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Abstract—Battery aging is one of the critical issues in battery-
powered electric systems. However, this issue has not received
much attention in the real-time systems community. In this
paper, we present the first attempt to translate the problem of
minimizing battery aging subject to timing requirements into
a real-time scheduling problem, addressing the following issues.
(i) Can scheduling make a systematic impact on battery aging?
If so, which scheduling principles are favorable to minimizing
battery aging? (ii) If there exists any, how can we build upon the
scheduling principle to guarantee real-time requirements? For
(i), we first illuminate the connection between task scheduling
and battery aging minimization and then derive a principle for
task scheduling from abstracting the complicated dynamics of
battery aging, which is to minimize the variance of total power
consumption over time. In addition, we implement a battery
aging simulator and use it to verify the effectiveness of the
proposed principle in minimizing battery aging and its impact
on quantitative improvement. For (ii), we propose a scheduling
framework that separates control for timing guarantees from
that for battery aging minimization. Such a separation allows
reducing the complexity significantly such that we can employ
existing scheduling algorithm and schedulability analysis for real-
time guarantee and tailor the proposed scheduling principle
to decelerate battery aging without taking real-time guarantees
into accounts. Our simulation results show that the proposed
framework can extend the battery lifespan by up to 144.4%.

I. INTRODUCTION

These days, each subsystem in an electric system often ac-

commodates a set of real-time power-consuming tasks, which

typically shares the system-wide power source while having

different characteristics of power consumption and timing

requirements. To support mobility, a battery pack (typically Li-

ion batteries [1]) becomes a popular power source for a wide

range of electric systems, such as EVs (Electric Vehicles),

satellites, spacecraft and UAVs (Unmanned Aerial Vehicles) as

shown in Figure 1 [2]–[4]. Since it is impossible or costly to

replace worn-out batteries in those electric systems, it is crucial

to minimize battery aging [3], [5] to prolong the lifetime of

not only the battery pack but also sometimes the entire system

itself. As an example, Euclid [5], a space telescope to be

launched in 2022, is equipped with a power system consisting

of solar panels and Li-ion battery cells. Since this system not

only disallows to replace the battery cells during its mission

but also has stringent space and weight constraints, it is very

important to minimize the aging of battery cells.

†Jinkyu Lee is the corresponding author.
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Fig. 1: Overview of a battery-powered electric system consist-

ing of power-consuming real-time subsystems

The electric systems explained so far have the following

two requirements:

R1. Offering timing guarantees of all real-time power-

consuming tasks belonging to each subsystem, and

R2. Minimizing battery aging of a pack of batteries that

supplies power shared by the subsystems.

While there have been numerous studies that successfully

address either R1 or R2, those studies cannot achieve both

requirements at the same time. For example, plenty of studies

in the real-time systems community focused on R1 without

regarding R2, lacking the development of effective scheduling

strategies from a comprehensive understanding of battery

characteristics and aging. On the other hand, studies for R2

in the battery systems community have paid little attention to

timing guarantees when minimizing battery aging. The most

relevant studies from the R1 side are a number of studies

that minimize power consumption or peak power without

compromising timing guarantees [6]–[8]. Although successful

in achieving power-related goals, they cannot be applied to

the electric system of interest in this paper because achieving

power-related goals is different from minimizing battery aging.

When it comes to R2, there are only a few studies addressing

timing guarantees with battery-related goals [9]–[11]; however,

they have not focused on battery aging.

In this paper, we aim at achieving R1 and R2 at the same

time for battery-powered electric systems. To this end, we take

an unprecedented point of view, which leverages real-time task

scheduling to address R1 and R2 simultaneously, which entails

the following questions.
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C1. Is it possible for task scheduling to affect battery aging? If

so, what is a scheduling principle favorable to minimizing

battery aging?

C2. Once C1 is addressed, how can we develop a scheduling

methodology that not only addresses R1 and R2 together

but also exhibits low complexity for offline/run-time

operations?

To achieve R1 and R2 together by addressing C1 and C2,

our approach is outlined as follows.

A1. Based on a deep understanding of battery behavior, we

derive a core scheduling principle to minimize battery

aging.

A2. To follow the principle with an affordable overhead, we

propose a scheduling framework that separates control for

timing guarantees from that for battery aging minimiza-

tion.

A1 is detailed as follows. We abstract the complicated

dynamics of battery aging and analyze the relationship be-

tween task scheduling and battery aging. We then derive a

basic scheduling principle: minimizing the variance of current

load changes. To support this, we implement a battery aging

simulator, which can be utilized to validate the feasibility

of task scheduling towards minimizing battery aging and the

effectiveness of the proposed principle.

When it comes to A2, we propose the RET scheduling

framework that offers offline timing guarantees by the ex-

isting schedulability analysis while achieving battery aging

minimization through runtime scheduling heuristics favorable

to battery aging. To this end, RET operates as follows. In the

offline stage, RET assigns an inflated execution time (called

the reserved execution time) without compromising offline

timing guarantees. At runtime, RET reserves the subsystem

(instead of performing its execution on the subsystem) when

scheduled by the target scheduling algorithm; it then deter-

mines when the actual execution is performed within the

reserved execution interval, to minimize battery aging. On

top of this architecture, we propose two effective heuristics

exploiting scheduling control knobs offered by each part. This

divide-and-conquer approach not only reduces the problem

complexity but also enables to utilize well-studied existing

real-time scheduling theories.

We demonstrate the effectiveness of the framework through

the proposed battery aging simulator. Our simulation results

show that the scheduling principle from A1 exhibits a strong

relationship with battery aging. In addition, RET effectively

increases the battery lifespan regardless of the system setup,

i.e., up to 144.4% of improvement compared to the baseline

EDF (Earliest Deadline First) scheduler.

In summary, this paper makes the following contributions:

• We introduce a scheduling principle for decelerating battery

aging based on a deep understanding of electrochemical

characteristics of batteries and verify the effectiveness of

the principle through our own simulator (Section III).

• We develop a novel scheduling framework which achieves

timing guarantee and battery aging minimization at the same

time (Sections IV and V). To the best of our knowledge, this

is the first work to consider both issues at the same time.

• We propose effective ways of exploiting control knobs

offered by the framework in accordance with the scheduling

principle that decelerates battery aging (Section VI).

• We present extensive evaluations with an accurate battery

simulator implemented based on the widely used real-world

battery (Section VII).

In addition to the sections mentioned with the contributions,

the rest of this paper is structured as follows. Section II

presents our system model, and Section VIII summarizes

related work. Finally, Section IX discusses two interesting

issues, and then Section X concludes the paper.

