
MC-SDN: Supporting Mixed-Criticality Scheduling on
Switched-Ethernet Using Software-Defined Networking

Kilho Lee∗, Taejune Park∗, Minsu Kim∗, Hoon Sung Chwa†, Jinkyu Lee‡, Seungwon Shin§, Insik Shin∗
School of Computing, KAIST, Republic of Korea∗

Information and Communication Engineering, DGIST, Republic of Korea†
Dept. of Computer Science and Engineering, Sungkyunkwan University (SKKU), Republic of Korea‡

School of Electrical Engineering, KAIST, Republic of Korea§
Email: insik.shin@cs.kaist.ac.kr

Abstract—In this paper, we present the first approach to sup-
port mixed-criticality (MC) flow scheduling on switched Ethernet
networks leveraging an emerging network architecture, Software-
Defined Networking (SDN). Though SDN provides flexible and
programmatic ways to control packet forwarding and scheduling,
it yet raises several challenges to enable real-time MC flow
scheduling on SDN, including i) how to handle (i.e., drop or re-
prioritize) out-of-mode packets in the middle of the network when
the criticality mode changes, and ii) how the mode change affects
end-to-end transmission delays. Addressing such challenges, we
develop MC-SDN that supports real-time MC flow scheduling
by extending SDN-enabled switches and OpenFlow protocols. It
manages and schedules MC packets in different ways depending
on the system criticality mode. To this end, we carefully design
the mode change protocol that provides analytic mode change
delay bound, and then resolve implementation issues for system
architecture. For evaluation, we implement a prototype of MC-
SDN on top of Open vSwitch, and integrate it into a real
world network testbed as well as a 1/10 autonomous vehicle.
Our extensive evaluations with the network testbed and vehicle
deployment show that MC-SDN supports MC flow scheduling
with minimal delays on forwarding rule updates and it brings
a significant improvement in safety in a real-world application
scenario.

I. INTRODUCTION

Recent advances in embedded systems and communication
technologies have led to a growing presence of cyber-physical
systems (CPS). CPS generally relies on networks that intercon-
nect sensors, controllers, and actuators to achieve the function
of real-time sensing and dynamic control, such as vision-based
SLAM (simultaneous localization and mapping) in self-driving
cars. These networks often face new challenges with increased
demands on bandwidth and latency requirements that go
beyond the capacity of the standard networks. To address
such challenges, many CPS industries, such as automotive
and avionics, seek to develop next-generation networks using
switched Ethernet [1][2].

Another important trend in automotive and avionics indus-
tries is towards mixed-criticality (MC) systems that integrate
application components with different levels of criticality onto
common hardware platforms in order to reduce cost. The
scheduling problem of MC systems has been intensively stud-
ied in recent years, commonly addressing two seemingly con-
flicting goals: i) logical separation between applications with
different criticality levels and ii) efficient scheduling of shared
resources. A key principle in balancing such conflicting goals
is to employ mode-based MC scheduling such that the system
provides different levels of schedulability guarantee for dif-
ferent system modes. The majority of studies in the literature
proposed various scheduling algorithms and analyses (see [3]

for a survey), indicating that mode-based MC scheduling helps
improve schedulability in the case of processor scheduling [4],
[5]. Following this implication, a few studies investigated the
scheduling issue of MC flows on various networks including
Controller Area Network (CAN) [6] and Network-on-Chip
(NoC) [7]–[10], and the criticality-level management issue on
clock-synchronized switches [11]. However, no solutions are
yet presented that enable mode-based different scheduling for
MC flows in switched Ethernet networks.

In this paper, motivated by the above trends, we aim to sup-
port MC flows on event-triggered switched Ethernet networks.
In particular, we seek to develop mode-based in-network MC
flow scheduling, in order to enforce MC scheduling more
effectively and to accommodate even legacy flows. However,
it is not feasible to achieve it with traditional switches since
their static nature cannot support the dynamic behavior of
mode-based MC scheduling. As mentioned before, the mode-
based MC scheduler should take different actions in different
modes. However, traditional switches should use only static
scheduling behavior that is determined at design time. One
can update the firmware on switches in order to enable new
scheduling behavior, but firmware updates typically take long
and require reboots. Thereby, it cannot change scheduling
behavior at runtime.

Here, we propose to leverage Software-Defined Networking
(SDN) for supporting mixed-criticality flows on switched Eth-
ernet, taking advantage of its flexible nature. SDN is an emerg-
ing network architecture towards a novel control paradigm by
separating the roles of network control (i.e., control plane)
and packet forwarding function (i.e., data plane). The con-
trol function, formerly tightly bounded in individual network
devices, is migrated into external software, becoming directly
programmable. This new programmatic way of controlling the
forwarding function allows network managers to easily update
forwarding policies while the network is running. To this end,
a software-based SDN controller exchanges control messages
with SDN-enabled switches through a standard protocol such
as OpenFlow [12], to collect network information or manage
forwarding rules in each switch.

Despite the SDN opportunity, leveraging SDN for MC
scheduling raises several issues to explore, including detecting
and handling mode change. The system mode relies on the
behavior of each flow, such as a release interval and the
size of each periodic message, but SDN switches cannot be
aware of the behavior. In addition, it may impose long and
unpredictable delays in conducting mode changes based on the

288

2018 IEEE Real-Time Systems Symposium

2576-3172/18/$31.00 ©2018 IEEE
DOI 10.1109/RTSS.2018.00045

OpenFlow protocol, the de-facto standard SDN protocol. Our
motivational benchmark shows that the delay is up to 86 ms
with a large variation. Such a delay can be added to the end-to-
end delays of high-criticality flows and compromise real-time
guarantees for the flows. For instance, an obstacle-detecting
camera operating at 60 FPS in high-criticality mode may miss
its end-to-end deadline due to the mode change delay, and
such a deadline miss could cause a car crash.

This paper presents a novel SDN-based network system,
named MC-SDN, which effectively supports flow monitoring
and mode change for MC scheduling. We first perform an
empirical analysis of mode change delays and identify three
major delay factors: i) mode change arrangement, ii) new rule
update, and iii) out-of-mode packet handling. Leveraging such
findings, MC-SDN is designed to completely change the way of
mode change, a shift from a controller-driven centralized to a
switch-driven distributed approach. MC-SDN switches perform
flow behavior monitoring and conduct mode changes with
minimal delays. Each switch carries out an efficient update of
packet forwarding rules within SDN data plane and rearranges
packet queues accordingly. This way, MC-SDN eliminates the
causes of major delay factors, including OpenFlow communi-
cation with the SDN controller, intra-switch communication,
and out-of-mode packet transmission. Thus, MC-SDN not only
significantly reduces the mode change delay, but also strictly
limits its variation to derive a close upper-bound.

We have implemented a prototype of MC-SDN on top of
Open vSwitch [13] and evaluated it on a real-world network
testbed composed of 29 single board computers. Our extensive
evaluation shows that MC-SDN effectively reduces the mode
change delay by two orders of magnitude compared to the
standard SDN and that the delay stays strictly lower than its
upper bound. In addition, we show a case study on autonomous
driving, where MC-SDN is deployed in a 1/10 scale car1.
It shows that MC scheduling powered by MC-SDN helps to
improve the safety of the driving car in the real world.

The contributions of this paper are summarized as follows:

• Design of a novel mechanism, MC-SDN, to support MC
scheduling in switched Ethernet, which is, to the best
of our knowledge, the first work that develops mode-
based MC scheduling mechanisms on SDN/OpenFlow
networks;

• An insightful analysis that shows the limitations of the
standard SDN interface (i.e., OpenFlow) when supporting
mode change and identifies major delay factors;

• Derivation of a worst-case mode-change delay bound
under MC-SDN;

• Evaluation of MC-SDN that reveals orders of magnitude
improvement in mode change delays; and

• Demonstration of the effectiveness of MC-SDN, via a case
study of a scaled autonomous car, supporting MC flows.

II. SYSTEM MODEL AND BACKGROUND

A. System Model
Flow model. We consider a mixed-criticality system com-

posed of a set of periodic real-time flows on switched Ethernet

1See http://cps.kaist.ac.kr/mcsdn for our demo video illustrating how MC-
SDN supports real-time MC flows for Autonomous Emergency Braking.

network. A flow is a set of potentially unbounded series of
periodic messages. The message can be divided into multiple
packets, depending on the maximum transmission unit (MTU)
of the link (e.g., 1500 bytes on Ethernet). Each flow has a set
of properties and requirements specified by a set of attributes:
<period, size, deadline, criticality, source, destination, route>.
Period is a minimum separation time between two consecutive
messages. Size is a maximum byte size of each message. Dead-
line specifies a relative end-to-end deadline of each message
(Note that deadline ≤ period). Criticality is a criticality level.
Source and Destination specify a source node and a destination
node (with IP addresses and port numbers), respectively. Route
is a sequence of nodes that connects a source to a destination.

