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Abstract—Although essential for inherently non-preemptive
tasks and favorable to tasks with large preemption/migration
overheads, non-preemptive scheduling has not been thoroughly
studied compared to preemptive scheduling. In particular, existing
studies for non-preemptive scheduling could not effectively exploit
being non-work-conserving (i.e., idling processor(s) intentionally),
failing to achieve its full schedulability capability. In this paper,
we propose the first non-preemptive scheduling framework that
covers work-conserving-infeasible task sets (each of which is
proven unschedulable by every work-conserving non-preemptive
scheduling), without knowledge of future release patterns of
tasks (i.e., without clairvoyance). To this end, we first discover
the following principle: without clairvoyance, it is impossible to
generate a feasible schedule for work-conserving-infeasible task
sets on a uniprocessor platform. To make it possible on a multi-
processor platform, we design the NWC(N)-NP-∗ framework that
systematically idles up to N processors so as to enable N designated
tasks (that yield work-conserving-infeasibility) to be schedulable
without clairvoyance, and derive important properties of the
framework. We then target the framework associated with fixed-
priority scheduling (as a prioritization policy), and develop its
schedulability test by utilizing the framework’s properties. Our
simulation results demonstrate that the proposed framework
successfully covers a number of work-conserving-infeasible task
sets, none of which can be deemed schedulable by any previous
approach.

I. INTRODUCTION

Since the seminal work in [1], which provides timing guar-
antees for periodic/sporadic jobs invoked by a set of real-time
tasks, preemptive scheduling has been extensively studied from
uniprocessor to multiprocessor platforms. On the other hand,
although non-preemptive scheduling is essential to inherently
non-preemptive tasks (e.g., interrupts and transactional opera-
tions) and favorable to tasks with large preemption/migration
overheads, its underlying theories have not yet matured, espe-
cially for multiprocessor scheduling. Moreover, most existing
studies concerning non-preemptive multiprocessor scheduling
have been biased toward work-conserving scheduling, under
which no processor can be left idle as long as there is at least
one pending job with remaining execution (e.g., [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14] and many
others), while there have been only several studies regarding
non-work-conserving scheduling [15], [16], [17], [18], [19],
[20], [21].

Different from a set of sporadic preemptive tasks (assuming
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no preemption/migration overhead), it has been known that
idling processor(s) can be beneficial in meeting job deadlines
of a set of sporadic non-preemptive real-time tasks under
the knowledge of future job release patterns (i.e., clairvoy-
nace) [15], but it has not been discovered whether the same
holds without such knowledge. Therefore, existing studies have
failed to not only identify but also achieve full schedulability
capability of non-preemptive scheduling. In this paper, we
focus on a situation in which knowledge of future job release
patterns is not available (i.e., non-clairvoyance), and aim at
exploring non-work-conserving global scheduling for a set of
sporadic non-preemptive tasks on a multiprocessor platform,
by addressing the following questions.

Q1. Is it possible for non-work-conserving scheduling to
generate a feasible schedule for a work-conserving-
infeasible task set (which is proven to be un-
schedulable by every work-conserving non-preemptive
scheduling)?

Q2. If it is possible, how can we systematically determine
the processor idling time without knowledge of future
job release patterns?

Q3. After designing a framework that addresses Q2, how
can we provide timing guarantees for a task set under
a framework associated with a target prioritization
policy?

To answer Q1, we first derive a condition for a work-
conserving-infeasible task set from the following example.
Suppose that there are three jobs J1 (release time = x,
execution time = 2, deadline = x+12), J2 (0, 12, 22) and J3
(0, 12, 22) executed on two processors, where x ≥ 1. By every
work-conserving scheduling, J2 and J3 start their execution at
t = 0 and finish their execution at t = 12, and J1 cannot start
its execution until t = 12, which yields its deadline miss if
x = 1. Using such a work-conserving-infeasible example, we
prove that it is impossible for non-clairvoyant non-preemptive
scheduling to yield a feasible schedule for a work-conserving-
infeasible task set on a uniprocessor platform. To make it
possible on a multiprocessor platform, we need to analyze
why a job deadline miss happens in the example, which is
due to non-preemptiveness of lower-priority jobs’ execution
that starts before a higher-priority job’s release. To break
such a fundamental limit of work-conserving non-preemptive
scheduling, we consider idling processor(s), as it can prevent
lower-priority job(s) from starting their execution before a
higher-priority job’s release.
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However, it is generally challenging to decide when and
how long we idle processor(s), because (i) the decision should
yield not only timely execution of the job of interest (such as
J1) but also a predictable effect on timely execution of other
jobs (such as J2 and J3) and (ii) the decision should be made
without knowing future job release patterns. In the previous
example with x = 1, suppose that we reserve a processor for
J1 by idling it until J1 is released. Then, at t = 0, only one
of J2 or J3 starts its execution, and J1 starts its execution as
soon as it is released at t = 1 on the reserved processor; once
J1 finishes at t = 3, one of J2 or J3 (that did not start its
execution at t = 0) can start its execution and finish it before
its deadline. Although such a processor idling policy seems
perfect for the example with x = 1, it does not work with
x ≥ 9 (meaning that J1 is released no earlier than t = 9). This
is because, once J1 is released no earlier than t = 9, starts its
execution on the reserved processor, and finishes its execution
after two time units, one of J2 or J3 (that did not start its
execution at t = 0) cannot start its execution before t = 11,
yielding its deadline miss. Addressing this challenge along
with Q2, we propose a non-work-conserving non-preemptive
scheduling framework, called NWC(N)-NP-∗, under which the
timely execution of N designated tasks is guaranteed as long
as the number of processors (m) is no smaller than 2 · N.
By assigning tasks that inevitably miss its deadline under
every work-conserving scheduling to the designated tasks, the
proposed framework has a potential to make work-conserving-
infeasible task sets schedulable. This is possible by carefully
idling at most N processors out of m processors. We design the
NWC(N)-NP-∗ framework under the following two principles
regarding the schedulability of the N designated tasks and the
other tasks, respectively.

P1. We guarantee to always provide one chance to start
the execution of every job of the N designated tasks no
later than a time instant at which the job will inevitably
miss its deadline without starting its execution, and
execute the job at the chance (if needed), yielding no
job deadline miss of the designated tasks.

P2. We make the effect of P1 predictable so as to
give potential timing guarantees for jobs of the non-
designated tasks.

To achieve P1 and P2 without knowledge of future job
release patterns, we exploit the notion of a time stamp for
each designated task. We now explain a core principle of
NWC(N)-NP-∗ that utilizes the time stamp, using the previous
example with unknown release time of J1. Once we idle a
processor from t = 0, only one of J2 or J3 can start its
execution at t = 0 (we assume that J2 starts its execution,
without loss of generality); in this case, the time stamp for
J1 records the finishing time of J2, which is t = 12. Then,
instead of keeping idling a processor until J1 is released, we
can relax the idling from t = 2. This relaxation comes from
the time stamp for J1. That is, since J1 can start its execution
at t = 12 (indicated by its time stamp) in any case without
reserving a processor, we can calculate the earliest time instant
when we do not need to idle a processor for J1, which is t = 2,
calculated by (absolute deadline - release time - execution
time) of J1 ahead of t = 12, i.e., 12−(x+12−x−2) = 2. As a
result, if J1 is released no later than t = 2, it can immediately
start its execution on the reserved processor. Otherwise, J1
can start its execution at t = 12 on the processor where J2

finishes its execution; in this case, J3 can start its execution
at t = 2 on the processor whose idling is finished at t = 2.
In both cases, there is no J1’s deadline miss, which yields the
achievement of P1. At the same time, since we do not idle
a processor for J1 in [2, 12), we can yield the processor to
J3 during [2, 12), which helps address P2. Although the core
principle of NWC(N)-NP-∗ seems simple to implement for the
job set in the example, it is complicated to formalize details
of the principle for a set of recurrent real-time tasks, which
will be presented in Section IV.