II. SYSTEM MODEL

In this paper, we target an electric system S, consisting of n
subsystems {Sj}nj=1

. Each subsystem Sj accommodates a set

of real-time power-consuming tasks τ j = {τ ji }. We assume

that each real-time power-consuming task is sporadic/periodic

and non-preemptive, and has an implicit deadline. That is, each

real-time power-consuming task τ ji ∈ τ j has three parameters

(T j
i , C

j
i , P

j
i ), where T j

i is the minimum separation (or period)

between successive execution requests, Cj
i is the worst-case

execution time (WCET), and P j
i is the power consumption

during execution.1 Note that each τ ji generates potentially

unbounded series of execution requests. Once τ ji requests

its execution, the subsystem Sj should finish τ ji ’s execution

within T j
i time units from its request. Whenever the subsystem

Sj starts to execute τ ji , the execution cannot be preempted

during Cj
i time units and consumes P j

i amount of power

during the execution. Each subsystem allows only one task

to perform its execution at a time. Then, except for power

consumption, the task model associated with each subsystem

is equivalent to the implicit-deadline sporadic/periodic non-

preemptive real-time task model [12], [13] on a uniprocessor

platform. In this paper, we assume a quantum-based time

and let one time unit be a quantum length without loss of

generality; therefore, every task parameter is an integer value.

The system model described so far sufficiently reflects real-

world electric systems. For example, UAVs and EVs not only

consist of multiple subsystems (e.g., uniprocessor, sensor, and

actuator), but also perform power-consuming tasks (e.g., com-

puting, electrical, and mechanical tasks) corresponding to each

subsystem. When it comes to an example of their subsystems,

a motor subsystem (denoted by Sj) can run forward/backward

rotations as its tasks (denoted by τ ji ); the tasks are power-

consuming tasks that compete for the chance to perform within

the motor subsystem, disallow to get preempted by other

1For simplicity, we assume no or negligible power consumed during the
idle state. If this does not hold, we simply add the corresponding base power
to every time slot, which does not compromise the validity of the proposed
solution to be presented throughout the paper.
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tasks, and execute in a sporadic/periodic manner. Therefore,

it is reasonable to model the tasks as sporadic/periodic non-

preemptive tasks on a subsystem that allows only one task to

perform its execution at a time.

With regard to a power supply, all the subsystems share the

electric power of the target electric system, which is supplied

by a single battery pack consisting of multiple batteries and

controlled by BMS (Battery Management System) to equally

charge/discharge all batteries. Since the battery pack provides

a great abstraction to use the battery cells therein, in this paper,

we consider the battery pack as a single battery. In particular,

for battery-specific parameters, we consider a pack of multiple

26650 sized 2.3Ah LFP (Lithium Iron Phosphate) battery cells

manufactured by A123 system [14], [15], which belong to one

of the most widely used battery types and are used in many

existing studies. Despite the target battery cell type, the battery

model and the scheduling framework to be proposed in the rest

of the paper can be generally applicable to most (if not all)

types of battery cells.

III. BATTERY AGING: UNDERSTANDING AND

CONNECTING WITH TASK SCHEDULING

In this section, we present details of one of the two main

contributions of this paper, which establishes the foundation of

task scheduling for battery aging minimization. To this end, we

first investigate an existing battery aging model and derive a

task scheduling strategy that yields battery aging minimization,

from the investigation. We then present our implementation of

the battery aging simulator, which can be utilized for solving

potential task scheduling problems relevant to battery aging.

Finally, we present motivation experiments via the simulator,

which validate not only the feasibility of task scheduling

towards minimizing battery aging, but also the effectiveness

of the proposed task scheduling strategy.

A. Understanding of Battery Aging towards Task Scheduling

A battery is an electrochemical device containing chemical

energy which can be readily converted to electrical energy.

Capacity of a battery refers to the total amount of electronic

charge the battery delivers when the battery is fully discharged

in one hour. A Li-ion battery typically loses its capacity

during charge, discharge, and even rest. The effect of losing

capacity is called capacity degradation (also called battery

aging); once a battery loses its capacity, the capacity never

can be recovered. Generally, if a battery loses 20% of its

capacity, it is regarded as a dead battery and recommended

to be replaced.

Many studies have been proposed for battery aging mod-

elings, such as empirical model [16], circuit model [17] and

electrochemical model [14]. Among them, we focus on the

electrochemical model [14], which is one of the most accurate

models and arguably the only model that can explain battery

aging phenomenon intuitively [18].

According to this model, battery aging is affected by two

major reasons: active material loss and SEI (Solid Electrolyte

Interface) layer growth. Thereby, battery aging (Q) can be

represented in terms of the percentage of lost capacity, and

calculated as the sum of the lost capacity incurred by the

active material loss (QAM) and the SEI layer growth (QSEI)

as follows:

Q = QAM +QSEI,

QAM =

∫ L

0

kAM · exp(− EAM

Rgas · T ) · SOC · |I| dt, (1)

QSEI =

∫ L

0

−kSEI

2
√
t
· exp(− ESEI

Rgas · T ) dt, (2)

where kSEI, kAM, ESEI, EAM and Rgas denote some con-

stants, respectively, and L denotes any length of a time

interval. Note that we assume that side reaction is limited

by diffusion (according to the diffusion limited model [19]).

Within the interval of length L, we may control three factors:

charge/discharge current load (I), state of charge (SOC),

and temperature (T ). We now investigate how each factor

controlled by task scheduling affects battery aging.

We first figure out that it is difficult to minimize battery ag-

ing by controlling I and SOC in Eq. (1). The charge/discharge

current load I of the battery directly depends on task schedul-

ing. In our system model, each task τ ji consumes power P j
i ;

thereby, based on the task scheduling, the system-wide power

consumption P of each time instant widely varies. In addition,

since we assume that the voltage of the battery is constant

over time, the current load I is proportional to the power P
(i.e., P = I · V , where V denotes voltage). Therefore, the

scheduler can control the current load I of each time instant.

However, the scheduler cannot control the cumulative current

load (i.e.,
∫
I dt) for a long interval (e.g., a hyper-period of all

tasks), since a given set of tasks consume power collectively

to complete their execution. Due to this characteristic, the

scheduler cannot decelerate battery aging by controlling the

current load factor |I|. Similarly, it is difficult to control the

state of charge factor SOC (in Eq. (1)) for the scheduler,

since SOC remains almost constant for a relatively short time

interval.