Since a message may consist of multiple packets, we
consider a network system where end nodes annotate message
information on between the transport layer and the application
layer as a shim-header; the header contains message id,
message size, and sequence number. The shim-header structure
is commonly used for message transmission libraries, such as
UDPROS in the ROS [14], a widely used framework for robot
and autonomous driving systems.

Priority based flow scheduling. Each switch in the network
stores and forwards messages according to the priority of each
flow. We consider switches that use a strict priority queue [15],
[16], which ensures that high priority packets are forwarded
ahead of low priority packets. The priority of each flow is
specified by forwarding rules of the switch; it is fixed unless
the forwarding rules are changed.

MC scheduling. Like other MC scheduling studies, this
paper considers dual-criticality systems having two criticality
levels, HI (high) and LO (low), for simplicity [6], [8], [9], [17],
[18]. Each HI flow comes with dual requirements for period
and size in HI and LO modes, respectively, while each LO flow
has a single requirement for LO mode. The correctness of the
dual-criticality system is defined as follows: it should satisfy
the LO requirement of all flows when the system is in LO mode,
and the HI requirement of every HI flow when the system is
in HI mode. The system starts in LO mode. If all flows satisfy
the LO requirement, the system stays in LO mode. However, if
any flow violates the mode-specific requirements (i.e., mode
violation) by generating messages more frequently or larger
than its LO requirement, the system then changes its mode into
HI mode (i.e., mode change) and each switch should update
its forwarding table with HI mode rules to favor HI flows; it
may drop LO flows or promote the priority of HI flows.

Priority assignment. We assume that the system utilizes
Rate Monotonic (RM) [19] priority assignment. The shorter
the period, the higher the priority. In HI mode, LO flows could
be dropped or changed to have the lower priority. Although
we consider RM in this paper, thanks to the generality of the
proposed system, it also supports any kind of fixed-priority
scheduling policy.

B. SDN Background and Opportunity
SDN is a recently devised networking technology, thanks to

its flexibility and cost-efficiency, now it is widely adopted in
real-world networking environments. Unlike legacy network
devices, it decouples its control plane, determining/handling
network policies, from the data plane, in charge of carrying

289

SDN Controller
Processor1

Processor2

Actuator2

Sensor2

Actuator1

Sensor1

SW4 SW3

SW2 SW1

(a) MC Networking system overview

SW1 (Starter) Controller SW2 (Follower)
t0

1 1

2
2

3 3

Time

Mode change
arrangement

(t0: Mode violation detection)

New rule update

Out-of-mode
packet handling

(b) Std-SDN: Controller-driven mode change

SW1
(Starter)

SW2
(Follower)

SW3
(Follower)

1

2

3

2

3

Mode change
arrangement

New rule update

Out-of-mode
packet handling

Time
(t0: Mode violation detection)

t0

(c) MC-SDN: Switch-driven mode change

Fig. 1: System architecture and mode change protocol overview

network packets, to enable dynamic and flexible network
control [20]. The decoupled control plane becomes a software
component running on a separate device; therefore, the data
plane requires and receives network policies from the remote
control plane. In addition, it standardizes an interface between
control and data planes, thus it helps network administrators
to focus on managing network policies. The most popular
network interface between the control plane and the data
plane is OpenFlow [12]. It handles traffic by a flow entry
determined by Match-Action tuple. Match contains a set of
match fields, such as source/destination IP addresses, to match
flow entries with incoming packets; and Action contains a set
of instructions how to handle the matched packets. Each switch
has a forwarding table which holds flow entries, and handles
packets according to the flow entries in the table. Note that we
will refer flow entry as rule in this paper, to avoid confusion.

The decoupled structure of SDN brings a high flexibility to
network management, and it has a great opportunity to support
a mixed-criticality (MC) scheduling which requires highly
dynamic packet handling (see Figure 1(a)). The main idea of
MC scheduling is to apply a differentiated scheduling policy
depending on the system mode. For example, a packet should
be forwarded in LO mode but dropped in HI mode. Despite the
demand for an MC scheduling, a traditional network system,
including switched Ethernet, is impossible to support that
due to the static nature. Traditional switches only use static
scheduling policy determined at design time. To change the
policy, a network administrator should update the firmware
of the switch by hand. It may take a long delay and require
reboots, thus it is impossible to change the policy at runtime.
On the other hand, the decoupled structure and the OpenFlow
interface of SDN enable switches to dynamically change the
policy, even at runtime. The flexibility of SDN could become
a key basis to support MC scheduling in switched Ethernet.

III. CHALLENGES OF MC SCHEDULING ON SDN

Despite the opportunity from the flexible nature of SDN, it
yet raises several challenges to enable real-time MC schedul-
ing on SDN. SDN lacks proper mechanisms for mode-based
scheduling, such as mode violation detection and mode change
protocols. Furthermore, SDN is originally designed without
considering real-time support. In particular, its centralized
control paradigm may yield long and unpredictable delays
during mode change, which is the most important feature
of MC scheduling. Thereby, this section examines significant
delay factors in mode change that will be the basis of our
proposed MC-SDN design.

A. Motivation Experiment: Controller-Driven Mode Change
We conducted benchmark experiments on a real-world net-

work testbed (refer to Section VII for the testbed details), in
order to estimate how long it takes to complete mode change.
For the experiment, we developed a basic controller-driven
mode change approach in accordance with the principle of
the standard request-response SDN protocol, as follows (see
Figure 1(b)). A switch sends a mode change request to the
SDN controller upon seeing a predefined flag in a packet
(i.e., Note that we used the flag since a default SDN switch
has no way to detect mode violation), as if it observes a
mode violation. Upon receiving the request, the controller
deploys new rules to all switches. During the experiments,
we measured mode change delay as an elapsed time between
the time to send a mode change request and the time all the
switches are ready to handle packets according to the new
HI mode rules. The experiments were performed on a small
network, where a switch and end nodes are connected in a
star topology. A SDN controller is connected to the switches,
and it deploys 30 HI rules in mode change. Figure 2 depicts
an empirical CDF (Cumulative Distribution Function) of the
mode change delay of 100 trials. The figure shows that the
mode change delay fluctuates widely and takes as long as
86 ms in the worst case. Such a long delay could damage
real-time guarantee of the HI flow. For instance, an obstacle
detecting camera which operates at 60 FPS in HI mode (i.e.,
period of 16.7 ms) may miss a deadline due to the delay.

Avg.(Stdev.) (ms)
Overall 50.65 (±17.94)

Mode change
31.83 (±10.54)

arrangement

New rule update 12.06 (±0.52)

Out-of-mode
9.12 (±8.06)

packet handling

TABLE I: Breakdown of mode
change delay

0

1

0 50 100

E
m

pi
ri

ca
l C

D
F

Latency (ms)

Fig. 2: Empirical CDF of
mode change delay

B. Breakdown of Mode Change Delay
The controller-oriented principle of SDN causes long mode

change delays. As shown in Table I, we break the delays
down into three parts to closely investigate delay factors: i)
mode change arrangement, ii) new rule update, and iii) out-
of-mode packet handling (see Figure 1(b)). The remainder of
this section elaborates delay factors in each step.

Mode change arrangement. The mode change arrange-
ment step involves OpenFlow communication between the

290

controller and switches, which is the root cause of the mode
switch delay. The mode switch starts when a switch detects HI
mode flow behavior and sends a mode change request to the
controller. In response to the request, the remote controller
sends HI mode rules enclosed in OpenFlow messages to
every switch. With the messages, each switch i) recognizes
mode change and ii) receives new rules for HI mode. Such
controller-switch communication typically causes a significant
delay. According to a measurement study [21], OpenFlow
communication throughput and latency widely vary depending
on the controller’s setup and load; for instance, the latency
varies from 100 μs to 1268 ms. As shown in Table I, we also
observe that the OpenFlow communication delay is long and
fluctuated (up to 50 ms) despite our simple benchmark setup.
It is very difficult to reduce and bound the delay, since the
controller consists of complicated software layers such as an
OS network stack, a SDN controller framework, and a SDN
controller application. An OpenFlow message passes through
those layers and could be delayed by a scheduling policy or
an optimization technique (e.g., batching) in each layer.