To address Q3, we derive the three following important
properties for the proposed framework, which also prove the
accomplishment of P1 and P2: (i) every job of the N designated
tasks always meets its deadline; (ii) we can upper-bound the
time for idling a processor for each designated task, in a similar
manner as to a traditional sporadic real-time task; and (iii) the
actual execution of a designated task and the processor idling
time reserved by the task cannot occur at the same time. These
three properties facilitate the development of a schedulability
test for NWC(N)-NP-∗, as follows. From (i), we do not need to
consider the schedulability of the N designated tasks. From (ii),
the schedulability test to be developed can accommodate the
effect of the processor idling time as if it were an additional
sporadic real-time task. Finally, (iii) allows to upper-bound the
effects of the actual execution and the processor idling time
for each designated task, making the schedulability test tighter.

As an example, we consider NWC(N)-NP-FP, which is
NWC(N)-NP-∗ associated with a prioritization policy of fixed
priority (FP) [1]. We first recapitulate an existing schedula-
bility test for work-conserving non-preemptive FP scheduling
(denoted by WC-NP-FP) and its improved version. Utilizing
the three properties of the NWC(N)-NP-∗ framework, we finally
develop schedulability tests for NWC(N)-NP-FP based on the
existing schedulability tests.

To demonstrate the effectiveness of the proposed frame-
work, we generate a large number of task sets and check
whether each of them is schedulable by the schedulability
tests for NWC(N)-NP-FP and its counterpart WC-NP-FP. Our
simulation results demonstrate that the proposed framework
successfully covers a number of work-conserving-infeasible
tasks sets, none of which are deemed schedulable by any
existing approach, which is a main contribution of this paper.

In summary, this paper makes the following contributions:

• Establishment of a theoretical foundation of non-
work-conserving non-preemptive scheduling,

• Development of the first non-work-conserving non-
clairvoyant non-preemptive scheduling framework,
which is capable of finding feasible schedules for
work-conserving-infeasible task sets,

• Derivations of the framework’s properties to be used
for developing a schedulability test for a framework
associated with a target prioritization policy,

• Development of schedulability tests for the proposed
non-work-conserving framework associated with FP
(i.e., NWC(N)-NP-FP), based on these properties, and

• Demonstration of the effectiveness of the proposed
framework via simulations.

The remainder of the paper is organized as follows. Sec-
tion II presents the system model, assumptions, and notations.
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Section III explains our motivation of idling processor(s) for
non-preemptive scheduling. Section IV proposes the NWC(N)-∗
framework and derives its properties. Section V develops its
schedulability test when FP is employed as a prioritization
policy. Section VI evaluates the effectiveness of the proposed
framework, and finally Section VII concludes the paper.

II. SYSTEM MODEL, ASSUMPTIONS, AND NOTATIONS

In this paper, we focus on a sporadic real-time task
model [22] in which each task τi in a task set τ is represented
by finite positive values Ti (the minimum separation), Ci (the
worst-case execution time), and Di (the relative deadline). Let
|τ | denote1 the number of tasks in τ . We restrict our attention
to implicit- and constrained-deadline tasks, satisfying Di = Ti

and Di ≤ Ti, respectively. We consider a quantum-based time
slot, and let the length of one quantum be equal to one time
unit, without loss of generality; all parameters of Ti, Ci, and
Di are integer values. Each task invokes a series of jobs; a
job invoked by τi is released at least Ti time units after the
release time of the preceding job of τi, and should finish its
execution within Di time units. We call a job of τi (or τi itself)
active at t if the job of τi has remaining execution at t. For
predictability, we assume that every job of τi ∈ τ executes for
exactly Ci time units; if the actual execution time is (Ci − x)
(0 < x < Ci), then we delay the job state transition from
execution to completion, by x time units. This can be simply
implemented in the scheduler: once τi’s job starts its execution
on a processor, we set a timer for Ci and let the processor not
service any other job until the timer expires. We assume that
each job is independent and cannot be executed on more than
one processor at the same time. We consider a multiprocessor
system consisting of m (≥ 2) identical processors. We assume
there are at least m + 1 tasks in τ ; otherwise, τ is trivially
schedulable.

Concerning the preemption policy and task affinity, we con-
sider non-preemptive global scheduling. Unlike for preemptive
scheduling, non-preemptive scheduling prevents any job from
preempting a currently-executing job. Thus, it is possible for
lower-priority jobs to block higher-priority jobs. By global
scheduling, we mean that a job is allowed to start its execution
on any processor, while partitioned scheduling restricts the
execution of jobs of a task to only one designated processor.
We consider non-clairvoyant scheduling, meaning that there
is no prior knowledge of future job arrival times. Instead, we
assume that the scheduler only knows the static task parameters
Ti, Ci and Di for every τi ∈ τ . A scheduling algorithm is said
to be work-conserving if any processor cannot be left idle as
long as there is at least one pending active job; a scheduling
algorithm is said to be non-work-conserving, otherwise. For
ease of presentation, we may omit the terms non-preemptive,
global and/or non-clairvoyant, when we refer scheduling or a
scheduling algorithm.

While there are infinitely many instances of job sets
invoked by a given task set (due to sporadic job releases), we
define the schedulability of a task set as follows: a task set τ is
said to be schedulable by a scheduling algorithm A, if every
instance of job sets invoked by τ does not have any single

1In this paper, |A| denotes the number of elements in A.

job deadline miss under A. In this paper, we define a work-
conserving-infeasible task set, as one that is unschedulable by
every work-conserving non-preemptive global scheduling.

III. WHY IDLING FOR NON-PREEMPTIVE SCHEDULING?

In this section, we discuss the limitations of work-
conserving scheduling as well as the potential of non-work-
conserving scheduling with its related work.

A. Limitation of work-conserving scheduling

While the work-conserving property always yields better
timing guarantees than the non-work-conserving one under
preemptive scheduling (assuming no preemption/migration
cost), it is well known that the same cannot be said under
non-preemptive scheduling, as follows.

Example 1: A task set τ = {τ1 = (T1 = 12, C1 = 2, D1 =
12), τ2 = τ3 = (22, 12, 22)} is scheduled on a two-processor
platform. Suppose that the first jobs of τ2 and τ3 are released
at t = 0, and that of τ1 is released at t = 1. Then, every
work-conserving non-preemptive scheduling algorithm makes
the two jobs of τ2 and τ3 start their executions at t = 0. Due to
the two jobs’ execution in [0, 12), the first job of τ1 does not
have any chance to begin its execution until t = 12, yielding
a deadline miss as shown in Fig. 1(a).

From the observation in Example 1, we present a condition
for a work-conserving-infeasible task set.

Lemma 1: A task set τ cannot be schedulable by any work-
conserving non-preemptive global scheduling, if there exists a
task τx that satisfies Ci > Dx − Cx + 1 for m other tasks
τi ∈ τ \ {τx}.

2

Proof: Suppose that m jobs are released at t = 0, and a
job of τx is released at t = 1. Then, every work-conserving
non-preemptive scheduling starts the execution of the m jobs
at t = 0. If the m jobs’ execution time is strictly larger than
(Dx − Cx + 1), then the job of τx cannot begin its execution
before or at t = Dx − Cx + 1, which yields the execution
of strictly less than Cx time units until its absolute deadline
t = Dx+1. The lemma holds by the existence of this scenario.

In contrast to work-conserving scheduling, non-work-
conserving scheduling can avoid the deadline miss situation
in Example 1, as shown by the following example.

Example 2: Consider the same task set, job release times
and platform as those in Example 1. Among the two jobs
released at t = 0, we intentionally delay the start time of
the execution of τ3’s job until t = 3, leading one processor
to be idle in [0, 1). Then, the first job of τ1 can perform its
execution in [1, 3), and the job of τ3 performs its execution in
[3, 15), resulting in no deadline miss for any job, as shown in
Fig. 1(d).