We then focus on the temperature factor T which affects

both aging causes, QAM and QSEI. And, we confirm that T is

critical to battery aging. If we apply Taylor expansion based

on room temperature (25°C) to Eqs. (1) and (2), lowering 1°C

temperature results about 5.3% and 5.4% decrease in QAM

and QSEI, respectively. In addition, task scheduling can easily

control the temperature, since the temperature depends on the

current load I . The temperature T is determined by the heat

of the battery which is calculated as follows [20]:

ρcp
dT

dt
= qgen + qconv, (3)

where ρcp, qgen and qconv denote a constant, the heat gen-

erated from the battery itself, and the heat transferred by
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Fig. 2: Battery simulator architecture

convection, respectively. We focus on qgen, the major factor

of an increase in the temperature. In a battery, qgen consists

of a number of heat sources including reversible heat qrev,

irreversible heat qirr, and ohmic heat qohm. Among those three

sources, the most dominant factor is known as ohmic heat [21],

[22], which is represented as:

qohm = I2 ·Rc, (4)

where Rc denotes one of the internal resistances of a battery

(current collector resistance) which has a constant value.

According to Eqs. (3) and (4), for a given interval of any

length L, the scheduler can minimize the temperature T of

the battery in the interval, by minimizing the square sum of

current load I over the interval. In summary, we confirm that

the temperature T is the most critical factor for minimizing

battery aging since it significantly affects both QAM and QSEI

and it can be easily managed by task scheduling.

Based on the understanding of the battery dynamics, we now

derive a basic scheduling principle favorable to battery aging:

minimizing the variance of current load changes. Since the

heat and the temperature mostly depend on the sum of squared

current I2, we can minimize battery aging by minimizing I2.

For a more intuitive principle, we consider minimizing the

variance of I , which is calculated as E(I2) − E(I)2, where

E(x) denotes the expected value of x. As aforementioned,

E(I) is fixed within a given interval L; thus, we can translate

minimizing I2 into minimizing the variance of I . Also, note

that minimizing the variance of I is equivalent to minimizing

the variance of the power consumption P .

B. Battery Aging Simulator

To closely investigate the effect of different battery usage

on battery aging, we implemented an accurate battery aging

simulator as shown in Figure 2. The simulator takes battery

current load changes over time as input. After that, Operation

Module calculates the battery internal status changes according

to the current load; then, Aging Module calculates the battery

capacity changes according to the status changes and returns

the remaining capacity as a battery aging result.

To maximize the accuracy of the simulation, we imple-

mented both modules based on an electrochemical model

known as the most accurate one [22]. For Operation Module,

we adopted the thermal-electrochemical P2D battery model

proposed by Bizeray et al. [20], which is known to precisely

calculate battery internal status including voltage and heat

generation. Note that we implemented this module based on

the open-source project [23]. For Aging Module, we imple-

mented the capacity degradation model for graphite anode

LIBs proposed by Jin et al. [14], which is known to accurately

calculate capacity changes. We also tuned the models with

accurate parameters for our target battery system (i.e., 26650

sized 2.3Ah LFP type), as reported by Zhang et al. [15].

C. Motivation Experiments

In this section, we leverage our simulator to conduct motiva-

tional experiments to answer the following questions. (Q1) Is it

actually possible for different task schedules to yield different

battery aging deceleration? (Q2) Is the task scheduling strategy

presented in Section III-A effective in minimizing battery

aging? (Q3) If so, how much can we decelerate battery aging

with the task scheduling strategy?

Simulation setup. In each simulation, a battery repeatedly

discharges and charges during sufficiently long time (i.e.,

around 5500 hours) to observe its capacity retention lower

than 80% (which is regarded as a dead battery). In each

discharge/charge cycle, the battery discharged with a given

discharge pattern until the charged capacity runs out, and then

the battery charges with a constant current of 2.3A. We esti-

mated battery capacity retention over time under different task

schedules; since the capacity retention of a battery decreases as

the battery ages, the capacity retention is an effective measure

that represents battery aging.

Constant vs. fluctuating patterns. We first compare two

extreme discharge patterns: constant and fluctuating patterns,

both of which consume the same amount of total power

consumption, as shown in Figure 3(a); note that we use a

square wave as a fluctuating discharge pattern, as opposed to

a constant discharge pattern. Despite the identical total power

consumption, we observe that different discharge patterns

(due to different task schedules) result in different behaviors

of capacity retention. As shown in Figure 3(b), the battery

capacity retention of the constant discharge decreases more

slowly than that of the square wave; as a result, the battery

lifespan of the constant discharge is 26.1% longer than the

square wave. This result presents the following implications

for Q1, Q2, and Q3: different schedules yield different battery

aging levels (even if the total power consumption is the

same); the task scheduling strategy presented in Section III-A

(which is the constant discharge in this simulation) is effective

in minimizing battery aging; different schedules can make

significant difference in decelerating battery aging.

Different patterns with scheduling constraints. Although

it is simple to apply the task scheduling strategy presented

in Section III-A (by enforcing the constant discharge), such

simplicity comes from the assumption that we can employ any

discharge pattern for given total power consumption. However,

in practice, it is impossible to keep constant discharge due

to scheduling constraints such as timing requirements and
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Fig. 3: Motivation simulations: battery capacity retention (i.e., battery aging) changes over time, depending on the scheduling

policies.

unpredictability of task arrivals. We now explain another sim-

ulation with scheduling constraints. As shown in Figure 3(c),

Sched A and Sched B respectively schedule Task τi (colored

as yellow), subject to the already assigned other tasks (colored

as sky blue); note that both schedules result in the same

total power consumption. Although Sched A seems closer

to constant than Sched B, Figure 3(d) shows that Sched A

is less favorable than Sched B in terms of battery aging.

This is because, Sched A and Sched B yield the variance of

57.14 and 19.04, respectively; according to the task scheduling

strategy presented in Section III-A, Sched B is more effective

in minimizing battery aging than Sched A by reducing the

variance of the discharge current, yielding 46.52% longer

battery lifespan. Therefore, the second simulation also answers

Q1, Q2, and Q3. That is, Sched A and Sched B yield different

battery aging (addressing Q1); Sched B whose variance of

power consumption is smaller than Sched A is more effective

in minimizing battery aging (addressing Q2), yielding 46.52%

longer battery lifespan (addressing Q3).

Note that the second simulation also addresses potential

misunderstanding of the relationship between battery aging

minimization and peak power minimization. That is, one may

think that minimizing peak power (well-known for efficient

battery use [7], [9]) would be effective for the battery aging;

however, Sched B yields less battery aging despite the higher

peak power consumption than Sched A.2

IV. FRAMEWORK OVERVIEW

In Section III, we established the basis for connecting

battery aging and task scheduling. In this section, we leverage

the basis to formulate the problem and discuss its challenges.