New rule update. The rule update step includes commu-
nication between switch internals, which incurs significant
delays. This step starts when a switch receives new HI rules
from the controller and finishes when the switch updates its
forwarding table with the new rules. The main cause of delay
in this step lies in the design structure of SDN switch. A SDN
switch typically comprises a number of independent modules
following the principle of modular design for performance and
management. For example, switch manager module receives
forwarding rules from the SDN controller through OpenFlow
communication, and the forwarding rules are transferred to
datapath module that conducts packet forwarding according to
the rules, which causes non-negligible internal communication
delays. Our benchmark experiment results show that it can
take up to 14 ms in Open vSwitch, which is the de facto
standard software switch, for the datapath module (a kernel
module) to bring forwarding rules from the switch manager (a
user process). Note that this step can partially overlap with the
mode change arrangement step (see Figure 1(b)). Yet, the delay
of this step is too long to hide in the overlap; our benchmark
experiment shows that the average overlap is 2.35 ms and the
standard deviation is 0.18 ms. It is very difficult to reduce and
bound the delay because the internal communication channel
is highly complicated due to optimization techniques, such as
asynchronous I/O and batching.

Out-of-mode packet handling. The out-of-mode packet
handling step also incurs a long delay. When the rule update
step has been done, the packets that were enqueued according
to LO mode rules could remain in the queue (note that we call
them out-of-mode packets), and they may delay HI flows. In
our benchmark, we observed up to 240 out-of-mode packets
(1442 bytes each) when two LO flows and one HI flow share a
link; it takes up to 27 ms to transmit them at 100 Mbps. This
delay is very hard to reduce since the link speed depends on
the physical constraints.

IV. MC-SDN: SYSTEM DESIGN

We propose MC-SDN that supports real-time MC scheduling
on SDN, addressing the challenges raised to enable mode

Queueing Module Datapath Module

Control
Plane

Forwarding Table

Switch Manager Module

Flow Behavior
Monitor

Remote Network Controller

Switch Configurator

Data
Plane

OpenFlow Handler Datapath Interface

Mode Change
Arranger

MC Queue
Controller

Priority Queue
MC Rule Manager

HI mode rules stored
in Shadow Table

Notify

Mode
change

Rule
update

Packets Enqueue Forward

Mode change
propagate

1st priority
signal
packet

Fig. 3: MC-SDN system architecture

change properly. It completely shifts the way of conducting
mode changes from controller-driven to switch-driven (i.e.,
from Figure 1(b) to Figure 1(c)) with careful design of data
plane components. This new approach not only significantly
reduces mode change delays but also strictly limits the delays
to predictable upper-bounds.

As shown in Figure 1(c), MC-SDN adopts a paradigm of
switch-driven mode change, where switches detect mode vi-
olation and enable mode change without the controller being
involved. To this end, MC-SDN extends SDN data planes with
four additional components (see blue components in Figure 3).
Flow Behavior Monitor carries out a new monitoring function
to detect flow behavior that violates mode-specific require-
ments. When a switch detects any mode violation (i.e., HI mode
behavior), the switch (called starter) triggers mode change
such that its Mode Change Arranger notifies this event to
all other switches (called followers) to enable the system-
wide mode change, which reduces communication delays
substantially bypassing the SDN controller. After sending a
mode switch signal or receiving the signal, MC Rule Manager
updates a forwarding table with its own new mode rules
stored locally (proactively received HI rules) while minimizing
delays in rule updates. The MC rule manager does not only
completely eliminate OpenFlow communication, which is a
main cause of the mode change delay, but also minimizes
intra-switch communication, which is another major delay
factor. When the forwarding table update is finished, MC
Queue Controller rearranges queues based on the new rules to
significantly reduce additional delays caused by out-of-mode
packets. The rest of this section describes the design principles
for each component and how to address the challenges, and
Section V details implementation issues.

A. Flow Behavior Monitor

Beyond a simple byte counter of the current SDN switches,
Flow Behavior Monitor provides additional monitoring ca-
pability of flow behavior such as message sizes and arrival
intervals. Even though switches are capable of monitoring
such advanced features, yet it is not straightforward to de-
termine whether or not flows behave according to per-mode
requirements. As an example, suppose several messages of
a flow arrive at a switch more frequently than the LO mode
period of the flow. This can happen because the flow actually
transmits messages at a faster rate, or because those messages
arrive close together due to irregular network congestion. In

291

the former case, it is necessary to change to HI mode. So it is
important to understand situation accurately. To this end, we
perform traffic pattern analysis based on the sporadic invariant
with a guide time [6]. For each message k in a flow τ , the
monitor checks Cτ,k and Eτ,k, where Cτ,k and Eτ,k represent
the size and the arrival time of message k, respectively. The
monitor also calculates a guide time, Gτ,k, which is a bound
of an arrival time, Eτ,k. Two consecutive messages could be as
close as either i) LO period − release jitter (i.e., Tτ (LO)−Jτ),
if the last message arrived later than its guide time, or ii) LO
period (i.e., Tτ (LO)), if messages are arriving at the maximum
rate. Thereby the guide time is calculated as

Gτ,k(LO) = max{Gτ,k−1(LO), Eτ,k−1 − Jτ}+ Tτ (LO) [6]

For each message k of flow τ , if Eτ,k ≥ Gτ,k(LO) the
message k’s behavior is valid for LO mode. Otherwise if
Eτ,k < Gτ,k(LO), the message k is no longer valid in LO
mode (i.e., it shows HI mode behavior). In addition to this
inequality [6], if Cτ,k ≤ Cτ (LO), where Cτ (LO) is a LO
mode message size requirement of flow τ , the message k’s
behavior is valid for LO mode. Otherwise if Cτ,k > Cτ (LO),
the message k shows HI mode behavior. Once the monitor
observes the HI mode behavior, it initiates a mode change by
utilizing other MC-SDN components presented in the following
subsections.

B. Mode Change Arrangement
MC-SDN uses switch-driven mode change to effectively

reduce and bound the delay of the mode change arrangement.
It completely eliminates OpenFlow communication between
the controller and switches, which is the root cause of the
delay. Instead, it employs the minimal communication between
switches, which imposes only a little delay.

When a switch detects a mode violation, its mode change
arranger requests all other switches to change to the new mode
by sending highest-priority signal packets to all ports (i.e.,
signal flooding). Once the signal reaches another switch, the
switch becomes aware of the mode change and propagates
it again. Such signal propagation takes only a short delay to
transmit small packets and even can be hidden by overlapping
with the transmission of the mode-violating packets.

In the controller-driven mode change paradigm, the key role
of the SDN controller is to distribute the packet forwarding
rules of a new mode to all switches, which incurs a significant
delay in the mode change arrangement. For instance, it can
take up to 50 ms in our preliminary experiment shown in
Section III-A. In order to exclude such a delay completely in
a mode change, MC-SDN caches new mode rules in advance.
When the system starts or a new flow joins the system, the
controller deploys not only LO mode rules but also HI mode
rules to each switch. As default, each switch then equips its
forwarding table with LO mode rules and stores HI mode rules
into a separate place, called shadow table. When the switch
changes to HI mode, it no longer downloads HI mode rules
from the remote controller since it can use the HI rules cached
in the shadow table.

This way, it effectively reduces the delay of this step to
the signal propagation latency, which is much shorter, since
it completely eliminates communication with the controller.

As shown in Figure 1(c), switches are able to immediately
proceed to the next step as soon as propagating signal packets.
Furthermore, it makes the delay in this step much more
predictable, since it goes through only data planes, which is
much simpler than the complicated software layers of the SDN
controller.

C. New Rule Update
The idea of storing HI mode rules proactively in a shadow

table allows to eliminate delays in external OpenFlow com-
munication with the controller. Yet, it can incur a significant
delay to update a forwarding table with the HI rules stored in
the shadow table due to the internal structure of a switch. The
switch often has a multi-layered architecture to effectively sup-
port multiple protocols and standards. It typically places SDN
protocol processing (i.e, OpenFlow processing) on one layer
and packet forwarding on another (with a forwarding table).
If the shadow table is placed on a different layer from the one
where packet forwarding is actually performed, it needs to go
through cross-layer internal communication within a switch,
which causes non-negligible, fluctuating delays. Furthermore,
such delays increase when the forwarding table is updated on
demand. Thus, MC-SDN places the shadow table into where
packet forwarding is actually performed (e.g., the datapath
of Open vSwitch), and updates the forwarding table without
any cross-layer communication. With this design principle, the
delay of the rule update step is reduced to the data copy cost
between two tables, which is much faster and easy to bound.

