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Abstract—While feasibility of timing guarantees has been
extensively studied for single-criticality (SC) task systems, the
same cannot be said true for mixed-criticality (MC) task systems.
In particular, there exist only a few studies that address necessary
feasibility conditions for MC task systems, and all of them have
derived trivial results from existing SC studies that rely on simple
demand-supply comparison. In this paper, we develop necessary
feasibility tests for MC task systems on a uniprocessor platform,
which is the first study that yields non-trivial results for MC
necessary feasibility. To this end, we investigate characteristics of
MC necessary feasibility conditions. Due to the existence of the
mode change and consequences thereof, the characteristics pose
new challenges that cannot be resolved by existing techniques for
SC task systems, including how to calculate demand when the
mode change occurs, how to determine the target sub-intervals
for demand-supply comparison, how to derive an infeasibility
condition from demand-supply comparisons with different possi-
ble mode change instants, how to select a scenario to specify the
mode change instant without the target scheduling algorithm, and
how to find infeasible task sets with reasonable time-complexity.
By addressing those challenges, we develop a new necessary
feasibility test and its simplified version. The simulation results
demonstrate that the proposed tests find a number of additional
infeasible task sets which have been proven neither feasible nor
infeasible by any existing studies.

I. INTRODUCTION

The most fundamental issue for hard real-time systems
is to provide timing guarantees, and many studies sought
“feasibility” of timing guarantees—whether every instance of
real-time tasks finishes its execution within its deadline under
a given setting (e.g., a computing resource such as uni- and
multi-processors and a task model such as the Liu and Layland
task model [1]). We may classify the studies into two: (i)
developing scheduling algorithms and their schedulability anal-
ysis to expand a set of real-time task sets proven schedulable
by at least a scheduling algorithm (i.e., addressing sufficient
feasibility), and (ii) deriving conditions of task sets that are
never schedulable by any scheduling algorithm to reduce a
set of task sets that are potentially schedulable but have not
been proven schedulable so far (i.e., addressing necessary
feasibility).

Studies for both (i) and (ii) have matured for SC (single-
criticality) task systems in which all tasks belong to a single
category in terms of criticality, and some of their results
have been successfully adapted to MC (mixed-criticality) task
systems [2] in which tasks have different criticality levels.
However, most studies for MC task systems have focused
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on (i), including MC-specific scheduling algorithms, such as
PLRS [3], EDF-VD [4], GREEDY [5], and ECDF [6], with
their schedulability analysis; only a few studies have addressed
(ii), but all of them have presented trivial results [7], [8], [9].
We illustrate the state-of-the-art of (ii) for MC task systems
on a uniprocessor platform in Fig. 1. In the figure, all task sets
between 0.75 by 0.75 and 1.0 by 1.0 have not been proven
infeasible (i.e., timing-guarantees of all tasks are impossible
by any schedule), and most of them have not been also proven
feasible (i.e., timing-guarantees of all tasks are possible by at
least a schedule); the details will be explained in Section VII.

The goal of this paper is to reduce a set of MC task
sets whose feasibility is unknown by existing studies. In
particular, we aim at developing necessary feasibility tests
that prove infeasibility of some of such MC task sets on a
uniprocessor, which is the first attempt in MC task systems
(except the trivial results in [7], [8], [9]). Addressing necessary
feasiblity for MC task systems is beneficial both from the
theoretical and the practical point of view. On the theoretical
side, tight necessary feasibility analysis eliminates unnecessary
efforts for researchers to try to make task sets schedulable by
developing a new scheduling algorithm, if the task sets are
proven infeasible by the necessary feasibility analysis. On the
practical side, when system designers set the configuration
for scheduling algorithms, task parameters and computing
resources, tight necessary feasibility results reduce burden of
tuning parameters for the configuration by excluding some
infeasible choices of the configuration.

Before we explain the development of necessary feasibilitiy
tests for MC task systems, we present the MC feasibility
requirement as follows. A typical MC task model [2] is to
assume more pessimistic worst-case execution times (WCETs)
for higher criticality levels for each task. In systems with
two levels of criticality (high and low), the system can be
seen as exhibiting two different behaviors at runtime: the low-
criticality behavior as long as each job signals its completion
without exceeding its low-criticality WCET, and the high-
criticality behavior thereafter if any high-criticality job does
not signal its completion after executing for its low-criticality
WCET. A typical feasibility requirement for MC systems is
that 1) all high-criticality tasks always meet their deadlines
and 2) all low-criticality tasks meet their deadlines during the
low-criticality system behavior (the notion of MC-feasibility
is formally specified in Section II).

To develop necessary feasibility tests in accordance with
the above MC feasibility definition, we first offer our own
interpretation of the existing necessary feasibility tests for SC
task systems on a uniprocessor (in Section III-A). We next
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Fig. 1. All task sets in the region between X=0.75 by Y=0.75 and X=1.0
by Y=1.0 have not been proven infeasible by any existing studies (while
only some of them have been proven feasible). The necessary feasibility test
proposed in this paper proves infeasibility of the task sets marked as red cross.
Section VII will explain details.

show that a straightforward extension of such interpretation
towards MC task systems is limited to covering only partial
cases of MC behaviors, yielding a still huge gap between the
region covered by task sets proven feasible and that proven
infeasible (in Section III-B) as shown in Fig 1. Utilizing the
background, we identify unique issues/challenges specific to
MC task systems for developing necessary feasibility tests,
based on investigation of their characteristics (in Section III-C),
which can be summarized briefly as follows.

C1. According to the MC-feasibility requirement, (i) a
set of jobs whose execution requirement should be
guaranteed (i.e., all vs. high-criticality jobs) and (ii)
high-criticality jobs’ amount of execution requirement
that should be guaranteed (i.e., no more than vs. more
than low-criticality WCET) vary depending on the
system behavior.

C2. It is impossible to know beforehand which system
behavior will be shown and when the system switches
from low-criticality to high-criticality behavior (re-
ferred to as mode change) during runtime.

Such unique characteristics of MC task systems pose new
challenges that cannot be resolved by existing techniques for
SC task systems.

Q1. How to characterize and calculate the sum of every
job’s execution requirement that should be performed
in an interval of interest to avoid its deadline miss
(called demand) that changes depending on the system
behavior?

Q2. How to identify in which conditions the mode change
cannot occur without missing any deadline?

Q3. How to specify all possible mode change instants that
are not known a priori without targeting a scheduling
algorithm?

Q4. How to derive a necessary feasibility condition by
considering every possible mode change instant?

Q5. How to efficiently find infeasible task sets with rea-
sonable time-complexity?

We develop our necessary feasibility tests by answering
those questions, in Section IV, V and VI, which can be

summarized briefly as follows. To answer Q1, we first define
and target a scenario tailored to MC task systems, which
specifies an interval of interest, a job release pattern, and
each job’s execution requirement relevant to the mode change
instant. Then, considering the mode change instant is a crite-
rion that determines the demand of low- and high-criticality
jobs, we divide the interval of interest into two sub-intervals
based on the mode change instant. We next calculate the
execution contribution of each of low- and high-criticality
jobs to the demand in the sub-intervals separately considering
the relationship between the mode change instant and each
job’s execution window. A key point for the calculation is
that we collectively upper-bound the demand in the two sub-
intervals for some high-criticality jobs that undergo the mode
change with the consideration on the dependency between the
demands of each sub-interval.

To answer Q2, we derive a necessary condition for the
feasibility of a mode change instant without missing any job
deadline by comparing the demand with the supply for a target
scenario. To answer Q3, for a given scenario, we define a
crucial job that can restrict the range of the mode change
instant without targeting a scheduling algorithm. To answer
Q4 and Q5, we present an efficient algorithm that can find
infeasible task sets by considering every possible mode change
instant with the complexity of pseudo-polynomial time. In
addition, we also explore a tradeoff between time-complexity
and capability in finding infeasible task sets, by developing a
necessary feasibility test as well as its simplified version that
has the same time complexity as in the SC task system case
at the expense of sacrificing the capability.

We demonstrate effectiveness of the proposed necessary
feasibility tests in finding infeasible task sets via simulations.
As shown in Fig. 1, the proposed tests are able to newly cover
many infeasible task sets (marked as red cross) which have not
been proven neither feasible nor infeasible. In particular, if we
focus on the region between X=0.95 by Y=0.95 and X=1.0
by Y=1.0, the proposed necessary feasibility tests find 325
additional infeasible task sets among 1,000 task sets, which
have not been proven infeasible by any existing studies.

This paper makes the following contributions:

• Developing necessary feasibility tests for MC task
systems, which is the first study that yields non-trivial
results for MC necessary feasibility,

• Exploring a number of unique issues pertaining to
developing necessary feasibility tests specialized for
MC task systems,

• Establishing foundations of necessary feasibility tests
for MC task systems, by addressing the unique issues
one by one,

• Exploring a tradeoff between time-complexity and
capability in finding infeasible task sets, by developing
a necessary feasibility test and its simplified version,
and

• Demonstrating effectiveness of the proposed tests in
finding infeasible task sets.