We then present our approach overview to address the problem

with the challenges.

Problem statement. The main problem addressed in this

paper is to develop a scheduling methodology that addresses

battery aging minimization and timing guarantees together,

which is formally expressed as follows.

2Here, the peak power implies the peak discharge current in that the
discharge power is proportional to the discharge current (considering that
we used constant input/output voltage).

Given an electric system where (i) power is supplied by

a battery pack and shared by its subsystems, and (ii) each

subsystem accommodates a set of real-time power-consuming

tasks, determine, at each time tick, which subsystems Sj ∈ S
execute their own tasks τ ji ∈ τ j , subject to (a) minimizing

the battery pack’s aging, (b) disallowing every subsystem

to execute more than one task at the same time, and (c)

guaranteeing that every request for the execution of τ ji ∈ τ j

at t is completed no later than t+ T j
i .

It is worth to note that the scheduling strategy described

in the previous section, which is favorable to battery aging

minimization by minimizing the variance of the total power

consumption, only matters the above constraint (a), but not the

timing constraints (b) and (c). Yet, it is quite challenging to

extend the scheduling strategy while satisfying all of the three

constraints together and developing a new scheduling approach

that addresses the above problem. To tame the complexity

of the problem, we develop a new scheduling framework

according to the divide-and-conquer principle; it separates

the two requirements of timing guarantees and battery aging

minimization, in a way that it addresses the timing guaran-

tees in the offline stage and the battery aging minimization

in the runtime stage. Specifically, in the offline stage, the

proposed framework first increases each task’s execution time

as much as possible until any further increase compromises

timing guarantees according to an existing schedulability test

of a given target scheduling algorithm. We call the inflated

execution time the reserved execution time. While each vanilla

subsystem schedules the execution of tasks based on their

execution times according to the target scheduling algorithm,

each subsystem under our proposed framework first reserves

the slots for the execution of tasks based on their reserved

execution times according to the same scheduling algorithm.

This way, no single task will experience a deadline miss as

long as its actual execution is made within the reserved slots.

Here, the actual execution means the “actual” execution of the

task within its own reserved slots. Section V will detail the

proposed framework.

The proposed framework offers two control knobs that can

be utilized for battery aging minimization. The first control
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knob is to determine how much to increase the execution

time of each task; while there are many Pareto optimal

combinations for every task’s reserved execution time, each

combination yields different results for battery aging. The sec-

ond control knob is to determine when to actually execute each

task within its own reserved slots (whose length is determined

by the first control knob). Therefore, the proposed framework

can provide a basis for the development of scheduling policies

on how to utilize the two control knobs towards minimizing

the variance of the total power consumption. Section VI will

detail how to utilize the two control knobs for battery aging

minimization.

V. THE RET SCHEDULING FRAMEWORK

In this section, we propose the RET (Reserved Execution

Time) scheduling framework that provides two control knobs

for battery aging minimization, while offering offline timing

guarantees. As shown in Figure 4, RET consists of two parts:

the reservation assignment and the execution scheduling. In

the first (reservation assignment) part, the framework assigns

the reserved execution time RCj
i (which is inflated from the

execution time Cj
i ) for every τ ji at the offline stage. At run-

time, each task reserves the subsystem (instead of performing

its execution) during the reserved execution time according to

the given scheduling algorithm. Note that it utilizes a set of

ready and reservation queues to schedule requests and reserve

subsystems, respectively. In the second (execution scheduling)

part, the framework schedules the actual execution (i.e., adjusts

the execution start time tsji ) of every execution request which

reserves a subsystem. The execution scheduling is determined

based on the system-wide runtime power status (i.e., current

load) for battery aging minimization.

Algorithm 1 details how RET operates. It runs with four

input parameters: scheduling algorithms for each subsystem

(SA), schedulability tests corresponding to SA (ST), a policy

for reservation assignment (PR), and policy for execution

scheduling (PE). Using the input parameters, Algorithm 1

sequentially presents the reservation assignment part in the

offline stage, that in the runtime stage, and the execution

scheduling part.

Algorithm 1 RET (SA, ST, PR, PE)

SA: the target scheduling algorithm for each subsystem
ST: the target schedulability test for SA
PR: the policy for the reservation assignment part
PE: the policy for the execution reservation part

Reservation assignment part—offline:
Determine the reserved execution time RC

j
i (≥ C

j
i ) of every task

τ
j
i ∈ τ j in every subsystem Sj ∈ S, according the policy of PR,

subject to guaranteeing by ST that every reserved execution request
for each subsystem is finished before its deadline.

Reservation assignment part—runtime:
Whenever a new request releases or finishes,

1: if a new request of τ
j
i releases then

2: RQj ← RQj ∪ {τ j
i }

3: end if
4: if |RQj | > 0 and V Qj = ∅ then

5: Find τ
j
i , the highest-priority task in RQj

6: V Qj ← V Qj ∪ {τ j
i }

7: RQj ← RQj \ {τ j
i }

8: rc
j
i ← t+RC

j
i

9: end if

Execution scheduling part:
Whenever a new reservation arrives or a reserved task finishes its
execution,

1: if a new reservation arrives then
2: for every idle Sj ∈ S do

3: Let τ
j
i denote the reserved task in V Qj

4: if τ
j
i exists and t < ts

j
i then

5: Update ts
j
i by the policy PE

6: end if
7: end for
8: end if
9: if |V Qj | = 1 and Sj is idle then

10: Let τ
j
i denote the reserved task in V Qj

11: if t = ts
j
i then

12: Start actual execution of τ
j
i

13: Set Sj as busy
14: end if
15: if t = rc

j
i then

16: V Qj ← V Qj \ {τ j
i }

17: end if
18: end if
19: if a task of Sj ∈ S completes its actual execution3 then

20: Set Sj as idle until rc
j
i

21: end if

Reservation assignment part. This part consists of two

stages: offline and runtime. In the offline stage, the framework

first assigns RCj
i (≥ Cj

i ) of every task τ ji ∈ τ j in every

subsystem Sj ∈ S , according to PR, subject to guaranteeing

by ST that every reserved execution request for each subsys-

tem is finished before its deadline. Once RCj
i of every task

τ ji ∈ τ j in every subsystem Sj ∈ S is determined offline, each

subsystem schedules a set of given tasks according to SA, as

3For RET, we assume that every execution request for each task τ
j
i lasts

for exactly its WCET C
j
i . However, RET also works with execution time less

than its WCET; Section IX will discuss how RET works with execution time
less than its WCET.