D. Out-of-Mode Packet Handling
MC-SDN proposes an advanced queueing feature to reduce

the delay in the out-of-mode packet handling step. MC Queue
Controller enables to apply HI mode rules to out-of-mode
packets, thereby each switch no longer requires to wait until
all out-of-mode packets have been transmitted. To do this,
it extends the priority queue; it enables a switch to hook
enqueued packets before transmitting them. After all HI rules
have been updated, the MC queue controller hooks all packets
in the priority queue, and applies new (HI) rules to those pack-
ets. Those packets could be discarded or requeued, according
to the HI rules. Note that a flow has a differentiated policy
according to the mode; a flow could be forwarded in the
LO mode but dropped (or assigned a lower priority) in the
HI mode. The MC queue controller allows to handle out-of-
mode packets with much shorter delay. In particular, it would
be much effective for the system which uses a low bandwidth
network link.

V. IMPLEMENTATION

This section discusses implementation issues for MC-SDN, in
particular, for Open vSwitch (OVS) [13], [22], which is the de
facto standard software switch for OpenFlow implementation.

Target System. We have implemented MC-SDN on top
of Open vSwitch (OVS) version 2.4.90, the POX network
controller [23], and Linux version 3.10.107. It is worth to
describe the internal structure of OVS for ease of under-
standing this section. As shown in Figure 4, OVS consists of
two components, vswitchd and kernel datapath. The vswitchd
is a user process in charge of switch management, and it

292

Vswitchd
(User
process)

OpenFlow Handler (ofproto)

Kernel datapath
(Kernel module)

Datapath Interface (dpif)

Forwarding Table Shadow Table

Cached
Forwarding Table

Cached
Shadow Table

Cache miss upcall &
Rule entry update

Rule entry
injection

Update

Update

OpenFlow communication with
the remote controller (POX)

Fig. 4: MC-SDN implementation on Open vSwitch

contains a forwarding table, OpenFlow Handler (ofproto)
for communication with the remote controller, and Datapath
Interface (dpif) for communication with the kernel datapath.
The kernel datapath is a Linux kernel module responsible for
packet forwarding. In order to maximize packet forwarding
throughput, it has a cached forwarding table which holds a
subset of rules in the forwarding table. Those OVS internals
closely interact with each other.

A. Shadow Table for New Rule Update

The shadow table is a key component in reducing mode
change delays, and it is one of the most challenging parts
to implement due to the complicated structure of forwarding
tables. Upon receiving an incoming packet, the kernel datapath
first looks up its cached forwarding table; if it cannot find a
matching rule, it notifies a cache-miss (i.e., MISS_UPCALL)
to vswitchd and brings the matching rule from it (See Fig-
ure 4). According to the design principle of the shadow table, it
should be located in the kernel datapath and be able to directly
update the cached forwarding table. Therefore, as shown in
Figure 4, we have implemented the shadow table and the
cached shadow table on the vswitchd and the kernel datapath,
respectively.

Then, it raises an issue of how to update the cached
shadow table in the kernel datapath. A naive approach is
to simply invalidate the rules in the cached shadow table
and to update them upon cache misses. However, this in-
troduces non-negligible delays, which cannot overlap with
other delay factors. Thus, we updated the cached shadow
table proactively by extending datapath interface (dpif); it can
inject (or remove) rules into the cached shadow table without
the cache miss/update protocol. In addition, we also imple-
mented new OpenFlow commands, OFPFC_ADD_SHADOW,
OFPFC_MOD_SHADOW, and OFPFC_DEL_SHADOW, that
support to add, modify, and remove a rule entry in the shadow
table, respectively. With those extensions, the cached shadow
table can hold HI mode rules within the kernel datapath in
advance of mode change.

B. OpenFlow Extensions for Mode Change Arrangement

We implemented the features of flow behavior monitoring
and mode change arrangement as new functions in the kernel
datapath with well-defined interfaces for performance and
management. To this end, we implemented them as Open-
Flow actions through OpenFlow Experimenter Extension. This
demands a great deal of effort since it requires to extend
all SDN layers; it includes new APIs for POX applications,

an extended encoder/decoder in the POX library, extended
message handlers and interfaces in ofproto and dpif, a new data
structure in each OVS module, and the functions themselves.
Our implementation added around 4,000 and 2,000 lines of
code into OVS and POX, respectively.

Flow behavior monitoring is implemented as an OpenFlow
action, named OFPAT_FLOW_MONITOR. This action is com-
bined with a forwarding action such as OFPAT_ENQUEUE;
thereby, it can check arrival times and shim-headers of pack-
ets before forwarding them. Executing the monitor would
impose a delay, but this delay is small enough to be hid-
den between packet transmissions (See Section VII-C for
more details). Mode change arrangement is implemented as
another OpenFlow action, named OFPAT_MODE_ARRANGE.
When detecting a mode violation, OFPAT_FLOW_MONITOR
calls OFPAT_MODE_ARRANGE to trigger mode change.
OFPAT_MODE_ARRANGE propagates a mode change signal
packet that contains a predefined L2 header (i.e., 0x0F00
in EtherType field); each switch distinguishes the signal
according to that field. It also includes switch-id field to avoid
broadcast storms by examining redundant signals.

C. MC Queue Controller for Out-of-Mode Packet Handling

During mode change, MC-SDN rearranges queues to drop out
of mode packets or demote their priorities. MC-SDN utilizes
the PRIO Linux queuing discipline (TC-PRIO) [16], which
has a number of child queues and ensures to transmit packets
only if all higher priority child queues have been empty.
Extending the queueing discipline is not trivial, since small
changes can yield serious side effects such as throughput
degradation. We placed a hooking routine between dequeueing
and transmitting packets; after the rule update is done, MC-SDN
deqeues and hooks packets in the queue, and applies new rules
to those hooked packets. They could be requeued or discarded
depending on the new rules. Since each child queue in the
PRIO queueing discipline is nothing but a simple FIFO queue,
dequeueing packets only imposes a very small overhead. In
addition, it also incurs very little overhead to requeue and
discard packets, since they are implemented as light weight
pointer copy and memory free operations, respectively.

To avoid side effects on normal packet forwarding per-
formance, we never modified the queueing logic itself, and
carefully maintained the consistency of internal data such as
packet counters. Section VII-C presents experimental results
that indicate the MC queue controller imposes a negligible
effect on normal packet forwarding throughput even together
with the flow behavior monitor.

VI. MODE CHANGE DELAY ANALYSIS

In this section, we derive an upper bound of the mode
change delay of MC-SDN.

A. Analytic Bound

As we explained in Section III-B, the mode change delay
of MC-SDN consists of three components, and therefore we can
express the worst-case mode change delay of MC-SDN (denoted
by Dmc) as follows.

Dmc = Darrange +Dupdate +Dq−handle, (1)

293

where Darrange, Dupdate, and Dq−handle denote the worst-
case delays of mode change arrangement, new rule update, and
out-of-mode packet handling, respectively. We now investigate
individual delay components.

Since mode change arrangement delay is the time to prop-
agate signal packets to all switches in the network, its upper-
bound Darrange can be calculated by the worst-case delay on
each hop, multiplied by the maximum hop distance to propa-
gate the mode change signal (denoted by Nlink). Considering
the worst-case delay on each hop can be expressed as the sum
of the worst-case delay of transmission, propagation, queueing,
processing, and packet flooding overhead (denoted by dtrans,
dprop, dqueue, dproc, and dflood, respectively), Darrange can
be computed as follows:

Darrange = (dtrans + dprop + dqueue + dproc + dflood) ·Nlink.
(2)

Here, dtrans, dprop, and dqueue are determined by physical
properties of the network system such as link bandwidth,
physical link length, link propagation speed, and the number
of non-preemptible packets. Other delay components dproc and
dflood are dependent on switch architecture.

