to
efficiently convert a non-FCN network to an equivalent FCN
network [31].

E. Network Merge Module

The network merge module localizes the detected objects in
a global coordinate system and eliminates duplicated objects, if
any. First, each object detected by a mandatory sub-task should
be projected onto the original input space, in order to merge
the result with that of the corresponding optional sub-task.
In particular, as the inference result of a mandatory sub-task,
the location and size of each object’s bounding box, denoted
as {(𝑥𝑎, 𝑦𝑎), (𝑤𝑎, ℎ𝑎)}, are represented in the RoI space, where
(𝑥𝑎, 𝑦𝑎) and (𝑤𝑎, ℎ𝑎) are the center position and size of the box
in the RoI space, respectively. Note that the location and size
of RoI are represented as {(𝑥, 𝑦), (𝑤, ℎ)} in the (global) input
space. Then, the location and size of each object’s bounding
box in the RoI space can be transformed to those in the global
space, denoted as {(𝑥′𝑎, 𝑦

′
𝑎), (𝑤

′
𝑎, ℎ

′
𝑎)}, and they are calculated

as 𝑥′𝑎 = 𝑥𝑎 + (𝑥 − 𝑤∕2), 𝑦′𝑎 = 𝑦𝑎 + (𝑦 − ℎ∕2), 𝑤′
𝑎 = 𝑤𝑎,

and ℎ′𝑎 = ℎ𝑎. Note that (𝑥 − 𝑤∕2, 𝑦 − ℎ∕2) is the upper-
left coordinates of RoI in the input space. In addition, as the
inference result of an optional sub-task, the location and size
of each object’s bounding box in the scaled space, denoted as
{(𝑥𝑏, 𝑦𝑏), (𝑤𝑏, ℎ𝑏)}, can be transformed to those in the global
space as {(𝑥′𝑏, 𝑦

′
𝑏) = 𝛼 ⋅ (𝑥𝑏, 𝑦𝑏), (𝑤′

𝑏, ℎ
′
𝑏) = 𝛼 ⋅ (𝑤𝑏, ℎ𝑏)}, where

𝛼 denotes the scaling factor of the optional sub-task.
With those objects localized in a global coordinate system,

the merge module then performs deduplication through in-
tersection over union (IoU) and a new redundancy detection
metric. A typical way of detecting duplications is using IoU
that can be simply computed as area of intersection divided
over area of union. If the IoU score between two bounding
boxes is greater than a threshold, one of the boxes is elim-
inated. However, our S&M DNN execution may generate a
cut-off object that may have a very low IoU score with its
corresponding intact object detected in a scaled image due to
a small area of intersection between the two objects, failing to
detect duplication. To solve this problem, we introduce a new
evaluation metric for handling the cut-off objects. Instead of
dividing by area of union, the proposed metric divides area
of intersection by area of cut-off object’s bounding box. If
the newly defined score between two bounding boxes of a
cut-off object in a cropped image and an intact object in a
scaled image is greater than a threshold, one of the boxes is
eliminated. In this way, the network merge module can merge
the inference results of mandatory and optional sub-tasks into
a complete one by effectively eliminating redundant objects
detected by both sub-tasks, achieving better accuracy.

F. Sub-task Scheduler
To orchestrate the execution of sub-tasks, DNN-SAM supports

a sub-task scheduler which runs as a background daemon
to communicate with S&M DNN execution pipelines via a
Named Pipe IPC, which facilitates an efficient communication
between sub-tasks and the scheduler. The scheduler maintains
each DNN task’s S&M DNN execution model parameters (in
Sec. V-A) and a priority queue for scheduling mandatory and
optional sub-tasks according to their priorities. When a sub-
task is ready to execute, it sends a ready message to the
scheduler, which then enqueues the sub-task into the priority
queue with its PID and deadline information. When a sub-
task finishes its execution, it sends a complete message to
the scheduler, which then dequeues another sub-task from the
queue according to the scheduling algorithms (in Sec. V-B).
Also, the scheduler continuously calculates available slack at
each invocation (either task release or sub-task completion)
and determines the scales of optional sub-tasks ready to
execute. We assume the non-preemptive execution of each sub-
task due to the non-preemptive feature of GPU processing.

V. SCHEDULING OF MULTIPLE DNN TASKS FOR OBJECT
DETECTION

While Sec. IV explained the system architecture for DNN-
SAM that addresses C1–C3, it did not present how to schedule
sub-tasks of multiple DNN tasks (i.e., C4). In this section,
we address the following issues regarding C4, which enables
DNN-SAM to maximize the overall detection accuracy while
meeting all timing constraints: (a) how to model each DNN
task associated with the proposed S&M DNN execution? and
(b) how to schedule sub-tasks of multiple DNN tasks and how
to provide offline timing guarantees for the scheduling?
A. Split-and-Merge DNN Execution Model

The original DNN inference tasks are represented as the
periodic task model [33] which has been used in most real-
time systems. We assume each task uses one DNN model
and makes one inference request per job (task’s instance).
Basically, we tailor the imprecise computation model [34]
to DNN-based object detection tasks. Under the S&M DNN
execution model, each DNN task 𝜏𝑖 ∈ 𝜏 consists of a
mandatory sub-task 𝜏𝑀𝑖 and an optional sub-task 𝜏𝑂𝑖 , and it
can be specified as 𝜏𝑖 = (𝜏𝑀𝑖 , 𝜏𝑂𝑖 , 𝑇𝑖, 𝐷𝑖), where 𝑇𝑖 is the period
and 𝐷𝑖 is the relative deadline equal to 𝑇𝑖.Important parameters to describe the execution behavior
of 𝜏𝑖 are 𝜏𝑀𝑖 and 𝜏𝑂𝑖 . A mandatory sub-task 𝜏𝑀𝑖 processes
a cropped RoI image, and is further specified as 𝜏𝑀𝑖 =
(𝑅𝑀