II. SYSTEM MODEL, ASSUMPTIONS AND NOTATIONS

We consider the problem of scheduling a dual-criticality
(high and low, namely HI and LO) task set τ of n sporadic
MC tasks on a uniprocessor platform.
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MC tasks. Each MC task τi ∈ τ is characterized by a tuple
(Ti, χi, C

LO
i , CHI

i , Di), where Ti is the minimum separation
(or period) between successive job releases, χi ∈ {LO,HI}
is the criticality level, CLO

i is the LO worst-case execution
time (WCET), CHI

i is the HI WCET, and Di is the relative
deadline. A task τi is said to be a LO and HI task, if χi is
LO and HI, respectively; let τLO and τHI denote a set of LO
and HI tasks in τ , respectively. We assume that CLO

i ≤ CHI
i

and CLO
i = CHI

i hold for every τi ∈ τHI and every τi ∈ τLO,
respectively. We target implicit- and constrained-deadline task
systems, respectively, in which Di = Ti and Di ≤ Ti hold for
every τi ∈ τ .

MC jobs and scenarios. Task τi generates a poten-
tially infinite sequence of jobs: J1

i , J
2
i , J

3
i , .... The qth job

of τi (denoted by Jq
i ) is characterized by two parameters:

Jq
i = (rqi , γ

q
i ), where rqi is the release time of the job, and

γq
i ∈ (0, CHI

i ] is the execution requirement of the job; Jq
i has

completed its execution if it executes for γq
i . The absolute

deadline of job Jq
i is dqi

def
= rqi +Di, and we call [rqi , d

q
i ] the

execution window of Jq
i . We target sporadic task systems, in

which successive jobs are released at least Ti time units apart.
A job of τi is said to be a LO and HI job, if χi is LO and HI,
respectively. It is important to notice that neither the release
times nor the execution requirements are known in advance.
Let a scenario for a given task set τ mean a collection of
release times and execution requirements of jobs of interest
invoked by tasks in τ ; there exist infinitely many scenarios for
a given task set.

System behavior and requirement. Job Jq
i is released

at time rqi and needs to complete γq
i units of work before

its absolute deadline of dqi . The value of γq
i is not known

beforehand, but only becomes revealed by actually executing
the job until it signals its completion. The values of {γq

i } for
a given scenario of a given task set τ define system behavior
and its corresponding real-time requirements as follows.

• As long as no job executes for more than its LO WCET
for all jobs, the system is regarded as exhibiting the
LO behavior, and all jobs are required to be completed
before their deadlines.

• If any HI job does not signal its completion after
executing for its LO WCET at some time instant t∗
referred to as mode change, the system is regarded
as exhibiting the HI behavior, and only HI jobs are
required to be completed before their deadlines after
the mode change; every LO job whose deadline is later
than t∗ can be discarded in the HI system behavior.

MC-feasibility. Based on the above two real-time require-
ments, we define MC-feasibility as follows.

Definition 1 (MC-feasible): A scenario is said to be fea-
sible if there exists a schedule that satisfies i) every job Jq

i
receives execution time γq

i during its execution window [rqi , d
q
i ]

when the system exhibits the LO behavior and ii) every HI job
Jp
j receives execution time γp

j during its execution window

[rpj , d
p
j ] when the system exhibits the HI behavior. A task set

τ is said to be MC-feasible if every scenario is feasible.

According to Definition 1, a task set τ is said to be MC-
infeasible if there exists at least one scenario that is infeasible
(i.e., not feasible). Note that determining MC-feasibility for
collections of independent dual-criticality periodic and spo-
radic tasks is known to be NP-hard in the strong sense [10].

Assumption and notation. We assume a quantum-based
time; let one time unit a quantum length without loss of
generality. We also assume that if the system has switched
to high-criticality behavior, it will never switch back to low-
criticality. Some recent studies have considered returning the
system to low-criticality mode (see [11] for a survey), but this
is not relevant to MC-feasibility because it does not change
the definition of MC-feasibility. Let LHS and RHS denote left-
hand-side and right-hand-side, respectively.

III. CHALLENGES

In this section, we pose the following problem: what are
unique issues of developing necessary feasibility tests for MC
task systems (that do not matter for SC task systems)? To
answer the question, we first present our own interpretation
of the existing necessary feasibility test for SC task systems.
We next present trivial existing results for necessary feasibility
of MC task systems. Based on the background, we observe
characteristics specialized for MC task systems, and identify
challenges for developing necessary feasibility tests for MC
task systems.

A. Existing necessary feasibility test for SC task systems

In this subsection, we offer our own interpretation of the
existing necessary feasibility test for SC task systems [12].

A typical way to develop a necessary feasibility test for
SC task systems is to focus on a scenario (associated with
a given interval of interest, each task’s job release pattern,
and each job’s execution requirement) and to compare the
sum of every job’s minimum execution requirement that should
be performed in the interval of interest to avoid its deadline
miss (called demand), with the time duration in which the
computing platform allows jobs to execute within the interval
(called supply). If the demand is larger than the supply, at least
one job in the scenario inevitably misses its deadline, yielding
infeasibility of the task set that invokes the scenario. While
the demand depends on the scenario’s interval of interest,
each task’s job release pattern, and each job’s execution time
requirement, the existing study for SC task systems focuses
on the following scenario S1, S2 and S3’ with given interval
length tend > 0.

S1. Target [0, tend] as an interval of interest, for given
interval length tend > 0.

S2. Generate jobs according to the synchronous periodic
job release pattern from t = 0 as follows. The first job
of every task is released at 0, and the following jobs of
every task are released strictly periodically until each
job’s absolute deadline is no later than tend.

S3’. Determine the execution requirement of every job as
its WCET.

For the scenario of S1, S2 and S3’ with given tend > 0, the
existing study calculates demand and supply in the interval of
interest, and deems the scenario (and therefore the correspond-
ing task set) infeasible if the demand is strictly larger than the
supply. While it is straightforward that the supply under S1
with given tend > 0 amounts to tend, the demand of a SC task
τi with its WCET of Ci under the scenario of S1, S2 and S3’
with given tend > 0 is calculated by DBFi(t

end) where

DBFi(t) =
(⌊ t−Di

Ti

⌋
+ 1

)
· Ci, (1)
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which yields the following lemma.

Lemma 1 (From [12]): A SC task set τ is infeasible, if
Eq. (2) is violated for given tend > 0:

∑
τi∈τ

DBFi(t
end) ≤ tend. (2)

By Lemma 1, it is possible to find an infeasible task set
(if Eq. (2) is violated for given tend > 0), meaning that a
necessary feasibility test is successfully derived.

The next issue is how to systematically check the lemma
for the scenario of S1, S2 and S3’ with as many tend > 0 as
possible with reasonable time-complexity. The existing study
derives an upper bound of tend such that checking Lemma 1 for
the scenario of S1, S2 and S3’ with every tend > 0 less than the
upper bound is equivalent to checking that with every tend > 0
without the upper bound (up to infinity). Using the upper-
bound, the study develops the following collective necessary
feasibility test as follows.

• A SC task set τ is infeasible, if there exists at least
one tend > 0 that violates Eq. (2) while we repeat
to check Lemma 1 with every tend > 0 less than the
upper bound.

Note that it has been proven that the collective necessary
feasibility test exhibits pseudo-polynomial time-complexity in
the task parameters. Also, note that the test is known to
be a necessary and sufficient feasibility test for SC task
systems [12].

One may misunderstand that the collective necessary fea-
sibility test should check Lemma 1 for every tend > 0 less the
upper bound. Different from the corresponding sufficient fea-
sibility test, the necessary feasibility test can check Lemma 1
for any number of candidates for tend > 0, which can affect
capability in finding infeasible task sets, but cannot compro-
mise the correctness of whether task sets deemed infeasible by
the test is actually infeasible.

B. Trivial results for necessary feasibility of MC task systems

Considering the most prominent difference between SC
and MC task systems is existence of the mode change and
consequences thereof, we may classify scenarios of MC task
systems, based on relationship between the mode change
instant and the interval of interest. That is, the mode change
instant t∗ exists after, before, and within the interval of interest,
denoted by Cases A, B, and C, respectively.

Since all jobs in the interval of interest exclusively expe-
riences the LO and HI system behavior in Cases A and B,
respectively, each scenario of Case A and B can be equivalent
to a scenario of a SC task system. The following two lemmas
correspond Lemma 1 for Cases A and B, respectively (similar
conditions were presented in [7], [8], [9] with a different form).

Lemma 2: A MC task set τ is infeasible, if Eq. (3) is
violated for given tend > 0:

∑
τi∈τ

DBFLOi (tend) ≤ tend where DBFLOi (t) =
(⌊ t−Di

Ti

⌋
+ 1

)
· CLO

i .

(3)

Proof: Consider the scenario of S1, S2 and S3’ with given
tend > 0 when the mode change occurs at t = ∞. Then, the

scenario is the same as Lemma 1 with replacing Ci with CLO
i

for every τi ∈ τ .

Lemma 3: A MC task set τ is infeasible, if Eq. (4) is
violated for given tend > 0:

∑
τi∈τHI

DBFHIi (tend) ≤ tend where DBFHIi (t) =
(⌊ t−Di

Ti

⌋
+ 1

)
· CHI

i .