With the MC-SDN design principles, the new rule update and
the out-of-mode packet handling steps become nothing but
iterations of simple operations; Dupdate and Dq−handle can
be expressed as a function of the number of rules to update
(Nrule) and out-of-mode packets (Npacket), respectively:

Dupdate = dcopy ·Nrule + du−misc, (3)

Dq−handle = dq−handle ·Npacket + dq−misc, (4)

where dcopy is the maximum required time to copy each rule
from the shadow table to the forwarding table; du−misc is an
additional rule-update overhead regardless of Nrule; dq−handle

is the maximum required time to handle each out-of-mode
packet; and dq−misc is an additional overhead regardless
of Npacket. The additional overheads du−misc and dq−misc

include execution costs to initialize and finalize the iterations,
for example, referring internal data structures to access the
table and queue.

We calculate the worst-case mode change delay of MC-
SDN (denoted by Dmc) by decomposing it into the three
components, each of which also consists of several computable
sub-components. Once we upper-bound the worst-case delays
of the three components and therefore Dmc, we can incor-
porate Dmc into schedulability tests, by adding Dmc to the
transmission time of HI flows.

B. Upper Bound of Delay Components
In this subsection, we detail how to calculate each delay

component in the delay bound, using the real network testbed.
The testbed consists of Odroid-XU4 [24] single board comput-
ers equipped with Realtek r8152 [25] USB Ethernet interfaces
(see Section VII for details). Note that some delay bounds
(e.g., dtrans, dprop, and dqueue) are analytically derived based
on the physical properties (e.g., link bandwidth, physical link
length, and link propagation speed) shown in the testbed. Other
delay bounds are empirically derived at the 99.5% confidence
level based on execution samples in the testbed.

Component
Bound Average Stdev Number of

(μs) (μs) (μs) samples
Overall 1453.45 - - -
dprop 0.53 - - -
dtrans 4.6 - - -
dqueue 600.64 - - -
dproc 766.90 764 41 1300
dflood 80.78 80.02 1.61 30

TABLE II: Upper-bounds of mode change arrangement delay
components

Mode change arrangement. Mode change arrangement
delay Darrange consists of 5 components as presented in Ta-
ble II, which can be modeled as a typical end-to-end network
delay. The link propagation delay dprop is known as 530ns at
100 meters of Cat.5e UTP Ethernet Cable [26]. We use this
value as a safe upper bound, since our system only uses a 1-2
meter-long Ethernet cable. The link transmission delay dtrans
is calculated as packet length

allocated bandwidth . Since a signal packet has
the fixed length of 58 bytes and utilizes full network bandwidth
of 100Mbps (note that it has the highest priority), dtrans
can be calculated as 58∗8bits

100Mbps = 4.6μs. The queueing delay
dqueue can be upper-bounded by the transmission time of non-
preemptible packets. Once some packets are sent out from the
priority queue (by Linux TC-PRIO queueing discipline), they
are delivered to the device driver buffer and finally transmitted
to the NIC hardware in a FIFO order. Although the mode
change signal packet has the highest priority, it may be blocked
by the packets already placed in either the device driver or the
NIC hardware (i.e., r8152 [25]) ahead of the signal packet.
Considering that the device driver and the NIC hardware can
store packets up to 5,460 and 2,048 bytes, respectively [27],

dqueue can be calculated as
(5460+2048)∗8bits

100Mbps = 600.64μs. The
processing delay dproc and the packet flooding overhead dflood
are estimated as the maximum values in the 99.5% confidence
intervals based on empirically obtained samples. In addition,
Nlink can be upper-bounded by the maximum value among
the hop distances between any two switch nodes.

Component
Bound Average Stdev Number of

(μs) (μs) (μs) samples
dcopy 3.95 3.80 0.94 280

du−misc 50.04 49.72 0.68 30
dq−handle 1.06 1.04 0.44 5200
dq−misc 2.07 1.92 0.32 30

TABLE III: Upper-bounds of new rule update and out-of-mode
packet handling delay components

New rule update and out-of-mode packet handling.
The delay components of new rule update and out-of-mode
packet handling delays are also estimated as the maximum
values in the 99.5% confidence intervals. In order to obtain
the execution samples, we measured the time at which each
execution starts and finishes within the datapath module by
using the getnstimeofday() kernel function. Table III
describes the statistics of the measured samples and the
corresponding delay bounds. Note that in out-of-mode packet
handling, the discard operation takes much longer time than
the requeue operation does, since the former requires to free
some memory space while the later only needs a simple pointer
copy operation. Therefore, dq−handle is upper-bounded by the
discard operation instead of the requeue operation. In addition,

294

Nrule and Npacket can be upper-bounded by the maximum
number of rules and the maximum queue length of each
switch, respectively.

The proposed upper-bound has the 99.5% confidence level
under the assumption that the population has a normal dis-
tribution. For a higher assurance, we can apply static WCET
analysis techniques [28]. In addition, the worst-case bound
of each component could be tighter through optimizing each
mode change step. For example, the order of rule updates
could be rearranged by taking into account the underlying
system cache structure [29], [30].

VII. EVALUATION

In this section, we evaluate MC-SDN by answering the
following questions:

• How much delay does MC-SDN incur during mode
change? (Section VII-A)

• How does the mode change affect end-to-end transmis-
sion time under MC-SDN? (Section VII-B).

Experimental setup. Experiments were performed on a net-
work testbed (see Figure 5(a)), which consists of 20 end nodes
(Beaglebone-Black [31] boards), 9 software switches (Odroid-
XU4 [24] boards), and a SDN controller (A desktop with Intel
i5-3750 and 32GB RAM). To increase the connectivity of
switch nodes, we equipped each switch node with additional 4
USB Ethernet interfaces (Realtek r8152 [25]) with a USB2.0
hub (Belkin F4U040kr). Switch nodes and end nodes were
connected via 100 Mbps Ethernet, and each switch had a
dedicated Ethernet interface for the remote SDN controller.

Metrics. We measured mode change delay as an elapsed
time from the instant at which a switch detects mode violation
to the instant at which all switches finish their forwarding
tables with new mode rules and penalize out-of-mode packets.
We also measured End-to-end transmission time as the time
taken to transmit a message from its source to a destination.
For measurement, all switches and end nodes were synchro-
nized by NTP (Network Time Protocol) with an accuracy of
less than 1 ms.

Mode-based scheduling. Unless stated otherwise, each
switch prioritizes packets according to RM (rate-monotonic)
while scheduling both HI and LO flows in LO mode but
dropping LO flows in HI mode. Note that in LO mode, LO flows
could be assigned higher-priorities than HI flows depending on
their periods. For comparison, Std-SDN indicates the controller-
driven mode change approach based on the standard SDN
protocol, as described in Section III-A. MC-Agnostic indicates
a non-MC approach that does not conduct mode change; it
keeps using RM scheduling without dropping any LO flows
even though a HI flow shows HI behavior.

Network topology. Experiments were performed on vari-
ous network topologies: star, grid, and linear as shown in
Figure 5(b), 5(c), and 5(d), respectively,

A. Mode Change Delay

We ran various experiments to examine how well MC-SDN
addresses several delay factors of mode change. During the
experiments, we ran a single HI flow that transmits a message
of up to 180 KBytes in LO mode with a period of 100 ms.

When the HI flow violates its LO mode requirement of message
size (i.e, 180 KBytes), a mode change to HI mode occurs.

Figures 6(a) and 6(b) show the mode change delays of Std-
SDN and MC-SDN over different network topologies, while the
HI flow went through all switches in each network topology.
In the figures, the labels of 1, 50, and 100 on the x-axis
indicate how many new rules to update in the forwarding
table, respectively; we will describe the label of 100+ in the
following paragraph. The figures show 20 measurements while
each gray box covers 25th to 75th percentiles with the line
inside indicating 50th percentile, and the error bar represents
the minimum and maximum delays. In every scenario, the
figures show that Std-SDN incurs significantly larger and highly
fluctuating mode change delays than MC-SDN does (note the
different scales on the y-axis).

Figure 6(b) also depicts the delay bound as a dotted-
line; we calculated the bound with the values presented in
Section VI-B. To calculate the bound, we used Nlink of 0, 4,
and 8 according to the topology, Npacket of 1000 based on
the maximum queue length of network interfaces, and Nrule

identical to the number of flows to update. The figure shows
that MC-SDN not only effectively reduces the mode change
delay, but also strictly limits the delay to the upper bound.

Mode change arrangement. Figure 6 shows that the dis-
tributed way of mode change arrangement of MC-SDN yields
much shorter delays than the centralized way of Std-SDN. In
particular, even though it needs to update the minimal number
of rules (i.e., only one rule), the figures show that MC-SDN
effectively reduces delays by an order of magnitude in the
mode change arrangement step while eliminating OpenFlow
communication. We note that the delay of MC-SDN includes
delays in mode change propagation along switches. In grid
and linear topologies, it should propagate up to 4 and 8 hops,
and the delay increases as its propagation distance grows2.