𝑖 , 𝐶𝑀
𝑖 ), where 𝑅𝑀

𝑖 = {(𝑥, 𝑦), (𝑤, ℎ)} is specified by the
center position (𝑥, 𝑦) and the maximum size (𝑤, ℎ) of RoI, and
𝐶𝑀
𝑖 is the worst-case execution time of 𝜏𝑀𝑖 to process 𝑅𝑀

𝑖 .
Note that the position and size of RoI vary with an input image
for each job instance to be determined at run-time, while the
maximum size of RoI and the worst-case execution time 𝐶𝑀

𝑖are assumed known a priori, e.g., in our case 𝑤 = ℎ = 256,
according to the driving environment, such as camera’s field-
of-view (FOV) and the vehicle speed limit. We calculate the
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worst-case execution time 𝐶𝑀
𝑖 by decomposing it into the

three components:
𝐶𝑀

𝑖 = 𝑐RoI𝑖 + 𝑐Split𝑖 + 𝑐Infer𝑖 (1)

where 𝑐RoI𝑖 , 𝑐Split𝑖 , and 𝑐Infer𝑖 denote the worst-case ex-
ecution times of RoI identification, network splitting, and
inference for 𝑅𝑀

𝑖 , respectively, to be measured in Sec. VI-A.
An optional sub-task 𝜏𝑂𝑖 processes a down-sampled entire
image, and is further specified as 𝜏𝑂𝑖 = (𝑆𝑂

𝑖 , 𝐶
𝑂
𝑖 ), where

𝑆𝑂
𝑖 is a finite set of scales (pixels of the longest side), e.g.,

in our case 𝑆𝑂
𝑖 = {0, 160, 256, 320, 416, 512, 608, 672}, and

𝐶𝑂
𝑖 is a set of the worst-case execution times at different

scales, i.e., 𝐶𝑂
𝑖 = {𝐶𝑂

𝑖 (𝑠𝑖)|𝑠𝑖 ∈ 𝑆𝑂
𝑖 }. Note that an optional

sub-task combines the detected objects from a down-sampled
image with those from a cropped RoI by a mandatory sub-
task to increase overall accuracy. We calculate the worst-case
execution time at scale 𝑠𝑖 (denoted as 𝐶𝑂

𝑖 (𝑠𝑖)) by decomposing
it into the two components:

𝐶𝑂
𝑖 (𝑠𝑖) = 𝑐Infer𝑖 (𝑠𝑖) + 𝑐Merge𝑖 , (2)

where 𝑐Infer𝑖 (𝑠𝑖) is the worst-case inference time for an input
image of scale 𝑠𝑖, and 𝑐Merge𝑖 is the maximum time to merge
the inference results of mandatory and optional sub-tasks, each
of which will be measured in Sec. VI-A. The period and
deadline of the sub-tasks 𝜏𝑀𝑖 and 𝜏𝑂𝑖 are the same as those of
task 𝜏𝑖.

Each task 𝜏𝑖 is assumed to generate potentially an infinite
sequence of jobs every 𝑇𝑖 time-units. For each job, the
execution of its mandatory sub-job must be completed within
a relative deadline of 𝐷𝑖 time-units, and its optional sub-job
becomes ready for execution only when the mandatory sub-job
completes. While the parameters in 𝜏𝑀𝑖 and 𝜏𝑂𝑖 are known a
priori, the actual position and size of RoI and its corresponding
execution time (≤ 𝐶𝑀

𝑖 ) for a mandatory sub-job is determined
by the RoI identification module in DNN-SAM at run-time. In
addition, the actual scale of an input image for an optional sub-
job is determined at run-time, and it may vary from instance
to instance by accounting for the available resources before
its deadline (to be discussed in Sec. V-B).4 When it comes to
preemptiveness, the executions are non-preemptive in a sub-
task level; this means, it is impossible for any higher-priority
sub-task 𝜏𝑀𝑖 (or 𝜏𝑂𝑖 ) to preempt a currently-executing sub-task
𝜏𝑀𝑘 (or 𝜏𝑂𝑘 ), while a sub-task 𝜏𝑀𝑖 (or 𝜏𝑂𝑖 ) can be executed
between the execution of the mandatory sub-task 𝜏𝑀𝑘 and that
of the corresponding optional sub-task of 𝜏𝑂𝑘 .

Note that the S&M DNN execution model is more general
than the original DNN model that processes an entire image
once. In fact, a DNN task composed of a mandatory sub-task
with an entire image as RoI and an optional sub-tasks with
𝑆𝑂
𝑖 = {0} is equivalent to the original model.
4In periodic task systems, at most one active job per task exists in any time

slot, and hence, for simplicity of presentation, we use the term task (sub-task)
also refers to active job (sub-job) of a task in the rest of this paper.

B. Scheduling of Multiple DNN tasks

Building upon DNN-SAM, we develop two new scheduling
algorithms that determine not only the order of executing
mandatory and optional sub-tasks but also the scale of op-
tional sub-tasks for each job. Associated with the S&M DNN
execution model, we have the following scheduling objectives
that must be achieved: (O1) scheduling mandatory sub-tasks as
early as possible to detect objects in RoI as quickly as possible
and (O2) scheduling optional sub-tasks with a large scale to
maximize the overall accuracy, while meeting the deadlines of
all the jobs of mandatory and optional sub-tasks. Both of these
two objectives are important, yet often incompatible with each
other.