2The lemma has been presented in some studies [6], [10], [21] either
implicitly or explicitly.
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Fig. 1. Schedules of three tasks on two processors under work-conserving and non-work-conserving non-preemptive scheduling (details with notations to be
explained in Section IV-A)

B. Potential of non-work-conserving scheduling and related
work

While Example 2 demonstrates the effectiveness of idling
a processor for non-preemptive scheduling, it seems that the
example only works if we know that the job of τ1 will be
released at t = 1. Also, the example offers timing guarantees
of one job per task only, which raises the following question.
“Can we design a scheduling framework that determines when
and how much we should idle processor(s) so as to meet
every job deadline without knowledge of future job release
patterns?” The following lemma presents the impossibility of
such a framework on a uniprocessor platform.

Lemma 2: Suppose that the information concerning future
job release times is not available. If Lemma 1 with m = 1
judges that τ is unschedulable by every work-conserving non-
preemptive scheduling on a uniprocessor platform, then it
is also impossible for a non-work-conserving non-preemptive
scheduling algorithm to make τ schedulable.

Proof: Lemma 1 with m = 1 implies that there exist τx
and τi that satisfy Ci > Dx − Cx + 1. We prove that it is
possible to generate a scenario that yields a deadline miss.
Suppose that a job of τi is released at t = 0.

Case 1. Suppose that the job of τi starts its execution at
t = t′ for t′ ≥ 0. Then, if a job of τx is released at t = t′ +1,
then the job will miss its deadline.

Case 2. Suppose that the job of τi does not start its
execution. Then, it is sure for the job of τi to miss its deadline
eventually (note that all the task parameters are finite positive
values as mentioned in Section II).

In every case, a job misses its deadline.

Different from a uniprocessor platform, non-work-
conserving scheduling on a multiprocessor platform can over-
come the work-conserving-infeasible condition.

Claim 1: Suppose that the information on future job re-
leases is not available. There exists a global non-work-
conserving non-preemptive scheduling algorithm that makes
a feasible schedule for a work-conserving-infeasible task
set, which Lemma 1 deems unschedulable by every work-
conserving non-preemptive global scheduling on a multipro-
cessor platform.

We show that the set of tasks with their job releases in
Example 1 is schedulable on a two-processor platform by the
following non-work-conserving scheduling algorithm with a
prioritization policy of fixed priority scheduling (where τ1 and
τ3 are the highest- and lowest-priority tasks, respectively), as
shown in Fig. 1(d). Whenever a job of τ3 (likewise τ2) is ready
to start its execution (in the example, the jobs of τ2 and τ3 are
released at t = 0), it is checked whether a job of τ2 (likewise
τ3) is executed. If not executed, the job of τ3 (likewise τ2)
starts its execution; note that both jobs of τ2 and τ3 are ready,
the job of τ2 is selected to start its execution according to the
fixed-priority prioritization policy (in the example, the job of
τ2 starts its execution at t = 0). If executed, the job of τ3
(likewise τ2) also checks the finishing time of the currently-
executing job of τ2 (likewise τ3) (in the example, the job of
τ2 will finish its execution at t = 12), and does not start its
execution by intentionally idling a processor until D1 −C1 =
10 time units ahead of the finishing time (in the example,
until t = 12 − 10 = 2). If a job of τ1 is released during the
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processor idling time, the job starts its execution immediately
(in the example, the job of τ1 starts its execution at t = 1).
Otherwise, the job can start its execution at the finishing time
of the job of τ2 or τ3.

The scheduling idea does not require any knowledge of
future job release times. For example, consider another job
release pattern for τ1: the first job of τ1 is released at t = 5.
Without knowing the job of τ1’s release time, we idle a
processor until t = 12− (D1−C1) = 2 as shown in Fig. 1(e).
Since the processor idling time is finished at t = 2, the
processor services a job of τ3 from t = 2. Even without
processor idling, the job of τ1 released at t = 5 can start its
execution at t = 12, because a job of τ2 finishes its execution
at the time instant, as shown in Fig. 1(f), which implies no job
deadline miss for all tasks. In fact, the scheduling algorithm
explained so far is NWC(1)-NP-∗, to be developed in the next
section.

Related work. In the literature, there have been several at-
tempts to design/analyze non-work-conserving non-preemptive
scheduling on a uniprocessor platform, assuming that the fu-
ture job release pattern is available. For example, Ekelin devel-
oped a scheduling algorithm for a set of independent jobs [15],
while Nasri et al. designed a scheduling algorithm for the
periodic (loose-)harmonic task model [16], [17], which was
subsequently improved to support the periodic task model [19].
Also, there has been work in the direction of developing a
new type of schedulability test that can be utilized for timing
guarantees of existing non-work-conserving scheduling [18],
[20]. Beyond uniprocessor scheduling, one study discussed
non-work-conserving non-preemptive scheduling for mixed-
criticality tasks [23], while another study focused on non-work-
conserving non-preemptive scheduling on a multiprocessor
platform, which requires information of future job release
patterns [21].

On the other hand, there has been no study regarding the
design of a non-work-conserving non-preemptive scheduling,
without relying on information of future job release patterns,
as explained in [24]. Therefore, this paper aims at improving
the schedulability of a set of non-preemptive tasks on a
multiprocessor platform without prior knowledge of future
job release patterns, which can be achieved by systematically
idling processor(s).

IV. NWC(N)-NP-∗: NON-WORK-CONSERVING

NON-PREEMPTIVE SCHEDULING FRAMEWORK

In this section, we propose a non-work-conserving frame-
work for non-preemptive scheduling, called NWC(N)-NP-∗.
We then derive properties of this framework to be used for
developing schedulability tests for the framework associated
with a target prioritization policy.

A. NWC(N)-NP-∗ framework

In the previous section, we proved a task set τ containing
any task τx that satisfies the condition in Lemma 1 (i.e.,
Ci > Dx−Cx+1 holds for m other tasks τi ∈ τ \{τx}) can-
not be schedulable by every work-conserving non-preemptive
global scheduling. Thus, it is necessary to deal with every τx
that satisfies the condition in Lemma 1 in order to make τ
schedulable. We refer to such τx as a designated task. We

Active job of 

True

True

If finishes its 
operation during 
and E is true, go to 

E If E is true, stop 
and go to 

E

Sreserv:
processor 
reservation
(up to Cx

Snoreserv:
no processor
reservation

(up to Dx-Cx)

Sexec:
execution

(Cx)

Supdate:
time stamp

update
(0)

Swait:
waiting valid
time stamp
(up to )

Fig. 2. State diagram for τx ∈ τIDLE

now describe the design of NWC(N)-NP-∗, which allows up
to N processors to remain idle for N designated tasks. For
notational convenience, we let τIDLE denote a set of the N

designated tasks, each of which incurs processor idling by the
NWC(N)-NP-∗ framework.

The proof of Lemma 1 indicates a job of τx ∈ τ which
satisfies the work-conserving-infeasible condition misses its
deadline when the m other tasks’ jobs begin their executions
just before the job release of τx. Then, the job of τx does not
have any chance to start its execution until the time instant at
which the job will miss its deadline unless it starts its execution
(i.e., the instant is its worst-case execution time ahead of its
absolute deadline). To avoid the situation, we establish the two
design principles P1 and P2, presented in Section I.

The key idea for achieving P1 and P2 is to exploit the
notion of a time stamp for every designated task τx ∈ τIDLE

in order to systematically reduce the potential blocking time
that hinders the execution of τx, without knowledge of future
job release patterns. A time stamp tnextx of τx is the finishing
time of a currently-executing job of a non-designated task, and
therefore it indicates a time instant at which a processor will
be available in any case. Note that a valid tnextx is assigned
only after the “currently-executing job” starts its execution, by
calculating the time to start its execution plus its execution
time, which does not require any prior knowledge of release
patterns and scheduling policies; therefore, tnextx may have no
“currently-executing job”, which makes tnextx invalid (to be
explained in Algorirthm 1). Also, tnextx is associated with a
task index y of τy ∈ τ \ τIDLE (by assigning y to γindexx ),
which implies that a processor is guaranteed to be available
for τx at tnextx when a job of τy completes its execution. If
there are multiple designated tasks (i.e., |τIDLE| ≥ 2), then each
tnextx has a unique γindexx , implying that each τx is guaranteed
to execute after the corresponding τy finishes its execution.
Then, NWC(N)-NP-∗ ensures that the duration for each job (to
be released in the future) of every τx to be blocked is no larger
than (Dx−Cx), as follows. NWC(N)-NP-∗ reserves a processor
for τx by idling it until tnextx − (Dx − Cx), and a job of τx
immediately starts its execution if it is released in the middle
of the processor idling time for τx. On the other hand, τx
does not idle a processor in [tnextx − (Dx − Cx), t

next
x ). This

does not yield a deadline miss of a job of τx released in the
interval, because the job of τx can start its execution at tnextx
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and therefore the duration for the job of τx to be blocked is
limited to (Dx − Cx). The following example demonstrates
how a time stamp tnextx is managed by NWC(N)-NP-∗ with
Figs. 1(b), (c), (e) and (f).