(4)

Proof: Consider the scenario of S1, S2 and S3’ with given
tend > 0 when the mode change occurs at t = −∞. Since there
is no demand of LO tasks in [0, tend], the scenario is the same
as Lemma 1 with replacing Ci with CHI

i for every τi ∈ τHI

and Ci with 0 for every τi ∈ τLO.

To find as many infeasible task sets as possible, the col-
lective necessary feasibility test can be developed by applying
Lemmas 2 and 3 for every tend > 0 less than its upper-bound
(derived by the same technique for SC task systems).1

Although Lemmas 2 and 3 successfully address Cases A
and B, there is a still huge gap between the region covered by
task sets proven feasible and that proven infeasible, as shown
in Fig. 1; note that Lemmas 2 and 3 with every tend > 0
prove infeasibility of task sets beyond the region X=1.0 by
Y=1.0 (colored by grey) in the figure. While tight necessary
conditions for feasibility require to consider Case C effectively,
deriving the conditions from Case C entails many challenges
to be discussed in the next subsection.

Note that although existing demand-based schedulability
tests [3], [5], [6] considered Case C using the notion of
demand, all of them are unable to detect infeasible task sets
because they are designed to find feasible task sets.

C. Challenges for developing necessary feasibility tests for
MC task systems

In this subsection, we identify challenges specialized for
MC tasks systems to develop necessary feasibility tests, by
considering Case C in which the mode change instant t∗ exists
in the middle of the interval of interest.

We may observe two characteristics of SC task systems
to derive necessary conditions for feasibility in Section III-A.
First, the demand in the interval of interest is fixed with
the scenario of S1–S3’ with given tend > 0. Second, if the
demand is larger than the supply, the scenario (and therefore
the corresponding task set) is actually infeasible. The two
characteristics, however, do not hold for MC task systems,
due to existence of the mode change. We present the following
example showing characteristics of MC task systems that affect
derivation of necessary conditions for feasibility. Note that
the characteristics to be explained are mostly derived from
existence of the mode change, which switches (i) a set of jobs
whose execution requirement should be guaranteed (i.e., from
HI and LO jobs, to HI jobs only) and (ii) HI jobs’ amount
of execution requirement that should be guaranteed (i.e., from
no more than the LO WCET, to more than the LO WCET).

Example 1: Consider a task set τ with the following three
tasks: τ1(T1 = 12, χ1 = HI, CLO

1 = 3, CHI
1 = 6, D1 = 12),

1The collective necessary feasibility test is reduced to checking violation
of either

∑
τi∈τ CLO

i /Ti ≤ 1.0 or
∑

τi∈τHI C
HI
i /Ti ≤ 1.0, for implicit-

deadline task systems [7], [8], [9].

449



τ2 = τ1, and τ3 = (4,LO, 1, 1, 4). Consider the following sce-
nario: (i) the interval of interest is [0, 12]; (ii) the synchronous
job release pattern from t = 0 is applied to all tasks in [0, 12],
meaning that the release time and deadline of J1

1 and J1
2 are

0 and 12, respectively, and those of J1
3 , J2

3 , and J3
3 are 0 and

4, 4 and 8, and 8 and 12, respectively; and (iii) the execution
requirement of every LO and HI job is its LO and HI WCET,
respectively. We now consider two cases with different choices
of the mode change instant: t∗ = 3 and 4. In both cases, the
following properties hold: (a) one of J1

1 or J1
2 should execute

for exactly 3 time units (i.e., its LO WCET) in [0, t∗] (i.e.,
before the mode change) to trigger the mode change, and
therefore (b) the job that triggers the mode change should
execute for exactly 3 time units (i.e., its HI WCET minus
LO WCET) in [t∗, 12] (i.e., after the mode change).

Suppose the mode change instant occurs at t∗ = 3. The
demand of jobs of τ3 in [0, 12] is 0 because no job of τ3 has
its deadline no later than the mode change instant. Also, one
of J1

1 and J1
2 that does not trigger the mode change cannot

execute before the mode change (i.e., in [0, 3]) because of (a),
and hence the job should execute for 6 time units (i.e., its HI
WCET) after the mode change (i.e., in [3, 12]). In this case,
since there is no demand of τ3, the total demand in [0, 12] is
CHI

1 +CHI
2 = 12, which is no larger than the supply in [0, 12].

Suppose the mode change instant occurs at t∗ = 4. Then,
the demand of jobs of τ3 in [0, 12] is 1 because J1

3 has its
deadline no later than the mode change instant (while other
jobs of τ3 do not). Also, one of J1

1 and J1
2 that does not

trigger the mode change executes for at most 1 time unit before
the mode change (i.e., in [0, 4]) because of (a). Considering
the sum of execution of the job in [0, 4] and that of [4, 12]
(therefore the sum of the demand in both intervals) should be
6 (its HI WCET), the job should execute for 5 or 6 time units
after the mode change (i.e., in [4, 12]). In this case, since the
demand of τ3 is 1, the total demand in [0, 12] is CLO

3 +CHI
1 +

CHI
2 = 13, which is larger than the supply in [0, 12].

In fact, the scenario is feasible if J1
1 and J1

2 are executed
in [0, 6] and [6, 12], respectively. This is because, this schedule
yields the mode change at t∗ = 3, which is before the deadline
of all LO jobs (i.e., t = 4, 8 or 12); therefore, all LO jobs do
not have any demand in [0, 12].

We summarize the following observations from Example 1.

O1. The contribution of each LO job to the demand varies
with the mode change instant. For example, the de-
mand of LO jobs amounts to 0 and 1 with t∗ = 3 and
t∗ = 4, respectively.

O2. The constraints for the amount of the contribution
of each HI job to the demand varies with the mode
change instant. For example, one of J1

1 and J1
2 that

does not trigger the mode change executes for 0 and at
most 1 time unit before the mode change, respectively
in case of t∗ = 3 and t∗ = 4.

O3. By O1 and O2, it is impossible (or at least very
difficult) to calculate demand without specifying the
mode change instant.

O4. The demand strictly larger than the supply in a case
does not necessarily yield infeasibility of the scenario.
For example, the scenario is feasible although the
demand is larger than supply with t∗ = 4.

O5. Without a concrete schedule determined by the target
scheduling algorithm, we may not calculate the exact

values for the demand of a HI job in one sub-interval
and that in another sub-interval; however, there exists
a relationship between the demand in those intervals.
For example, the sum of the demand of J1

1 (or J1
2 ) in

[0, t∗] and that in [t∗, tend] is 6.

We now present another example that shows necessity of
investigating sub-intervals of the interval of interest for higher
capability in finding infeasible task sets.

Example 2: Consider a task set τ with the following three
tasks: τ1(T1 = 12, χ1 = HI, CLO

1 = 3, CHI
1 = 6, D1 = 12),

τ2 = (12,HI, 3, 5, 12), and τ3 = (2,LO, 1, 1, 2). Consider the
scenario same as Example 1.

We now present a case with the mode change instant t∗ =
3, in which one of J1

1 or J1
2 should execute for exactly 3 time

units (i.e., its LO WCET) in [0, 3]. The demand of jobs of τ3 in
[0, 3] is 1 (i.e., CLO

3 ), because J1
3 is the only job whose deadline

is no later than t = 3. Therefore, the total demand2 in [0, 3] is
3+1 = 4, which is larger than the supply in [0, 3]; this judges
that the mode change cannot occur at t∗ = 3 without violating
i) of Definition 1. However, the same cannot be judged if we
focus on the entire interval of [0, 12]; this is because the total
demand in [0, 12] is CLO

3 + CHI
1 + CHI

2 = 12.

In fact (after investigating all possible schedules), the
scenario is deemed infeasible because there is no schedule that
satisfies i) and ii) in Definition 1. Note that both Lemmas 2
and 3 cannot deem the task set infeasible, while our proposed
necessary feasibility test to be developed in this paper (i.e.,
Theorem 2) can.

From Example 2, we have the following observation.

O6. The inequality of the demand larger than the supply
holds in a subset of the interval of interest, while the
same does not hold in the entire interval of interest.
For example, the inequality holds in [0, 3], but does
not hold in [0, 12].

Considering the unique observations O1–O6, we need to
address the following challenges to develop necessary feasi-
bility tests for MC task systems.

I1. For a given scenario, how can we characterize and
calculate the demand in an interval that changes de-
pending on the mode change instant? (from O1–O3)

I2. For a given scenario, what is the meaning of the
demand larger than the supply in an interval when
the mode change instant is given? (from O4)

I3. For a given scenario, how can we derive infeasibility
of the scenario from the answer of I2 without assum-
ing the mode change instant is given? (from O3–O4)

I4. For a given scenario, what are good choices of sub-
intervals to be targeted for I1–I3? (from O6) How can
we utilize the relationship between demand of those
sub-intervals? (from O5)

Since I1–I4 need a given scenario, we have the following
challenge.

2In this case, the notion of demand implies the sum of every job’s minimum
execution requirement that should be performed in the interval of interest not
only to satisfy MC-feasility in Definition 1, but also to trigger the mode change
at t∗ = 3.
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Fig. 2. Overview of our proposed necessary feasibility test for a task set
described in Examples 2 and 3

I5. What are additional scenario components for MC task
systems other than S1, S2 and S3’, which make it
possible to address I1–I4? In particular, how can we
make the components specify the mode change instant
without targeting a scheduling algorithm? (from O3)

In addition, we have the following challenge for higher
capability in finding infeasible task sets.