The main challenge in achieving these scheduling objectives
arises from the fact that the execution time of a mandatory sub-
task varies with the size of RoI within its image input. Without
considering such dynamic execution behavior that depends
on the RoI size, we may severely under-utilize computing
resources or substantially degrade the accuracy of optional
sub-tasks. Suppose every mandatory sub-task 𝜏𝑀𝑖 is always
assigned its resource based on the maximum size of RoI
and its corresponding worst-case execution time 𝐶𝑀

𝑖 . Then,
a considerable amount of computing resources will remain
unused throughout all the periods where the actual size of
RoI is smaller than the maximum. If those unused resources
could be reclaimed and utilized for optional sub-tasks so as
execute them with larger scales, we can improve the overall
accuracy while guaranteeing the deadlines of all sub-tasks. We,
therefore, develop online scheduling algorithms that reclaim
unused resources efficiently under the varying size of RoI, and
adaptively select the scales of optional sub-tasks at run-time
so as to maximize the overall accuracy without compromising
schedulability.

In particular, we propose two different scheduling policies:
i) EDF-MandFirst and ii) EDF-Slack. For both scheduling policies,
the scheduler is invoked upon release of a new job, or
completion of either job’s mandatory or optional sub-task.
Upon each invocation, active sub-tasks in the ready queue
are scheduled under the corresponding scheduling policy. EDF-
MandFirst and EDF-Slack employ not only different prioritization
schemes for mandatory and optional sub-tasks, but also differ-
ent mechanisms of determining the scales of optional sub-tasks
by utilizing available slack resources at run-time.
Determining the priority ordering. EDF-MandFirst assigns
statically higher priorities to mandatory sub-tasks over op-
tional sub-tasks. Optional sub-tasks are scheduled whenever
no mandatory sub-task is ready in the system. We implement
this by maintaining two queues: one for active mandatory sub-
tasks and the other for active optional sub-tasks. The priority
ordering of mandatory sub-tasks is determined according to
the Earliest Deadline First (EDF) policy [33], and the same ap-
plies to optional sub-tasks. EDF-MandFirst is designed to achieve
the first objective O1 by securing mandatory sub-tasks from
the potential interference of optional sub-tasks. On the other
hand, EDF-Slack assigns priorities to sub-tasks by the EDF
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Baseline task 𝜏!
Baseline task 𝜏"
Mandatory / Optional sub-task 𝜏!", 	𝜏!#

Mandatory / Optional sub-task 𝜏$", 𝜏$#

𝐶!, 𝐶$ 	𝐶!", 𝐶$" 𝐶!# , 𝐶$# 𝑇!, 𝑇$
Time 15 6 {0, 3, 6, 9} 15

Task release
Task deadline

𝜏! release 𝜏$ release
𝜏! release 
/ deadline

𝜏$ release
/ deadline 𝜏! deadline 𝜏$ deadline

(a)
10 20 40300

deadline miss!

𝜏$$(b)
10 20 40300

(c)
10 20 40300

Fig. 5. Execution timeline of multiple DNN tasks under (a) Baseline, (b)
EDF-MandFirst, and (c) EDF-Slack scheduling policies.

policy without separation between mandatory and optional
sub-tasks. That is, optional sub-tasks with earlier deadlines
are assigned higher priorities than mandatory sub-tasks with
later deadlines. EDF-Slack is designed to achieve the second
objective O2 by securing more resources for optional sub-tasks
as long as all mandatory sub-tasks finish their execution before
their deadlines. To achieve O1 and O2 together, EDF-MandFirst
and EDF-Slack need their own mechanisms to determine the
scale of the optional sub-task selected to be scheduled.

To compare the proposed scheduling policies and the base-
line, let us consider a task set with the following two tasks:
𝜏1 = 𝜏2 = (𝐶𝑀

1 = 6, 𝐶𝑂
1 = {0, 3, 6, 9}). The original DNN

model of 𝜏1 and 𝜏2 has the worst-case execution time of 15.
Consider the scheduling scenario shown in Fig. 5. We compare
(a) Baseline (vanilla DarkNet), (b) EDF-MandFirst, and (c) EDF-
Slack. In the case of Baseline shown in Fig. 5a, the response
time of a higher-priority job becomes unpredictably long and
misses its deadline. Without real-time scheduling support, the
execution of layers of different tasks can be interleaved, since
each DNN task consists of a sequence of multiple layers with
data dependency. Then, a lower-priority job (e.g., the first job
of 𝜏2) imposes interference on a higher-priority job (e.g., the
first job of 𝜏1), missing the deadline of the higher-priority job.
In the case of EDF-MandFirst shown in Fig. 5b, 𝜏2’s mandatory
sub-task can run as soon as 𝜏2 is released at time 6 and 21 by
prioritizing mandatory sub-tasks over optional ones, and thus
producing the most responsive inference for RoI. In the case of
EDF-Slack shown in Fig. 5c, when the first job of 𝜏2 is released
at time 6, 𝜏1’s optional sub-task can still run for 6 time-units
with a larger scale until the slack depletes. When the second
job of 𝜏2 is released at time unit 21, 𝜏1’s optional sub-task
can run only for 3 time-units with a smaller scale to avoid
missing the deadline of 𝜏2 at time 36. This way, EDF-Slack’s
adaptive image scaling achieves the most accurate inference
while meeting the deadlines of all mandatory sub-tasks.
Determining the scale of optional sub-tasks for EDF-
MandFirst. Now, let us explain how EDF-MandFirst determines
the scale of optional sub-tasks. When an optional sub-task 𝜏𝑂𝑘is selected to be scheduled by EDF-MandFirst at time 𝑡𝑐𝑢𝑟, we
need to determine the scale of 𝜏𝑂𝑘 to achieve O1 and O2. To
this end, we use the following two properties. First, from the

priority ordering of EDF-MandFirst, there is no active mandatory
sub-task at 𝑡𝑐𝑢𝑟. Second, since each task invokes a series of
jobs periodically as mentioned in Sec. V-A, no mandatory
job is released in [𝑡𝑐𝑢𝑟, 𝑑1(𝑡𝑐𝑢𝑟)), where 𝑑1(𝑡𝑐𝑢𝑟) is the earliest
absolute deadline after 𝑡𝑐𝑢𝑟 among all mandatory sub-tasks.
Using the two properties, we can guarantee that there is no
execution of any mandatory sub-task [𝑡𝑐𝑢𝑟, 𝑑1(𝑡𝑐𝑢𝑟)), and there-
fore the optional sub-task 𝜏𝑂𝑘 can utilize 𝑑1(𝑡𝑐𝑢𝑟)− 𝑡𝑐𝑢𝑟 amount
of slack time without delaying the execution of any mandatory
sub-task. EDF-MandFirst maximally uses the slack time, by
determining the scale of the optional sub-task to be selected
at 𝑡𝑐𝑢𝑟, as argmax𝑠𝑘∈𝑆𝑂

