
LaLaRAND: Flexible Layer-by-Layer CPU/GPU Scheduling

for Real-Time DNN Tasks

Woosung Kang†, Kilho Lee‡, Jinkyu Lee§∗, Insik Shin¶ and Hoon Sung Chwa†∗
Dept. of Information and Communication Engineering, DGIST, Republic of Korea†

School of AI Convergence, Soongsil University, Republic of Korea‡
Dept. of Computer Science and Engineering, Sungkyunkwan University (SKKU), Republic of Korea§

School of Computing, KAIST, Republic of Korea¶

Abstract—Deep neural networks (DNNs) have shown remark-
able success in various machine-learning (ML) tasks useful for
many safety-critical, real-time embedded systems. The foremost
design goal for enabling DNN execution on real-time embedded
systems is to provide worst-case timing guarantees with limited
computing resources. Yet, the state-of-the-art ML frameworks
hardly leverage heterogeneous computing resources (i.e., CPU,
GPU) to improve the schedulability of real-time DNN tasks
due to several factors, which include a coarse-grained resource
allocation model (one-resource-per-task), the asymmetric nature
of DNN execution on CPU and GPU, and lack of schedulability-
aware CPU/GPU allocation scheme. This paper presents, to the
best of our knowledge, the first study of addressing the above
three major barriers and examining their cooperative effect on
schedulability improvement. In this paper, we propose LaLaRAND,
a real-time layer-level DNN scheduling framework, that enables
flexible CPU/GPU scheduling of individual DNN layers by tightly
coupling CPU-friendly quantization with fine-grained CPU/GPU
allocation schemes (one-resource-per-layer) while mitigating ac-
curacy loss without compromising timing guarantees. We have
implemented and evaluated LaLaRAND on top of the state-of-the-
art ML framework to demonstrate its effectiveness in making
more DNN task sets schedulable by 56% and 80% over an existing
approach and a baseline (vanilla PyTorch), respectively, with only
up to -0.4% of performance (inference accuracy) difference.

I. INTRODUCTION

As deep neural networks (DNNs) have emerged as the
fundamental element and core enabler in machine learning
applications, well-trained DNN models are increasingly de-
ployed for inference, perception, and control tasks in many
safety-critical, real-time embedded systems (e.g., autonomous
driving [1], robotics [2], and healthcare systems [3]). Recently,
along with the rapid advent of high-performance system-
on-chips (SoCs) equipped with heterogeneous computing re-
sources, such as GPUs, executing multiple DNNs on a shared
computing platform gains popularity and is quickly becoming
the mainstream for real-time embedded systems [1], [4]–[14].
The major design goal for such real-time embedded systems
is to provide worst-case timing guarantees for real-time DNN
tasks with efficient use of the underlying computing resources.

Although the state-of-the-art machine learning (ML) frame-
works, such as PyTorch [15], TensorFlow [16], and Caffe [17],
provide well-defined programming models and highly opti-
mized internal implementation, it is still challenging to effi-
ciently utilize heterogeneous computing resources for typical
multi-layer DNNs so as to fulfill their timing requirements.
They employ a monolithic resource allocation model that

*Corresponding authors: Hoon Sung Chwa (chwahs@dgist.ac.kr); Jinkyu
Lee (jinkyu.lee@skku.edu).

statically allocates all layers of a DNN task into a single
type of pre-defined resource (e.g., CPUs or GPUs) and use
canonical scheduling principles (i.e., FIFO) that sequentially
schedule DNN tasks without prioritizing them according to
their timing requirements. Moreover, modern heterogeneous
SoCs have shown the performance of different processor types,
i.e., the CPU and the GPU (the two most prevalent types
of processors), to be unbalanced for DNN execution, posing
another challenge for efficient use of heterogeneous resources
in meeting timing requirements. Our experimentation with
popular DNN models on a representative CPUs–GPU SoC has
demonstrated an up to 296.6× slowdown of CPU execution
over GPU execution.

A rich number of prior studies have been focused on split-
ting DNN computations across heterogeneous processors in
order to improve the performance of DNN inference [18]–[22].
They partition each DNN into smaller units and distribute them
across heterogeneous computing resources, such as GPUs, with
some DNN optimization techniques (e.g., compression, quan-
tization, and pruning) [18]–[20]. Some studies further reduce
the latency by executing each layer on different computing
resources [19] or by offloading DNN computations to the
cloud [20], [21]. Although all of these studies have made
valuable contributions on lowering inference latency by utiliz-
ing multiple resources, they did not consider how to leverage
heterogeneous resources to improve the schedulability of real-
time DNN tasks. A recent study [6], most relevant to our work,
focused on ensuring the timing constraints of DNN tasks. The
work in [6] employs a pipeline-based resource allocation and
scheduling architecture, called DART, where CPUs and a GPU
are arranged into nodes, and subsets of consecutive layers of
each DNN task are allocated to different nodes and executed
in a pipeline manner. Although DART provides deterministic
response time to DNN tasks, the performance imbalance issue
pertaining to heterogeneous resources and subsequent related
issues are not fully considered, which significantly affects
schedulability performance.

In this paper, we aim to improve the schedulability of real-
time DNN tasks while leveraging heterogeneous resources.
To achieve this goal, we propose a new real-time layer-
level DNN scheduling framework, LaLaRAND (Layer-by-Layer
Resource Allocation for N-DNNs). One of the key features
of LaLaRAND is the use of CPU-friendly quantization, one of
the powerful techniques to optimize the CPU performance,
to mitigate the performance imbalance between CPU and
GPU resources. Another key feature is a transparent, fine-
grained (layer-level) CPU/GPU scheduling mechanism that
offers maximum flexibility in coordinating the allocation of

329

2021 IEEE Real-Time Systems Symposium (RTSS)

2576-3172/21/$31.00 ©2021 IEEE
DOI 10.1109/RTSS52674.2021.00038

CPU and GPU to DNN tasks, without requiring any code
modification of DNN applications. Building upon the above
two features, LaLaRAND develops a new scheduling policy that
determines the allocation of individual DNN layers to CPU and
GPU in a way to improve schedulability. To this end, we derive
a response time analysis to verify whether DNN tasks satisfy
their timing constraints with careful consideration of inherent
overheads pertaining to our proposed layer-level CPU/GPU
allocation scheme, and we develop a layer-by-layer CPU/GPU
allocation algorithm that takes into account the effect of each
layer’s resource allocation on the schedulability with respect to
the proposed schedulability analysis. Tightly integrating all the
above features is not only novel but also crucial to achieve the
goal. This is because a lack of either quantization or layer-level
allocation typically inflates the execution time of a DNN task
by an order of magnitude, making the task hardly schedulable.

It is worth noting that CPU-friendly quantization improves
inference latency at the expense of accuracy. From our exper-
imental results, we observed quantized layers make different
contributions to the loss of accuracy of the DNN model; a
few quantized layers cause a large accuracy drop by up to
29.6 percentage points (%p) relative to full precision (without
quantization), while most of the quantized layers cause a
marginal accuracy drop by up to 0.3%p (to be detailed in
Sec. II). To mitigate this problem, LaLaRAND enables runtime
layer migration that reclaims and reallocates unused CPU/GPU
resources in a way that reduces the accuracy loss without
violating any timing constraint.

We implement a prototype of LaLaRAND on top of Py-
Torch [15], one of the most popular ML frameworks. We
evaluate LaLaRAND with four standard DNN models, i.e.,
GoogLeNet [23], SqueezeNet [24], MnasNet [25], and Mo-
bileNetV2 [26], on a representative CPUs–GPU board, i.e.,
Nvidia Jetson Xavier [27]. The evaluation results show that
LaLaRAND outperforms the existing resource allocation ap-
proaches significantly in terms of the schedulability without
significant accuracy losses for real-time DNN tasks. LaLaRAND
is shown to make 56% and 80% more real-time DNN task sets
schedulable over an existing approach [6] and a default re-
source allocation mechanism on vanilla PyTorch, respectively,
while only an up to 0.4%p inference accuracy drop or even an
up to 0.7%p accuracy improvement is observed.

Contribution. To the best of our knowledge, this paper
presents a first approach that combines CPU-friendly quanti-
zation with layer-level CPU/GPU allocation schemes to create
a collaborative contribution to improving the schedulability of
real-time DNN tasks. The contributions of this paper can be
summarized as follows:

• We demonstrate, via in-depth case studies, the significant
performance imbalance between CPU and GPU, an opportu-
nity of employing CPU-friendly quantization, and the impor-
tance of layer-level resource allocation while accounting for
its impact on schedulability and inference accuracy (Sec. II).

• We present a new system abstraction that supports the
scheduling of individual DNN layers on CPU and GPU in
a transparent way (Sec. III).

• We create an offline layer-by-layer CPU/GPU allocation
algorithm that not only provides timing guarantees but also
increases schedulability performance (Sec. IV).

• We develop an online CPU/GPU allocation scheme that

supports the reallocation of DNN layers across CPU and
GPU to mitigate the accuracy loss due to CPU-friendly
quantization without hurting any timing guarantees (Sec. V).

• From our experimental results, we found that LaLaRAND
significantly outperforms a state-of-the-art ML framework
with standard DNN models by up to 80% more DNN taskset
schedulability (Sec. VI).

II. MOTIVATION

In this section, we first examine, via a set of measurement-
based case studies, the performance imbalance between CPU
and GPU as a main barrier for efficient use of both CPU and
GPU so as to accommodate as many real-time DNN inference
tasks as possible without violating any timing constraints.
We then explore an opportunity of employing CPU-friendly
quantization for DNNs, one of the popular techniques to
optimize the CPU execution performance, to hurdle the barrier
and introduce the important issues faced therein.

A. CPU vs GPU Performance Imbalance in DNN Execution

To demonstrate the performance imbalance issue, we con-
ducted experiments to measure the execution times of rep-
resentative DNNs (GoogLeNet, SqueezeNet, MnasNet, and
MobileNetV2) running either on the CPU or on the GPU of
Nvidia Jetson Xavier. We note that Nvidia Jetson Xavier is
equipped with 8 CPUs and 1 GPU, and in the case of CPU
execution, each DNN is executed in parallel on 8 CPUs to
maximize performance. As shown in Fig. 1(a), our experi-
mental results show a significant performance gap between
the CPU and GPU executions. Executing DNNs on CPUs
yields an average slowdown of 148× over executing on a
GPU. For MnasNet and MobileNetV2, their execution times
(green bars) on the CPU are even increased by 266.7× and
296.6× than those (yellow bars) on the GPU, respectively. To
verify whether the results also hold for other computing plat-
forms, we perform a similar experiment using two additional
representative embedded boards, Nvidia Jetson TX2 [28] and
Nano [29]. The results show a similar conclusion, inferring that
such a significant performance imbalance between CPU and
GPU becomes a main barrier for efficient use of heterogeneous
resources to accommodate as many real-time DNN tasks as
possible without violating any timing constraints.