New rule update. Figure 6 shows that the delay generally
increases when each switch has a larger number of rules to
update, but in a different order of magnitude between Std-
SDN and MC-SDN. When updating 50 and 100 rules in mode
change, Std-SDN imposes additional long delays (up to 92 ms)
that vary significantly, while MC-SDN adds only 0.2-0.3 ms.
This is because MC-SDN updates the forwarding table with
the information stored in the shadow table by eliminating
external communication with the remote SDN controller and
minimizing intra-switch cross-layer communication.

Out-of-mode packet handling. To evaluate the out-of-
mode packet handling, we ran experiments with two additional
LO flows that share the links with the HI flow, where 100 rules
are updated in mode change. Each LO flow has the period of
100 ms and the size of 490 Kbytes. Figure 6 shows the results
on the x-axis labeled 100+. It shows that while Std-SDN adds
high fluctuations in the order of tens of millisecond (up to 24
ms), MC-SDN increases the delay only in microseconds (up to
310 μs). This is because MC-SDN immediately drops out-of-
mode packets (i.e., LO flows) out of the queue, while Std-SDN
transmits those LO flows.

2We note that the propagation delay is slightly high (i.e, about 0.7 ms per
hop) due to the poor performance of USB Ethernet in our setup; it could be
significantly lowered when just using PCI or on-board Ethernet cards.

295

(a) Testbed picture

end

end end

end

sw

(b) Star topology

sw

sw

sw

end

end

sw

sw

sw

end

end

sw

sw

sw

end

end

end

end

end

end

end

end

(c) Grid topology

9 switch nodes

sw sw

end end

end end sw sw

end end

end

end

end

end

(d) Linear topology

Fig. 5: Network testbed and various topology

0

100

200

1 50 100 100+ 1 50 100 100+ 1 50 100 100+
Star topology Grid topology Linear topology

M
od

e
ch

an
ge

 d
el

ay
 (m

s)

Number of rules to update

(a) Std-SDN

0

5

10

15

1 50 100 100+ 1 50 100 100+ 1 50 100 100+
Star topology Grid topology Linear topologyM

od
e

ch
an

ge
 d

el
ay

 (m
s)

Number of rules to update

Upper bound

(b) MC-SDN
Fig. 6: Mode change delays with varying the topology, the number of rules to update, and the presence of out-of-mode packets

B. End-to-End Transmission Time
In this subsection, we evaluate the effect of mode change

on end-to-end transmission time over various experiment sce-
narios on the grid topology depicted in Figure 5(c).

0

150

300

0 100 200 300

E
nd

-t
o-

en
d

tr

an
sm

is
si

on
 ti

m
e

(m
s)

Flowset ID

MC-Agnostic
Std-SDN
MC-SDN

Fig. 7: End-to-end transmission times of the messages that
show HI behavior at the first time

In each experiment, we generated a set of up to 16 real-
time flows as follows. For each flow, we selected its period
randomly between 10 ms and 200 ms, a message size that
can be transmitted randomly between 10% and 40% of the
period on a 100 Mbps link, and a criticality to be HI with the
probability of 33%. In addition, we randomly determined its
source and destination nodes, and a route was determined as a
shortest path inbetween. During each experiment, one HI flow
was assigned to trigger a mode change by sending a message
M twice as big, and Figure 7 plots the end-to-end transmission
times of the message M on MC-SDN, Std-SDN, and MC-Agnostic,
respectively, in an increasing order of MC-SDN’s measurements
for the ease of presentation.

As shown in Figure 7, MC-SDN always results in end-to-end
transmission times that are smaller than or equal to the ones
of MC-Agnostic and Std-SDN. On average, MC-Agnostic and Std-
SDN incur 46 ms and 20 ms longer end-to-end transmission
times than MC-SDN, respectively; in the worst case, they
respectively show 211 ms and 102 ms longer results than
MC-SDN. The main reason of the longer transmission time
is the unintended interference by LO flows which should be

dropped in the HI mode. Although Std-SDN supports a mode
change, it is impossible to bound the interference due to
the unpredictability of the mode change delay; note that the
transmission time difference between Std-SDN and MC-SDN
widely varies in Figure 7. In some cases (34 out of 300 cases),
we observe that all systems result in identical transmission
times; this is because there are no LO flows which have higher
priority than the message M . Consequently, Figure 7 implies
that MC-SDN effectively reduces the mode change delay and
then improves schedulability of MC flows, in general cases.

C. Packet Forwarding Overhead

0

50

100

20 40 60 80 100

T
hr

ou
gh

pu
t (

M
bp

s)

Sending rate (Mbps)

MC-SDN Vanilla OVS

Fig. 8: Packet forwarding throughput

MC-SDN incurs some overhead in packet forwarding, since
each switch applies the Flow Behavior Monitor as an Open-
Flow action to each packet. In this subsection, we measured
the overhead of MC-SDN with the star topology testbed shown
in Figure 5(b). An end node generated messages with varying
the sending rate; the MC-SDN switch monitored the flow behav-
ior, and another end node measured the forwarding throughput.

In Figure 8, each bar graph with its error bar represents
the average overhead with the standard deviation of 20 trials,
and each trial ran for five seconds. We compare the result
with vanilla OVS, an unmodified version of OVS. The figure
shows that the throughput of MC-SDN is comparable to that
of vanilla OVS regardless of the sending rate. This is because
the action only incurs very short delay (i.e., the average of
760 ns per packet) that can be effectively hidden in between
packet transmissions. Besides, other components of MC-SDN

296

Sensors
(LIDAR, camera)

Actuators (motors)

Switches
(Odroid-XU4)

End nodes
(Jetson TK1, RPi3)

Fig. 9: 1/10 scale autonomous vehicle

except the flow behavior monitor (e.g., MC Queue Controller)
do not affect packet forwarding performance, since they are
not involved in normal packet processing. Consequently, the
overhead of MC-SDN for packet forwarding is negligible.

VIII. CASE STUDY: AUTONOMOUS VEHICLE

In order to show how real world systems benefit from MC-
SDN, we conducted a case study, supporting the Autonomous
Emergency Braking (AEB) system, on a 1/10 scaled au-
tonomous vehicle.

Autonomous Emergency Braking. AEB brakes the car
in emergency situations by predicting the risk of collisions
with detecting obstacles through various sensors. Since AEB
effectively lowers the risk of accidents, automakers have
agreed to equip it as a standard feature [32]. For instance,
Jaguar F-PACE equips with the depth camera based AEB [33].

Experiment setup. We have implemented a 1/10 scaled
autonomous car, as shown in Figure 9, which is extended
from the F1/10 autonomous racing platform [34]. The car
consisted of the Traxxas Rally 1/10 body with actuators
(i.e., motors) [35], sensors including a LIDAR (Hokuyo UST-
10LX [36]) and a depth camera (Intel Realsense R200 [37]),
Jetson TK1 [38] and Raspberry PI3 [39] boards for end nodes,
Odroid-XU4 [24] boards for switch nodes, and an additional
Raspberry PI3 for a SDN controller. As shown in Figure 10(a),
each node was connected with each other via 100 Mbps
Ethernet. And, sensors and actuators were connected to the s1
and d1 nodes, respectively, via USB or dedicated interfaces.
The car drove itself along the given trajectory, by using
the LIDAR-based Simultaneous Localization And Mapping
(SLAM) [40] and the PID controller for motors. They were
implemented as components of the Robot Operating Systems
(ROS) [14] framework.

Period (ms) Priority Size
Flow LO HI LO HI (KB) Src. Dst.
LIDAR 40 40 high high 8 s1 d1
STREAM 40 40 mid drop 432 s2 d2
CAM 200 22 low low 154 s1 d1

TABLE IV: Flow set specification in the car system

As shown in Table IV, the car system generated three real-
time flows: i) LIDAR for the LIDAR sensor data used for
SLAM, ii) STREAM for video frames of user entertainment,
and iii) CAM for image frames from the depth camera used
for AEB. Note that the period of the CAM flow had multiple
requirements according to the mode. When the car sees
obstacles while moving at high speed, AEB requires a high
sensing rate for responsive braking. In contrast, when the car
moves on the clear road at low speed, a low sensing rate could

be acceptable for AEB. To consider this characteristic, the s1
node skimmed through depth camera images and adjusted the
period; the period had a default value of 200 ms (i.e., LO mode
behavior), but it decreased to 22 ms (i.e., HI mode behavior)
when depth images contain some obstacles in front of the car.
In the LO mode, the car system handled all flows according
to the assigned priorities as shown in Table IV; on the other
hand, in the HI mode, the system dropped the STREAM flow
(i.e., a LO flow) to prioritize the LIDAR and the CAM flows
(i.e., HI flows).