𝑘
{𝐶𝑂

𝑘 (𝑠𝑘)|𝐶
𝑂
𝑘 (𝑠𝑘) ≤ 𝑑1(𝑡𝑐𝑢𝑟) − 𝑡𝑐𝑢𝑟}.

From the policies of determining the priority ordering and
the scale of optional sub-tasks, we can directly apply a non-
preemptive EDF schedulability analysis [35] to EDF-MandFirst,
as presented in the following theorem.

Theorem 1: If Eq. (3) holds, 𝜏 is schedulable by EDF-
MandFirst (i.e., it guarantees no sub-job deadline miss).

𝑚𝑎𝑥𝜏𝑀𝑖 ∈𝜏𝐶𝑀
𝑖

𝑚𝑖𝑛𝜏𝑀𝑖 ∈𝜏𝑇𝑖
+

∑

𝜏𝑀𝑖 ∈𝜏

𝐶𝑀
𝑖

𝑇𝑖
≤ 1.0 (3)

Proof: Due to the mechanism of determining the scale
of optional sub-tasks for EDF-MandFirst, the following two
properties holds. First, the execution of each optional sub-task
does not delay that of any mandatory sub-task (because of each
optional sub-task’s execution finishes before 𝑑1(𝑡𝑐𝑢𝑟)). Second,
each optional sub-task does not miss its deadline (because
its execution time is less than 𝑑1(𝑡𝑐𝑢𝑟) − 𝑡𝑐𝑢𝑟 and its deadline
no earlier than 𝑑1(𝑡𝑐𝑢𝑟)). Therefore, the proof is equivalent to
prove {𝜏𝑀𝑖 } (without any execution of {𝜏𝑂𝑖 }) is schedulable
by the vanilla non-preemptive EDF scheduling.

Then, the theorem holds because Eq. (3) is a simpler version
of Theorem 2 in [35]. Here is a high-level idea why Eq. (3) is
a sufficient schedulability condition. While the EDF utilization
bound for a set of preemptive tasks is equal to 1.0 [33], that
for a set of non-preemptive tasks is decreased due to the
blocking of non-preemptive executions [35]. The execution of
a higher-priority task is blocked by at most one currently-
running lower-priority task at the release time of the higher-
priority task. In the worst-case scenario, a task might be
blocked by the task which has the maximum execution time.
The maximum blocking factor is contributed by the task which
has the shortest period.
Determining the scale of optional sub-tasks for EDF-Slack.
Different from EDF-MandFirst, EDF-Slack selects an optional
sub-task 𝜏𝑂𝑘 to be scheduled at 𝑡𝑐𝑢𝑟 even though there is a
mandatory sub-task which is active at 𝑡𝑐𝑢𝑟 but has a later
deadline than that of 𝜏𝑂𝑘 . We would like to determine the
scale of the optional sub-task 𝜏𝑂𝑖 to be scheduled for EDF-

Slack such that (i) the execution of 𝜏𝑂𝑘 does not compromise the
deadline guarantee of every mandatory sub-task, and (ii) EDF-
Slack can use the same schedulability analysis as Theorem 1.
For (ii), we consider the target interval for slack reclamation as
[𝑡𝑐𝑢𝑟, 𝑑1(𝑡𝑐𝑢𝑟)), which makes it possible for 𝜏𝑂𝑘 to finish its exe-
cution no later than 𝑑1(𝑡𝑐𝑢𝑟). Then, considering the next earliest
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Algorithm 1 EDF-Slack: scale decision for 𝜏𝑂𝑘 at 𝑡𝑐𝑢𝑟
1: 𝑝 = 0, 𝑈𝑀 = the left-hand-side of Eq. (3)
2: for 𝑖 = 𝑛 to 1, 𝜏𝑀𝑖 ∈ {𝜏𝑀1 , ..., 𝜏𝑀𝑛 |𝑑1(𝑡𝑐𝑢𝑟) ≤ ⋅ ⋅ ⋅ ≤ 𝑑𝑛(𝑡𝑐𝑢𝑟)} do

{In reverse EDF order of mandatory sub-tasks}
3: 𝑈𝑀 = 𝑈𝑀 − 𝐶𝑀

𝑖
𝑇𝑖

4: 𝑞𝑖 = max
(

0, 𝑅𝐶𝑀
𝑖 − (1 − 𝑈𝑀 ) ⋅ (𝑑𝑖(𝑡𝑐𝑢𝑟) − 𝑑1(𝑡𝑐𝑢𝑟))

)

5: 𝑈𝑀 = min
(

1.0, 𝑈𝑀 + 𝑅𝐶𝑀
𝑖 −𝑞𝑖

𝑑𝑖(𝑡𝑐𝑢𝑟)−𝑑1(𝑡𝑐𝑢𝑟)

)

6: 𝑝 = 𝑝 + 𝑞𝑖7: end for
8: 𝑆𝑙𝑎𝑐𝑘(𝑡𝑐𝑢𝑟, 𝑑1(𝑡𝑐𝑢𝑟)) = 𝑑1(𝑡𝑐𝑢𝑟) − 𝑡𝑐𝑢𝑟 − 𝑝
9: return argmax𝑠𝑘∈𝑆𝑂