358



if each task has its execution time as RCj
i . In the runtime

stage, if a request of the task τ ji releases, the framework puts

the task into RQj , where RQj denotes the ready queue of

the subsystem Sj (Lines 1-3). The framework then checks

RQj and V Qj , where V Qj represents the reservation queue

of Sj . If there is any request in RQj , and V Qj is empty, the

framework reserves Sj by putting a task into V Qj . It moves

the highest priority task (denoted by τ ji ) in RQj to V Qj (Lines

5-7) and sets rcji as RCj
i time units after from the current time

t (Line 8), where rcji denotes the absolute reserved execution

completion time for the request of the task τ ji , to be used in

the second part. This allows reserving the subsystem Sj in [t,
t+RCj

i ) for that request of τ ji .

Execution scheduling part. Whenever a reservation hap-

pens at any subsystem (by putting a task into the reservation

queue), the framework then updates the execution start time

tsji of every request of τ ji which is reserved but not executed.

For this, it iterates every idle Sj ∈ S; and, it checks whether

a request of τ ji ∈ V Qj exists and t < tsji holds (Lines 2-4).

If such a request exists, it updates the execution start time of

that request according to the PE policy (Line 5). Note that

the PE policy may communicate with other subsystems to get

system-wide power status, such as a discharge power level.

After that, the framework executes and finishes the reserved

request. If there is a reserved request in V Qj (i.e., |V Qj | = 1)

and Sj is idle4 (Line 9), it checks the execution start time

tsji and the absolute reserved execution completion time rcji .

When the time tick reaches tsji , the framework starts to execute

the reserved request of τ ji and sets Sj as busy (Lines 11-

14). And, when the time tick reaches rcji , the framework

finishes the reservation of τ ji , by excluding τ ji from V Qj

(Lines 15-17). And, the subsystem Sj becomes idle again if

any request of τ ji completes its actual execution (Lines 19-21).

It is worthwhile noting that each subsystem stays idle unless it

performs the actual execution of an execution request. Recall

we assume that each subsystem consumes no or negligible

power during the idle state; thereby, the execution scheduling

part can control the system-wide power consumption so as to

achieve battery aging minimization.

This architecture allows separating the two main require-

ments (i.e., timing guarantee and battery aging minimiza-

tion), and achieve them at the same time. The reservation

assignment part provides freedom of the actual execution for

the battery aging minimization, without compromising any

timing requirements guaranteed by the offline analysis ST.

This is because it guarantees to complete the RCj
i amount

of reserved execution before the deadline of execution request

of τ ji and the framework always completes the Cj
i amount

of actual execution within the reserved execution period (note

that we enforce that PE starts the actual execution no later than

rcji −Cj
i ; otherwise, the execution misses its deadline). With

the timing guarantee, the execution scheduling part determines

proper execution timing within the reserved execution period

4Sj is idle if the reserved request of τ
j
i does not start or finishes its reserved

execution as shown in Figure 4.

and provides a room for applying schedules favorable to

battery aging minimization, while considering the system-wide

runtime status (i.e., power load of the battery pack).

Although the RET framework introduces additional schedul-

ing steps, it entails only small runtime overhead. The reserva-

tion assignment part operates the same as the target scheduling

algorithm SA except reserving during RCi time units instead

of executing during Ci time units; thereby, the overhead of

this part is comparable to that of the target algorithm SA.

In the execution scheduling part, it incurs some overhead to

update the execution start time tsji of the reserved request

of τ ji in every subsystem Sj ∈ S; however, it only imposes

up to n (the number of subsystems) times of the PE policy

computation. Since our PE policy has a small complexity as

much as other global scheduling algorithms to be presented in

the next section, this overhead is affordable for the scheduler.

VI. ACHIEVING BATTERY AGING DECELERATION

In order to fully exploit the control knobs provided by the

RET framework and to effectively decelerate battery aging,

this section proposes two scheduling policies used as PR and

PE of the framework.

A. Reservation Assignment Part

We first present an algorithm which determines the reserved

execution time of each task (i.e., RCj
i of τ ji ∈ τ j). As shown

in Algorithm 1, this algorithm is used as PR in the reservation

assignment part. This part entails two different issues: 1) how

to guarantee that every τ ji completes its reserved execution

before its deadline after assigning RCj
i , and 2) what is a

good assignment of each RCj
i to be favorable for minimizing

battery aging.

As to the first issue, we incorporate schedulability analysis

into the RC assignment algorithm. Since the RET framework

schedules (reserves) RCj
i of each task according to the base

scheduling algorithm SA, we can use the schedulability test

ST corresponding to SA, to guarantee that every reservation

with RCj
i completes before its deadline. Following our system

model (see Section II), we use an uniprocessor NP-EDF (Non

Preemptive EDF) scheduling and its corresponding schedu-

lability analysis [12], [13]. Based on this, the analysis is as

follows:

Lemma 1 (From [12], [13]): An implicit-deadline non-

preemptive task set τ j is schedulable on a uniprocessor

platform, if (and only if) Eq. (5) holds and Eq. (6) holds for

every min
τ
j

i
∈τj T

j
i ≤ t ≤ max

τ
j

i
∈τj T

j
i .

∑
τ
j

i
∈τj

RCj
i /T

j
i ≤ 1.0, (5)

max
τ
j

i
∈τj |t<T

j

i

(RCj
i − 1) +

∑
τ
j

i
∈τj

⌊ t

T j
i

⌋
·RCj

i ≤ t. (6)
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Note that if {τ ji ∈ τ j | t < T j
i } = ∅ holds, then

max
τ
j

i
∈τj |t<T

j

i

(RCj
i − 1) = 0 holds.

If we change any RCj
i , it may affect schedulability of all

tasks in the subsystem Sj . Thereby, for every change of RCj
i ,

we conduct the schedulability test with Eqs. (5) and (6).

For another issue, the basic principle of minimizing battery

aging is to minimize the variance of current load changes.

Since the current load depends on the runtime power con-

sumption of tasks, the RC assignment should provide the

runtime execution scheduler with as many as possible chances

to adjust the current load. To this end, it should 1) assign more

adjustable spaces (i.e., RCj
i − Cj

i ) to the task with higher

power demand (i.e., P j
i ) and 2) distribute adjustable spaces

to tasks as evenly as possible. This is because, the higher the

power demand, the higher the impact on the current load; in

addition, the even distribution is effective to maximize the

sum of adjustable spaces subject to satisfying Eq. (6). Note

that assigning a skewed RCj
i results in a rapid increase in

max
τ
j

i
∈τj |t<T

j

i

(RCj
i −1) term in the left-hand side of Eq. (6).