Example 3: Consider the task set from Example 1, and
τIDLE = {τ1} and τ \ τIDLE = {τ2, τ3} hold. In Fig. 1(b),
although individual jobs of both τ2 and τ3 are released at t =
0, the job of τ2 is executed on a processor and τ1 idles the
other processor for up to two time units (i.e., until tnext1 −
(D1−C1) = 12−10 = 2), where tnext1 indicates the finishing
time of a job of τ2 (i.e., t = 12). A job of τ1 immediately
executes if it is released no later than t = 2 (as shown in
Fig. 1(c)); otherwise (i.e., if it is released after t = 2), it
executes at or after tnextx (as shown in Figs. 1(e) and (f)). Then,
the timely execution of a job of τ1 is guaranteed because the
blocking time that hinders the execution of the job of τ1 is
upper-bounded by (D1 − C1) = 10 time units in both cases.

With the time stamp tnextx , τx ∈ τIDLE belongs to one of
the following five states at t: execution Sexec, processor reser-
vation (idling) Sreserv, no processor reservation Snoreserv,
waiting for a valid time stamp Swait, and time stamp update
Supdate, as shown in Fig. 2. Note that when the system
starts, every τx ∈ τIDLE starts with the state of Swait. Then,
τx ∈ τIDLE exhibits different behaviors in different states, as
follows.

• Supdate (whose duration is zero) checks whether there
is an active job of τx. If so, the state of τx is transited
to Sexec. Otherwise, we update the time stamp: if it is
valid or invalid, then we change τx’s state to Sreserv
or Swait, respectively. Here, a valid time stamp tnextx

indicates the finishing time of a currently-executing
job of τy ∈ τ \ τIDLE such that the job of τy does not
yield a time stamp for any task other than τx. If there
exists no valid time stamp for τx, then we set the time
stamp to invalid.

• Sreserv compares the current time t with tnextx −
(Dx − Cx). If the former is earlier than the latter,
then τx idles a processor until the latter. Otherwise,
the state of τx is immediately changed to Snoreserv
(with a duration of zero for Sreserv). If there is an
event of a job release of τx during Sreserv, then the
state of τx is changed to Sexec; otherwise, after idling
a processor until tnextx −(Dx−Cx), Sreserv is changed
to Snoreserv.

• Once reaching Snoreserv, τx just waits until tnextx

without idling a processor, and then changes its state
to Supdate at tnextx .

• Sexec performs the execution of a job of τx during
Cx time units, and then transits to Supdate.

• Swait waits until a job of τy ∈ τ \ τIDLE or τx is
released, and then is changed to Supdate.

Then, P1 is satisfied as follows. If a job of τx is released,
it begins its execution immediately unless the current state is
Snoreserv. If the current state is Snoreserv, then it begins its
execution at tnextx without missing any deadline (because the
job does not wait more than (Dx − Cx) time units after its
release). Furthermore, P2 is satisfied as follows. As shown
in Fig. 2, once τx starts to idle a processor in Sreserv,
the idling time is upper-bounded by C ′

x (to be calculated in

Algorithm 1 NWC(N)-NP-∗ framework

Handling every finished job: For every job which is finished at t,

1: Remove the job from RQ (running queue).
2: if the removed job was invoked by τx ∈ τIDLE then
3: tnextx ← invalid; γindexx ← invalid

4: end if

Handling every released job: For every job which is released at t,

1: Insert the job into WQ (wait queue).

Scheduling: If there is at least one job which is finished or released
at t, or any processor idling for τx ∈ τIDLE is finished (i.e., tnextx −
(Dx − Cx) = t), then the following steps are performed:

1: // STEP 1: Start execution of jobs of τx ∈ τIDLE in WQ

2: for every τx ∈ τIDLE whose job is in WQ do
3: if tnextx = t, tnextx = invalid, or tnextx − (Dx − Cx) > t

holds then
4: Move the job of τx from WQ to RQ; start its execution;

tnextx ← reset; γindexx ← reset

5: end if
6: end for
7: // STEP 2: Fill up to (m− N) jobs of τy ∈ τ \ τIDLE in RQ

8: NRQ ← the number of jobs of τy ∈ τ \ τIDLE in RQ

9: NWQ ← the number of jobs of τy ∈ τ \ τIDLE in WQ

10: Move the max
(
0,min(NWQ,m − N − NRQ)

)
highest-priority

job(s) of τy ∈ τ \ τIDLE from WQ to RQ; start their executions
11: // STEP 3: Update tnextx for τx ∈ τIDLE

12: for every τx ∈ τIDLE satisfying tnextx = t or tnextx = invalid

do
13: JS ← a set jobs of τy ∈ τ \ τIDLE in RQ such that there does

not exist γindexx′ = y for τx′ ∈ τIDLE

14: if |JS| ≥ 1 +m− 2 · N then
15: tnextx ← the earliest finishing time of jobs in JS; γindexx ←

the task index of the job
16: else
17: tnextx ← invalid; γindexx ← invalid

18: end if
19: end for
20: // STEP 4: Allocate the remaining available processors to jobs of

τy ∈ τ \ τIDLE

21: NIDLE ← the number of jobs of τx ∈ τIDLE with tnextx − (Dx −
Cx) > t

22: NWQ ← the number of jobs of τy ∈ τ \ τIDLE in WQ

23: Move the max
(
0,min(NWQ,m−NIDLE−|RQ|)

)
highest-priority

job(s) of τy ∈ τ \ τIDLE from WQ to RQ; start their executions

Section IV-B). In addition, after the idling time, no processor
is idle for τx during either Cx time units with Sexec or
(Dx−Cx) time units with Snoreserv. We will formally prove
the achievement of P1 and P2 in Section IV-B.

Using the five states for every τx ∈ τIDLE, we present the
NWC(N)-NP-∗ framework in Algorithm 1. For every job that
finishes its execution at t, we remove it from RQ (running
queue); if the job belongs to τx ∈ τIDLE, we set tnextx ←
invalid and γindexx ← invalid. For every job released at
t, we insert the job to WQ (wait queue).

If there is at least one job which is finished or released at t,
or a job of τx ∈ τIDLE relaxes the reserved (idling) processor
(i.e., t = tnextx − (Dx − Cx)), we perform STEPS 1–4. Note
that when the system starts, we set tnextx ← invalid and
γindexx ← invalid for every τx ∈ τIDLE, and the state of
every τx ∈ τIDLE is assigned to Swait.

• In STEP 1 (Lines 2–6), the following three situations
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result in starting the execution of jobs of τx ∈ τIDLE

in WQ: transitions from Snoreserv (tnextx = t), Swait
and then Supdate (tnextx = invalid), and Sreserv
(tnextx − (Dx − Cx) > t). Once τx ∈ τIDLE starts its
execution, its time stamp is reset, i.e., tnextx ← reset

and γindexx ← reset.

• In STEP 2 (Lines 8–10), we fill up to (m − N) jobs
of τy ∈ τ \ τIDLE in RQ, which is necessary for every
τx ∈ τIDLE to update its time stamp tnextx as valid if
possible.