𝑘
{𝐶𝑂

𝑘 (𝑠𝑘)|𝐶
𝑂
𝑘 (𝑠𝑘) ≤ 𝑆𝑙𝑎𝑐𝑘(𝑡𝑐𝑢𝑟, 𝑑1(𝑡𝑐𝑢𝑟))}

release of any mandatory sub-task is 𝑑1(𝑡𝑐𝑢𝑟), it is impossible
for a lower-priority optional sub-task to block the execution of
any high-priority mandatory sub-task (although the execution
of a higher-priority optional sub-task may delay the execution
of some lower-priority mandatory sub-tasks). Therefore, we
do not need to increase the blocking term (i.e., the first term
in Eq. (3)), which allows to use Eq. (3) as a schedulability
condition for EDF-Slack. This is achieved by exploiting the
property of the S&M DNN execution model: while all sub-
tasks are non-preemptive, there can be the execution of other
sub-tasks between the execution of a mandatory sub-task and
that of its corresponding optional sub-task.

On the other hand, achieving (i) entails a careful calculation
of the remaining slack in [𝑡𝑐𝑢𝑟, 𝑑1(𝑡𝑐𝑢𝑟)). Since we do not know
the size of RoI and actual execution time of a mandatory
sub-task until it is completed, we need to assume that the
resource demand for each future mandatory sub-task is up to
𝐶𝑀
𝑘 to guarantee no deadline miss. However, upon completion

of a mandatory sub-task, we know its actual execution time
corresponding to its actual RoI size and reclaim the unused
portion of assigned resources that can be counted when
calculating the slack time in [𝑡𝑐𝑢𝑟, 𝑑1(𝑡𝑐𝑢𝑟)).

Alg. 1 presents details of the slack calculation and scale
decision. At time 𝑡𝑐𝑢𝑟 when an optional sub-task 𝜏𝑂𝑘 is selected
to be scheduled, we focus on the interval of [𝑡𝑐𝑢𝑟, 𝑑1(𝑡𝑐𝑢𝑟)),where 𝑑𝑖(𝑡𝑐𝑢𝑟) is the 𝑖𝑡ℎ earliest absolute deadline after 𝑡𝑐𝑢𝑟among all mandatory sub-tasks. In that interval, we examine
all mandatory sub-tasks in reverse EDF order (the latest
deadline first), where 𝑛 is the number of tasks in 𝜏 (Line
2). Note that mandatory sub-tasks are indexed in EDF order
(i.e., for 𝜏𝑀𝑖 and 𝜏𝑀𝑘 where 𝑖 < 𝑘, 𝑑𝑖(𝑡𝑐𝑢𝑟) ≤ 𝑑𝑘(𝑡𝑐𝑢𝑟)). We
consider that future mandatory sub-task invocations require the
worst-case execution time and thus their utilization is the left-
hand-side of Eq. (3) (line 1). We consider that the scheduler
keeps track of the worst-case remaining execution time 𝑅𝐶𝑀

𝑖for the active mandatory sub-task of 𝜏𝑖 at 𝑡𝑐𝑢𝑟; since 𝜏𝑂𝑘 is
selected to be scheduled at 𝑡𝑐𝑢𝑟, 𝑅𝐶𝑀

𝑖 at 𝑡𝑐𝑢𝑟 is either 0 or
𝐶𝑀
𝑖 . We try to defer as much execution of mandatory sub-

tasks as possible beyond 𝑑1(𝑡𝑐𝑢𝑟) and compute the minimum
amount of execution 𝑝 that must execute before 𝑑1(𝑡𝑐𝑢𝑟) in
order to meet future deadlines of all mandatory sub-tasks
(Lines 3–6). This step is repeated for all mandatory sub-tasks.

For example, we calculate the maximum execution time of
𝜏𝑀𝑛 (whose deadline is 𝑑𝑛(𝑡𝑐𝑢𝑟)) in [𝑑1(𝑡𝑐𝑢𝑟), 𝑑𝑛(𝑡𝑐𝑢𝑟)), which
is (1 − 𝑈𝑀 ) ⋅ (𝑑𝑛(𝑡𝑐𝑢𝑟) − 𝑑1(𝑡𝑐𝑢𝑟)) in Line 4; then, 𝑞𝑖 in Line 4 is
the minimum execution of 𝜏𝑀𝑛 in [𝑡𝑐𝑢𝑟, 𝑑1(𝑡𝑐𝑢𝑟)). The execution
rate of 𝜏𝑀𝑛 in [𝑑1(𝑡𝑐𝑢𝑟), 𝑑𝑛(𝑡𝑐𝑢𝑟)) is recorded in Line 5. This
is similar to the approach in [36], [37]. Then, the slack is set
to the remaining time slots except for 𝑝 (i.e., the sum of 𝑞𝑖)over the interval [𝑡𝑐𝑢𝑟, 𝑑1(𝑡𝑐𝑢𝑟)) in Line 8. Therefore, when an
optional sub-task 𝜏𝑂𝑖 is selected to be scheduled at time 𝑡𝑐𝑢𝑟,its scale is determined according to Line 9.

As we designed, we can apply the schedulability analysis
of EDF-MandFirst to EDF-Slack as follows.

Theorem 2: If Eq. (3) holds, 𝜏 is schedulable by EDF-Slack
(i.e., it guarantees no sub-job deadline miss).

Proof: Due to the mechanism of determining the scale of
optional sub-tasks for EDF-Slack, a lower-priority optional sub-
task cannot block the execution of any high-priority mandatory
sub-task. Therefore, we use the same blocking term as Eq. (3)
(i.e., the first term).