Experiment scenario. Figure 10(b) illustrates the experi-
ment scenario. The car was placed 7 meters ahead of a wall,
and it drove itself towards the wall at the top speed of 2.1 m/s.
We restricted the camera’s field of view to 2 meters, to fix
the point where the car can detect the wall. We evaluated the
braking performance by observing several points as follows:
the detecting point where the wall could be detected by the
camera, the braking point where AEB sought to brake the
car, and the stopping point where the car completely stopped.
We define perception & reaction, braking, and total stopping
distances, respectively, as depicted in Figure 10(b) and use
them as performance metrics. To show the effectiveness of
MC-SDN, we used two baselines: LO Only and HI Only. They
are static systems which cannot change the forwarding rules. In
LO Only, all flows always generated messages according to the
LO mode requirement, and thereby all of them were handled
with priorities of the LO mode as presented in Table IV.
On the other hand, in HI Only, all flows operated as the HI
mode requirement, and thus the STREAM flow was dropped
according to the priority policy of the HI mode.

Implication. Figure 10(c) depicts the braking performance
of the car with varying underlying systems. Each box plot and
error bar represent the average and the standard deviation of
30 trials, respectively. In addition, the line graph represents
the worst result among the 30 trials. The main factor of the
performance is the perception & reaction distance; it depends
on how quickly the depth images which contain obstacles
could be delivered to the control node (i.e., the d1 node).

The figure shows that LO Only results in a long stopping dis-
tance; due to the long period of the CAM flow, the control node
(d1) cannot be quickly aware of the wall. Although LO Only
can efficiently utilize the resource (Note that it always serves
the STREAM flow), it may hurt the safety of the car system. In
contrast, HI Only results in a short stopping distance compared
to LO Only. It helps to provide the better safety of the car, but it
may waste the resource; it cannot serve the STREAM flow. On
the other hand, MC-SDN effectively supports MC flows which
have multiple requirements. The CAM flow changes its period
(from 200 ms to 22 ms) at the detecting point. MC-SDN timely
changes the mode and properly prioritizes the CAM flow while
dropping the STREAM flow. As a result, MC-SDN shows a
similar stopping distance compared to HI Only. At the same
time, it can accommodate the STREAM flow before the CAM
flow shows HI mode behavior.

This case study implies that MC-SDN effectively realizes
MC flow scheduling onto the real world system such as the
autonomous car. It enables the system to balance between two
conflicting objectives: efficient resource sharing and safety-
critical real-time requirements guarantee.

297

‡

(Streaming)

 (Sensors) ‡

(Controllers
& Actuators)

(Streaming)

(SDN Controller)

Shared
Link

*Jetson TK1, Raspberry PI3, Odroid-XU4

(a) System architecture and topology

0m 1m 2m 3m 4m 5m 6m 7m

w
al

l

Detecting
Point

Braking
Point

Stopping
Point

Driving at ~2.1m/s.

 Perception & Reaction Distance
 Braking Distance
 Total Stopping Distance

Detection
Range (2.0m)

(b) Evaluation overview

0.0

1.5

3.0

LO Only MC-SDN HI Only

D
ist

an
ce

 (m
)

Braking
Perception-reaction
Worst total stopping

(c) Stopping distances

Fig. 10: Evaluation with the 1/10 scale autonomous vehicle

IX. RELATED WORK

CPS network standard. Nowadays, several network stan-
dards for cyber physical systems have been established. Con-
trol Area Network (CAN) [41] and FlexRay [42] are industrial
standards widely used for automobiles. They construct bus-
based networks, and ensure reliable and deterministic data
transmission. Despite the reliability, the limited bandwidth of
them has led to Ethernet as a next-generation standard. Avion-
ics Full-Duplex Switched Ethernet (AFDX) [43] and BroadR-
Reach [2] are switched Ethernet based network standards for
avionics and automotive systems; they provide physical layer
standards for high bandwidth full duplex control networks.
Beyond the reliability of the standards, MC-SDN enables a
dynamic real-time flow management, which could be a key
property to improve control performance and user experience
of cyber-physical systems.

IEEE TSN Working Group. Time-Sensitive Networking
(TSN) is a standard suite under development by the IEEE
802.1 TSN Working Group. It defines Ethernet mechanisms
for time-sensitive traffic transmission including time syn-
chronization [44], path control and reservation [45], traffic
scheduling [46], and frame preemption [47]. They present key
technologies to enable more reliable packet transmission with
a small and predictable latency. However, TSN cannot support
the fast and predictable mode-based rule management, the key
idea of MC-SDN. Instead, TSN can be complementary to MC-
SDN. For instance, it can provide a tighter mode change delay
bound based on its advanced packet handling mechanisms.

Mixed-criticality network scheduling. Several pieces of
research have been studied to support MC flow management
(See [3] for a survey) for various networks, including a
Network-on-Chip (NoC) [7]–[10], Controller Area Network
(CAN) [6], and clock-synchronized switched Ethernet [11].
It is worthwhile to elaborate the latter work since it considers
clock-synchronized switched Ethernet for real-time industrial
networks, as we consider switched Ethernet in this paper. The
latter work proposes an extension to IEEE 1588 PTP (Preci-
sion Time Protocol) to broadcast a criticality level to all nodes
in the network, without considering how to change forwarding
rules to drop or re-prioritize packets when the system mode
changes. On the other hand, MC-SDN employs in-network MC
flow scheduling (through SDN-enabled switches), allowing to
handle packets in transit in different ways upon mode changes.

SDN for real-time networking. Recently, some studies
have proposed SDN approaches for supporting real-time flow
scheduling. Qian et al. [48] proposes a static routing algo-

rithm to guarantee timing requirements of real-time messages.
Kumar et al. [49] proposes a path finding algorithm subject
to latency and bandwidth requirement of real-time flows.
TSSDN [50] proposes a path finding and time slot allocation
algorithm to provides temporal and spatial isolation of real-
time flows. MIDAS [51] proposes an admission control based
on schedulability test of real-time flows. While the previous
studies focus on the control plane algorithms, MC-SDN provides
a novel data plane design which enables a dynamic network
management for MC scheduling.

X. CONCLUSION AND DISCUSSION

This paper presents the design and implementation of MC-
SDN that supports mixed-criticality real-time flows on SDN-
based switched Ethernet. It presents the first approach to
enable a criticality mode change with minimal and bounded
delays, based on a deep understanding of SDN. We have
developed the prototype of MC-SDN not only to examine the
performance closely from various factors, but also to evaluate
its effectiveness in a real world system such as a 1/10 scaled
autonomous vehicle. The extensive evaluation and case study
prove that MC-SDN effectively improves the safety of cyber-
physical systems.

In this paper, we focused on identifying and addressing
delay factors in mode change, while considering a mode vio-
lation in dual-criticality systems (i.e., LO to HI mode change).
Yet, the network should be able to go back to LO mode
for system sustainability. The mode change in the opposite
direction (HI to LO) has slightly different requirements; it raises
several challenges such as determining the safe mode change
timing and maintaining the system-wide mode consistency.
In addition, for real systems which require a complicated
level of assurance [52], MC-SDN should be generalized towards
supporting more than two criticality levels. It also raises
additional challenges, including managing the system mode
and forwarding rules according to the multiple criticality
levels. We leave them as future work.

Furthermore, we have implemented MC-SDN on top of a
software switch (Open vSwitch), to explore the feasibility of
supporting real-time MC scheduling on SDN. However, we
believe that the design principles of MC-SDN are applicable to
general SDN devices, including hardware switches. We leave
it future work to optimize the hardware implementation of
MC-SDN design with FPGA-based SDN switches [53].

298

ACKNOWLEDGEMENTS

This work was supported in part by BSRP (NRF-

2015R1D1A1A01058713), IITP (2014-0-00065, Resilient

Cyber-Physical Systems Research), DAPA/ADD (High-Speed

Vehicle Research Center of KAIST, UD170018CD), ERC (NRF-

2018R1A5A1059921), MSIT (DGIST Start-up Fund Program,

2018080005), MSIT (NRF-2017R1A2B2002458), and MOLIT

(17TBIP-C125224-01).