B. CPU-friendly Quantization

To increase the resource efficiency, prior studies [30]–[32]
proposed to employ quantization which shrinks the default 32-
bit single floating-point values (FP32) of DNNs to occupy
fewer bits through some transformations. Reducing the bit
width can greatly improve the speed of executing a DNN.

To resolve the CPU/GPU performance imbalance problem,
we consider an 8-bit linear quantization scheme [33] involving
8-bit integer values for CPUs because each CPU core is
equipped with vector Arithmetic Logic Units (ALUs) capable
of processing multiple 8-bit integers in parallel. The 8-bit
linear quantization scheme maps a set of FP32 values to 8-
bit unsigned integers (QUInt8) where 0 and 255 map to the
minimum and the maximum FP32 values, respectively. This
scheme is not only able to reduce the space by 75%, but also
allows to convert floating-point numbers to integer numbers
leading to a great reduction in execution time.

330

0

1

10

Co
nv
2d
_1

Re
LU
_2

Ma
xP
oo
l2d
_3

Co
nv
2d
_4

Re
LU
_5

Co
nv
2d
_6

Re
LU
_7

Co
nv
2d
_8

Re
LU
_9

Ro
ut
e_1
0

Co
nv
2d
_11

Re
LU
_12

Co
nv
2d
_13

Re
LU
_14

Co
nv
2d
_15

Re
LU
_16

Ro
ut
e_1
7

Ma
xP
oo
l2d
_18

Co
nv
2d
_19

Re
LU
_20

La
te
nc
y
(m
s)

GPU CPU (QUInt8)

13.4
18.9

6.3 5.1 7.3 5.5
1.0 1.0 1.0 1.0

0

10

20

30

Go
og
Le
Ne
t

Mn
as
Ne
t

Sq
ue
ez
eN
et

Mo
bil
eN
etV
2

N
or
m
al
iz
ed
 L
at
en
cy

CPU (FP32) CPU (QUInt8) GPU

266.7 296.6
1.4x

23.0x

2.1x
2.9x 8.1x

8.3x
12.7x

4.2x

6.6x

16.8x

8.9x

4.3x

5.2x
6.6x 5.9x

5.4x
36.3x

6.0x4.0x

2.0x

73

75

77

79

1 11 21 31 41 51 61

A
cc
ur
ac
y
(%
)

Layer Index

Conv2d_4
76.1 (-1.6%p)

Conv2d_19
77.8 (+0.1%p)

Conv2d_21
76 (-1.7%p)

ReLU_63
73.4 (-4.3%p)

Conv2d_62
73.6 (-4.1%p)

AdativeAvgPool_64
48.1 (-29.6%p)

Conv2d_38
77.9 (+0.2%p)

Conv2d_8
77.8 (+0.1%p)

Fig. 1. (a) DNN execution times on CPU (FP32), CPU (QUInt8), and GPU in Nvidia Jetson Xavier, (b) per-layer execution times of SqueezeNet on CPU
and GPU, and (c) layer-level sensitivity analysis of SqueezeNet.

Fig. 1(a) shows the reduction in the CPU execution time
of four DNN models when the quantization scheme is applied.
For example, the CPU execution times of MnasNet and Mo-
bileNetV2 are decreased by 52.2× and 53.9× with the 8-bit
linear quantization scheme, respectively, which are comparable
to their GPU execution times as 5.1× and 5.5× respectively.

From now on, throughout the paper, we assume that the
CPU and GPU cores perform computations using QUInt8
integers and FP32 values, respectively. The rationale behind
this is an expectation that both CPU and GPU cores can greatly
benefit from the data types using their native ALUs; GPU
cores are optimized for graphics applications which heavily
utilize floating points (e.g., FP32) and CPU cores are equipped
with vector ALUs capable of processing multiple 8-bit integers
(e.g., QUInt8) in parallel.

Although the results indicate that CPU-friendly quantiza-
tion is beneficial to resolve the significant CPU/GPU per-
formance imbalance problem, we found two key issues to
efficiently utilize both CPU and GPU cores for multi-DNN
real-time inference: (1) layer-level different execution charac-
teristics and (2) quantization impacts on inference accuracy.

Layer-level execution characteristics. We first investigate
the execution characteristics of each layer in SqueezeNet.
Fig. 1(b) shows the execution time of each layer on CPU and
GPU cores in log scale, arranged from left to right in their
sequential execution order.1 We observed that the execution
times of CPU and GPU and their ratios of CPU to GPU
vary greatly by layers depending on layers’ type and location
in the DNN. Among all layers, their CPU/GPU execution
times and execution time ratios of CPU to GPU differ by up
to 41.5× and up to 128.9×, respectively. In particular, the
convolution layers (Conv) show relatively longer execution
time on GPU by up to 104.7× than the activation layers
(ReLU). The execution time ratio of CPU to GPU for the first
layer is 1.4, while that for the second layer is 23.0. Among the
convolution layers, their execution time ratios of CPU to GPU
differ by up to 6.3×. Note that typical DNNs are composed
of alternating layers of various types each of which shows
different execution characteristics. Such a large variation of
layer-level execution times calls for CPU/GPU allocation at
the layer level granularity, which will be discussed in Sec. IV.

Quantization impacts on inference accuracy. Although
the 8-bit quantization scheme improves the CPU execution
performance comparable to GPU’s, as a side effect, it may
incur an inference accuracy loss for DNNs. We conduct
another case study to measure how reducing the precision

1We only depict the results of the first 20 layers out of 64 layers, since a
similar trend can be seen for the rest of layers.

of each layer by quantization affects the DNN’s overall top-
1 inference accuracy, referred to as sensitivity analysis. In
sensitivity analysis, a single layer is quantized at a time
while the others are unquantized (i.e., leaving their inputs
and computation in floating-point), and inference accuracy is
evaluated over 1,000 images on the ImageNet dataset [34].
Fig. 1(c) shows the accuracy difference between a single-
layer quantization and full precision (without quantization).
The results show that just a few quantized layers, e.g., 62nd,
63rd, and 64th layers, cause a large accuracy drop by 4.1%p,
4.3%p, and 29.6%p, respectively, relative to full precision
(which has 77.7% accuracy), while most of layers cause a
marginal accuracy drop by up to 0.3%p when quantization is
applied. Note that quantizing some layers, e.g., 8th, 19th, and
38th layers, even slightly improves the accuracy. We infer via
this case study that the accuracy loss can be minimized or the
accuracy can be even improved by selectively quantizing layers
according to the sensitivity analysis, which will be discussed in
Sec. V. To verify whether the results also hold for other DNNs,
we perform a similar experiment using three other DNNs, i.e.,
GoogLeNet, MnasNet, and MobileNetV2. We confirmed that
the results draw a similar conclusion.

Note that, although retraining DNN models is not required
for applying CPU-friendly quantization, there exist quantiza-
tion overheads which will be discussed in Sec. VI.

III. LALARAND

A. System Goal and Overview

Recently, DNN applications are typically implemented
on top of the ML frameworks [15]–[17], [35], thanks to
their well-defined programming model and highly-optimized
internal implementation. However, it is challenging for such
frameworks to provide flexible CPU/GPU allocation schemes
to guarantee and improve the schedulability of real-time DNN
tasks due to several factors. In this paper, We aim to develop
a layer-level CPU/GPU scheduling framework with CPU-
friendly quantization, achieving the following goals for real-
time DNN inference tasks:

G1. It not only provides timing guarantees for real-time DNN
tasks but also improves schedulability performance, and

G2. It minimizes the overall accuracy loss due to CPU-
friendly quantization, i.e., preserving the overall accuracy
close to that of the full precision (without quantization).

Regarding G1, we propose a new system abstraction,
named LaLaRAND, that enables transparent and flexible
CPU/GPU scheduling of individual DNN layers. In particular,
LaLaRAND addresses several major barriers in leveraging CPU
and GPU to improve the schedulability of DNN tasks, which

331

CPU GPUHardware
resources

DNN
layer

Memory handler (III) Kernel dispatcher (III)
H2D/
D2H

CPU
kernel

GPU
kernel

System-wide scheduler
Layer-level resource allocation manager (IV)

Runtime layer migration manager (V)

Misc components
Response-time

analysis
CPU/GPU

load balance

Runtime resource
monitoring

Layer migration
decision

DNN
profiles i

Communication stub

Waiting
queues

CPU

GPU

Quantizer(III)
Quant
params

Quantization/
De-quantization

Fig. 2. System-level overview of LaLaRAND

include performance imbalance between CPU and GPU exe-
cution, monolithic resource allocation, separate CPU and GPU
memory spaces, and lack of system-wide scheduling decision.

We then develop schedulability analysis for the proposed
layer-level CPU/GPU scheduling abstraction, addressing the
following challenges. Depending on which resource (CPU and
GPU) individual layers are allocated to, i) the execution time
of a DNN task varies and ii) new overheads (i.e., the cost of
maintaining data consistency between two consecutive layers)
can be introduced, both of which affect the response time of the
DNN task. Moreover, the amount of interference or blocking
delay imposed by other tasks may also vary depending on
layer-level allocation. We introduce a new efficient layer-by-
layer CPU/GPU allocation algorithm that finds a mapping
between individual layers and CPU/GPU cores such that all
DNN tasks are schedulable based on the proposed response
time analysis, increasing schedulability performance.

Regarding G2, CPU-friendly quantization, one of the key
features of LaLaRAND, typically comes with the trade-off
between the speedup of CPU execution and inference accuracy
drop. Furthermore, CPU-friendly quantization brings different
effects on the accuracy of a DNN task depending on which
layers it is applied to. Thus, this makes it quite complicated to
apply CPU-friendly quantization for finding an optimal layer-
level CPU/GPU resource allocation that achieves both G1 and
G2. Thus, we first address G1 and then G2. To this end,
LaLaRAND supports runtime layer migration to mitigate the
accuracy loss due to CPU-friendly quantization. It reclaims
unused CPU and GPU resources at runtime and utilizes them
to selectively reallocate the layers that contribute to most of
the accuracy loss when quantized from CPU to GPU cores
without violating any timing constraint.