Algorithm 2 PR: reserved execution time (RC) assignment

For each Sj ∈ S ,

1: For every τ
j
i ∈ τ j , RC

j
i ← C

j
i

2: Φ← an empty FIFO queue
3: Push every τ

j
i ∈ τ j into Φ in descending order of P

j
i

4: while Φ �= ∅ do
5: τ

j
i ← pop a task from the head of Φ

6: Increase RC
j
i of τ

j
i by 1

7: if sched_test(τ j) then
8: Push τ

j
i into the tail of Φ

9: else
10: Decrease RC

j
i of τ

j
i by 1

11: continue
12: end if
13: end while

Here, we propose RC assignment algorithm as shown in

Algorithm 2. It increases RCj
i of every task τ ji in a round-

robin manner (in descending order of P j
i ), subject to the

task set is schedulable. To do this, the algorithm first sets

every RCj
i as Cj

i (Line 1), and pushes every τ ji into a FIFO

queue (Φ) in descending order of P j
i (Lines 2-3). After that, it

increases RCj
i of the task τ ji popped from the head of Φ (Lines

5-6) and checks the schedulability of the task set τ j with the

increased RCj
i (Lines 7-13). Note that sched_test({τ j})

returns true if the task set τ j satisfies Eqs. (5) and (6). If τ j

passes the test then it pushes τ ji into Φ again. Otherwise, it

decreases RCj
i and excludes τ ji from Φ (i.e., not to push into

Φ). It repeats those routines until Φ becomes empty.

This algorithm exhibits a time complexity of O(max(T j
i −

Cj
i )·st(τ j)) for each subsystem Sj ∈ S , where st(τ j) denotes

the complexity of the schedulability test for τ j . One may think

the complexity is high; however, it can be relaxed through

increasing RCj
i by more than 1 or assigning multiple RC

values at the same time. Also, note that this algorithm runs

offline.

B. Execution Scheduling Part

Now, we present a scheduling algorithm used for the

execution scheduling part (i.e., the PE policy) of the RET

framework. This determines the execution start time of each

reserved request of tasks. Again, the basic principle of min-

imizing battery aging is to minimize the variance of current

load changes; moreover, this can be achieved by minimizing

the sum of I(t)2 (refer to Section III-A). One may find the

minimum sum through a brute force approach, but it entails

heavy computation, which is not affordable for the runtime

scheduler. To calculate I(t)2 of every combination of the

execution start time, it takes up to
∏n

j=1
max

τ
j

i
∈τj (RCj

i −Cj
i )

times of computation. Note that the execution start time tsji
can be assigned in between [t, t+RCj

i − Cj
i ).

Instead, we propose a greedy heuristic which finds the local-

minimum sum of I(t)2 with an affordable computation cost.

To this end, our heuristic adopts two basic principles: 1) one by

one assignment and 2) an interval sum of I(t) minimization.

Following the first principle, our heuristic determines tsji
in turn from a task with the highest P j

i . This strategy is

effective to not only reduce the computation complexity but

also minimize the sum of I(t)2. In addition, according to the

second principle, our heuristic finds tsji assignment which

minimizes an interval sum of I(t), instead of the sum of

I(t)2. This helps to avoid an expensive operation cost for

multiplication while yielding a tsji assignment result which is

equivalent to the minimum sum of I(t)2. This is because of the

following reason. Suppose that the current load c is added to

I(t) at a time instant of t; the variance of I(t) is then changed

to 2I(t) ∗ c− c2. Since c2 is fixed regardless of t, minimizing

the interval sum of I(t) yields the minimum variance of I(t);
then, the minimum variance yields the minimum sum of I(t)2,

as mentioned in Section III-A.

Algorithm 3 PE: execution start time assignment (I(t))

I(t): system-wide current load of executing tasks over time

In Sj ∈ S, at a given current time tcur ,

1: τ
j
i ← a reserved but not executed task in V Qj

2: minSum← a maximum integer value
3: for x in [tcur, rc

j
i − C

j
i ) do

4: intSum←
∑x+C

j

i
t=x I(t) + P

j
i

5: if intSum < minSum then
6: minSum← intSum
7: ts

j
i ← x

8: end if
9: end for

10: update I(t) as if τ
j
i executes in [tsji , ts

j
i + C

j
i )

Algorithm 3 describes our heuristic. A subsystem that has

the reserved task τ ji (but not executed yet) with the highest P j
i

runs the algorithm first. After that, other subsystems run the

algorithm in turn, in descending order of P j
i of their reserved

task τ ji . It calculates the sum of I(t) for the interval for

which τ ji may execute (i.e., [x, x+Cj
i )), while changing x in

[tcur, rc
j
i − Cj

i ) (Lines 3-4). It then assigns tsji as x which

yields the minimum interval sum of I(t) (Lines 5-8). Once it
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determines tsji , it then updates the system-wide current load

I(t) as if τ ji will execute from tsji , to allow other systems

access to the up-to-date system-wide information.

This greedy heuristic effectively relaxes the time complexity

of the execution start time assignment. It exhibits a complexity

of O(max
τ
j

i
∈τj (RCj

i − Cj
i ) · n). In addition, it replaces

expensive multiplication operations (i.e., the sum of I(t)2)

with the light-weight integer sum operations.

VII. EVALUATION

In this section, we present the evaluation of the proposed

RET framework with the PR and PE algorithms. We first

describe our simulation setup and provide simulation results

in terms of current load variance and capacity degradation.

A. Simulation Setup

1) Task generation: We generated task sets using

UUniFast-Discard algorithm [24], which has been widely used

in real-time systems studies with three parameters, utilization

U (0.25, 0.375, 0.5, 0.625, 0.75 and 0.875)5, a number of

subsystems n (2, 4, 6, and 8), and a number of tasks k (5, 10,

15, and 20).

For each subsystem, we generate a set of tasks such that

their total utilization is U . The period T j
i of each task τ ji was

chosen randomly from 10ms to 1000ms, while the quantum

time unit was set to 10ms. As for power consumption, task

generation is targeted at UAVs that commonly discharge at

approximately 4C current loads, where 1C refers to the current

rate when discharging the capacity in one hour. The current

load P j
i of each task τ ji was selected randomly between 0.01C

and 4

U ·nC. Taking the current load of UAVs into account, we

use 4

U ·nC as an upper bound such that the generated systems

have an average current load of 4C. For fair simulation across

different cases, we also scale current load use patterns to have

4C current load on average. For each simulation case, we

generated 100 task sets, each of which is deemed schedulable

according to the schedulability analysis of non-preemptive

uniprocessor EDF scheduling [12], [13].