I6. Once we develop a necessary feasibility test for a
given scenario by addressing I1–I5, how can we
efficiently check the test with as many scenarios as
possible with reasonable time-complexity?

Sections IV will present how to develop necessary feasi-
bility tests for MC task systems by addressing I1–I5, while
Sections V and VI will address I6 in a different manner.

IV. DEVELOPMENT OF NECESSARY FEASIBILITY TEST

In this section, we develop a necessary feasibility test for
MC task systems, by addressing I1–I5 in Section III-C. An
overview of our approach is illustrated in Fig. 2. We first
tailor the scenario of S1, S2, and S3’ in Section III-A to
MC task systems and specify a range of the mode change
instant (addressing I5, Fig. 2(a)). We then determine target
sub-intervals (addressing I4, Fig. 2(b)) and explain how to
calculate the demand in the target sub-intervals (addressing I1,
Fig. 2(c)). Comparing the demand with the supply in the target
sub-intervals, we derive a necessary condition for feasibility
of the mode change instant t∗ (addressing I2, Fig. 2(d)).
By associating the necessary conditions with different mode
change instants, we develop a necessary feasibility test for
MC task systems (addressing I3, Fig. 2(e)).

Since a given scenario is assumed in I1–I4, we first
determine additional scenario components for MC task systems
in order to address I5. Among the scenario of S1, S2 and S3’
for SC task systems, S1 and S2 can be applied as they are,
while S3’ should be adapted because each HI job has LO and
HI WCETs. Considering the execution requirement of each HI
job is relevant to the mode change instant, we need to adapt
S3’ for HI jobs so as to (i) determine each HI job’s execution
requirement as its LO or HI WCET, and (ii) specify the mode
change instant without the target scheduling algorithm.

The main idea to address (i) and (ii) is to include a scenario
component of J∗k , which indicates the job with the earliest

release time among all HI jobs whose execution requirement
is strictly larger than its LO WCET. By the proposed definition,
J∗k should observe a mode change (triggered by itself or
another job) within its execution window; otherwise, the job
cannot execute for more than its LO WCET, yielding its
deadline miss. Therefore, by targeting given J∗k , we can restrict
the range of the mode change instant for each scenario, to at
most the execution window of J∗k . Also, by targeting given
J∗k , we can determine each HI job’s execution requirement
based on its release time. Then, we consider S3 and S4 by
adapting/detailing S3’ as follows.

S3. Target a given job J∗k among all jobs generated by
S1 and S2 with given tend > 0, where J∗k is the job
which has the earliest release time among all HI jobs
whose execution requirement is strictly larger than LO
WCET.

S4. Determine the execution requirement of every LO job
as its LO WCET; determine the execution requirement
of every HI job whose release time is earlier and no
earlier than r∗k (i.e., J∗k ’s release time) as its LO and
HI WCET, respectively.

In the rest of this paper, we target the scenario of S1 and
S2 defined in Section III-A, and S3 and S4 defined in this
section, with given tend > 0 and J∗k . Then, the following
lemma calculates a more refined range of the mode change
instant t∗ associated with given J∗k as illustrated in Fig. 2(a).

Lemma 4: The scenario of S1–S4 with given tend > 0
and J∗k is feasible, only if the mode change occurs within
[t∗a(J

∗
k ), t

∗
b(J

∗
k )], where t∗a(J

∗
k ) and t∗b(J

∗
k ) are respectively the

earliest (rpi +CLO
i ) and the earliest (dpi −CHI

i +CLO
i ) among

every HI job Jp
i whose release time is no earlier than r∗k (i.e.,

the release time of J∗k ).

Proof: Recall S4; every HI job Jp
i whose release time

is no earlier than r∗k has the execution requirement for its HI
WCET.

Suppose that the mode change occurs at t∗ < t∗a(J
∗
k ). By

S4 and the definition of t∗a(J
∗
k ), it is impossible for every HI

job whose execution requirement equals to its HI WCET to
perform its executing for as much as its LO WCET before
t∗a(J

∗
k ). This contradicts the supposition.

Suppose that a mode change occurs at t∗ > t∗b(J
∗
k ). By

S4 and the definition of t∗b(J
∗
k ), there exists at least one job

Jp
i whose execution requirement equals to its HI WCET, but

whose actual execution time performed until (dpi −CHI
i +CLO

i )
is less than CLO

i . If there exists no such job, the mode change
occurs no later than (dpi −CHI

i +CLO
i ). The former contradicts

feasibility, and the latter contradicts supposition.

Next, we explain how to choose sub-intervals to be in-
vestigated (i.e,. addressing the first part of I4), which should
precede addressing I1–I3. As shown in O1 and O2 in Sec-
tion III-C, the mode change instant t∗ determines not only
whether each LO job contributes to the demand or not, but
also how much execution each HI job can contribute to the
demand before and after the mode change. Since the mode
change instant t∗ is a criterion that determines the demand
(or its constraints) of LO and HI jobs, we not only target a
situation with given t∗, but also divide the interval of interest
into two sub-intervals based on the mode change instant t∗
(i.e., [0, t∗] and [t∗, tend]), to be targeted for deriving necessary
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feasibility conditions as illustrated in Fig. 2(b). As shown in
O6, demand-supply comparison with the interval split yields
higher capability in finding infeasible task sets, compared to
that without the interval split.

Once we determine the target sub-intervals, we are ready
to address I1, which is to calculate the demand in the target
sub-intervals when the mode change instant t∗ is given. One
may wonder whether it is possible to use the techniques of
demand calculation in existing demand-based schedulability
tests for MC task systems [3], [5], [6]; this is impossible
because they were designed for a target scheduling algorithm
to derive sufficient feasibility conditions, while this paper
derives necessary feasibility conditions meaning that no target
scheduling algorithm is assumed.

We first investigate the demand of a LO task. Considering
a LO job can contribute the demand only if the job’s deadline
is no later than t∗, the demand of jobs of a LO task in [0, t∗]
can be calculated (and that in [t∗, tend] is zero), as stated in
the following lemma.

Lemma 5: Target the scenario of S1–S4 with given tend >
0 and J∗k , and target a single mode change instant t∗ belonging
to [t∗a(J

∗
k ), t

∗
b(J

∗
k )] (defined in Lemma 4). Then, the demand

of jobs of a LO task τi ∈ τ in [0, t∗] and [t∗, tend] can be
calculated as follows.

• The demand of jobs of τi ∈ τLO in [0, t∗] is DBFLOi (t∗).
• The demand of jobs of τi ∈ τLO τi in [t∗, tend] is 0.

Proof: If the mode change occurs before the LO job’s
deadline, we do not need to execute the job, meaning that the
demand for the job is zero. Therefore, the latter directly holds.
Considering the definition of DBFLOi (t) in Eq. (3), the former
also holds.

The next issue is to calculate the demand of a HI task in
the target sub-intervals. Considering the relationship between
the mode change instant t∗ and each job’s execution window,
we may classify all jobs of a HI task τi ∈ τHI into three
categories:

CG1. jobs Jp
i whose deadline is no later than t∗ (i.e., dpi ≤

t∗),
CG2. at most one job Jp

i whose release time is earlier than t∗
but whose deadline is later than t∗ (i.e., rpi < t∗ < dpi ),

CG3. jobs Jp
i whose release time is no earlier than the mode

change instant (i.e., t∗ ≤ rpi ).

While CG1 and CG3 exclusively contribute to the demand
in [0, t∗] and that in [t∗, tend], respectively, CG2 may contribute
to both. Let OP−i (t

∗) and OP+
i (t

∗) denote the demand of a job
of τi ∈ τHI belonging to CG2 in [0, t∗] and that in [t∗, tend],
respectively, under the scenario of S1–S4 with given tend > 0
and J∗k , and given t∗ ∈ [t∗a(J

∗
k ), t

∗
b(J

∗
k )]. Note that OP−i (t

∗)
and OP+

i (t
∗) are 0, if no job of τi ∈ τHI belongs to CG2.

Then, we can calculate/express the demand of jobs of a
HI task in [0, t∗] and that in [t∗, tend] by CG1, CG2, and CG3
separately, as stated in the following lemma.

Lemma 6: Target the scenario of S1–S4 with given tend >
0 and J∗k , and target a single mode change instant t∗ belonging
to [t∗a(J

∗
k ), t

∗
b(J

∗
k )] (defined in Lemma 4). Then, the demand

of jobs of a HI task τi in [0, t∗] and [t∗, tend] can be
calculated/expressed as follows.

• The demand of jobs of τi ∈ τHI belonging to CG1 in
[0, t∗] amounts to DBFLOi (t∗).

• The demand of jobs of τi ∈ τHI belonging to CG1 in
[t∗, tend] amounts to 0.