Then, we apply the fact that there is no job deadline miss
under EDF if the total utilization (including the blocking term)
at any time is not greater than 1.0 [38]. Then, what we need
to prove is EDF-Slack satisfies 𝑈𝑀 (𝑡)+𝑈𝑂(𝑡) ≤ 1.0 for every 𝑡,
where 𝑈𝑀 (𝑡) and 𝑈𝑂(𝑡) denote the sum of run-time utilization
of mandatory sub-tasks and optional sub-tasks, respectively,
each of whose release time and deadline are before and after
𝑡, respectively. Under EDF-Slack, starting with setting the total
static utilization of 𝑈𝑀 in Line 1 of Alg. 1, the algorithm
updates the run-time utilization by Lines 3–5, and calculates
the largest 𝑞𝑖 that does not compromise 𝑈𝑀 (𝑡)+𝑈𝑂(𝑡) ≤ 1.0 in
Line 4, and any optional sub-task performs its execution for at
most 𝑆𝑙𝑎𝑐𝑘(𝑡𝑐𝑢𝑟, 𝑑1(𝑡𝑐𝑢𝑟)) in [𝑡𝑐𝑢𝑟, 𝑑1(𝑡𝑐𝑢𝑟)), implying that the
theorem holds.
Run-time complexity. At each invocation (either job release
or sub-task completion), our scheduling algorithm calculates
the slack with the complexity of 𝑂(1) for EDF-MandFirst and
𝑂(𝑛) for EDF-Slack in Alg. 1 where 𝑛 is the number of tasks.
Then, our algorithm determines the scale of an optional sub-
task 𝜏𝑂𝑖 from 𝑆𝑂

𝑖 with the complexity of 𝑂(1). Thus, the total
complexity is 𝑂(1) for EDF-MandFirst and 𝑂(𝑛) for EDF-Slack.

VI. EVALUATION
A. Experimental Setup

Hardware and software. We have implemented and eval-
uated DNN-SAM on top of DarkNet [13], a representative
ML framework, to enable seamless S&M execution in the
existing object detection networks without any modification
or retraining. The programmers can easily apply DNN-SAM
to their DNNs in the same way they design DNNs with-
out DNN-SAM. We conducted experiments on NVIDIA Jet-
son Xavier [24] running Ubuntu 18.04.4 and CUDA 10.0.
Note that NVIDIA Jetson Xavier does not support CUDA
multi-process service (MPS) and preemptive multitasking. We
consider non-preemptive EDF where the executions are non-
preemptive in a sub-task level. And, we utilized YOLOv3 [2]
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TABLE I
EXECUTION TIME MEASUREMENT ON NVIDIA XAVIER

Time (ms) 𝑐RoI𝑖 𝑐Split𝑖 𝑐Infer𝑖 𝑐Merge𝑖Average 2.4 4.0 38.4 0.1
Maximum 9.0 7.5 40.3 0.6

𝑐Infer𝑖 (𝑠𝑖)Scale 𝑠𝑖 160 256 320 416 512 608 672
Average 31.3 38.4 69.3 97.8 115.6 182.7 213.4

Maximum 33.4 40.3 71.7 108.4 136.7 210.1 225.9

as a baseline network tested with 7,481 images on the KITTI
in-vehicle camera dataset [25] to detect cars and pedestrians
in the moderate level of difficulty. Note, YOLOv3 is a fully
convolutional network that takes an input of arbitrary size
and produces an output of the corresponding size. For RoI
identification, we used the Velodyne LiDAR point clouds
data (also available on the KITTI dataset) corresponding
to the tested images. However, the KITTI dataset does not
provide the corresponding IMU data, and hence we assume a
constant vehicle speed. To evaluate the benefits of DNN-SAM
in a realistic setup, we also implemented a real-time object
detection system for emergency braking on a 1/10 scale self-
driving car [39].

DNN execution time profiling and run-time overhead.
DNN-SAM conducts DNN inferencing for mandatory and op-
tional sub-tasks on a GPU, while the other modules in-
cluding RoI identification, network split/merge and sub-task-
scheduling use CPUs. We take a measurement-based approach
to estimate the worst-case execution time of mandatory and
optional sub-tasks, 𝐶𝑀

𝑖 and 𝐶𝑂
𝑖 . Our experiments measure the

execution time of each component in 𝐶𝑀
𝑖 and 𝐶𝑂

𝑖 by running
it 1,000 times, taking the maximum value among the measured
as the WCET as summarized in Table I. For example, when a
scale 𝑠𝑖 of an input image varies from 160 to 672, the worst-
case inference time (𝑐Infer𝑖 (𝑠𝑖)) is increased from 33.4ms to
225.9ms. The three key modules—RoI identification, network
split, and network merge—in DNN-SAM take 2.4ms, 4.0ms, and
0.1ms on average, accounting for 1.1%, 1.8%, and 0.02% of
the total execution time of a split-and-merge DNN execution
pipeline with an optional sub-task’s scale of 608, respectively.
The total overhead of DNN-SAM constitutes only 2.9% of the
total execution time, a relatively short delay compared to the
inference time of the original DNN model. The additional
memory required by DNN-SAM is about 2,361KB per task,
constituting 0.1% of the total memory usage.

We also measure the overhead of our scheduling algorithms
as a function of the number of DNN tasks (𝑛). We run dummy
DNN tasks for this measurement since at most four YOLOv3
networks can be loaded on the Xavier due to the memory
constraint. When 𝑛 is increased from 1 to 100, the run-time
scheduling overhead increases from 26.4𝜇𝑠 to 88.7𝜇𝑠, which
is almost linear in 𝑛 and is not critical since it is five orders-
of-magnitude shorter than the DNN execution time.