• In STEP 3 (Lines 12–19), we update tnextx for every
τx ∈ τIDLE that satisfies tnextx = t or tnextx =
invalid, which is performed in Supdate. Let JS
denote a set of jobs of τy ∈ τ \ τIDLE in RQ such
that there does not exist γindexx′ = y for τx′ ∈ τIDLE.
If there exists at least (1+m− 2 ·N) jobs in JS,3 we
assign a valid time stamp to tnextx , by setting tnextx and
γindexx to the earliest finishing time of jobs in JS and
the task index of the job with the earliest finishing
time, respectively. Otherwise, we assign an invalid
time stamp to tnextx , by setting tnextx ← invalid and
γindexx ← invalid.

• In STEP 4 (Lines 21–23), we allocate the remaining
available processors to jobs of τy ∈ τ \ τIDLE after
updating tnextx for τx ∈ τIDLE. We first calculate
the number of jobs in τx ∈ τIDLE each of which
reserves (idles) a processor (denoted by NIDLE). Then,
we additionally execute jobs of τy ∈ τ \ τIDLE up to
as many as (m−NIDLE − |RQ|).

Now, we present an example of how the NWC(N)-NP-∗
framework operates, with Figs. 1(b)–(f).

Example 4: Recall the task set, job release times, and
platform from Example 1. We apply NWC(1)-NP-∗ with the
prioritization policy of FP, where τ1 and τ3 have the highest
and lowest priorities, respectively. Also τIDLE is set to {τ1}.
We present two scenarios: (Scenario 1) Fig. 1(b)→(c)→(d) and
(Scenario 2) Fig. 1(b)→(e)→(f), where a job of τ1 is released
during and after idling a processor, respectively. In both
scenarios, we explain Algorithm 1 with τ1’s state transition.

Scenario 1 is as follows.

• Fig. 1(b): When the system begins at t = 0, tnext1 ←
invalid and γindex1 ← invalid are conducted. At
t = 0, there is no action for STEP 1, and a job of τ2
starts its execution by STEP 2. By STEP 3, tnext1 is
set to 12, which is the finishing time of the job of τ2
(and γindex1 ← 2 is conducted); Supdate is changed to
Sreserv. Also, no action is taken for STEP 4. Because
tnext1 − (D1 − C1) = 2 > t holds, a processor starts
to be idle until t = 2.

• Fig. 1(c): At t = 1, the newly released job of τ1
starts its execution on the reserved (idling) processor
by STEP 1; Sreserv is changed to Sexec. In addition,
tnext1 ← reset and γindex1 ← reset are conducted.
No actions are taken for STEPS 2–4.

3Although it is more intuitive to apply “one job” instead of
“(1 +m− 2 · N) jobs” in the phrase, the latter makes it possible to
reduce the maximum idling period compared to the former, to be used to
derive Lemma 4. Briefly speaking, the latter can allow not to select the
(m− 2 · N) latest finishing times of jobs in JS as a time stamp in Line 15.

• Fig. 1(d): At t = 3, the job of τ1 is finished and
its time stamp is set to invalid; Sexec is changed
to Supdate. Then, no actions are taken for STEPS 1
and 2. In STEP 3, tnext1 is set to 12 again, which is
the finishing time of the job of τ2 (and γindex1 ← 2
is conducted); Supdate is changed to Snoreserv. In
STEP 4, a job of τ3 starts its execution because tnext1 −
(D1 − C1) = 2 ≤ t, meaning that τ1 does not idle a
processor.

Scenario 2 is as follows.

• Fig. 1(b): The actions are the same as those of
Scenario 1.

• Fig. 1(e): At t = 2, no action is taken for STEPS 1–3.
In STEP 4, a job of τ3 starts its execution because
tnext1 − (D1−C1) = 2 ≤ t, meaning that τ1 does not
idle a processor; Sreserv is changed to Snoreserv.

• Fig. 1(f): At t = 5, a job of τ1 is released, but it does
not start its execution; τ1’s state is not changed (i.e.,
Snoreserv).
At t = 12, Snoreserv is changed to Supdate, and
a job of τ1 starts its execution in STEP 1 (and
tnext1 ← reset and γindex1 ← reset are conducted);
Supdate is changed to Sexec.
At t = 14, the job of τ1 completes its execution; Sexec
is changed to Supdate. Then, tnext1 is invalid since
Line 14 of Algorithm 1 is not satisfied; therefore,
tnext1 ← invalid and γindex1 ← invalid are
conducted according to Line 17 of the algorithm.

Although we design the NWC(N)-NP-∗ framework to
achieve P1 and P2, we do not formally discuss how and why
the framework achieves these. In the next subsection, we prove
that P1 and P2 hold under a certain condition, which helps to
develop a schedulability test for the framework associated with
a target prioritization policy.

B. Properties of NWC(N)-NP-∗ framework

In this subsection, we derive properties of the NWC(N)-NP-∗
framework, which are useful for developing schedulability tests
for the framework that employs a target prioritization policy.
First, the following lemma states that P1 holds under m ≥ 2·N.

Lemma 3: Under NWC(N)-NP-∗ on a multiprocessor plat-
form with m ≥ 2 · N, every job of τx ∈ τIDLE cannot miss its
deadline.

Proof: We consider two cases at t: (Case i) there are at
least (m−N) currently-executing jobs of τy ∈ τ \ τIDLE; and
(Case ii) otherwise.

(Case i) In this case, all N tasks τx ∈ τIDLE have a valid
time stamp tnextx by STEP 3 of Algorithm 1 and the condition
of (m− N ≥ N). Therefore, τx idles a processor until tnextx −
(Dx − Cx). If a new job of τx ∈ τIDLE is released before
tnextx −(Dx−Cx), it immediately starts its execution. If a new
job of τx ∈ τIDLE is released in [tnextx − (Dx −Cx), t

next
x ], it

starts its execution at tnextx . If a new job of τx ∈ τIDLE is not
released until tnextx , it will update its time stamp at tnextx . In
every case, there is no deadline miss for τx ∈ τIDLE.

(Case ii) In this case, since there are at most (m− N− 1)
currently-executing jobs of τy ∈ τ \ τIDLE, there exists at least
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one processor which is neither reserved/executed by any τx ∈
τIDLE nor executed by any τy ∈ τ \ τIDLE; let β denote the
number of such processors. Then, by STEP 3 of Algorithm 1,
the number of τx ∈ τIDLE each of which has an invalid time
stamp cannot be larger than β.

Therefore, if a job of τx ∈ τIDLE has a valid time stamp,
then the proof is the same as Case i. Otherwise, at least a
processor does not service any job until a new job of any
task is released. If the newly-released job is a job of τx itself,
it immediately starts its execution; otherwise, τx will update
its time stamp. In every case, there is no deadline miss for
τx ∈ τIDLE.

From the idling mechanism of τx ∈ τIDLE, we can upper-
bound the interval length between the current time instant t and
tnextx , if m ≥ 2 · N holds. That is, the interval length between
t and tnextx (if valid) is upper-bounded by the (m−2 ·N+1)th

largest Cy among τy ∈ τ\τIDLE. This comes from Lines 14–18
of Algorithm 1; the (m−2 ·N) latest finishing times of jobs of
τy ∈ τ \ τIDLE cannot be selected as a time stamp due to the
condition of Line 14. For example, if m = 8 and N = 2, the
interval lengths between t and the two time stamps are upper-
bounded by the (8−2∗2+1) = 5th and 6th largest Ci among
τy ∈ τ \ τIDLE, respectively. Then, since τx ∈ τIDLE idles a
processor until tnextx − (Dx − Cx), the longest consecutive
processor idling time is the upper-bound of the interval length
minus (Dx−Cx). Also, followed by the processor idling time
for τx ∈ τIDLE, we always either execute a job of τx for Cx

time units or wait for (Dx−Cx) time units. By combining all
the above properties, the following lemma provides an upper-
bound on the amount of processor idling time.