B. Design of LaLaRAND

LaLaRAND supports flexible CPU/GPU scheduling for DNN
layers while providing real-time guarantees, without having
to modify the code of DNN applications. The core design
features of LaLaRAND include CPU-friendly quantizer, Dynamic
kernel dispatcher, Transparent memory handler, and System-wide
scheduler as depicted in Fig. 2.

CPU-friendly quantizer. Typically, quantization is applied
to the entire DNN model at design time. In contrast to such
task-level quantization, CPU-friendly quantizer supports dynamic
layer-level quantization. When initializing a DNN task, the
quantizer employs the qnnpack library [36] in PyTorch, per-
forms input calibration at each layer to determine necessary

Task-level
allocation

Layer-level
allocation

6

6

CPU
GPU

CPU
GPU

output

output

input image

input image

DNN layer run on GPU DNN layer run on CPU Intermediate output

(a)

(b)

Fig. 3. Task-level allocation and layer-level allocation examples

parameters, i.e., scales and zero points, and stores them
for layer-level quantization/dequantization. With the preloaded
parameters, Transparent memory handler can dynamically quan-
tize/dequantize input data for each layer at runtime.

Dynamic kernel dispatcher. As shown in Fig. 3(a), the
current ML frameworks adopt a task-level resource allocation
model that statically allocates all the layers of a DNN task
into a single pre-defined resource (i.e., CPU or GPU). Such
a task-level resource allocation model inherently limits an
opportunity of optimizing the overall performance despite the
availability of another resource. Dynamic kernel dispatcher relaxes
this task-level resource assumption, enabling each layer to be
executed on different resources as shown in Fig. 3(b). To do
this, LaLaRAND generates multiple kernels corresponding to
each available resource and selectively runs a single kernel
per layer. Note that a kernel represents a unit of execution that
contains codes and data for each layer. The kernel dispatcher
is implemented as a wrapper that hooks the initialization and
invocation phases of each layer. When initializing a DNN task,
the kernel dispatcher generates both CPU and GPU kernels for
each layer and preloads the metadata (e.g., weight tensors) for
the layer into both CPU and GPU memories. Note that the
CPU kernel is quantized at this step to mitigate the CPU-
GPU performance imbalance. After that, when each layer is
invoked to execute, the kernel dispatcher can dynamically
allocate either CPU or GPU to the layer by simply selecting a
proper kernel to run. This multi-kernel architecture is effective
to achieve our goals, since it can provide runtime layer-
level dynamic resource allocation with minimized overhead.
Without this, the framework should generate a new kernel
every time upon any change to resource allocation, incurring
large computation and memory copy overheads. Concerning
the spatial overhead imposed by the multi-kernel architecture,
additional kernels only occupy a relatively small memory space
(i.e., up to 6.9 MB in our experiment) since they typically
utilize quantized data (to be detailed in Sec. VI).

Transparent memory handler. Under the task-level re-
source allocation model, many ML frameworks implement the
feature of passing data between layers by simply sharing a
specific memory buffer on the designated resource’s memory.
A preceding layer simply writes its output to the buffer
and its succeeding one reads as input the output from the
buffer. However, this scheme is no longer valid when two
consecutive layers running on different resources, since CPU
and GPU typically have separate memory spaces. Thus, Trans-
parent memory handler maintains data consistency, when two
consecutive layers are allocated to different resources, through
dynamic (de)-quantization and memory buffer management.
Specifically, the data handler employs explicit memory transfer

332

between a host (i.e., CPU) and a device (i.e., GPU); it copies
the memory buffer from host to device (i.e., H2D) or from
device to host (i.e., D2H) according to the resource allocation.

In addition, it dynamically quantizes/dequantizes interme-
diate data. If per-layer quantization is applied, each layer
requires a different data type as input; for instance, a quantized
layer uses an integer type (e.g., QUInt8), while a dequantized
one uses a floating-point type (e.g., FP32). Note that such data
handling happens right before executing a kernel; thereby, each
layer has only one or no data handling as long as the layer
executes on a single resource, even runtime migration happens.
As the data handler performs runtime data processing, it
may incur additional computation and memory copy overhead.
However, this overhead is not large as the layer computation
itself (to be detailed in Sec. VI). In addition, since the overhead
is predictable through offline profiling, the scheduler can take
this overhead into account as presented in Sec. IV.

System-wide scheduler. To optimize the overall schedul-
ing performance, it is essential to make system-wide schedul-
ing decision. To this end, LaLaRAND introduces System-wide
scheduler which keeps track of system-wide information gath-
ered from all running DNN tasks, operating as an independent
process while communicating individual DNN layers running
in the system. Note that it communicates with each layer
through the IPC-based communication stub interface imple-
mented within each layer and the scheduler.

To develop an offline schedule of DNN tasks, the sched-
uler maintains each DNN’s profile including its real-time
requirement, CPU/GPU execution time, CPU/GPU memory
copy cost, and quantization/dequantization cost. According
to those profiles, System-wide scheduler decides the CPU/GPU
allocation of each individual layer in a way that meets timing
constraints (see Sec. IV for details). System-wide scheduler then
controls the execution timing of each layer through waiting
queues corresponding to each resource. The waiting queues
are implemented as priority queues to support fixed-priority
scheduling. Whenever the first layer of each DNN task is ready
to execute for an inference request, it sends a ready message to
System-wide scheduler. The scheduler then enqueues the message
into the proper resource’s queue to which the layer is allocated
and selects the highest-priority layer in the waiting queue to
run on a corresponding resource. Whenever a layer finishes
its execution, its subsequent layer (if any) is immediately
enqueued into the waiting queue to which the layer is allocated.
If the subsequent layer is allocated to the same resource as
its previous layer, System-wide scheduler does not execute any
layer of a lower-priority DNN task between the completion of
the previous layer and the release of the subsequent layer. This
way, System-wide scheduler allows the preemption of a currently-
executing DNN task by a higher-priority DNN task at the layer
level granularity, while preventing unnecessary blocking from
lower-priority DNN tasks.

For the runtime migration of layers, the scheduler contin-
uously monitors the presence of unused resources (i.e., slack),
by capturing earlier completion of each layer’s execution than
its worst-case execution time. Any layer can be reallocated
from an already assigned resource to the other one if the other
resource has enough slack and the layer expects to result in
higher accuracy after migration. The details of scheduling and
migration policy will be presented in Sec. IV.

IV. LAYER-BY-LAYER RESOURCE ALLOCATION

In this section, we present schedulability analysis for
the proposed LaLaRAND scheduling framework and propose
a new layer-level CPU/GPU allocation algorithm based on
the analysis. To this end, we first explain our system model
with notations. We then develop a response time analysis that
determines the schedulability of a set of real-time DNN tasks
under any given layer-level resource allocation. Finally, we
develop an algorithm to find a layer-by-layer allocation for a
target task set offline, which yields the schedulability of the
task set by the response time analysis.

A. System Model and Notations

We consider a CPUs/GPU platform π configured as two
clusters πC and πG, where πC comprises mC (≥ 1) identical
CPU cores and πG comprises one CPU core and one GPU
device. Note that cluster πG has a dedicated CPU core to
prevent unnecessary delays on πC due to the GPU-related CPU
operations, such as a kernel launch and data transmission.

Real-time DNN inference tasks are presented by the spo-
radic task model which is widely used in various real-time
systems. We assume each task uses one DNN model and makes
one inference request per job. Each DNN task τi ∈ τ can
be specified as τi = (Ti, Vi, Ni), where Ti is the minimum
separation between successive job releases, Vi is a sequence of
DNN layers, and Ni is the number of layers. Each DNN layer
τi,j ∈ Vi is characterized by (CC

i,j , O
C
i,j , C

G
i,j , O

G
i,j), where

• CC
i,j : the worst-case execution time (WCET) when running

on the CPU cluster with its quantized model;
• OC

i,j : the sum of the maximum time to quantize the input

of τi,j from FP32 to QUInt8, denoted as OC1
i,j , and

the maximum time to dequantize the output of τi,j from
QUInt8 to FP32, denoted as OC2

i,j ;

• CG
i,j : the worst-case GPU kernel execution time; and

• OG
i,j : the sum of the maximum time to copy the input of τi,j

from the host (CPU) memory to the device (GPU) memory,
denoted as OG1

i,j , and the maximum time to copy the output

of τi,j back to CPU memory, denoted as OG2
i,j .

Each cluster executes one layer at a time. If CPU cluster πC

consists of more than one CPU core, each layer τi,j is executed
on mC cores in parallel and CC

i,j is determined by the slowest

thread. Since GPU cluster πG consists of a dedicated CPU
core and one GPU device, CG

i,j includes the WCET of CPU
operations for kernel launching, in addition to the worst-case
GPU kernel execution time. Note that the values of each layer’s
parameters can be estimated from DNN profiles proactively
stored in System-wide scheduler.

Due to the precedence dependency, τi,j cannot start ex-
ecution unless τi,j−1 has finished execution (except the first
layer of τi). Such a DNN task τi is assumed to generate a
potentially infinite sequence of jobs, each of which is separated
from its predecessor by at least Ti time-units and is required to
complete the execution of Ni layers within a relative deadline
of Ti from its release.

We consider task-level fixed-priority scheduling where each
task τi has a single static priority shared over all of its layers.
Execution of each layer is non-preemptive, so the preemption
of a higher-priority task is only allowed after the completion of

333

a currently-executing layer of a lower-priority task. We assume
a quantum-based time; let one time unit a quantum length
without loss of generality.

B. Schedulability Analysis and Allocation Algorithm

We state the layer-by-layer CPU/GPU allocation problem.

Definition 1 (Layer-by-layer CPU/GPU Allocation):
Given a task set τ and a CPUs/GPU platform π, find a
mapping from all the layers of τi ∈ τ to πC and πG such that
all tasks whose subsets of layers are mapped onto either πC

or πG meet their deadlines under fixed-priority scheduling.

We first derive a response time analysis to verify whether
all real-time DNN tasks satisfy their timing constraints under
a given layer-level CPU/GPU allocation. We then propose
the layer-by-layer CPU/GPU allocation algorithm to find a
mapping from layers of each DNN task to CPU and GPU
clusters such that all tasks are schedulable by the response
time analysis.