Approaches to be compared. We compare DNN-SAM with
EDF-MandFirst and EDF-Slack against Baseline (vanilla DarkNet)
in terms of inference latency and accuracy. We use two
different metrics for inference accuracy: accuracy of RoI and

overall accuracy. The accuracy of RoI is defined as the ratio of
detected objects inside an RoI to the total ground truths, and
the overall accuracy is that of all detected objects to the total
ground truths. Frame-Per-Second (FPS) is used as the infer-
ence latency metric. Under EDF-MandFirst and EDF-Slack, DNN
tasks go through their S&M DNN execution pipelines, and
are scheduled under EDF-MandFirst and EDF-Slack, respectively.
Baseline represents the state-of-the-art DNN inference frame-
work, where DNN tasks process their corresponding unmod-
ified networks, and are scheduled in a FIFO manner. Unless
otherwise specified, Baseline uses the network size of 608×608,
and DNN-SAM uses the maximum RoI size of 𝑤 = ℎ = 256 and
network scales 𝑆𝑂

𝑖 = {0, 160, 256, 320, 416, 512, 608, 672}.
B. Evaluation Result
Effectiveness in terms of inference latency and accuracy.
We would like to show the effectiveness of DNN-SAM in
producing faster and more accurate response in RoI (safety-
critical portion) while meeting all timing requirements for
multiple DNN-based object detection tasks. In this experi-
ment, we executed two object detection tasks with 3 and 7
FPS requirements, respectively, and measured their inference
latency and accuracy metrics. Fig. 6a plots the FPS char-
acteristics of mandatory sub-tasks and subsequent optional
sub-tasks for EDF-Slack and EDF-MandFirst as well as the FPS
characteristics of Baseline. The red dotted line represents the
FPS requirements for the two tasks. Baseline shows 2.4 FPS
on average for both tasks, i.e., both tasks cannot meet their
FPS requirements. Such a low FPS on both tasks is observed
because the ML framework handles DNN tasks with different
timing constraints sequentially without prioritization. On the
other hand, EDF-Slack and EDF-MandFirst show different FPS
performance between mandatory and optional sub-tasks, i.e.,
higher FPS for mandatory sub-tasks than optional ones, while
meeting all the FPS requirements for both tasks. For example,
under EDF-MandFirst, mandatory sub-tasks produce 26.5 FPS
and 19.9 FPS, while optional sub-tasks produce 10.5 FPS and
12.4 FPS for 𝜏1 and 𝜏2, respectively, satisfying both tasks’
FPS requirements. Comparing to Baseline, EDF-MandFirst yields
9.7× and 4.8× faster inference results for RoI and an entire
image, respectively, on average. Comparing to EDF-Slack, EDF-
MandFirst achieves 1.4× faster inference results for RoI on
average. This is because EDF-MandFirst is designed to statically
prioritize mandatory sub-tasks over optional sub-tasks so as to
detect objects in RoI as quickly as possible.

Fig. 6b compares the accuracy characteristics with the
detailed breakdown of the accuracy of RoI (lower portion of
the cumulative bar) and overall accuracy (total portion of the
cumulative bar). Recall that, under DNN-SAM, the accuracy
of RoI is calculated from the results of mandatory sub-
tasks, and the overall accuracy is from the merged results of
mandatory and optional sub-tasks. We observe that the infer-
ence results were obtained after their deadline under Baseline,
which is useless for safety-critical applications. Therefore, to
make a fair comparison with DNN-SAM, we compare Baseline-
Downscaled that shares the same framework with Baseline but
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Fig. 6. FPS and accuracy characteristics for object detection tasks.

processes DNN tasks with down-scaled networks so as to meet
their FPS requirements under non-preemptive EDF. Baseline-
Downscaled shows the overall accuracy of 33.6% and 34.8%
and the accuracy in RoI of 5.7% and 14.4% for detecting
cars and pedestrians, respectively. On the other hand, DNN-
SAM with EDF-Slack shows much higher accuracy in RoI of
21.0% and 29.3% (3.7× and 2.0× RoI accuracy improvement)
than Baseline-Downscaled for detecting cars and pedestrians,
respectively, while showing comparable (or improved) overall
accuracy, i.e., 38.2% and 45.4%. Such high accuracy in RoI
can be interpreted as the benefit of S&M DNN execution, i.e.,
processing the safety-critical region with the original resolu-
tion. In addition, EDF-Slack shows higher overall accuracy than
EDF-MandFirst. EDF-Slack shows the overall accuracy of 38.2%
and 45.4% for car and pedestrian detection, respectively, while
EDF-MandFirst shows the overall accuracy of 36.5% and 43.5%.
This is because EDF-Slack is designed to secure more resources
for optional sub-tasks by assigning priorities to sub-tasks by
the EDF policy without separating mandatory and optional
sub-tasks.

One may wonder how much portion each component in
DNN-SAM contributes to maintaining comparable overall accu-
racy while achieving high accuracy in RoI. To demonstrate
this, we also compare EDF-w/oSlack and EDF-Slack-w/oMerge
with EDF-Slack as shown in Fig. 6c. EDF-w/oSlack schedules
sub-tasks in the same way as EDF-Slack but the scales of op-
tional sub-tasks are determined statically and offline according
to the schedulability analysis in Eq. (3). Without run-time slack
reclamation, EDF-w/oSlack cannot execute any optional sub-task
with a scale larger than 0 since the left-hand-side of Eq. (3)
is close to 1.0, yielding a large overall accuracy drop by 17.2
percentage points (%p) and 16.1%p relative to EDF-Slack for
detecting cars and pedestrians, respectively. EDF-Slack-w/oMerge
uses the same scheduling and scale decision algorithm with
EDF-Slack but skips the merge operation, i.e., the overall
accuracy is determined solely by the inference results of
optional sub-tasks. Without the network merge module in DNN-
SAM, EDF-Slack-w/oMerge shows an overall accuracy drop by
10.2%p and 16.2%p relative to EDF-Slack for detecting cars
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and pedestrians, respectively. Whereas, EDF-Slack effectively
merges the inference results of mandatory and optional sub-
tasks into a complete one and adaptively selects the scales
of optional sub-tasks by utilizing available slack at run-time,
achieving higher overall accuracy. DNN-SAM with EDF-MandFirst
shows similar accuracy results as the case of EDF-Slack.