2) Simulation: For each simulation case, we perform the

simulation of task scheduling for 1,000,000 time units, which

produces the current load pattern of 10,000 seconds (recall

one time unit corresponds to 10ms). During the simulation,

we run the following four scheduling algorithms:

• Vanilla EDF (baseline): In each subsystem, an execu-

tion request is selected by the EDF algorithm (prioritized

by its absolute deadline). Once the execution request is

selected, it starts its execution immediately and performs

its execution during Cj
i time units.

• RET EDF: In each subsystem, an execution request is

selected by EDF. Once the execution request is selected,

it starts its reservation during RCj
i time units (which

is determined by PR). Each execution request starts its

actual execution as soon as its reservation starts.

5We excluded task sets with utilization of 0.125, because this setup yields
a discharge current rate larger than the battery can support.

• RET MIN: In each subsystem, an execution request is

selected by EDF. Once the execution request is selected,

it starts its reservation during RCj
i time units (which

is determined by PR). The actual execution of each

execution request within its reservation is determined by

a greedy algorithm that aims at minimizing peak power

consumption, whose structure is similar to PE.

• RET BAT: In each subsystem, an execution request is

selected by EDF. Once the execution request is selected,

it starts its reservation during RCj
i time units (which

is determined by PR). The actual execution of each

execution request within its reservation is determined by

PE.

We have two evaluation metrics: the variance of the current

load and the lifespan of the battery. The first metric is

for evaluating how well each scheduling algorithm follows

the proposed scheduling principle, which is to minimize the

variance of the current load, and the second metric is for trans-

lating scheduling performance to the impact of scheduling on

battery aging. To measure the lifespan of the battery, we used

our accurate battery aging simulator, which is described in

Section III. The simulator calculates the lifespan of the battery

as the time until the battery is considered as dead, i.e., until

the battery loses 20% of its capacity. In discharge and charge

cycles, batteries were to continuously and repeatedly follow

given current load patterns (made by the task scheduling) until

fully discharged, and then charged with 1C constant current.

We note that we measured the variance of the current load for

every task set generated for simulation, but we measured the

lifespan of the battery for 10 task sets for each simulation case

due to long simulation time; each battery simulation takes 10

to 40 hours in wall clock time.

B. Simulation Results

1) Minimizing variance approach: Section III introduced

the scheduling principle of minimizing the variance of current

load for minimizing capacity degradation and thereby increas-

ing lifespan. To evaluate this, we compared variance and

lifespan, and Figure 5 shows their linear fit. Linear regression

fitting revealed a negative correlation between the variance of

current and battery lifespan. The result shows the R-squared

value of 0.9016, which means there exists a strong relationship
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Fig. 5: Strong relationship between current variance and

battery lifespan
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Fig. 7: Battery lifespan

between current variance and battery lifespan. Also, this

tendency continues within diverse condition changes, as shown

in Figures 6 and 7. In conclusion, battery aging simulation

testified that minimizing variance can slow down battery aging.

2) RET framework: In order to show the RET framework

is effective for various system environments, we evaluated

our framework with varying the number of tasks, system

utilization, and the number of subsystems. As presented in

Section VII-A, we varied simulation parameters. Figures 6

and 7 show the current load variance and the battery lifespan,

respectively. In those figures, we confirm that the variance of

current load directly affects the battery aging, regardless of

the system setup.

Figures 6 and 7 show that RET BAT dominates all other

approaches. Compared to the baseline (i.e., Vanilla EDF),

RET BAT reduces the variance of current load by 56.57%

and extends the battery lifespan by an average of 39.47%. In

particular, when systems have larger k and smaller U , the RET

framework shows better performance. One interesting point is

that when it comes to low utilization system (u = 0.25), RET

BAT extends battery lifespan by up to 144.43% compared

to the baseline. This is because, as the utilization decreases,

RET assigns larger RCj
i to individual tasks, which provides

more chances to reduce the variance of the current load at

runtime. In addition, as the number of tasks increases, RET

can distribute as evenly as possible and maximize the assigned

RC spaces to tasks. It is worthwhile noting that RET MIN

(i.e., peak power minimization on top of the RET framework)

results in a significantly longer battery lifespan compared to

the baseline. This is because, RET provides rooms for reducing

peak power, and this approach is also effective to reduce the

variance of the current load. Beyond RET MIN, our approach

RET BAT can most efficiently utilize assigned RC spaces

than other approaches. Thereby, RET BAT can minimize the

variance of current load at runtime and achieve the longer

battery lifespan.

3) Discharge rates: We perform additional simulations to

see the impact of different discharge rates on battery lifespan.

For the simulation case of U=0.5, k=10, and n=4, we revisited

ten current load patterns and scaled their average discharge

rate to 1C, 2C, and 4C. Figure 8 shows simulation results,

indicating that the lifespan of battery rapidly decreases as

the discharge rate increases. The figure shows that RET BAT

improves lifespan compared to Vanilla EDF in 1C, 2C, 3C,

and 4C discharge cases, extending 3.66%, 9.80%, 18.94%, and

39.33% on average and up to 4.78%, 12.57%, 24.40% and

80.40%, respectively. When the power load on the battery is

high, that is, the discharge rate is large, a battery more rapidly

becomes worn out, thus causing huge costs for maintaining the

power system. The simulation results indicate that our method

works even better in the situation.

4) RC assignment: We now evaluate our proposed RC
assignment algorithm in comparison with other algorithms as

follows:

• L: High laxity (T j
i − Cj

i ) task prioritization, which tries

to maximize the sum of RCj
i .

• P: High P j
i task prioritization, which seeks to assign a

larger RCj
i to a task with higher power consumption P j

i .
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• RRL: Round-robin and tie break with high laxity (T j
i −

Cj
i ) task prioritization, which seeks to distribute RCj

i

evenly and increase the sum of RCj
i .

• RRP: Round-robin and tie break with high P j
i task

prioritization, which is our RCj
i assignment method.

We conducted simulations with the following parameters:

U=(0.25, 0.5, and 0.75), k=10, and n=4. For each simulation

case, we generated 100 task sets. Figure 9 depicts the aver-

age current load variance, and it shows that our assignment

RRP always outperforms other policies. In particular, RRP

results in significant improvement when task utilization is low

(U = 0.25). This is because RRP effectively generates reserved

execution times favorable to battery aging.