Response time analysis. For a given layer-by-layer
CPU/GPU allocation Λ = {{ΛC

i ,Λ
G
i }τi∈τ}, where ΛC

i and
ΛG
i are the subsets of layers of τi assigned to πC and πG,

respectively, we use CC
i and CG

i to denote the cumulative CPU
and GPU execution times of the layers of τi in ΛC

i and ΛG
i ,

respectively, and they are calculated as

CC
i =

∑

τi,j∈ΛCi

CC
i,j and C

G
i =

∑

τi,j∈ΛGi

CG
i,j . (1)

In order to derive a tight upper bound on the worst-case
response time of a DNN task by reducing pessimism on the
quantization/dequantization overhead on the CPU cluster and
the data transfer overhead on the GPU cluster, we define the
CPU and GPU segments of a task. A CPU segment φCi,p of τi is
defined as the p-th subset of consecutive layers of τi assigned
to CPU cluster πC. Likewise, a GPU segment φGi,q of τi is
defined as the q-th subset of consecutive layers of τi assigned
to GPU cluster πG. If all layers of a task τi are assigned
to the CPU (GPU) cluster, τi has one CPU (GPU) segment.
Otherwise, τi consists of an alternate sequence of CPU and
GPU segments or the other way around. Let φCi and φGi denote
the entire sets of CPU segments and GPU segments of τi,
respectively, i.e., φCi =

⋃
φCi,p and φGi =

⋃
φGi,q . Intermediate

layers except the first and last layers in each φCi,p involve
no quantization/dequantization overhead because the output of
an intermediate layer can remain on the same bit precision
and be directly used as input to the next layer. Similarly,
intermediate layers except the first and the last layers in each
φGi,q involve no data transfer overhead because the output of
an intermediate layer can remain on the GPU cluster and be
directly used as input to the next layer. Therefore, we can
eliminate unnecessary overheads and thus derive a tight upper
bound on the worst-case response time of a DNN task. Based
on this, we use O(φCi,p) and O(φGi,q) to denote the cumulative
overheads on a CPU segment φCi,p and a GPU segment φGi,q ,
respectively, and they are calculated as

O(φCi,p) = O
C1
i,p1 +O

C2
i,p2 and O(φGi,q) = O

G1
i,q1 +O

G2
i,q2, (2)

where p1 (q1) and p2 (q2) denote the first and the last layers
of φCi,p (φ

G
i,q), respectively.

Then, the cumulative overheads Oi on τi is derived as

Oi =
∑

φC
i,p∈φC

i

O(φCi,p) +
∑

φG
i,q∈φG

i

O(φGi,q). (3)

Under fixed-priority scheduling with layer-by-layer
CPU/GPU allocation Λ, the worst-case response time
(WCRT), wi, of τi can be calculated iteratively in the
following expression:

wa+1
i = CC

i + CG
i +Oi + Ii(w

a
i) +Bi, (4)

where Ii(w
a
i) is the cumulative interference on layers in

τi caused by higher-priority tasks and Bi is the cumulative
blocking delay of layers in τi caused by lower-priority tasks.
Note that the initial value w0

i is set to CC
i + CG

i + Oi + Bi,
and the iteration halts when wa+1

i > Di (unschedulable) or
wa+1

i = wa
i (the response time no larger than wa

i).

Let hp(τi) be the set of all tasks with a priority higher than
τi. The CPU and GPU segments of a task τi can be delayed
by CPU and GPU segments of higher-priority tasks τh, i.e.,
hp(τi), respectively. The number of jobs of τh released during

the execution of a single job of τi is at most
(
1 +

⌊
wa

i

Th

⌋)
.

Then, the cumulative interference on τi, denoted by Ii(w
a
i), is

derived as

Ii(w
a
i)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
τh∈hp(τi)

(
1 +

⌊
wa

i

Th

⌋)
·
(
C

C
h +

∑
φC
h,p

∈φC
h

O(φ
C
h,p)
)
if φG

i = ∅, (5a)

∑
τh∈hp(τi)

(
1 +

⌊
wa

i

Th

⌋)
·
(
C

G
h +

∑
φG
h,q

∈φG
h

O(φ
G
h,q)
)
if φC

i = ∅, (5b)

(5a)+ (5b), otherwise. (5c)

In addition to the interference by higher-priority tasks, each
CPU or GPU segment of a task τi can be further blocked
by a currently-executing layer of a lower-priority task on the
CPU or GPU cluster, respectively, because the execution of
each layer is non-preemptive. Based on the design of System-
wide scheduler, blocking may occur on only the first layer of a
segment but not on the subsequent layers of the same segment.
Thus, the cumulative blocking delay Bi of τi is derived as

Bi = |φCi | ·BC
max(τi) + |φGi | ·BG

max(τi), (6)

where BC
max(τi) = max

j:τl∈lp(τi)
∧

τl,j∈ΛCl
(CC

l,j − 1), (7)

BG
max(τi) = max

k:τm∈lp(τi)
∧

τm,k∈ΛGm
(CG

m,k − 1), (8)

while lp(τi) is the set of tasks with a priority lower than τi.
Then, we can check the schedulability of a task set as

presented in the following lemma:

Lemma 1: A task set τ is schedulable if

∀τi ∈ τ, wi ≤ Ti. (9)

Proof: There are at most
(
1+

⌊
wa

i

Th

⌋)
jobs of any τh ∈ τ

that can be executed within an interval of length wa
i , and thus,

the maximum interference time on τi by tasks in hp(τi) in
an interval of length wa

i is upper-bounded by Eqs. (5a)-(5c).
Each CPU or GPU segment is blocked at most once by the
execution of a layer of a lower-priority task, and thus, the
maximum blocking time of τi by tasks in lp(τi) is upper-
bounded by Eq. (6). This means, if the right-hand-side (RHS)
of Eq. (4) is equal to wa+1

i , τi finishes its execution within
wa+1

i in any case. Therefore, wi resulting from the iterative

334

process is an upper-bound of the response time of τi’s jobs.
Thus, if wi ≤ Ti holds for all τi ∈ τ , τ is schedulable.

Allocation algorithm.We present how to assign a mapping
from the layers of each individual task to CPU and GPU
clusters such that an entire task set τ is deemed schedulable
by the response time analysis under fixed-priority scheduling.
Basically, our proposed layer-by-layer CPU/GPU allocation al-
gorithm shown in Alg. 1 sets an initial assignment to the GPU-
only assignment, where all layers of all tasks are allocated to
the GPU cluster (Line 3), and checks from the highest-priority
task whether a subset of its layers can be reallocated to the
CPU cluster in an iterative way so that τ is deemed schedulable
by the response time analysis (Lines 4–20).

Let us discuss the key intuition behind how our layer-
by-layer CPU/GPU allocation algorithm works. First, most
of layers show less execution time when executed on the
GPU cluster than when executed on the CPU cluster even
with quantization as observed in Fig. 1(b). This is because,
in general, each layer in typical DNNs exhibits massive
parallelism which is commonly exploited with the use of GPU
cores. Thus, the sum of execution of layers in a task on both
CPU and GPU clusters tends to increase when some layers are
moved from the GPU cluster to the CPU cluster. Second, when
some layers of a higher-priority task are moved to the CPU
cluster, the interference on all lower-priority tasks whose layers
are assigned to the GPU cluster only is decreased. Third, for
each individual task, if multiple adjacent layers are allocated
on the same resource type, i.e. composing a segment, each
intermediate layer has no overhead and no blocking delay.

At the beginning of the k-th iteration step, (k−1) highest-
priority tasks have finished their resource allocation while
guaranteeing their schedulability. During the k-th step, our
allocation algorithm then seeks to select τk’s layers to be
allocated to the CPU cluster one-by-one (Lines 5–19). Let us
discuss the effect of allocating a layer τk,j to the CPU cluster
on a higher-priority task τh ∈ hp(τk), itself (i.e., τk), and
a lower-priority task τl ∈ lp(τk), respectively. For a higher-
priority task τh, its blocking delay on the CPU cluster increases
if CC

k,j is the largest non-preemptive chunk of lower-priority
tasks allocated on the CPU cluster. For a task τk itself, its
total execution time on the GPU cluster is decreased by CG

k,j ,
and its total execution time on the CPU cluster is increased by
CC

k,j . In addition, its blocking delay Bk is increased if both
the previous layer τk,j−1 and next layer τk,j+1 are allocated
on the GPU cluster due to the increased number of CPU
and GPU segments by one, respectively (to be addressed as
ΔBk(τk,j) in Eq. (10)). Likewise, its overhead Ok may also be
increased depending on the allocation of τk,j−1 and τk,j+1 (to
be addressed as ΔOk(τk,j) in Eq. (10)). For a lower-priority
task τl, the interference of τk,j on τl is decreased since it is
assumed that all layers of τl are allocated on the GPU cluster
in the k-th step.

Considering the effect of allocating one layer of τk to the
CPU cluster, we now determine which layer to be allocated
to the CPU cluster. A layer τk,j is said to be CPU-eligible in
the k-th step if τk and ∀τh ∈ hp(τi) are deemed schedulable
by the response time analysis presented in Eq. (9) under the
assumption that τk,j is allocated to the CPU cluster, while all
other layers of all tasks are allocated as it is in the k-th step

Algorithm 1 Layer-by-layer CPU/GPU allocation

1: Input: τ = {τ1, τ2, τ3, ..., τn}
2: Output: Λ = {{ΛC

1,Λ
G
1}, {ΛC

2,Λ
G
2}, {ΛC

3,Λ
G
3}, ..., {ΛC

n,Λ
G
n}}

3: ∀τk ∈ τ,ΛG
k =
⋃

∀τk,j∈Vk
{τk,j}, ΛC

k = ∅ and E(k) = ∅
4: for τk ∈ τ in descending order of priority do
5: if τk is unschedulable or ∀τl ∈ lp(τk) is schedulable with Λ by

Eq. (9) then
6: return Λ
7: end if
8: for τk,j ∈ ΛG

k do
9: Set Λ̂G

k = ΛG
k \ {τk,j} and Λ̂C

k = ΛC
k

⋃{τk,j}
10: Set Λ̂ = {Λ̂C

k, Λ̂
G
k}
⋃

Λ \ {ΛC
k,Λ

G
k}

11: if τk and ∀τh ∈ hp(τk) is schedulable with Λ̂ by Eq. (9) then
12: E(k) = E(k)

⋃{τk,j}
13: end if
14: end for
15: if E(k) �= ∅ then
16: Find τk,s ∈ E(k) according to Eq. (10)
17: ΛG

k = ΛG
k \ {τk,s} , ΛC

k = ΛC
k

⋃{τk,s} and E(k) = ∅
18: go to Line 5
19: end if
20: end for

(Lines 8–14). Note that, by the assumption, τk,j might addi-
tionally impose the blocking delay on its higher-priority tasks
that have finished their allocation on the CPU cluster, which
requires to check whether ∀τh ∈ hp(τi) remains schedulable
(Line 11). With this, we can ensure that the schedulability of
τk is not affected by resource allocation in the next iteration
steps. Thus, our resource allocation algorithm builds a solution
incrementally without backtracking. Let denote E(k) as a
subset of layers of τk that is CPU-eligible in the k-th step.