• The demand of at most one job of τi ∈ τHI belonging
to CG2 in [0, t∗] amounts to OP−i (t

∗).
• The demand of at most one job of τi ∈ τHI belonging

to CG2 in [t∗, tend] amounts to OP+
i (t

∗).
• The demand of jobs of τi ∈ τHI belonging to CG3 in

[0, t∗] amounts to 0.
• The demand of jobs of τi ∈ τHI belonging to CG3 in

[t∗, tend] amounts to DBFHIi
(
tend − �t∗/Ti� · Ti

)
.

Proof: Since every HI job of τi belonging to CG1 exe-
cutes for its LO WCET, the first statement holds. The second
and fifth statements hold by the definition of jobs in CG1
and CG3. The third and fourth statements are the definition
of OP−i (t

∗) and OP+
i (t

∗). Among jobs of τi belonging to
CG3, the earliest release time is (�t∗/Ti� ·Ti); considering the
definition of DBFHIi (t) in Eq. (4), the sixth statement holds.

While the first, second, fifth and sixth statements in
Lemma 6 calculate exact values for the corresponding demand,
the third and fourth statements do not. Considering the sum
of OP−i (t

∗) and OP+
i (t

∗) equals to the execution requirement
of the job of τi belonging to CG2 (addressing the second part
of I4), we can derive the constraints of the contribution of
OP−i (t

∗) and OP+
i (t

∗) to the demand in the target sub-intervals,
as shown in the following example.

Example 3: Recall the task set and the scenario in Exam-
ple 2 in Section III-C, and target the mode change instant
t∗ = 7. We now explain the constraints of OP−1 (7) and
OP+

1 (7) for J1
1 . If J1

1 triggers the mode change, the job should
execute for exactly 3 time units (i.e., CLO

1 ) in [0, 7] and 3 time
units (i.e., CHI

1 − CLO
1 ) in [7, 12], implying OP−1 (7) = 3 and

OP+
1 (7) = 3. We discuss the case where J1

1 does not trigger the
mode change, from now on, which is illustrated in Fig. 2(c).

Let LB2− and UB2− denote lower and upper bounds
for OP−1 (7), and LB2+ and UB2+ denote lower and upper
bounds for OP+

1 (7). Then, J1
1 ’s execution cannot be larger

than its target sub-interval lengths, UB2− ≤ 7 and UB2+ ≤ 5.
Also, for J1

1 not to trigger the mode change, J1
1 ’s execution

in [0, 7] should be strictly less than its LO WCET, yielding
UB2− = min(7, CLO

1 − 1 = 2) = 2. Also, J1
1 ’s execution

in [7, 12] should not be larger than its execution requirement,
yielding UB2+ = min(5, CHI

1 = 6) = 5. Considering the sum
of OP−1 (7) and OP+

1 (7) equals to J1
1 ’s execution requirement,

we can calculate LB2− = CHI
1 − UB2+ = 6 − 5 = 1 and

LB2+ = CHI
1 − UB2− = 6− 2 = 4.

Inspired by the example, the following lemma formalizes
the constraints of the contribution of OP−i (t

∗) and OP+
i (t

∗) to
the demand in the target sub-intervals.

Lemma 7: Target the scenario of S1–S4 with given tend >
0 and J∗k , and target a single mode change instant t∗ belonging
to [t∗a(J

∗
k ), t

∗
b(J

∗
k )] (defined in Lemma 4). Consider a job of

τi ∈ τHI potentially belonging to CG2, Jq
i , whose release time

and deadline are rqi = � t∗Ti
�·Ti and dqi = rqi +Di, respectively.

Considering Jq
i , we have three cases for calculating OP−i (t

∗)
and OP+

i (t
∗). In Case 1, there is no job of τi in CG2; Jq

i
does not belong to CG2. In Cases 2 and 3, Jq

i is the job
of τi that belongs to CG2, but the job’s execution requirement
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amounts to its LO and HI WCET, respectively. Case 3 consists
of Subcases 3A and 3B, in which Jq

i does trigger and does
not trigger the mode change, respectively. Then, OP−i (t

∗) and
OP+

i (t
∗) for every τi ∈ τHI should satisfy the following

constraints.

• Case 1: If rqi = t∗, dqi ≤ t∗ or dqi > tend,
OP−i (t

∗) = OP+
i (t

∗) = 0 holds.

• Case 2: Otherwise, if rqi < r∗k (recall r∗k is J∗k ’s release
time),
(i) LB− ≤ OP−i (t

∗) ≤ UB−,
(ii) LB+ ≤ OP+

i (t
∗) ≤ UB+, and

(iii) OP+
i (t

∗) + OP−i (t
∗) = CLO

i hold, where

UB− = min(t∗ − rqi , C
LO
i ), UB+ = min(dqi − t∗, CLO

i ),

LB− = CLO
i − UB+ and LB+ = CLO

i − UB−.

• Case 3: Otherwise (i.e., rqi ≥ r∗k),

(Subcase 3A) if t∗ − rqi ≥ CLO
i and dqi − t∗ ≥ CHI

i − CLO
i

hold and the job of τi triggers the mode change,
(i) OP−i (t

∗) = CLO
i and

(ii) OP+
i (t

∗) = CHI
i − CLO

i hold;

(Subcase 3B) otherwise (i.e., the job of τi does not trigger
the mode change),
(i) LB2− ≤ OP−i (t

∗) ≤ UB2−,
(ii) LB2+ ≤ OP+

i (t
∗) ≤ UB2+, and

(iii) OP+
i (t

∗) + OP−i (t
∗) = CHI

i hold, where

UB2− = min(t∗−rqi , CLO
i −1), UB2+ = min(dqi−t∗, CHI

i ),

LB2− = CHI
i − UB2+ and LB2+ = CHI

i − UB2−.

Proof: (Case 1) If rqi = t∗ (or dqi ≤ t∗), Jq
i belongs

to CG3 (or CG1) and there is no job of τi in CG2. Also, if
dqi > tend, the scenario of S2 does not generate Jq

i .

(Case 2) If rqi < r∗k (i.e., the release time of Jq
i less than

that of J∗k ), Jq
i ’s execution requirement is CLO

i by the definition
of J∗k and S4, yielding OP−i (t

∗)+OP+
i (t

∗) = CLO
i . Jq

i can be
executed in [rqi , t

∗] and [t∗, dqi ] (i.e., before and after the mode
change), for at most the interval length, i.e., (t∗−rqi ) and (dqi−
t∗) time units, respectively, yielding upper bounds of OP−i (t

∗)
and OP+

i (t
∗). Considering Jq

i ’s execution requirement equals
to CLO

i , we can derive upper bounds of OP−i (t
∗) and OP+

i (t
∗)

as UB− and UB+. If we use OP−i (t
∗) + OP+

i (t
∗) = CLO

i , we
can derive lower bounds of OP−i (t

∗) and OP+
i (t

∗) as LB− and
LB+, from UB+ and UB−.

(Case 3) This case implies that Jq
i ’s execution requirement

is CHI
i (by the definition of J∗k and S4), yielding OP−i (t

∗) +
OP+

i (t
∗) = CHI

i .

(Subcase 3A) This subcase implies that Jq
i triggers the

mode change, which requires Jq
i to execute for CLO

i in [rqi , t
∗]

and for (CHI
i − CLO

i ) in [t∗, dqi ]. Therefore, the conditions (i)
and (ii) for Subcase 3A hold.

(Subcase 3B) This subcase implies that Jq
i does not trigger

the mode change. Therefore, there is a limit for the maximum
of OP−i (t

∗) and OP+
i (t

∗), which is (CLO
i − 1) and CHI

i ,
respectively. While the latter is straightforward, the former
holds because executing for CLO

i before the mode change
implies that Jq

i triggers the mode change, which contradicts
the supposition of Subcase 3B. Applying the same idea as
Case 2, we can derive upper bounds of OP−i (t

∗) and OP+
i (t

∗)
as UB2− and UB2+, and then derive lower bounds of OP−i (t

∗)
and OP+

i (t
∗) as LB2− and LB2+, from UB2+ and UB2−.

Combining Lemmas 6 and 7, we can calculate the demand
of all HI tasks in [0, t∗] and [t∗, tend], by adding the demand of
jobs of each HI task in CG1, CG2 and CG3. By combining the
demand of all HI tasks and that of all LO tasks in Lemma 5,
we can calculate the total demand in [0, t∗] and [t∗, tend]. If
the total demand is larger than the total supply in [0, t∗] or the
same holds in [t∗, tend], it is impossible for the mode change
to occur at t∗ without any job deadline miss, which addresses
I2. In other words, comparing the total demand with the total
supply in [0, t∗] and [t∗, tend], we can judge the feasibility of
the mode change at t∗ without missing any job deadline, as
stated in the following lemma, which is illustrated in Fig. 2(d).

Lemma 8: Target the scenario of S1–S4 with given tend >
0 and J∗k , and target a single mode change instant t∗ belonging
to [t∗a(J

∗
k ), t

∗
b(J

∗
k )] (defined in Lemma 4). The mode change

instant t∗ is infeasible without any job deadline miss, if it is
impossible to satisfy both Eqs. (5) and (6) subject to Lemma 7
and the following constraint.

• There exists exactly one τj ∈ τHI belonging to
Subcase 3A of Lemma 7.