VIII. RELATED WORK

Battery aging deceleration. Reducing the capacity degra-

dation of a battery is an important research field for the

design of efficient and reliable power systems. There have been

many studies to minimize battery aging by managing their

charge patterns [25]–[28] or cooling/heating systems [29],

[30], or redesigning their structures against aging [31], [32].

Some researchers made use of scheduling to manage the

aging of a battery for some specific target systems [33], [34].

Nevertheless, there were few attempts to optimize battery

usage subject to supporting real-time guarantees.

Power-aware real-time scheduling. Since power-

consumption directly affects the performance of real-time

embedded systems including a battery operation time, some

researches have proposed power-aware real-time scheduling

techniques. One of the major points of interest is managing

peak-power consumption of real-time systems. For instance,

Lee et al. [6] and Facchinetti et al. [7] have proposed real-time

scheduling techniques to reduce the peak power consumption

of processors and to maintain the system peak power

consumption lower than a certain level, respectively. Another

direction is to manage the overall power supply/consumption.

Kim et al. [9] introduced a power scheduling framework to

guarantee supplies of power load, by efficiently managing

supplementary power sources such as solar panels in

conjunction with a main Li-ion battery pack. For optimizing

energy consumption, Kong et al. [8] and Castaings et al. [11]

proposed resource management techniques that control

processor frequency/voltage and exploit supercapacitors,

respectively. Although such approaches consider power

consumption factors which affect battery aging, they cannot

achieve minimizing battery aging. This is because optimizing

peak/overall power consumption does not necessarily follow

the scheduling principle for less battery aging.

Thermal-aware real-time scheduling. Although we

checked the temperature has a great influence on battery aging,

existing studies for thermal-aware real-time scheduling were

not highly relevant to battery aging. For example, Fisher et

al. [35], Ahmed et al. [36], and Lee et al. [37] investigated

thermal-aware scheduling on real-time systems while consid-

ering the thermal dynamics of processors. Although thermal

factors directly affect battery aging, thermal-aware scheduling

approaches are not suitable for minimizing battery aging.

This is because they typically focus on thermal dynamics

of subsystems (e.g., processors), not a battery itself; note

that heat-generation of subsystems does not directly affect

the temperature of the battery. Thereby, this approach is not

suitable for the battery aging problem.

Battery-aware real-time scheduling. Several real-time

scheduling techniques considering battery operations have

been proposed. Luo et el. [10] proposed a DAG task schedul-

ing algorithm that can improve the operation time of a bat-

tery, subject to real-time constraints. Lipskoch et al. studied

to improve a battery operation time, through minimizing

power-consumption with DVS (Dynamic Voltage Scaling) and

the low-power mode of processors while considering the

event stream model [38]. Although such researches proposed

battery-aware real-time scheduling approaches, they mainly

focused on improving the operation time of a single dis-

charge cycle of a battery, which is known as not suitable for

minimizing battery aging. In contrast, our scheduling frame-

work directly considers minimizing battery aging based on

a comprehensive understanding of battery dynamics, without

compromising any timing constraints of real-time systems.

In another direction, Lipskoch et al. also studied an event

stream based battery-aware energy feasibility analysis [39];

they proposed an analysis technique to guarantee power sup-

plies to be higher than the power demand. However, this

direction is not highly relevant to battery aging.
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IX. DISCUSSION

In this section, we first discuss how RET works if the actual

(as opposed to “worst”) execution time of each execution

request for each task τ ji is less than its WCET Cj
i . We then

present how RET can be incorporated into existing power- or

battery-related techniques.

A. Consideration of actual execution time in real-world ap-

plications

For the comprehensive explanation, this paper assumed

every execution request executes exactly as long as its WCET

(i.e., Cj
i ). However, many real-world tasks execute during less

than its WCET, which can be dealt with the RET framework.

That is, the RET framework runs the PE algorithm again

at the completion of each execution request in order to re-

calibrate the start time of actual execution of every task τ ji
that has reserved its subsystem but has not yet started its actual

execution. To validate the RET framework in improving bat-

tery aging performance on the situation with actual execution

time less than WCET, we conducted additional battery aging

simulations for four scenarios, as follows.

• Original: all execution requests execute for exactly its

WCET,

• Half: all execution requests execute for exactly its

WCET/2,

• Uniform: all execution requests execute for execution

time uniformly distributed in [1,WCET], and

• Normal: all execution requests execute for execution

time determined by normal distribution in [1,WCET].

For the simulation setting of U=0.5, k=10, n=4, and dis-

charge rate=4C, we revisited ten current load patterns as the

previous evaluation. The result shows that regardless of early

execution completion, the RET framework shows better battery

aging performance compared to any other methods as plotted

in Figure 10.

Fig. 10: Battery lifespan across different execution patterns

B. Exploiting existing power- or battery-related techniques

While the RET framework decelerates battery aging by

scheduling when each task is executed, one may wonder how

the framework incorporates existing power- or battery-related

techniques such as DVFS (Dynamic Voltage and Frequency

Scaling) and cell balancing [8], [35], [38], which respectively

reduces energy/power consumption and extends the opera-

tional time of the battery. In fact, the RET framework can

employ those techniques in that there exists room for the

framework to exploit those techniques. For example, once

WCET is changed by DVFS, the RET framework can de-

crease/increase the reserved execution time, yielding different

battery aging. On the other hand, it is possible that DVFS is

applied after the RET framework determines the execution

schedule. In the future, we would like to develop details

on how to effectively employ the RET framework and the

techniques together.

X. CONCLUSION

This paper aims at minimizing the battery aging for battery-

operated real-time systems. To this end, this paper introduces

a task scheduling principle of minimizing the variance of

total power consumption, which is essential for battery ag-

ing minimization. Furthermore, this paper proposes a new

scheduling framework, RET, which allows addressing the

problems of providing real-time guarantees and minimizing

battery aging, in a sequential manner. This way, RET not

only significantly reduces the complexity of achieving the goal

but also enables to use existing scheduling techniques. Our

extensive evaluations show that the proposed framework can

extend the battery lifespan by up to 144.4%.

Although our target system consists of subsystems that ac-

commodate non-preemptive power-consuming tasks and allow

only one task to be executed at a time, the RET framework

can be generally applicable to other types of tasks/subsystems

such as preemptive tasks and/or subsystems that allows more

than one task to be executed at the same time. In order for the

RET framework to fully utilize existing scheduling algorithms

and schedulability tests for other types of tasks/subsystems, it

requires to tailor the reservation assignment part as well as the

execution scheduling part; we leave it as future work.
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