2 We
then select one CPU-eligible layer τk,s in E(k) to be allocated
to the CPU cluster such that the increase in the response time
of τk is minimized (Lines 15–19), and it is presented as

τk,s := argmin
τk,j∈E(k)

(CC
k,j − CG

k,j +ΔBk(τk,j) + ΔOk(τk,j)), (10)

where ΔBk(τk,j) and ΔOk(τk,j) are the amounts of varied
blocking delay and overhead, respectively, when τk,j’s alloca-
tion is changed from the GPU to CPU cluster, derived as

ΔBk(τk,j) =

⎧⎪⎨
⎪⎩

B
C
max(τk) + B

G
max(τk) if τk,j-1, τk,j+1 ∈ ΛG

k ,

−B
C
max(τk)− B

G
max(τk) if τk,j-1, τk,j+1 ∈ ΛC

k ,

0, otherwise,

ΔOk(τk,j)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O
G2
k,j-1 + O

C
k,j + O

G1
k,j+1 if τk,j-1, τk,j+1 ∈ ΛG

k ,

- O
C2
k,j-1 - O

G
k,j - O

C1
k,j+1 if τk,j-1, τk,j+1 ∈ ΛC

k ,

O
G2
k,j-1 + O

C1
k,j - O

G2
k,j - O

C1
k,j+1 if τk,j-1 ∈ ΛG

k, τk,j+1 ∈ ΛC
k ,

- O
C2
k,j-1 + O

C2
k,j - O

G1
k,j + O

G1
k,j+1 if τk,j-1 ∈ ΛC

k, τk,j+1 ∈ ΛG
k .

Note that both ΔBk(τk,j) and ΔOk(τk,j) depend on the
allocation of τk,j-1 and τk,j+1. As an example, let us consider
a case when both τk,j-1 and τk,j+1 are allocated on the GPU
cluster. Allocating τk,j to the CPU cluster increases the CPU
and GPU segments by one, respectively, since the three layers
become belonging to different segments, respectively, yielding
the increase of the blocking delay by BC

max(τk) +BG
max(τk).

Also, it additionally causes i) the time to copy the output of
τk,j-1 to the CPU memory (OG2

k,j-1), ii) time to quantize and

dequantize the input and output of τk,j (O
C
k,j), and iii) the time

to copy the input of τk,j+1 to the GPU memory (OG1
k,j+1).

2Although our resource allocation algorithm focuses on G1, we can also
make a few highly sensitive layers according to the sensitivity analysis shown
in Fig. 1(c) forced to run on the GPU cluster only by simply excluding them
from E(k), preventing a task from a significant accuracy loss (considering G2)
offline. In evaluation shown in Section VI, no layer is excluded from E(k).

335

In the k-th iteration step, we repeat selecting a layer τk,s
one-by-one in E(k) (by Line 18) until there is no CPU-eligible
layer (i.e., E(k) is empty in Line 15).

Runtime Complexity. Let n denote the number of DNN
tasks in a task set. At each iteration step k in Alg. 1, our
algorithm tries to find a subset E(k) among all layers of
τk by checking Eq. (9) with the complexity of O(Nk · n3).
Repeating this step until E(k) becomes empty for all tasks,
Alg. 1 requires O(maxτk∈τ N

2
k · n4).

V. RUNTIME LAYER MIGRATION

Although the layer-by-layer CPU/GPU allocation obtained
by Alg. 1 can ensure the execution of DNN tasks without
violating their timing constraints, it may suffer from the
accuracy loss if some layers that result in low accuracy
when quantized are executed on the CPU cluster. Therefore,
this section addresses the following runtime layer migration
decision problem.

Definition 2 (Runtime Layer Migration Decision): Given
the layer-by-layer CPU/GPU allocation Λ obtained by Alg. 1,
decide an online migration (resource reallocation) of each
layer between CPU and GPU clusters such that the overall
accuracy loss of τ is minimized (i.e., achieving G2) without
violating any timing constraint (i.e., achieving G1).

Our solution consists of (I1) the slack management part that
reclaims unused CPU and GPU resources (called slack) caused
by early completion of a layer’s execution than its worst-
case execution time, and (I2) the resource reallocation part
that effectively utilizes them to change the resource allocation
(from CPU to GPU, or from GPU to CPU) of some layers, such
that I1 and I2 should achieve both G1 and G2 in Sec. III-A.

For I1, we propose the following slack reclamation sched-
uler. The scheduler is invoked upon (i) release of a new layer
or (ii) completion of a layer on either CPU or GPU cluster. Let
SC(tcur) and S

G(tcur) denote available slacks on the CPU and
GPU clusters at the current time instant tcur, respectively, with
SC(0) = SG(0) = 0. Upon completion of a layer τi,j of τi on
the GPU cluster at time tcur, we compare the actual execution
time (denoted as ACG

i,j) with its worst-case time allotment

CG
i,j and increase the GPU slack SG(tcur) by CG

i,j −ACG
i,j . If

the GPU cluster has been idle during successive invocations
of either (i) or (ii), its slack value is decreased by the amount
of idle time until it becomes zero. We update the CPU slack
SC(tcur) in the same way.

As to I2, we need to judge which layer should change the
resource allocation from CPU to GPU (or from GPU to CPU).
According to the sensitivity analysis shown in Fig. 1(c), we
refer to a layer as an unfavorable one if the accuracy is lowered
when quantized as compared to full precision (i.e., when the
accuracy difference between a single-layer quantization and
full precision becomes negative in Fig. 1(c)) and as a favorable
one, otherwise. Upon release of an unfavorable layer τi,u of
τi on the CPU cluster at time tcur, our migration algorithm
checks whether the unfavorable layer τi,u can be reallocated
to the GPU cluster and scheduled by using the GPU slack
SG(tcur). Once τi,u is reallocated to the GPU cluster, the
GPU slack SG(tcur) will be decreased by the amount of
execution time of τi,u on the GPU cluster. Likewise, our

migration algorithm checks whether the favorable layer τi,f
can be reallocated to the CPU cluster.

The remaining step is to develop the migration algorithm,
which selects a layer whose resource allocation is changed
to achieve G2 without compromising G1. Let τi,c denote a
candidate unfavorable (favorable) layer of τi to be reallocated
to the GPU (CPU) cluster at time tcur and J∗i denote an
active job of τi that includes τi,c. Regarding G1, we need
to guarantee that the resource allocation change for τi,c does
not compromise (G1a) the schedulability of J∗i and (G1b) the
schedulability of all active jobs except J∗i and all jobs of tasks
in τ to be released in future. When it comes to G2, we should
consider the degree of being unfavorable/favorable of each
layer to decide one among candidate layers whose resource
allocation change does not violate both G1a and G1b.

We first explain how to address G1a. We derive a sufficient
condition for the job J∗i to remain schedulable after changing
τi,c’s resource allocation from one to the other cluster at
time tcur. Suppose no other layer will change its allocation
after tcur. Consider a new task τx with Tx = d∗i − tcur
and Vx = {τi,c, ..., τi,|Ni|}, where d∗i is the absolute deadline
of J∗i and its layer-by-layer CPU/GPU allocation {ΛC

x,Λ
G
x}

obtained from {ΛC
i ,Λ

G
i } by i) removing already executed layers{τi,1, ..., τi,c−1} of J∗i and ii) newly allocating a candidate

layer τi,c to the cluster to be migrated. Also consider that the
new task τx has the same priority as that of τi. Using {ΛC

x,Λ
G
x},

the following lemma can guarantee the schedulability of J∗i
after the migration of τi,c at tcur.

Lemma 2: Consider a new layer-by-layer CPU/GPU al-
location Λ′ = {ΛC

x,Λ
G
x}

⋃
Λ \ {ΛC

i ,Λ
G
i }. Suppose an active

job J∗i satisfies the following condition under Λ′. Then, it is
schedulable under fixed-priority scheduling unless any layer
migration other than τi,c occurs after tcur.

CC
x + C

G
x +Ox + Ii(Tx) +Bx ≤ Tx. (13)

where Ii(Tx) is the maximum interference on τx in any interval
of length Tx calculated by Eqs. (5a)-(5c), and Bx is the
maximum blocking delay of τx calculated by Eq. (6).

Proof: The term CC
x + CG

x + Ox is the sum of J∗i ’s
remaining execution time on the CPU and GPU clusters and
overheads at tcur. Tx is the remaining time to the deadline of
J∗i at tcur. Based on the same reasoning shown in the proof of
Lemma 1, Ii(Tx) and Bx are upper-bounds on the maximum
interference on J∗i and the maximum blocking time of J∗i ,
respectively. This implies that J∗i will finish its execution by
d∗i if Inequality (13) holds, thus proving the lemma.

For G1b, we must guarantee the schedulability of all active
jobs except J∗i at time tcur and all jobs released in future.
While this can be achieved by allowing J∗i to consume all the
remaining slack in a greedy manner, we may reserve some of
the remaining slack for more (un)favorable layers, which can
address G2. To this end, we first construct a candidate list for
GPU migration, referred as MG as a set of all unfavorable
layers that currently allocated on the CPU cluster and a
candidate list for CPU migration, referred asMC as a set of all
favorable layers that currently allocated on the GPU cluster. We
refer to layers that result in lower and higher accuracy when
quantized as being more unfavorable and favorable to quanti-
zation, respectively, according to the sensitivity analysis. Then,

336

we assign the GPU and CPU slacks, SG(tcur) and SC(tcur),
to the layers in MG and MC in descending orders of more
unfavorable and favorable layers, respectively. The rationale
for such a prioritized slack distribution is that reallocating a
more unfavorable layer to the GPU cluster and reallocating a
more favorable layer to the CPU cluster yield higher accuracy
improvement. To do so, for CPU-to-GPU migration, upon
release of an unfavorable layer τi,u of τi on the CPU cluster at
time tcur, we first reserve S

G(tcur) for more unfavorable layers
than τi,u in MG, denoted as M̂G(τi,u), and check whether a
layer τi,u can be reallocated and executed on the GPU cluster
by using the remaining GPU slack. The same policy can be
applied upon release of a favorable layer τi,f of τi on the GPU
cluster at time tcur. Therefore, the following lemma addresses
not only G1b, but also G2.