∑
τi∈τLO

DBFLOi (t∗) +
∑

τi∈τHI

(
DBFLOi (t∗) + OP−i (t

∗)
)
≤ t∗. (5)

∑
τi∈τHI

(
DBFHIi

(
tend −

⌈ t∗
Ti

⌉
· Ti

)
+ OP+

i (t
∗)
)
≤ tend − t∗. (6)

Proof: By Lemma 7 and the fact that the mode change
cannot be triggered by more than one job, the two constraints
(i.e., the “subject to” part) hold.

By Lemmas 5 and 6, the LHS of Eq. (5) and that of
Eq. (6) calculate the total demand of τ in [0, t∗] and [t∗, tend],
respectively under the scenario of S1–S4 with given tend > 0
and J∗k . Considering the supply amounts to the interval length,
violating either Eq. (5) or (6) implies that the mode change
cannot occur at t∗ or at least one job misses its deadline.

Once we repeat Lemma 8 with every t∗ ∈ [t∗a(J
∗
k ), t

∗
b(J

∗
k )],

we know whether there exists at least one mode change instant
that does not yield any job deadline miss. If it does not exist, it
is impossible for the mode change instance to exist without any
job deadline miss, which yields infeasibility of the scenario by
Lemma 4. This addresses I3, and is recorded by the following
theorem (as also illustrated in Fig. 2(e)).

Theorem 1: A MC task set τ is infeasible, if every mode
change instant t∗ ∈ [t∗a(J

∗
k ), t

∗
b(J

∗
k )] associated with the

scenario of S1–S4 with given tend > 0 and J∗k makes it
impossible to satisfy both Eqs. (5) and (6) subject to Lemma 7
and the constraint in Lemma 8.

Proof: By Lemma 8 and the range of t∗ ∈
[t∗a(J

∗
k ), t

∗
b(J

∗
k )], the impossibility to satisfy both Eqs. (5) and

(6) subject to Lemma 7 and the constraint in Lemma 8 implies
that the scenario of S1–S4 with given tend > 0 and J∗k
yields no existence of the mode change instant without any job
deadline miss. According to Lemma 4, existence of the mode
change instant in [t∗a(J

∗
k ), t

∗
b(J

∗
k )] is a necessary feasibility

condition for the scenario. Therefore, the theorem holds.
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Algorithm 1 Efficient test for Lemma 8

1: for τk ∈ τHI do
2: if τk satisfies (i) and (ii) of Subcase 3A in Lemma 7, and

every τi ∈ τHI − {τk} belonging to Case 3 can satisfy (i)–(iii)
of Subcase 3B then

3: SumOP− ← CLO
k +

∑
τi∈τHI\{τk}maxOP−i (t

∗)
4: SumOP+ ← CHI

k − CLO
k +

∑
τi∈τHI\{τk}maxOP+

i (t
∗)

5: DiffOP ← ∑
τi∈τHI\{τk}maxOP−i (t

∗) −∑
τi∈τHI\{τk}minOP−i (t

∗)

6: DiffLO← max
(
0,

∑
τi∈τ DBF

LO
i (t∗) + SumOP− − t∗

)

7: DiffHI← max
(
0,

∑
τi∈τHI DBF

HI
i

(
tend−�t∗/Ti�·Ti

)
+

SumOP+ − (tend − t∗)
)

8: if DiffLO+ DiffHI ≤ DiffOP then
9: Return TRUE

10: end if
11: end if
12: end for
13: Return FALSE

V. CHECKING THE NECESSARY FEASIBILITY TEST

TIME-EFFICIENTLY

In this section, we address I6 in Section III-C—how to
check the proposed test with as many scenarios as possible
with less time-complexity. To this end, we develop (i) how
to test Lemma 8 (and therefore Theorem 1) with low time-
complexity and (ii) how to apply the necessary feasibility test
in Theorem 1 to the scenario of S1–S4 with every pair of
tend > 0 and J∗k with reasonable time-complexity.

While we successfully developed a necessary feasibility
test in Theorem 1 using Lemma 8, we did not discuss how
to check the “if” statement of the lemma. A simple way is to
check all possible combinations of OP−i (t

∗) and OP+
i (t

∗) for
every τi ∈ τHI. Since there are multiple options of a HI job’s
contribution to the demand in [0, t∗] and that in [t∗, tend], the
number of combinations of all HI jobs’ contribution to those
demands can be an exponential function of the number of HI
jobs. This entails to develop an algorithm that tests Lemma 8
in a time-efficient manner, without investigating all possible
combinations. We develop Alg. 1, to be presented now.

In Alg. 1, we repeat the following steps in Lines 2–11 for
every τk ∈ τHI (Line 1). We first check whether it is possible
for the job of τk to trigger the mode change by checking
(a) τk satisfies the conditions (i) and (ii) of Subcase 3A in
Lemma 7, and (b) every τi ∈ τHI −{τk} belonging to Case 3
can satisfy the conditions (i)–(iii) of Subcase 3B (by having at
least one possible value for both OP−i (t

∗) and OP+
i (t

∗)) (Line
2). If so (meaning that the constraint in Lemma 8 holds), we
calculate the sum of the upper bound of OP−i (t

∗) and OP+
i (t

∗)
for every τi ∈ τHI \ {τk}, called SumOP− and SumOP+,
respectively (Lines 3 and 4). We also calculate the difference
between the sum of the upper bound of OP−i (t

∗) and that of
the lower bound of OP−i (t

∗), called DiffOP (Lines 5). Note
that DiffOP is the same as the sum of the followings for
every τi ∈ τHI \ {τk}: the sum of the difference between
maxOP−i (t

∗) and the actual assignment of OP−i (t
∗), and the

difference between maxOP+
i (t

∗) and the actual assignment of
OP+

i (t
∗). See the proof of Lemma 9 about why DiffOP is

the same as the above value. Considering that we select a job
of τk to trigger the mode change and jobs of other tasks not

to trigger the mode change as mentioned Lines 1 and 2, if
τi ∈ τHI \ {τk} belongs to Case 3 of Lemma 7, we apply
Subcase 3B to maxOP−i (t

∗), minOP−i (t
∗) and maxOP+

i (t
∗)

in Lines 3–5 (i.e., UB2−, LB2−, and UB2+, respectively).

Then, we calculate DiffLO, the LHS minus the RHS of
Eq. (5) assuming the maximum (upper bound) of OP−i (t

∗)
for every τi ∈ τHI \ {τk} (Line 6); in other words, DiffLO
means the minimum amount to be reduced to satisfy Eq. (5)
when OP−i (t

∗) for every τi ∈ τHI \ {τk} has the maximum.
Similarly, we calculate DiffHI, the LHS minus RHS of
Eq. (6) assuming the maximum (upper bound) of OP+

i (t
∗)

for every τi ∈ τHI \ {τk} (Line 7); in other words, DiffHI
means the minimum amount to be reduced to satisfy Eq. (6)
when OP+

i (t
∗) for every τi ∈ τHI \ {τk} has the maximum.

Then, to satisfy Eqs. (5) and (6), we need to reduce the sum
of OP−i (t

∗) by as much as DiffLO and the sum of OP+
i (t

∗)
by as much as DiffHI, while the total budget we can reduce
the former or latter sum is as much as DiffOP. Therefore,
if DiffLO + DiffHI ≤ DiffOP holds, we return TRUE
(Lines 8 and 9), meaning that it may be possible for the mode
change to occur at t∗ without missing any job deadline. Finally,
we return FALSE in Line 13, if every τk ∈ τHI cannot yield
TRUE, meaning that it is impossible for the mode change to
occur at t∗ without missing any job deadline.

Alg. 1 can replace Lemma 8, as in the following lemma.

Lemma 9: If Alg. 1 returns FALSE, Theorem 1 (and
Lemma 8) judges that for given t∗ it is impossible to satisfy
both Eqs. (5) and (6) subject to Lemma 7 and the constraint
in Lemma 8.

Proof: Suppose that Alg. 1 returns FALSE but Lemma 8
cannot judge that a mode change cannot occur at given t∗ ∈
[t∗a(J

∗
k ), t

∗
b(J

∗
k )] without any deadline miss of jobs invoked by

τ in [0, tend]. We now derive contradiction.

The supposition implies that there is no task τk ∈ τHI that
satisfies the inequality of DiffLO + DiffHI ≤ DiffOP in
Alg. 1. The supposition also implies that there exists at least
t∗ ∈ [t∗a(J

∗
k ), t

∗
b(J

∗
k )] that satisfies Eqs. (5) and (6) subject to

Lemma 7 and the constraint in Lemma 8; let t′ denote such t∗,
and τk denote the task that satisfies the constraint (i.e., the task
whose job triggers the mode change). Then, OP−k (t

′) = CLO
k

and OP+
k (t

′) = CHI
k −CLO

k holds by Subcase 3A of Lemma 7.
Let δ−i and δ+i for τi ∈ τHI \ {τk} denote the difference be-
tween maxOP−i (t

′) and the actual OP−i (t
′), and the difference

between maxOP+
i (t

′) and the actual OP+
i (t

′), respectively.
Then, for τi ∈ τHI\{τk} belonging to Subcase 3B of Lemma 7,
the following holds: δ−i + δ+i = UB2− − OP−i (t

′) + UB2+ −
OP+

i (t
′) = UB2−+UB2+−CHI

i = UB2−+CHI
i −LB2−−CHI

i ,
which is

(
maxOP−i (t

′) −minOP−i (t
′)
)
. The same holds for

τi ∈ τHI \ {τk} belonging to Case 2 of Lemma 7.