In summary, DNN-SAM not only produces faster and more
accurate inference results for safety-critical portions of input
images but also achieves the overall accuracy comparable to
the existing ML framework using the original DNN models,
while meeting all timing requirements.
Evaluation with an increasing number of tasks. Next, we
evaluated how our framework effectively handles an increasing
number of tasks in a task set. In this experiment, we conducted
a set of experiments while varying the number of tasks (𝑛)
from one to four, each of which has 3 FPS requirement. Fig. 7a
shows the average FPS for different numbers of object detec-
tion tasks running on the system. Under Baseline, a task set
with only one task can meet its FPS requirement while other
task sets with more than one task cannot (the gray bar is below
the FPS requirement). On the other hand, DNN-SAM with EDF-
Slack and EDF-MandFirst satisfies the FPS requirement for all the
cases of 𝑛 = 1, 2, 3 and 4. As the number of tasks increases,
the available slack resource for optional sub-tasks decreases.
EDF-Slack and EDF-MandFirst adaptively assign smaller scales
to optional sub-tasks as the number of tasks increases to
meet the FPS requirement. In addition, EDF-MandFirst shows
higher average FPS results for mandatory sub-tasks than EDF-
Slack, e.g., 10.1 and 5.4 with EDF-MandFirst and EDF-Slack,
respectively, when 𝑛 = 4. This is because EDF-MandFirst is
designed to secure mandatory sub-tasks from the potential
interference of optional sub-tasks by assigning statically higher
priorities to mandatory sub-tasks than optional ones.

Fig. 7b shows RoI accuracy and overall accuracy. Note
that Baseline cannot meet the FPS requirement for 𝑛 ≥ 2,
so we compare Baseline-Downscaled as in Fig. 6b (Note that
the accuracy result of Baseline-Downscaled is equivalent to that
of Baseline when 𝑛 = 1). As the number of tasks increases
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from 1 to 4, EDF-Slack and EDF-MandFirst exhibit consistently
high RoI accuracy of 21.0% and 29.3% for car and pedestrian
detection, respectively, while Baseline-Downscaled’s RoI accu-
racy is decreased from 13.9% and 26.7% to 5.7% and 14.4%,
respectively. Such a result of sustaining high RoI accuracy
regardless of 𝑛 can be interpreted as the benefit of S&M DNN
execution that enables to process safety-critical portions with
the original resolution. Moreover, EDF-Slack exhibits higher
overall accuracy than Baseline-Downscaled for all values of the
number of tasks. For example, when 𝑛 = 4, EDF-Slack shows
the overall accuracy of 38.3% and 44.8% for car and pedestrian
detection, respectively, while Baseline-Downscaled shows the
overall accuracy of 33.6% and 34.8%. Such improvements
mainly come from i) adaptive scaling of optional sub-tasks
by efficient use of slack resources at run-time while meeting
the FPS requirements and ii) effective merging the outputs of
mandatory and optional sub-tasks.

In summary, DNN-SAM with EDF-Slack and EDF-MandFirst can
be adapted to an increasing number of tasks using adaptive
scaling while EDF-Slack and EDF-MandFirst effectively achieve
their own objectives.
C. Case Study: Emergency Braking

Finally, DNN-SAM has been deployed into a 1/10 scale
self-driving car equipped with an NVIDIA Jetson Xavier to
perform a case study of emergency braking.5 We executed
two object detection tasks for front/back cameras both at
5 FPS, and the braking is activated as soon as an object
is detected in RoI of an image from the front camera. In
this experiment, a car is moving toward the pedestrian at
0.8𝑚∕𝑠, and the camera’s field-of-view is limited to 1.5𝑚,
i.e., the required braking distance is limited to that range.
Fig. 8 shows the average stopping distances (plotted as bar)
with a breakdown of the distance up to the detection point
(perception-reaction) and the actual braking distance (braking)
as well as the maximum/minimum distances (error bar) out
of 15 trials with and without using DNN-SAM. With Baseline,
a stopping decision is made at the 1.2𝑚 spot and stops at
the 1.7𝑚 spot on average, thus exceeding the safety distance.
The worst-case stopping distance is 2.1𝑚 which is far beyond
the safety distance. In contrast, DNN-SAM makes a stopping
decision at the 0.7𝑚 spot, and stops at the 1.0𝑚 spot on
average within the safety distance. The distance up to the

5See https://rtcl.dgist.ac.kr/index.php/dnnsam/ for the demo video of emer-
gency braking.

detection is reduced by 1.9× compared to Baseline. The worst-
case stopping distance is 1.3𝑚 still within the safety distance,
demonstrating enhanced safety and quality of control in a real-
world environment.

VII. CONCLUSION
We have focused on distinct requirements of real-time DNN-

based object detection in autonomous cars, that is providing
different levels of detection quality to image portions with
different criticality levels while guaranteeing all timing con-
straints. To this end, we have developed DNN-SAM, a dynamic
split-and-merge DNN execution and scheduling framework,
which supports i) split and merge interfaces to transparently
decompose an original DNN into two sub-tasks and ii) a
lightweight real-time scheduler to prioritize mandatory sub-
tasks over optional ones with adaptive selection of the scales
of optional sub-tasks. In future, we aim to identify a safety-
critical portion of each image more efficiently but accurately
by considering diverse driving contexts (e.g., vehicle’s trajec-
tory) to further enhance the utility and power of DNN-SAM.
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