Lemma 4: Under NWC(N)-NP-∗ on a multiprocessor plat-
form with m ≥ 2 · N, the amount of the processor idling
time for τx ∈ τIDLE in an interval of length L is upper-
bounded by E(T ′

x, C
′

x, L) where C ′

x =
(
the (m− 2 · N+ 1)th

largest Cy among τy ∈ τ \ τIDLE
)
−(Dx − Cx) and T ′

x =
C ′

x +min(Dx − Cx, Cx), where

E(T,C, L) =
⌊
L

T

⌋
· C +min

(
C,L−

⌊
L

T

⌋
· T

)
. (1)

Proof: We first prove that the time interval length between
the current time t and tnextx is at most the (m − 2 · N + 1)th

largest Cy among τy ∈ τ \ τIDLE. There are two cases at t:
(Case i) there are at least (m− N) currently-executing jobs of
τy ∈ τ \ τIDLE; and (Case ii) otherwise.

(Case i) Since we choose the earliest finishing time of jobs
of τy ∈ τ \ τIDLE, τx ∈ τIDLE chooses the 1st, 2nd, ..., Nth

earliest finishing time of jobs among at least (m− N) jobs of
τy ∈ τ \ τIDLE. Therefore, the (m − N − N) = (m − 2 · N)
latest finishing time of jobs among at least (m − N) jobs of
τy ∈ τ \τIDLE cannot be selected as time stamps, which proves
the supposition.

(Case ii) If there are (m−N− a) currently-executing jobs
of τy ∈ τ \ τIDLE (where 0 < a <= m − N), τx ∈ τIDLE

choose the 1st, 2nd, ..., (N − a)th earliest finishing time of
jobs among (m − N − a) jobs of τy ∈ τ \ τIDLE. Therefore,
the (m− N− a− (N− a)) = (m− 2 · N) latest finishing time
of jobs among (m− N− a) jobs of τy ∈ τ \ τIDLE cannot be
selected as a time stamp, which proves the supposition.
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(b) W (T,C,D,L)

Fig. 3. Interference bound functions E(T,C, L) and W (T,C,D,L)

Considering that τx ∈ τIDLE idles a processor until tnextx −
(Dx−Cx), the longest consecutive processor idling time for τx
is C ′

x =
(
the (m−2·N+1)th largest Cy among τy ∈ τ \τIDLE

)

−(Dx − Cx). Also, followed by idling a processor by τx ∈
τIDLE, we always either execute a job of τx for Cx time units
or waits for (Dx−Cx) time units. Therefore, τx ∈ τIDLE will
start its next processor idling time at least T ′

x = C ′

x+min(Dx−
Cx, Cx) time units after the beginning of the current processor
idling time.

Then, if the processor idling duration is exactly C ′

x, the
amount of the processor idling time for τx ∈ τIDLE in an
interval of length L is upper-bounded by E(T ′

x, C
′

x, L), as
shown in Fig. 3(a). If the current processor idling duration
is C ′

x − ε (ε > 0) (and thus the period is T ′

x − ε), this is
equivalent to shifting all the following idling duration to the
left ε in Fig. 3(a). If the duration of an idling instance within
the interval of interest is reduced by ε, the contribution of
the following idling instance newly included in the interval to
the amount of processor idling time is at most ε. Therefore,
E(T ′

x, C
′

x, L) remains an upper-bound on the amount of pro-
cessor idling time for τx ∈ τIDLE in an interval of length L,
in any case.

Finally, the following lemma proves the concurrency of
τx’s actual execution and its processor idling.

Lemma 5: Under NWC(N)-NP-∗, the following statement
holds for every τx ∈ τIDLE: any execution of jobs of τx and
the processor idling time for τx cannot be overlapped.

Proof: As shown in Algorithm 1 and the state diagram in
Fig. 2, τx ∈ τIDLE does not reserve (idle) a processor when a
job of τx is being executed.

Lemmas 3, 4, and 5 facilitate the adaption of exist-
ing schedulability tests for work-conserving non-preemptive
scheduling algorithms, to the NWC(N)-∗ framework as fol-
lows. First, we do not need to consider the schedulability
of the N designated tasks. Second, the schedulability test
can accommodate the effect of the processor idling time
using E(T ′

x, C
′

x, L). Finally, we can upper-bound the effect
of the actual execution of a designated task and the processor
idling time for the designated task, making the schedulability
test tighter. Utilizing these three properties, the next section
demonstrates how to apply an existing schedulability test for
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a corresponding work-conserving scheduling, to the NWC(N)-∗
framework associated with a target prioritization policy.

V. SCHEDULABILITY ANALYSIS

In this section, we consider NWC(N)-NP-FP, which is the
NWC(N)-NP-∗ framework employing FP as a prioritization
policy. In FP, job priorities are determined by pre-defined task
priorities. To derive a schedulability test for NWC(N)-NP-FP,
we first recapitulate existing schedulability tests for the work-
conserving non-preemptive FP scheduling algorithm (denoted
by WC-NP-FP). By utilizing the properties of NWC(N)-NP-∗ ex-
plained in Section IV-B and the existing schedulability tests for
WC-NP-FP, we develop schedulability tests for NWC(N)-NP-FP.

Here, we define some notations for FP. Let τHI(τk) and
τLO(τk) denote sets of tasks in τ , whose priorities are higher
and lower than τk, respectively. Recall that τIDLE denotes a
set of the N designated tasks, each of which incurs processor
idling by the NWC(N)-NP-∗ framework.

A. Existing schedulability tests for WC-NP-FP

Different from preemptive scheduling, a job under non-
preemptive scheduling does not pause once it has started its
execution. Therefore, we can judge whether a job of τk of
interest is schedulable or not, by checking whether the job
completes the first unit of its execution until (Dk − Ck + 1)
time units after its release time [6], [10]. Let Ik denote the
cumulative length of intervals such that a job of τk of interest
cannot execute in an interval between the release time of the
job and (Dk−Ck+1) time units after the release time. Then, a
job of τk of interest is schedulable if and only if the following
inequality holds (shown in [6], [10] in a different form):

Ik < Dk − Ck + 1. (2)

To upper-bound Ik under FP, we need to calculate how
much execution can be performed in an interval of length
(Dk − Ck + 1). Let W (T,C,D,L) denote the maximum
amount of execution of jobs of a task with parameters (the
minimum separation T , the worst-case execution time C, the
relative deadline D) in an interval of length L, which is
calculated as follows [25], [26]:

W (T,C,D,L) =

⌊
L+D − C

T

⌋
· C

+min
(
C,L+D − C −

⌊
L+D − C

T

⌋
· T

)
. (3)

As shown in Fig. 3(b), W (T,C,D,L) describes the situation
where the executions of the first and last jobs start as late and
early as possible, respectively, and the interval of interest of
length L starts at the beginning of the first job’s execution [25],
[26]. Then, W (Ti, Ci, Di, Dk −Ck +1) is an upper bound of
the amount of execution of jobs of τi in an interval of length
(Dk − Ck + 1).

Even though the priority of τk is higher than that of τi, a
job of τi can block the execution of a job of τk of interest if the
job of τi starts before the release of the job of τk. Therefore,
the number of such blocking jobs is at most m (the number
of processors), and the blocking time by each job of τi is up
to (Ci − 1) time units.

Considering that a job of τk cannot be executed in a time
slot only if there are m other jobs to be executed in that slot,
we can upper-bound Ik as follows [6], [10]:

Ik ≤
1

m

( ∑
τi∈τHI(τk)

min
(
W (Ti, Ci, Di, Dk − Ck + 1), Dk − Ck + 1

)

+
∑

τi∈τLO(τk)|m largest Ci

min
(
Ci − 1, Dk − Ck + 1

))
. (4)

Note that schedulability tests in [6], [10] exhibit a different
form of the above formula. Also, the min operation holds
because jobs of a given task cannot be executed for more
than (Dk − Ck + 1) time units within an interval of length
(Dk − Ck + 1).

Using Eq. (4), the lemma records a schedulability test for
WC-NP-FP [6], [10].

Lemma 6 (Lemma 4 in [10] with � = Dk − Ck + 1): τ is
schedulable by WC-NP-FP on an m-processor platform, if every
task τk ∈ τ satisfies the following inequality.4

The RHS of (4) < Dk − Ck + 1. (5)

Proof: The lemma holds by Eqs. (2) and (4).