Lemma 3: Under a layer-by-layer CPU/GPU allocation Λ,
suppose i) a task set τ is deemed schedulable by satisfying
Eq. (9) and ii) an unfavorable layer τi,u of J∗i changes its
resource allocation from the CPU to GPU cluster at time tcur
and satisfies Eq. (14). Then, all active jobs except J∗i and
all jobs released in future are schedulable under fixed-priority
scheduling unless any layer migration other than τi,u occurs
after time tcur.

CG
i,u −ΔOi(τi,u) ≤ SG(tcur)−

∑

τk,h∈M̂G(τi,u)

(CG
k,h −ΔOi(τk,h)). (14)

Likewise, under a layer-by-layer CPU/GPU allocation Λ,
suppose i) a task set τ satisfies Eq. (9) and ii) a favorable
layer τi,f of J

∗
i changes its resource allocation from the GPU

to CPU cluster at time tcur and satisfies Eq. (15). Then,
all active jobs except J∗i and all jobs released in future are
schedulable under fixed-priority scheduling unless any layer
migration other than τi,f occurs after time tcur.

CC
i,f +ΔOi(τi,f) ≤ SC(tcur)−

∑

τk,h∈M̂C(τi,f)

(CC
k,h +ΔOi(τk,h)), (15)

where M̂C(τi,f) is a set of more favorable layers than τi,f in
MC.

Proof: Suppose that i) and ii) hold but there exists a
job (other than J∗i) that misses its deadline; we show the
contradiction of this supposition. Let us first consider the case
of reallocating an unfavorable layer τi,u of J∗i to the GPU
cluster at tcur. Suppose a job of a task τk (whose release
time and deadline are ta and ta + Tk) misses its deadline.
Consider an interval [ta − lk, ta + Tk) such that [ta − lk, ta)
is the maximum consecutive busy interval (in which the GPU
cluster is occupied when all layers execute for their WCETs),
and the GPU cluster is idle in [ta − lk − 1, ta − lk). Then,
SG(tcur) > 0, where tcur ∈ [ta − lk, ta + Tk), implies that
some layers whose executions are in [tcur, ta + Tk) under the
worst-case execution scenario are completed earlier than their
WCETs by SG(tcur). Let us consider two cases where (a)
tcur ≤ ta − lk and (b) tcur > ta − lk.

For Case (a), we claim that SG(ta−lk) becomes zero based
on the following reasoning. Let tx (≤ ta − lk − 1) denote the
end of the busy interval right before [ta − lk, ta). S

G(tcur) is
at most max(tx − tcur, 0) because SG(tcur) is increased by
the amount of early completion of each layer’s execution than
its WCET (i.e., no larger than max(tx − tcur, 0)). Thus, any
layer migration at tcur ≤ ta− lk does not affect the execution

in [ta− lk, ta + Tk). This contradicts the supposition that τ is
schedulable but there exists a job that misses its deadline.

For Case (b), we consider two sub-cases where (b1) ta ≤
tcur and (b2) tcur < ta. For Cases (b1) and (b2), S

G(tcur)(>
0) implies that the sum of an actual interference and blocking
time imposed on the job missing its deadline in (ta, ta+Tk] is
decreased by SG(tcur) and SG(tcur)−X , respectively, where
X is the amount of idle time in [tcur, ta) without migrating
τi,u. For Case (b2), the amount of execution of a migrating
layer τi,u in the idle interval that belongs to [tcur, ta) does not
impose additional delay on the job missing its deadline in [ta,
ta +Tk). A layer migration at tcur can delay the execution of
the job by at most SG(tcur) and SG(tcur)−X for Cases (b1)
and (b2), respectively. Similar to Case (a), this contradicts the
supposition.

We can similarly prove the case of reallocating a favorable
layer τi,f of J∗i to the CPU cluster at tcur.

Upon release of either an unfavorable layer or a favorable
layer on the CPU or GPU cluster, respectively, we reallocate
the layer to the GPU or CPU cluster if both Lemmas 2
and 3 are satisfied, i.e., Eqs. (13) and (14) for an unfavorable
layer and Eqs. (13) and (15) for a favorable layer. Based on
Lemmas 2 and 3, our runtime migration algorithm is able
to efficiently mitigate the overall accuracy loss of τ due to
quantization while guaranteeing no deadline miss.

Runtime Complexity. At each invocation (either release or
completion of a layer), our algorithm updates the slack with the
complexity of O(1). Then, our algorithm checks the possibility
of a layer migration with Eqs. (13)–(15) with the complexity
of O(n2). Thus, the total complexity is O(n2).

VI. EVALUATION

We have implemented and evaluated LaLaRAND on top of
PyTorch, one of the state-of-the-art ML frameworks. DNNs
designed with PyTorch are easily adapted to LaLaRAND without
requiring any modifications, which makes LaLaRAND universal
and applicable to existing DNNs. We demonstrate the ca-
pability of LaLaRAND making a significant improvement of
schedulability and accuracy. We use two metrics: schedula-
bility ratio and accuracy. The schedulability ratio is defined
as the percentage of schedulable task sets of the total number
of generated task sets by using an algorithm. The accuracy
is defined as the percentage of correctly inferred images over
total tested images. We have also measured the overhead of
LaLaRAND.

A. Experimental Setup

Hardware and Software. We conduct experiments on the
NVIDIA Jetson Xavier board with 8-core Carmel CPUs and
a 512-core Volta GPU. We use PyTorch v1.4.0 with CUDA
10.2 and cuDNN 8.0.2 for implementation. LaLaRAND assumes
that the CPU and GPU cores perform computations using
QUInt8 and FP32 values, respectively, that are supported
in hardware by common processors. LaLaRAND employs the
qnnpack library [36] provided in PyTorch for layer-level
quantization/dequantization.3 For CPU/GPU scheduling on the

3Although the GPU cores in the Xavier board support both FP16 (half-
precision floating-point) and QUInt8 formats as well, PyTorch does not
yet support quantized operator implementations for GPU. Thus, LaLaRAND
applies 8-bit linear quantization for CPU execution only.

337

0

100

200

300

400

500
La
te
nc
y
(m
s)

Observed end-to-end execution time
Sum of per-layer WCET estimates

GoogLeNet
MnasNet

SqueezeNet
MobileNetV2

GoogLeNet
MnasNet

SqueezeNet
MobileNetV2

0
10
20
30
40
50
60
70
80

La
te
nc
y
(m
s)

Observed end-to-end execution time
Sum of per-layer WCET estimates

Fig. 4. Sum of each layer’s WCET estimates (marked as a dot) and
distribution of measured end-to-end execution time (marked as a candlestick)
on (a) CPU (QUInt8) and (b) GPU in Nvidia Jetson Xavier for GoogLeNet,
MnasNet, SqueezeNet, and MobileNetV2 with a 602KB image

Xavier board, LaLaRAND utilizes seven CPU cores as a CPU
cluster and one GPU device with one CPU core as a GPU
cluster. Each cluster executes a single layer at a time by utiliz-
ing all available cores in parallel.4 For transparent memory
handler, LaLaRAND explicitly copies the memory buffer be-
tween CPU (host) and GPU (device) through CudaMemcpy()
calls. Note that CUDA provides other GPU memory manage-
ment methods, such as pinned memory and unified memory.
LaLaRAND can also support those memory management meth-
ods by replacing CudaMemcpy() with corresponding CUDA
API calls, i.e., CudaHostAlloc() for pinned memory and
CudaMallocManaged() for unified memory.

DNN Models and Datasets. We use four popular
DNN models for image classification in our evaluation, i.e,
GoogLeNet, MnasNet, SqueezeNet, and MobileNetV2, that are
tested with the ImageNet dataset for 1,000 images.

Time measurement. We take a measurement-based ap-
proach to estimate the worst-case execution time of individual
layers of DNN models on CPU and GPU clusters as well
as their quantization/dequantization and data transfer over-
heads. Our experiment measures each layer’s execution time
on CPU and GPU clusters by running 1,000 times, respec-
tively, and takes the maximum value among the measured
ones as the WCET. The same applies to estimate quantiza-
tion/dequantization and data transfer overheads at layer level.
Fig. 4 shows the sum of each layer’s worst-case execution time
estimates (marked as a dot) and the distribution of observed
end-to-end execution time (marked as a candlestick) on CPU
and GPU clusters, respectively, for four DNN models. The box
in each candlestick represents the range of values between
quartiles (25 and 75 percentiles). The horizontal line in the
middle of the box is the median and the vertical line shows
the maximum and minimum values. For example, the sums
of each layer’s WCET estimates of GoogLeNet on CPU and
GPU clusters are 396.6ms and 66.9ms, respectively, while its
average end-to-end execution times on CPU and GPU clusters
are 260.6ms and 54.4ms, respectively.

Approaches to be compared. We compare the following
five different approaches:

• LaLaRAND: layer-by-layer CPU/GPU allocation in Alg. 1 and
runtime layer migration in Sec. V;

• LaLaRAND w/o QU: layer-by-layer CPU/GPU allocation in
Alg. 1 without CPU-friendly quantization;

• SOWD: resource-efficient schedulability-oblivious CPU/GPU
workload distribution;

• DART: pipelined data-parallel CPU/GPU scheduling [6]; and

4PyTorch supports parallel processing of a single kernel through the
OpenMP API for CPUs.

• BaseGPU: GPU-only allocation (vanilla PyTorch).

SOWD sorts all layers of all tasks in increasing order of
their execution time ratios of CPU to GPU and allocates layers
having higher ratios to GPU and layers having lower ratios
to CPU until the utilization of the CPU and GPU clusters is
balanced to fully utilize resources efficiently. DART employs a
pipeline-based resource allocation and scheduling architecture,
where CPUs and a GPU are arranged into nodes, and subsets
of consecutive layers of each task are allocated to different
nodes and executed in a pipeline manner. In comparison of
the schedulability ratio, we use its own schedulability analysis
based on the delay composition theorem for DART and our
proposed analysis in Eq. (9) for BaseGPU. Note that, to make a
fair comparison with LaLaRAND, we also employ CPU-friendly
quantization for SOWD and DART. Note that other related
techniques [18]–[22] mentioned in Sec. VII are not included
in this comparison, since they did not deal with the timing
constraints, rendering them infeasible for real-time DNN tasks.