Then, the following inequality holds from Eq. (5):∑
τi∈τ DBF

LO
i (t′) + SumOP− −∑

τi∈τHI\{τk} δ
−
i ≤ t′

⇒∑
τi∈τ DBF

LO
i (t′) + SumOP− − t′ ≤∑

τi∈τHI\{τk} δ
−
i .

Similarly, we can derive the following inequality holds from
Eq. (6):∑

τi∈τHI DBF
HI
i

(
tend − �t′/Ti� · Ti

)
+ SumOP+ − (tend − t′)

≤∑
τi∈τHI\{τk} δ

+
i .

Note that the LHSes of the above two inequalites are the
same as DiffLO and DiffHI without the max operation.
Considering δ−i and δ+i are non-negative for every τi ∈

454



τHI \ {τk} by their definitions, if we combine the above two
inequalities, the LHS is DiffLO + DiffHI, and the RHS
is

∑
τi∈τHI\{τk}(δ

−
i + δ+i ) =

∑
τi∈τHI\{τk}

(
maxOP−i (t

′) −
minOP−i (t

′)
)
, which is equal to DiffOP. Therefore, the

supposition of non-existence of τk ∈ τHI that satisfies
DiffLO+ DiffHI ≤ DiffOP contradicts.

The time-complexity of Alg. 1 is O(n2), and there are
at most maxτi∈τHI Di choices of t∗ for any given J∗k in
Theorem 1. Therefore, if we test Theorem 1 using Alg. 1,
the time-complexity of Theorem 1 is O(n2 ·maxτi∈τHI Di).

While Theorem 1 focuses on the scenario of S1–S4 with
given tend > 0 and J∗k , we can find more infeasible task sets if
we apply every pair of tend > 0 and J∗k . The following lemma
calculates an upper-bound of tend > 0 as well as t∗ associated
with J∗k .

Lemma 10: If Eq. (5) is violated with any t∗, it is also
violated with some t∗ which is smaller than(∑

τi∈τ (Ti −Di) · CLO
i /Ti +

∑
τi∈τHI C

LO
i

)
/
(
1−∑

τi∈τ CLO
i /Ti

)
.

Also, if Eq. (6) is violated with any (tend − t∗), it is also
violated with some (tend − t∗) which is smaller than(∑

τi∈τHI (Ti −Di) ·CHI
i /Ti +

∑
τi∈τHI C

HI
i

)
/
(
1−∑

τi∈τHI C
HI
i /Ti

)
.

Proof: Simply applying the inequality in [12], [13] that
upper-bounds the demand bound function for SC task sys-
tems, we can derive the following inequality from Eq. (3):∑

τi∈τ DBF
LO
i (t) ≤ t ·∑τi∈τ CLO

i /Ti +
∑

τi∈τ (Ti −Di) · CLO
i /Ti.

Also, we use OP−i (t
∗) ≤ CLO

i and OP+
i (t

∗) ≤ CHI
i .

Using the above inequalities, if Eq. (5) is violated, the
following holds:

t∗ <
∑

τi∈τ
DBFLOi (t∗) +

∑

τi∈τHI
OP−i (t∗)

≤ t∗ ·
∑

τi∈τ
CLO

i /Ti +
∑

τi∈τ
(Ti −Di) · CLO

i /Ti +
∑

τi∈τHI
CLO

i

⇒ t∗ · (1−
∑

τi∈τ
CLO

i /Ti

)
<

∑

τi∈τ
(Ti −Di) · CLO

i /Ti +
∑

τi∈τHI
CLO

i

⇒ t∗ <

∑
τi∈τ (Ti −Di) · CLO

i /Ti +
∑

τi∈τHI C
LO
i

1−∑
τi∈τ CLO

i /Ti
.

Using the same technique, we can derive an upper bound
for (tend − t∗).

Applying Lemma 10, we can test the scenario of S1–S4
with all possible pairs of tend > 0 and J∗k with reasonable
time-complexity, yielding the following collective necessary
feasibility test.

Theorem 2: A MC task set τ is infeasible, if the following
collective necessary feasibility test finds at least one pair of
tend > 0 and J∗k that makes it impossible to satisfy both
Eqs. (5) and (6) subject to Lemma 7 and the constraint in
Lemma 8.

• Repeat Theorem 1 using Alg. 1 for every pair of
tend > 0 and J∗k that satisfies (i) tend is less than
the sum of upper bounds of t∗ and (tend − t∗) in
Lemma 10 and (ii) J∗k ’s release time is earlier than
the upper-bound of t∗ in the lemma.

Proof: By Alg. 1 and Theorem 1, the theorem holds.

One may wonder how to “Repeat Theorem 1 using Alg. 1
for every pair of tend > 0 and J∗k” in Theorem 2. First, by

adding two upper-bounds for t∗ and (tend− t∗) in Lemma 10,
we have an upper-bound for tend. Second, we target every job
J∗k whose execution window overlaps with [0, tend). For each
job J∗k , we calculate [t∗a(J

∗
k ), t

∗
b(J

∗
k )] using Lemma 4, and then

check all t∗ ∈ [t∗a(J
∗
k ), t

∗
b(J

∗
k )] using Alg. 1.

For a given tend > 0 and J∗k , Theorem 1 conducts Alg. 1 at
most maxτi∈τHI Di times, resulting in O(n2 ·maxτi∈τHI Di) as
explained. As proved in Lemma 10, the upper-bounds on tend

and (tend − t∗) are a pseudo-polynomial in the size of task
parameters (if the following condition holds:

∑
τi∈τ C

LO
i /Ti

and
∑

τi∈τHI C
HI
i /Ti are upper-bounded by some constant

strictly less than 1.0). Therefore, the overall time complexity
of the above collective necessary feasibility test in Theorem 2
is also pseudo-polynomial in the size of task parameters (if
the same condition holds).

We would like to emphasize that the collective necessary
feasibility test in Theorem 2 can check Theorem 1 for any
number of pairs of tend > 0 and J∗k , which can affect capability
in finding infeasible task sets, but cannot compromise the
correctness of whether task sets deemed infeasible by the test is
actually infeasible. Therefore, if time-complexity matters, we
can limit the number of pairs to be checked, at the expense of
sacrificing capability in finding infeasible task sets.

VI. SIMPLIFIED NECESSARY FEASIBILITY TEST

Although we successfully developed the necessary feasi-
bility test in conjunction with how to check the test with
all possible pairs of tend > 0 and J∗k with reasonable time-
complexity, one may demand another necessary feasibility test
such that (i) the time-complexity is comparable to Lemmas 2
and 3, and (ii) the capability in finding infeasible task sets
is easily compared with the lemmas. We now derive such a
test from the proposed necessary feasibility test in Lemma 8,
which addresses I6 in Section III-C in a different perspective.

Once we combine Eqs. (5) and (6) under the scenario of
S1–S4 with given tend > 0 and J∗k , the following combined
inequality holds:
∑

τi∈τLO
DBFLOi (t∗) +

∑

τi∈τHI
(execution requirement of all jobs of τi) ≤ tend.

Since the DBFLOi (t∗) term in the combined inequality is
the only term depending on t∗, the LHS of the combined
inequality non-decreases as t∗ increases. Therefore, if the
combined inequality is violated with t∗ = t∗a(J

∗
k ), it is also

violated with every t∗ in [t∗a(J
∗
k ), t

∗
b(J

∗
k )]. This implies that

the scenario is infeasible if the combined inequality is violated
with t∗ = t∗a(J

∗
k ).

In addition, we restrict to target J∗k as the first job of any
HI task, meaning that the execution requirement of every HI
job amounts to its HI WCET, yielding the following combined
inequality from Eqs. (5) and (6):

∑
τi∈τLO

DBFLOi (t∗a) +
∑

τi∈τHI
DBFHIi (tend) ≤ tend, (7)

where t∗a = minτi∈τHI C
LO
i . Then, the following theorem holds.

Theorem 3: A MC task set τ is infeasible, if Eq. (7) is
violated for given tend ≥ t∗a = minτi∈τHI C

LO
i .
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Proof: In the target scenario, it is impossible for any HI
job to trigger the mode change (by executing for its LO WCET)
before t∗a. Therefore, LO jobs should perform their execution
for as much as at least the first term of Eq. (7) in [0, tend]
with tend ≥ t∗a; otherwise, there exists a LO job’s deadline
miss at no later than t∗a. Also, HI jobs should perform their
execution for as much as the second term of Eq. (7) in [0, tend]
with tend > 0; otherwise, there exists a HI job deadline
miss. Therefore, the total execution requirement that should
be performed in [0, tend] is at least as much as the LHS of
Eq. (7) for tend ≥ t∗a.

It is trivial that the time-complexity of checking Theorem 3
with all possible tend ≥ t∗a is comparable to that of checking
Lemma 3 (or Lemma 2) with all possible tend > 0. Also, it is
easily observed that Theorem 3 exhibits higher capability in
finding infeasible task sets, than Lemma 3 (because the LHS
of Eq. (7) is no smaller than that of Eq. (4)).