To improve the schedulability, a recent study [27] devel-
oped another upper-bound on Ik for the m highest-priority
tasks.

Lemma 7 (Theorem 1 in [27]): Let nk denote the number
of tasks belonging to τHI(τk). Under WC-NP-FP, the following
inequality holds for every τk with nk ≤ m− 1:

Ik ≤ (m− nk)
th

longest (Ci − 1) among τi ∈ τ
LO(τk). (6)

Note that if there exists no such task described in the RHS of
Eq. (6), the RHS is 0.

Proof: Because τk has nk higher-priority tasks, its higher-
priority tasks can prevent a job of τk from executing only on nk

processors. This means that, on the other (m−nk) processors,
its lower-priority tasks are the only tasks which can prevent a
job of τk from execution. Because every job of a lower-priority
task τi can block the job of τk during at most (Ci − 1) time
units only if it starts its execution before the job of τk’s release,
the job of τk starts its execution no later than the (m− nk)

th

largest (Ci − 1) among the lower-priority tasks τi ∈ τLO(τk)

after its release time.

Incorporating Lemma 7 into Lemma 6, we can present an
improved schedulability test for WC-NP-FP, which is similar
to the existing study [27].

Lemma 8: Let nk denote the number of tasks belonging
to τHI(τk). Then, τ is schedulable by WC-NP-FP on an m-
processor platform, if every τk with nk ≤ m − 1 satisfies
Eq. (7) and every τk with nk ≥ m satisfies Eq. (5):

min
(
the RHS of Eq. (4), the RHS of Eq. (6)

)
< Dk − Ck + 1.

(7)

Proof: The theorem holds by Lemmas 6 and 7.

4The RHS and LHS stand for the right-hand side and the left-hand side,
respectively.
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B. Schedulability test for NWC(N)-NP-FP

Now, we develop a schedulability test for NWC(N)-NP-FP
utilizing the three properties explained in Section IV-B. First,
we do not need to consider the schedulability of every τx ∈
τIDLE by Lemma 3. Second, the amount of idling time for
τx ∈ τIDLE is upper-bounded by E(T ′

x, C
′

x, L) in an interval
of length L. Third, the actual execution of and idling time for
τx ∈ τIDLE cannot occur at the same time. Incorporating these
three properties into Lemma 6, we develop a schedulability
test for NWC(N)-NP-FP as follows.

Lemma 9: A task set τ is schedulable by NWC(N)-NP-FP
on a multiprocessor platform with m ≥ 2 · N, if every task
τk ∈ τ \ τIDLE satisfies the following inequality.

1

m

( ∑
τi∈τIDLE

min
(
Dk − Ck + 1,

W (Ti, Ci, Di, Dk − Ck + 1) + E(T ′
i , C

′
i, Dk − Ck + 1)

)

+
∑

τi∈τHI(τk)\τIDLE

min
(
W (Ti, Ci, Di, Dk − Ck + 1), Dk − Ck + 1

)

+
∑

τi∈τLO(τk)\τIDLE|m largest Ci

min
(
Ci − 1, Dk − Ck + 1

))

< Dk − Ck + 1, (8)

where C ′

x =
(
the (m − 2 · N + 1)th largest Cy among τy ∈

τ \ τIDLE
)
−(Dx − Cx) and T ′

x = C ′

x +min(Dx − Cx, Cx).

Proof: By Lemma 3, every τk ∈ τIDLE is schedulable.
To judge the schedulability of every τk ∈ τ \ τIDLE, we need
to calculate the amount of other tasks’ execution that prevents
the job of τk of interest from executing in an interval of length
(Dk−Ck+1) that starts at the release time of the job of τk of
interest. We classify other tasks than τk into three categories:
τIDLE, τHI(τk) \ τIDLE and τLO(τk) \ τIDLE.

In an interval of length (Dk−Ck+1), each τi ∈ τIDLE per-
forms its actual execution during at most W (Ti, Ci, Di, Dk −
Ck + 1) time units, and idles a processor during at most
E(T ′

i , C
′

i, Dk − Ck + 1) time units calculated by Lemma 4.
Because the actual execution and idling time cannot occur at
the same time according to Lemma 5, we can upper-bound
the sum of both by the interval length (Dk − Ck + 1). The

amount of execution of τHI(τk) \τIDLE and τLO(τk) \τIDLE that
prevents the job of τk of interest from executing is the same
as that of τHI(τk) and τLO(τk) in Eq. (4) under WC-NP-FP.

Considering that a job of τk cannot be executed in a time
slot only if there are m other jobs executed in the slot, the
lemma holds by Eq. (2).

Next, we prove that the improved schedulability test con-
dition in Lemma 7 can be applied to NWC(N)-NP-FP.

Lemma 10: Let nk denote the number of tasks belonging
to τIDLE ∪ τHI(τk). Under NWC(N)-NP-FP on a multiprocessor
platform with m ≥ 2 · N, the following inequality holds for
every τk ∈ τ \ τIDLE with nk ≤ m− 1:

Ik ≤ (m− nk)
th

longest (Ci − 1) among τi ∈ τ
LO(τk) \ τIDLE.

(9)

Proof: Because τk has nk tasks each of which either has
a higher priority than τk or belongs to τIDLE, the nk tasks can

prevent a job of τk from executing only on nk processors. This
means that on the other (m− nk) processors, tasks belonging

to τLO(τk) \ τIDLE are the only tasks which can prevent a job
of τk from executing. Then, the remainder of the proof is the
same as that of Lemma 7.

Using Lemmas 9 and 10, we develop an improved schedu-
lability test for NWC(N)-NP-FP.

Theorem 1: Let nk denote the number of tasks belonging
to τIDLE ∪ τHI(τk). Then, τ is schedulable by NWC(N)-NP-FP
on a multiprocessor platform with m ≥ 2 · N, if every τk ∈
τ \ τIDLE with nk ≤ m− 1 satisfies Eq. (10) and every τk ∈
τ \ τIDLE with nk ≥ m satisfies Eq. (8).

min
(

the LHS of Eq. (8), the RHS of Eq. (9)
)
< Dk − Ck + 1.

(10)

Proof: First, by Lemma 3, every τk ∈ τIDLE is schedula-
ble. Second, every τk ∈ τ \τIDLE is schedulable by Lemmas 9
and 10.

Now, we present an example of how to apply Theorem 1.

Example 5: Consider the task set and platform from Ex-
ample 1. We apply NWC(1)-NP-FP with τIDLE = {τ1}, where
τ1 and τ3 have the highest and lowest priorities, respectively.
Then, C ′

1 = C2 (or C3) − (D1 − C1) = 2 and T ′

1 =
C ′

1+min(D1−C1, C1) = 4. For τ2, min(W (T1, C1, D1, D2−
C2 + 1) + E(T ′

1, C
′

1, D2 − C2 − 1), D2 − C2 + 1) =
min(4 + 6, 11) = 10 and min(C3 − 1, D2 − C2 + 1) = 11;
therefore I2 ≤ 21/2 < 11, meaning τ2 is schedulable.
For τ3, min(W (T1, C1, D1, D3 − C3 + 1) + E(T ′

1, C
′

1, D3 −
C3 − 1), D3 − C3 + 1) = min(4 + 6, 11) = 10 and
min(W (T2, C2, D2, D3−C3+1), D3−C3+1) = 11; therefore
I3 ≤ 21/2 < 11, meaning that τ3 is schedulable. Therefore, τ
is schedulable by NWC(1)-NP-FP with τIDLE = {τ1}.

VI. EVALUATION

In this section, we evaluate the schedulability performance
of NWC(Z)-NP-FP with its schedulability tests. After explaining
the target schedulability tests to be compared and the task
set generation process, we discuss the effectiveness of the
NWC(Z)-NP-∗ framework, in terms of empirical schedulability
performance.

Target schedulability tests. We compare the following
schedulability tests.