B. Experimental Results

Schedulability. We generate DNN task sets by using
the worst-case execution time of each layer and overheads
measured via the experiments. We randomly generate 7,500
task sets, where the period of each task is determined according
to the UUniFast algorithm [37], which has been widely used
for the generation of synthetic task sets. Each task set has 10
DNN tasks whose DNN models are randomly chosen among
the four image classification DNN models and priorities are
determined by rate-monotonic (RM) [38].

Fig. 5(a) compares the percentage of schedulable task sets
by five resource allocation approaches while varying the total
utilization rate Uτ,π of a task set from 2.0 to 3.4.5 LaLaRAND
exhibits high capability in finding schedulable task sets in that
LaLaRAND finds 56%, 64%, 80%, and 633% more schedu-
lable task sets than DART, LaLaRAND w/o QU, BaseGPU, and
SOWD, respectively. Note that LaLaRAND is shown to dominate
BaseGPU, because our layer-by-layer CPU/GPU allocation in
Alg. 1 uses the solution of BaseGPU as an initial input to the
allocation process. The performance gap between LaLaRAND
and the other approaches is shown to become larger as Uτ,π

increases. As Uτ,π increases, it becomes more difficult to
make task sets schedulable by utilizing the GPU cluster only.
Thus, BaseGPU hardly finds any schedulable task sets when
Uτ,π ≥ 2.7. Although SOWD can fully utilize all resources
in an efficient way through a fine-grained layer-level resource
allocation, it does not consider schedulability also affected by
execution dependencies and overheads among layers in each
task, yielding worse schedulability performance than BaseGPU.
Under LaLaRAND w/o QU, the execution time ratio of CPU to
GPU for each layer is too high to allocate just a few layers
of a task to the CPU cluster, making the task easily deemed
unschedulable. Under DART, the workload of each DNN task
is distributed among resource nodes so that the utilization
of nodes is balanced. In contrast, LaLaRAND tries to allocate
as many layers of higher-priority tasks to the CPU cluster,
while leaving all layers of lower-priority tasks on the GPU
cluster so as to effectively reduce the interference imposed on
lower-priority tasks. Therefore, the performance gap between

5We define the total utilization rate Uτ,π of a task set on a CPU/GPU

platform as
∑

i

(∑
j(C

C
i,j + CG

i,j)/2
)
/Ti.

338

0%

20%

40%

60%

80%

100%

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4

Sc
he
du
la
bi
lit
y
R
at
io

Total utilization rate

LaLaRAND
DART
LaLaRAND w/o QU
BaseGPU
SOWD

0%

20%

40%

60%

80%

100%

5 6 7 8 9 10 11 12 13 14

Sc
he
du
la
bi
lit
y
R
at
io

Number of task

LaLaRAND
DART
LaLaRAND w/o QU
BaseGPU
SOWD

0%

20%

40%

60%

80%

100%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Sc
he
du
la
bi
lit
y
R
at
io

Ratio of small C/G task

LaLaRAND
DART
LaLaRAND w/o QU
BaseGPU
SOWD

Fig. 5. Schedulability ratios with (a) varying Uτ,π when the number of tasks (n) is 10, (b) varying n when Uτ,π = 2.7, and (c) varying the ratio of small
C/G ratio task when Uτ,π = 2.7 and n = 10

LaLaRAND and the other approaches can be interpreted as the
benefit of taking the effect of allocating a layer to the CPU
cluster on the schedulability into account by our layer-level
resource allocation.

We also varied the number of tasks (n) in a task set
to identify its effect on schedulability. We generate 5,000
additional task sets in total while varying the number of tasks
from 5 to 14 when Uτ,π is set to 2.7 as shown in Fig. 5(b).
LaLaRAND is shown to outperform the other approaches for
all values of the number of tasks. One interesting observation
is that the performance of LaLaRAND is getting better as the
number of tasks increases, while the other approaches show the
opposite trend. For example, as the number of tasks increases
from 5 to 14, the schedulability ratio of LaLaRAND is increased
from 41% to 77%, but those of DART, LaLaRAND w/o QU,
BaseGPU, and SOWD are decreased from 15% to 8%, from
14% to 7%, from 5% to 3%, and from 2% to 0%, respectively.
As the number of tasks increases, each task in a task set is
more likely to have a smaller utilization. LaLaRAND can allocate
more layers of higher-priority tasks to the CPU cluster without
compromising their schedulability and effectively reduce the
interference on lower-priority tasks allocated on the GPU
cluster only, resulting in better schedulability.

We also varied the ratio of small C/G ratio tasks to identify
the effect of task’s execution time ratio of CPU to GPU on
schedulability. We consider tasks using GoogLeNet as small
C/G ratio tasks because GoogLeNet shows the smallest average
execution time ratio of CPU to GPU at the layer level among
four DNN models. We generate 5,500 additional task sets
while varying the ratio of small C/G ratio tasks from 0 to
100% when Uτ,π = 2.7 and n = 10 as shown in Fig. 5(c).
LaLaRAND is shown to outperform the other approaches for
all ratios. The performance gap between LaLaRAND and the
others becomes larger as the ratio of small C/G ratio tasks
decreases. For example, under LaLaRAND, 78% of the task
sets are schedulable when the ratio of small C/G ratio tasks
is 0.1, while DART, LaLaRAND w/o QU, BaseGPU, and SOWD
only make 5%, 1%, 0%, and 0% of the task sets schedulable,
respectively. Such an improvement can be interpreted as the
benefit of efficient use of both CPU and GPU resources by our
fine-grained layer-by-layer CPU/GPU allocation algorithm. As
a result, LaLaRAND can find more schedulable task sets under
limited computing resources.

In addition, we conducted a case study on the Xavier
board to demonstrate the effect of our flexible layer-by-layer
CPU/GPU scheduling on the end-to-end response time of
DNN tasks and schedulability. The task set used in this case
study consists of the following four tasks: τ1(T1 = 120,
GoogLeNet), τ2(320, MnasNet), τ3(320, GoogLeNet), and

0

0.5

1

0 100 200 300 400 500 600

CD
F

Response Time (ms) under BaseGPU

0

0.5

1

0 100 200 300 400 500 600

CD
F

Response Time (ms) under LaLaRAND

1 Deadline 2, 3, 4 Deadline

Fig. 6. Response time CDF of four DNN tasks by (a) BaseGPU and (b)
LaLaRAND

τ4(320, GoogLeNet). The tasks are scheduled under RM.
Fig. 6 shows the measured response time CDF of four tasks by
BaseGPU and LaLaRAND. Under BaseGPU, task τ4 having the
lowest priority misses its deadline and shows long tail latency
with the maximum observed response time of 548ms. This is
because all tasks are executed on GPU only under BaseGPU,
so all higher-priority tasks impose a larger interference on
τ4. On the other hand, LaLaRAND achieves 1.8× reduction in
the maximum observed response time of τ4 over BaseGPU,
making all tasks schedulable. Although LaLaRAND yields 1.4×
increment in the maximum observed response time of τ1 over
BaseGPU by scheduling some of τ1’s layers on the CPU cluster,
LaLaRAND can still guarantee the schedulability of all tasks
and effectively reduce the interference on lower-priority tasks
including τ4, resulting in better schedulability. Note that the
worst-case response time of τ4 derived by our response time
analysis in Eq. (4) is 319.9ms, while the maximum observed
response time of τ4 by LaLaRAND is 301.7ms.

Accuracy. We now show how LaLaRAND effectively miti-
gates the accuracy loss due to quantization by runtime layer
migration. With the generated task sets, we consider 100
schedulable task sets by both LaLaRAND and DART but not by
BaseGPU whose total utilization rates are between 2.5 and 3.0
and n = 5. For each task in a task set, we measure the top-
1 classification accuracy with the ImageNet dataset for 1,000
images. Fig. 7 shows the distributions of difference in accuracy
for LaLaRAND with and without runtime layer migration and
DART relative to BaseGPU (full precision), respectively. The
vertical green line represents a reference accuracy by BaseGPU,
and the red dot is marked at the corresponding difference in
accuracy for each task under each method based on the green
line while its brightness represents the frequency. Note that we
exclude the results showing no accuracy difference. LaLaRAND
with our runtime layer migration algorithm shows a very small
accuracy drop (less than 0.4%p), while the case of no runtime
layer migration shows a significant accuracy loss over a wide
range from -5.3%p to -18.2%p. Our runtime layer migration

339

-21-19-17-15-13-11-9-7-5-3-11

LaLaRAND

w/o migration

DART

LaLaRAND

Accuracy difference (%p)

Fig. 7. Distribution of accuracy difference with LaLaRAND, DART, and
LaLaRAND without layer migration relative to BaseGPU (the green line)

algorithm effectively utilizes 36,068ms and 13,293ms of the
GPU and CPU slacks (6.2% and 23.8% of the total amounts of
worst-case workloads allocated on the GPU and CPU clusters),
respectively, to reallocate 93.4% of unfavorable layers to the
GPU cluster and 0.27% of favorable layers to the CPU cluster
on average for a task set. We observed that all unfavorable
layers reallocated to the GPU cluster belong to higher-priority
tasks, while favorable layers reallocated to the CPU cluster are
from tasks with different priorities; this is because, our offline
CPU/GPU allocation algorithm allocates higher-priority tasks’
layers to the CPU cluster first. Nevertheless, our algorithm
prioritizes the distribution of the GPU and CPU slacks to more
unfavorable and favorable layers in a task set, respectively,
resulting that none of the tasks in a task set suffers from a
severe accuracy drop (only up to -0.4%p). DART shows an
accuracy loss over a range from -0.7%p to -2.4%p, yielding
a higher accuracy drop than LaLaRAND. We interestingly note
that our runtime layer migration algorithm can even improve
the accuracy by up to 0.7%p for 11% of all tasks against
BaseGPU. Such an accuracy improvement can be interpreted
as the benefit of efficiently utilizing available slacks on the
CPU and GPU clusters at runtime to migrate unfavorable
and favorable layers to GPU and CPU clusters, respectively,
without violating any timing constraint.