Theorem 3 does not consider the constraints for the amount
of the contribution of HI jobs (whose execution window
includes the mode change instant) to the demand before and
after the mode change instant; in addition Theorem 3 tests
only one job for J∗k . Therefore, the necessary feasibility test
in Theorem 3 has lower capability than that in Theorem 2 in
terms of finding infeasible task sets, to be evaluated in the next
section.

VII. EVALUATION

We demonstrate the capability of the proposed feasibility
tests in covering a broader range of infeasible MC task sets.

Generation of task sets. We generate a synthetic task
set similarly in [14], [15], [16], which can be summarized
as follows. We have five input parameters: (i) the number
of tasks n ∈ {4, 6, 8, 10}, (ii) the probability (CP) of each
task τi having χi = HI ∈ {0.3, 0.5, 0.7}, (iii) the maximum
ratio (CF) of each HI task τi’s HI WCET to LO WCET,

i.e., CF
def
= CHI

i /CLO
i ∈ {2, 3, 4}, (iv) LO total utilization

ULO def
=

∑
τi∈τ C

LO
i /Ti, and (v) HI total utilization UHI def

=∑
τi∈τHI C

HI
i /Ti. We choose ULO and UHI from 0.45 to 1.00

with an incremental step of 0.05 (resulting in 12 choices),
respectively.

Given a 5-tuple (n,CP,CF, ULO, UHI) for a task set, each
task parameter is determined as follows: Ti is uniformly chosen
in [1, 1000]; χi is selected as HI with probability CP (and
as LO with probability (1.0 − CP)); CLO

i is determined by
using the UUniFast algorithm [17]; CHI

i is uniformly chosen in
[CLO

i +1,CF ·CLO
i +1], if χi = HI (and set to CLO

i , otherwise);
and Di is set to Ti for implicit-deadline task sets. Using
the above task parameters, we first generate 1,000 implicit-
deadline task sets whose LO and HI total utilizations are in
[ULO − 0.05, ULO] and [UHI − 0.05, UHI] for given ULO and
UHI, respectively, resulting in a total of 144,000 task sets for
given n, CP, and CF.

With the generated task sets, we compare the following
two proposed necessary feasibility tests:

• MC-NFT: the collective necessary feasibility test in
Theorem 2, and

• MC-NFT-S: the simplified version of MC-NFT in The-
orem 3.

Fig. 3. Detection ratio of MC-NFT and MC-NFT-S for constrained-
deadline task sets with different ranges of min(ULO, UHI) when n = 4,
CP = 0.5 and CF = 2

Simulation results. Fig. 1 in Section I shows the implicit-
deadline task sets (marked as red cross)—which were not
proven infeasible by any existing studies but which were newly
proven infeasible by MC-NFT and MC-NFT-S—in (ULO, UHI)-
plane when n = 4,CF = 2,CP = 0.5. In (ULO, UHI)-plane,
we focus on the region where 0.75 < max(ULO, UHI) ≤ 1.0,
yielding 95,000 task sets of interest among 144,000 generated
task sets. This is because all task sets in the other regions
where max(ULO, UHI) ≤ 0.75 and max(ULO, UHI) > 1.00
are already proved feasible [18] and infeasible [7], [8], [9],
respectively. It is observed that MC-NFT and MC-NFT-S can
newly find a number of infeasible task sets over a wider range
of LO and HI total utilization. It is also observed that MC-
NFT and MC-NFT-S identify significantly more infeasible task
sets as LO and HI total utilization become close to 1.0; for
example, among 1,000 task sets with 0.95 ≤ ULO ≤ 1.0 and
0.95 ≤ UHI ≤ 1.0, MC-NFT finds 325 (32.5%) infeasible
task sets. In total, MC-NFT and MC-NFT-S find 1,633 and
671 infeasible task sets, respectively, among 95,000 generated
task sets (note that all 95,000 task sets have not been proven
infeasible by any existing studies, while some of them may be
feasible).

We also generate constrained-deadline task sets to have the
same task parameter values as implicit-deadline ones except
setting Di uniformly chosen in [CHI

i , Ti]. Note that, among
144,000 constrained-deadline task sets for given n, CP, and
CF, we exclude all task sets that can be proven infeasible by
trivial necessary feasibility tests shown in Lemmas 2 and 3
and consider the remaining task sets as task sets of interest. In
order to show how many more infeasible task sets can be found
by our proposed tests, we use detection ratio as performance
metric, defined as the percentage of task sets that are deemed
infeasible by each individual necessary feasibility test to the
total number of task sets of interest.

Fig. 3 plots the detection ratio by MC-NFT and MC-NFT-S
while varying min(ULO, UHI) from [0.40, 0.45) to [0.95, 1.0].
We have the following observations. First, MC-NFT and MC-
NFT-S exhibit high capability in finding infeasible task sets in
that MC-NFT and MC-NFT-S find 20,679 (56.0%) and 3,041
(8.2%) total infeasible task sets, respectively, among 36,935
task sets of interests. Such high capability can be interpreted
as the benefit of dealing with unique issues pertaining to MC
task systems. In particular, higher capability for constrained-
deadline task sets (than that for implicit-deadline task sets)
mainly comes from accurate calculation on the execution
contribution of HI to the sub-intervals and precise constraints
thereof, in that we generate a constrained-deadline task set
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TABLE I. DETECTION RATIO AND AVERAGE RUNNING TIME OF

MC-NFT FOR CONSTRAINED-DEADLINE TASK SETS WITH DIFFERENT

NUMBERS OF TASKS (n) WHEN CP = 0.5 AND CF = 2

n 4 6 8 10
Detection ratio (%) 56.0 77.5 90.3 95.8

Avg. running time (ms) 0.11 0.18 0.20 0.24

by reducing the relative deadline of tasks in the corresponding
implicit-deadline task set. Second, both MC-NFT and MC-NFT-
S find more infeasible task sets as min(ULO, UHI) increases;
for example, using MC-NFT, 50.6% and 96.2% of the task sets
are proven infeasible with min(ULO, UHI) in [0.4, 0.45) and
[0.95, 1.0], respectively. This is due to the difficulty in meeting
all job deadlines of a task set with high min(ULO, UHI).
Third, MC-NFT is shown to outperform MC-NFT-S for all
values of min(ULO, UHI). This is because MC-NFT (i) derives
a tighter bound on the demand of HI jobs by considering
the relationship between the mode change instant and each
HI job’s execution window, and (ii) tests many choices of J∗k
(while MC-NFT-S tests one choice of J∗k ). Nevertheless, MC-
NFT-S has the same time complexity as in the SC task system
case, while finding some infeasible task sets.

Note that although, among generated task sets, there might
also exist feasible task sets that can be revealed using existing
schedulability analyses under some scheduling algorithms,
such as PLRS [3], EDF-VD [4], GREEDY [5], and ECDF [6],
we did not identify them in our evaluation. This is because
the number of task sets proven infeasible by this paper is
independent of those sufficient feasibility tests; instead, if we
exclude those feasible task sets from task sets of interest,
detection ratio in Fig. 3 will increase, implying that Fig. 3
as of now exhibits the minimum capability of the proposed
necessary feasibility tests in finding infeasible task sets.

In this section, we only show the results of n = 4,
CP = 0.5 and CF = 2, due to space limit, but similar
trends have observed for other input combinations. We now
briefly show the scalability of of MC-NFT with respect to the
number of tasks. Table I shows the detection ratio by MC-
NFT and its average running time to identify an infeasible
constrained-deadline task set with different numbers of tasks
when CP = 0.5 and CF = 2. MC-NFT exhibits higher
capability in finding infeasible task sets as the number of tasks
increases with a comparable running time. For example, as n
increases from 4 to 10, the detection ratio is increased from
56.0% to 95.8%, while the average running time is increased
from 0.11 ms to 0.24 ms3. This implies that MC-NFT is able
to scale to larger task sets.

VIII. CONCLUSION AND DISCUSSION

In this paper, we investigated characteristics of MC nec-
essary feasibility conditions and identified challenges for de-
riving those conditions. By resolving the challenges, we com-
pleted to develop a necessary feasibility test and its simplified
version, establishing foundations for necessary feasibility tests
for MC task systems, which is the first study that yields non-
trivial results for MC necessary feasibility. We demonstrated
that the proposed necessary feasibility tests find a number of
infeasible task sets which have been proven neither feasible
nor infeasible by any existing studies.

3The average running time was measured on a machine that has Intel i7-
8700K CPU.

While we successfully developed the necessary feasibility
tests, we have an interesting remaining issue as follows. As
to SC task systems, it has been proven that the collective
necessary feasibility test in Section III-A exhibits the highest
capability in finding infeasible task sets, by the fact that the
scenario of S1, S2 and S3’ maximizes the demand. Then, we
need to figure out the following questions for MC task systems:
(i) does the scenario of S1–S4 maximizes capability in finding
infeasible task sets? and (ii) if not, what is the best or at least a
better scenario? Although we did not present in this paper, we
already observed a counter example of showing that S2 does
not maximize the demand, which proves the answer of (i) is
no. Therefore, we would like to address (ii) in the future.
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