• WC-NP-∗-E: the existing schedulability test for
WC-NP-FP with the task priority assignment of ∗, i.e.,
Lemma 6,

• WC-NP-∗-I: the improved schedulability test for
WC-NP-FP with the task priority assignment of ∗, i.e.,
Lemma 8,

• NWC(Z)-NP-∗-E: the plain schedulability test for
NWC(Z)-NP-FP with the task priority assignment of
∗, i.e., Lemma 9, and

• NWC(Z)-NP-∗-I: the improved schedulability test for
NWC(Z)-NP-FP with the task priority assignment of ∗,
i.e., Theorem 1,

where Z denotes the number of tasks that satisfy the work-
conserving-infeasible condition shown in Lemma 1 in each
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(a) Varying n with m = 8 and U = 0.4m (all task
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(c) Varying m with U = 0.4m and n = 2.0m (all
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(d) Varying n with m = 8 and U = 0.4m (work-
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Fig. 4. Schedulability performance varying n, U and m for all task sets and work-conserving-infeasible task sets

task set. Note that a task set with Z > 0 is unschedulable by
every work-conserving non-preemptive scheduling including
WC-NP-∗-E and WC-NP-∗-I, and a task set with 2 · Z > m
is unschedulable by all the target schedulability tests. For the
task priority assignment policy for FP, we consider RM (rate
monotonic; a task with a smaller Ti has a higher priority) and
SM (slack monotonic; a task with a smaller (Ti − Ci) has a
higher priority).

Task set generation. We generate task sets using a popular
task set generation method for a multiprocessor platform,
called UUnifast-discard [28]. There are three input parameters:
(i) the number of processors m (2, 4, 8, and 16), (ii) the
number of tasks n (m + 1, 1.5m, 2.0m, 2.5m, 3.0m, 3.5m,
4.0m, 4.5m, and 5.0m), and (iii) the task set utilization
U =

∑
τi∈τ Ci/Ti (0.1m, 0.2m, 0.3m, 0.4m, 0.5m, 0.6m,

0.7m, and 0.8m).5 We generate 10,000 task sets for every
three-tuple (m, n, U ). For each tuple, UUnifast-discard [28]
generates each task’s utilization for each task set. For a given
task utilization for τi (ui), Ti is uniformly selected in [1, 1000];
Ci is computed based on the given utilization and Ti (i.e.,
Ci = Ti · ui); and Di is set to Ti.

For all generated task sets with the three-tuple (i.e.,
10, 000 · 4 · 9 · 8 task sets), we observe that the schedulability
performance of NWC(Z)-NP-∗-I (likewise NWC(Z)-NP-∗-E)
is superior to that of its corresponding schedulability test
WC-NP-∗-I (likewise WC-NP-∗-E) in terms of schedulabil-
ity, which substantiates the effectiveness of the proposed
NWC(Z)-NP-∗ framework. To explain the detailed evaluation
results, we choose the representative results shown in Fig. 4.

5Since non-preemptive scheduling is difficult to meet timing requirements
of a task set with high utilization, the utilization choices from 0.1m to
0.8m suffice to analyze the schedulability performance according to varying
utilization.

That is, Figs. 4(a) and (d) fix m = 8 and U = 0.4m, and show
the schedulable ratios for different n; Figs. 4(b) and (e) fix
m = 8 and n = 2.0m, and show schedulable ratio for different
U ; and Figs. 4(c) and (f) fix n = 2.0m and U = 0.4m, and
show schedulable ratio for different m.

Schedulability performance of NWC(Z)-NP-∗ com-
pared to the corresponding work-conserving schedul-
ing. Figs. 4(a), (b) and (c) plot the ratio schedulable
by NWC(Z)-NP-SM-I, NWC(Z)-NP-RM-I, WC-NP-SM-I,
WC-NP-RM-I, and WC-feasible, respectively, among all the
10,000 task sets per each point. Note that WC-feasible denotes
a test that passes task sets which are not proven infeasible by
Lemma 1, and therefore the schedulable ratio of WC-feasible is
an upper bound on those of WC-NP-SM-I and WC-NP-RM-I.6

On the other hand, Figs. 4(d), (e), and (f) plot the ra-
tio schedulable by NWC(Z)-NP-SM-I, NWC(Z)-NP-RM-I,
NWC(Z)-NP-SM-E, and NWC(Z)-NP-RM-E, among the task
sets which are deemed unschedulable by Lemma 1 (i.e., work-
conserving-infeasible task sets). Note that we do not plot
WC-NP-∗-I and WC-NP-∗-E, because they cannot deem any
single work-conserving-infeasible task set to be schedulable.
From the figures, we make the following observations.

First, focusing on Figs. 4(a), (b) and (c), we observe
that NWC(Z)-NP-∗ significantly improves the schedulability
of its corresponding work-conserving scheduling WC-NP-∗ in
every case. The result comes from the fact that the proposed
framework makes a number of tasks that cannot be schedulable
by every work-conserving non-preemptive scheduling schedu-
lable.

6This does not mean that the schedulable ratio of WC-feasible is a lower
bound of those of NWC(Z)-NP-SM-I and NWC(Z)-NP-RM-I; see U=0.5m in
Fig. 4(b).
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Second, focusing Figs. 4(d), (e), and (f), we conclude
that NWC(Z)-NP-∗ can cover a number of work-conserving-
infeasible task sets, which successfully achieves the aim of
this paper. Note again that all the task sets covered by the
schedulability test of NWC(Z)-NP-∗ in Figs. 4(d), (e) and (f)
are unschedulable by every work-conserving scheduling.

Third, as m, n, or U becomes larger, the absolute value
for the schedulability ratio of every schedulability test de-
creases while the rate between the schedulability ratio of
NWC(Z)-NP-∗-I and that of WC-NP-∗-I increases, which is
given in Figs. 4(a), (b) and (c). For example, in Fig. 4(a),
the rate between the schedulability ratio of NWC(Z)-NP-SM-I
and that of WC-NP-SM-I is 95.4/72.1 = 132.3% with
n = m + 1, 42.2/11.2 = 376.7% with n = 3.0m, and
24.4/4.2 = 580.9% with n = 5.0m. This is because the
number of work-conserving-infeasible task sets increases as
m, n or U increases (imagine a line of 100% minus the
schedulable ratio of WC-feasible in Figs. 4(a), (b) and (c)).
While every work-conserving scheduling cannot make any sin-
gle work-conserving-infeasible task set schedulable (yielding
the schedulable ratio of WC-NP-∗-I no larger than that by
WC-feasible), NWC(Z)-NP-∗-I is able to cover a number of
work-conserving-infeasible task sets. For example, in Fig. 4(d),
the schedulability ratio of NWC(Z)-NP-SM-I is 84.6% with
n = m+1, 35.3% with n = 3.0m, and 21.5% with n = 5.0m.

In addition, we can observe that the schedulable ratio
of SM is mostly (but not always) higher than that of RM,
which indicates the effectiveness of SM in satisfying the
timing requirements of non-preemptive tasks. Also, if we
compare the schedulable ratio of NWC(Z)-NP-∗-I with that
of NWC(Z)-NP-∗-E in Figs. 4(d), (e) and (f), the former
is observed to be significantly larger than the latter, which
demonstrates the effectiveness of the improved schedulability
test in providing timing guarantees.

VII. CONCLUSION

In this paper, we developed a non-work-conserving non-
preemptive global scheduling framework, which is capable of
yielding feasible schedules of task sets which are never schedu-
lable by every work-conserving non-preemptive scheduling.
By deriving useful properties of the framework, we developed
a schedulability test for the framework associated with FP. Our
evaluation results demonstrated that the proposed framework
successfully covers a number of work-conserving-infeasible
task sets, all of which cannot be schedulable by every existing
study.

While this paper expanded the domain of task sets proven
to be schedulable by any non-preemptive scheduling (regard-
less of being work-conserving), the exact domain of task sets
that are schedulable by any non-preemptive scheduling remains
unknown. In the future, we would like to develop a tight
necessary feasibility condition for non-preemptive scheduling,
motivated by our necessary feasibility condition for work-
conserving non-preemptive global scheduling.
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