Overheads analysis. We analyze the overhead of
LaLaRAND for 1) DNN initialization, 2) per-layer scheduling,
3) intermediate data handling, and 4) memory usage. Note that
we measure the overhead with four DNN models used in the
performance evaluation. First of all, to initialize a DNN task,
LaLaRAND incurs an average delay of 53.7 seconds. It seems
quite long but still affordable since it happens only once before
starting the DNN task. After initialization, LaLaRAND imposes
per-layer scheduling overhead composed of IPC communica-
tion and decision making costs that respectively take 67.9μs
and 2.3μs on average (up to 98.3μs and 57μs, respectively).
This delay is not too critical since it is relatively short com-
pared to the layer computation. And, this delay does not hinder
the timing guarantee, since the LaLaRAND scheduler takes this
delay into account for scheduling decisions. A few layers may
incur data handling overhead to keep data consistency between
two layers assigned to different resources. It only takes 2.3ms
on average, relatively short delay compared to the computation
time of each DNN layer. In addition, it happens not frequently,
for instance, only 6 out of 139 layers of GoogLeNet require the
data handling. Note that an extreme case may require a high
cost for data handling, e.g., up to 73ms in our measurement.
However, this is not critical since LaLaRAND scheduler will
allocate resources while avoiding such a large cost.

Table I shows the memory overhead; LaLaRAND requires
up to 27% more memory (up to only 6.8 MB) than a vanilla
PyTorch, which is affordable for better real-time schedulability.

TABLE I. MEMORY OVERHEAD PROFILE ON NVIDIA XAVIER

Memory (MB) GoogLeNet MobileNetV2 MnasNet SqueezeNet
PyTorch 26.5 13.97 17.48 4.95

LaLaRAND 33.38 17.61 22 6.29

VII. RELATED WORK

As modern embedded systems are equipped with CPUs
along with heterogeneous processors such as GPUs, a rich
number of prior studies have been focused on splitting DNN
computations across heterogeneous processors to improve the
performance of DNN inference. DeepX [18] splits a DNN into
multiple groups of layers, applies some optimizations (e.g.,
pruning) to the groups, and then distributes the groups to the
heterogeneous processors. Heimdall [22] partitions each DNN
into smaller units, schedules multiple DNNs on GPU, and
offloads some DNNs to CPU in case there is a high contention
on GPU. μLayer [19] accelerates a single DNN layer by si-
multaneously utilizing heterogeneous processors and perform-
ing computations using processor-friendly quantization. Some
other studies focused on offloading DNN computations to the
cloud. MCDNN [20] executes a DNN either on the mobile
device or in the cloud depending on the remaining energy
and cash budget in the cloud. Neurosurgeon [21] executes
earlier layers on the mobile device and the following layers in
the cloud to reduce the latency and the energy consumption.
Although all of these studies have made valuable contributions
on lowering inference latency by utilizing multiple resources,
they did not deal with the timing constraints when allocating
resources or scheduling DNN tasks, rendering them infeasible
for real-time multi-DNN systems.

A recent study [6], most relevant to our work, focused on
ensuring the timing constraints of DNN tasks. The work in [6]
employs a pipeline-based resource allocation and scheduling
architecture, called DART, that partitions the DNN infer-
ence execution of each task into stages, configures a set of
computing nodes, and allocates computing nodes to stages
so as to meet timing constraints. Although DART provides
deterministic response time to DNN tasks, the performance
imbalance issue pertaining to heterogeneous resources and
subsequent related issues are not explicitly considered, which
significantly affects schedulability performance.

VIII. CONCLUSION

This paper aims to improve the schedulability of real-
time DNN tasks while leveraging heterogeneous resources. We
presented LaLaRAND, a new system abstraction, that enables
transparent and flexible CPU/GPU scheduling of individual
DNN layers. By tightly coupling CPU-friendly quantization
with layer-level CPU/GPU allocation schemes, LaLaRAND can
not only provide timing guarantees for real-time DNN tasks but
also significantly improve schedulability performance while
mitigating the overall accuracy loss due to CPU-friendly
quantization. Our implementation and evaluation of LaLaRAND
on top of a state-of-the-art ML framework demonstrated the
effectiveness of LaLaRAND in meeting timing constraints with-
out any significant accuracy drop for real-time DNN tasks. In
future, we would like to extend LaLaRAND towards multiple
GPUs with concurrent kernel executions and develop efficient
task-level or layer-level priority assignment in order to further
enhance schedulability as well as resource-efficiency.

340

ACKNOWLEDGEMENT

This work was supported in part by the National Research
Foundation of Korea (NRF) grant (2017M3A9G8084463,

2020R1F1A1076058, 2021R1A2B5B02001758, 2021R1A4A1032252,

2018R1A5A1059921 (ERC), 2020R1A2C2005479) and Institute of
Information & communications Technology Planning &
Evaluation (IITP) grant (2014-3-00065: Resilient Cyber-Physical

Systems Research, 2020-0-00209) funded by the Korea government
(MSIT), as well as the DGIST R&D Program of MSIT
(20-CoE-IT-01).

REFERENCES

[1] W. Jang, H. Jeong, K. Kang, N. Dutt, and J.-C. Kim, “R-TOD: Real-
time object detector with minimized end-to-end delay for autonomous
driving,” in RTSS, 2020.

[2] A. Singh, D. Patil, and S. Omkar, “Eye in the sky: Real-time drone
surveillance system (dss) for violent individuals identification using
scatternet hybrid deep learning network,” in CVPR Workshops, 2018.

[3] X. Song, B. Yang, G. Yang, R. Chen, E. Forno, W. Chen, and W. Gao,
“Spirosonic: Monitoring human lung function via acoustic sensing on
commodity smartphones,” in MobiCom, 2020.

[4] M. Yang, S. Wang, J. Bakita, T. Vu, F. D. Smith, J. H. Anderson,
and J.-M. Frahm, “Re-thinking CNN frameworks for time-sensitive
autonomous-driving applications: Addressing an industrial challenge,”
in RTAS, 2019.

[5] S. Bateni and C. Liu, “ApNet: Approximation-aware real-time neural
network,” in RTSS, 2018.

[6] Y. Xiang and H. Kim, “Pipelined data-parallel CPU/GPU scheduling
for multi-DNN real-time inference,” in RTSS, 2019.

[7] S. Bateni, H. Zhou, Y. Zhu, and C. Liu, “PredJoule: A timing-
predictable energy optimization framework for deep neural networks,”
in RTSS, 2018.

[8] S. Lee and S. Nirjon, “SubFlow: A dynamic induced-subgraph strategy
toward real-time DNN inference and training,” in RTAS, 2020.

[9] S. Heo, S. Cho, Y. Kim, and H. Kim, “Real-time object detection system
with multi-path neural networks,” in RTAS, 2020.

[10] H. Zhou, S. Bateni, and C. Liu, “Sˆ3DNN: Supervised streaming and
scheduling for gpu-accelerated real-time dnn workloads,” in RTAS,
2018.

[11] S. Liu, S. Yao, X. Fu, R. Tabish, S. Yu, A. Bansal, H. Yun, L. Sha,
and T. Abdelzaher, “On removing algorithmic priority inversion from
mission-critical machine inference pipelines,” in RTSS, 2020.

[12] R. Pujol, H. Tabani, L. Kosmidis, E. Mezzetti, J. Abella, and F. J.
Cazorla, “Generating and Exploiting Deep Learning Variants to Increase
Heterogeneous Resource Utilization in the NVIDIA Xavier,” in ECRTS,
2019.

[13] D. Zhang, N. Vance, Y. Zhang, M. T. Rashid, and D. Wang, “Edge-
batch: Towards ai-empowered optimal task batching in intelligent edge
systems,” in RTSS, 2019.

[14] W. Kang and J. Chung, “DeepRT: predictable deep learning inference
for cyber-physical systems,” Real-Time Systems, vol. 55, pp. 106–135,
2019.

[15] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style,
high-performance deep learning library,” in NIPS, 2019. [Online].
Available: https://pytorch.org

[16] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-
scale machine learning on heterogeneous systems,” 2015, software
available from tensorflow.org. [Online]. Available: http://tensorflow.org/

[17] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture
for fast feature embedding,” in MM, 2014. [Online]. Available:
https://caffe.berkeleyvision.org

[18] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qen-
dro, and F. Kawsar, “DeepX: A software accelerator for low-power deep
learning inference on mobile devices,” in IPSN, 2016.

[19] Y. Kim, J. Kim, D. Chae, D. Kim, and J. Kim, “μlayer: Low latency
on-device inference using cooperative single-layer acceleration and
processor-friendly quantization,” in EuroSys, 2019.

[20] H. Shen, M. Philipose, S. Agarwal, and A. Wolman, “MCDNN: An
approximation-based execution framework for deep stream processing
under resource constraints,” in MobiSys, 2016.

[21] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” in ASPLOS, 2017.

[22] J. Yi and Y. Lee, “Heimdall: Mobile gpu coordination platform for
augmented reality applications,” in MobiCom, 2020.

[23] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in CVPR, 2015.

[24] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “SqueezeNet: Alexnet-level accuracy with 50x fewer
parameters and <0.5MB model size,” in ICLR, 2017.

[25] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “MnasNet: Platform-aware neural architecture search for
mobile,” in CVPR, 2019.

[26] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in CVPR,
2018.

[27] Jetson AGX Xavier Developer Kit. [Online]. Available:
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit

[28] Jetson TX2 Module. [Online]. Available:
https://developer.nvidia.com/embedded/jetson-tx2

[29] Jetson Nano Developer Kit. [Online]. Available:
https://developer.nvidia.com/embedded/jetson-nano-developer-kit

[30] R. Krishnamoorthi, “Quantizing deep convolutional networks for effi-
cient inference: A whitepaper,” 2018.

[31] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ: Hardware-aware
automated quantization with mixed precision,” in CVPR, 2019.

[32] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized Neural Networks,” in NIPS, 2016.

[33] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in CVPR, 2018.

[34] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision, vol. 115, no. 3, pp. 211–
252, 2015.

[35] J. Redmon, “Darknet: Open source neural networks in c,” 2013–2016.
[Online]. Available: http://pjreddie.com/darknet/

[36] M. Dukhan, Y. Wu, and H. Lu, “Qnnpack: Open source library
for optimized mobile deep learning,” Mar 2020. [Online]. Available:
https://engineering.fb.com/2018/10/29/ml-applications/qnnpack/

[37] E. Bini and G. Buttazzo, “Measuring the performance of schedulability
tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129–154, May 2005.

[38] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling
algorithm: exact characterization and average case behavior,” in RTSS,
1989.

341