REFERENCES

[1] “Autosar classic platform standard 4.3.0,” 2016.
[2] “Open alliance,” ”http://www.opensig.org/”.
[3] A. Burns and R. Davis, “Mixed criticality systems – a review,” 2017,

http://www-users.cs.york.ac.uk/burns/review.pdf, the ninth edition.
[4] J. Lee, K.-M. Phan, X. Gu, J. Lee, A. Easwaran, I. Shin, and I. Lee,

“MC-Fluid: Fluid model-based mixed-criticality scheduling on multi-
processors,” in RTSS, 2014.

[5] H. Baek, N. Jung, H. S. Chwa, I. Shin, and J. Lee, “Non-preemptive
scheduling for mixed-criticality real-time multiprocessor systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 29, no. 8, pp.
1766–1779, Aug. 2018.

[6] A. Burns et al., “Mixed criticality on controller area network,” in ECRTS,
2013.

[7] S. Tobuschat, P. Axer, R. Ernst, and J. Diemer, “Idamc: A noc for mixed
criticality systems,” in RTAS, 2013.

[8] A. Burns, J. Harbin, and L. S. Indrusiak, “A wormhole noc protocol for
mixed criticality systems,” in RTSS, 2014.

[9] L. S. Indrusiak, J. Harbin, and A. Burns, “Average and worst-case
latency improvements in mixed-criticality wormhole networks-on-chip,”
in ECRTS, 2015.

[10] A. Kostrzewa, S. Saidi, and R. Ernst, “Dynamic control for mixed-
criticality networks-on-chip,” in RTSS, 2015.

[11] O. Cros, L. George, and X. Li, “A protocol for mixed-criticality
management in switched ethernet networks,” in Workshop on Mixed
Criticality Systems (WMC), 2015.

[12] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation
in campus networks,” ACM SIGCOMM CCR, vol. 38, no. 2, pp. 69–74,
2008.

[13] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The design and implementation of open vswitch,” in NSDI, 2015.

[14] Robot Operating System (ROS), http://www.ros.org/.
[15] S.-W. Moon, K. G. Shin, and J. Rexford, “Scalable hardware priority

queue architectures for high-speed packet switches,” IEEE Transactions
on Computer, vol. 49, no. 11, pp. 1215–1227, Nov. 2000.

[16] “Linux Advanced Routing & Traffic Control HOWTO,” http://lartc.org.
[17] J. Lee, H. S. Chwa, L. T. Phan, I. Shin, and I. Lee, “MC-ADAPT: Adap-

tive task dropping in mixed-criticality scheduling,” ACM Transactions
on Embedded Computing Systems, vol. 16, no. 5s, pp. 163:1–163:21,
Sep. 2017.

[18] H. S. Chwa, K. G. Shin, H. Baek, and J. Lee, “Physical-state-aware
dynamic slack management for mixed-criticality systems,” in RTAS,
2018.

[19] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. ACM, vol. 20, no. 1, pp. 46–61,
Jan. 1973.

[20] ONF, “Open Networking Foundation,” www.opennetworking.org/.
[21] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood,

“On controller performance in software-defined networks,” in Hot-ICE,
2012.

[22] Open vSwitch, “An Open Virtual Switch,” http://openvswitch.org/.
[23] “Pox, the python network controller,” https://github.com/noxrepo/pox.
[24] “Odroid-XU4,” https://magazine.odroid.com/odroid-xu4.
[25] “RealTek RTL8152,” http://www.realtek.com.tw/products/productsView.

aspx?Langid=1&PNid=14&PFid=55&Level=5&Conn=4&ProdID=323.
[26] Draka, “SuperCat OUTDOOR CAT 5e U/UTP,” https:

//web.archive.org/web/20120316111058/http://communications.draka.
com/sites/eu/Datasheets/SuperCat5 24 U UTP Install.pdf.

[27] RTL8152 Datasheet, https://datasheet.lcsc.com/szlcsc/
Realtek-Semicon-RTL8152B-VB-CG C50656.pdf.

[28] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The worst-
case execution-time problem—overview of methods and survey of
tools,” ACM Trans. Embed. Comput. Syst., vol. 7, no. 3, pp. 36:1–36:53,
May 2008.

[29] W. Chang, D. Goswami, S. Chakraborty, L. Ju, C. J. Xue, and
S. Andalam, “Memory-aware embedded control systems design,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 36, no. 4, pp. 586–599, 2017.

[30] C. Wanli and S. Chakraborty, “Resource-aware automotive control
systems design: A cyber-physical systems approach,” vol. 10, pp. 249–
369, 01 2016.

[31] “BeagleBone Black,” https://beagleboard.org/black.
[32] NHTSA, “U.S. DOT and IIHS announce historic commitment of 20

automakers to make automatic emergency braking standard on new ve-
hicles,” https://www.nhtsa.gov/press-releases/us-dot-and-iihs-announce-
historic-commitment-20-automakers-make-automatic-emergency.

[33] Jaguar F-PACE ADAS, https://www.jaguar-me.com/en/about-jaguar/
jaguar-stories/f-pace-advanced-driver-assistance-systems.html.

[34] F1/10 Autonomous Racing Competition, http://f1tenth.org/.
[35] Traxxas Models, https://traxxas.com/products/showroom.
[36] Hokuyo Automatic Co., “UST-10LX Specification,” http:

//www.senteksolutions.com/application/files/2414/7196/1936/
UST-10LX Specifications.pdf.

[37] Intel, “Intel® RealSense™ Camera R200 product
datasheet,” https://www.intel.com/content/dam/support/us/en/
documents/emerging-technologies/intel-realsense-technology/
realsense-camera-r200-datasheet.pdf.

[38] NVIDIA, “NVIDIA Jetson TK1 developer kit product page,” http:
//www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html.

[39] Raspberry PI3, https://www.raspberrypi.org/products/
raspberry-pi-3-model-b.

[40] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf, “A flexible
and scalable slam system with full 3d motion estimation,” in IEEE In-
ternational Symposium on Safety, Security and Rescue Robotics (SSRR),
2011.

[41] R. Bosch, “CAN specification version 2.0,” Sep. 1991.
[42] R. Makowitz and C. Temple, “Flexray-a communication network for

automotive control systems,” in IEEE International Workshop on Factory
Communication Systems, 2006, pp. 207–212.

[43] J.-P. Moreaux, “Data transmission system for aircraft,” Aug. 2 2005, uS
Patent 6,925,088.

[44] “IEEE standard for local and metropolitan area networks - timing and
synchronization for time-sensitive applications in bridged local area
networks,” IEEE Std 802.1AS-2011, pp. 1–292, March 2011.

[45] “IEEE standard for local and metropolitan area networks– bridges and
bridged networks - amendment 24: Path control and reservation,” IEEE
Std 802.1Qca-2015, pp. 1–120, March 2016.

[46] “IEEE standard for local and metropolitan area networks – bridges and
bridged networks - amendment 25: Enhancements for scheduled traffic,”
IEEE Std 802.1Qbv-2015, pp. 1–57, March 2016.

[47] “IEEE standard for local and metropolitan area networks – bridges
and bridged networks – amendment 26: Frame preemption,” IEEE Std
802.1Qbu-2016, pp. 1–52, Aug 2016.

[48] T. Qian, F. Mueller, and Y. Xin, “A linux real-time packet scheduler for
reliable static sdn routing,” in ECRTS, 2017.

[49] R. Kumar, M. Hasan, S. Padhy, K. Evchenko, L. Piramanayagam,
S. Mohan, and R. Bobba, “End-to-end network delay guarantees for
real-time systems using sdn,” in RTSS, 2017.

[50] N. G. Nayak, F. Dürr, and K. Rothermel, “Time-sensitive software-
defined network (tssdn) for real-time applications,” in RTNS, 2016.

[51] A. L. King, S. Chen, and I. Lee, “The middleware assurance substrate:
Enabling strong real-time guarantees in open systems with openflow,”
in ISORC, 2014.

[52] ISO, “ISO 26262: Road vehicles - Functional safety - Part 9: Automotive
Safety Integrity Level (ASIL),” 2011.

[53] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore, “Netf-
pga sume: Toward 100 gbps as research commodity,” IEEE MICRO,
vol. 34, no. 5, pp. 32–41, 2014.

299

